/* $OpenBSD: svr4_misc.c,v 1.17 1997/11/14 21:22:52 deraadt Exp $ */ /* $NetBSD: svr4_misc.c,v 1.42 1996/12/06 03:22:34 christos Exp $ */ /* * Copyright (c) 1994 Christos Zoulas * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * SVR4 compatibility module. * * SVR4 system calls that are implemented differently in BSD are * handled here. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static __inline clock_t timeval_to_clock_t __P((struct timeval *)); static int svr4_setinfo __P((struct proc *, int, svr4_siginfo_t *)); struct svr4_hrtcntl_args; static int svr4_hrtcntl __P((struct proc *, struct svr4_hrtcntl_args *, register_t *)); static void bsd_statfs_to_svr4_statvfs __P((const struct statfs *, struct svr4_statvfs *)); static struct proc *svr4_pfind __P((pid_t pid)); static int svr4_mknod __P((struct proc *, register_t *, char *, svr4_mode_t, svr4_dev_t)); int svr4_sys_wait(p, v, retval) register struct proc *p; void *v; register_t *retval; { struct svr4_sys_wait_args *uap = v; struct sys_wait4_args w4; int error; size_t sz = sizeof(*SCARG(&w4, status)); SCARG(&w4, rusage) = NULL; SCARG(&w4, options) = 0; if (SCARG(uap, status) == NULL) { caddr_t sg = stackgap_init(p->p_emul); SCARG(&w4, status) = stackgap_alloc(&sg, sz); } else SCARG(&w4, status) = SCARG(uap, status); SCARG(&w4, pid) = WAIT_ANY; if ((error = sys_wait4(p, &w4, retval)) != 0) return error; /* * It looks like wait(2) on svr4/solaris/2.4 returns * the status in retval[1], and the pid on retval[0]. * NB: this can break if register_t stops being an int. */ return copyin(SCARG(&w4, status), &retval[1], sz); } int svr4_sys_execv(p, v, retval) register struct proc *p; void *v; register_t *retval; { struct svr4_sys_execv_args /* { syscallarg(char *) path; syscallarg(char **) argv; } */ *uap = v; struct sys_execve_args ap; caddr_t sg; sg = stackgap_init(p->p_emul); SVR4_CHECK_ALT_EXIST(p, &sg, SCARG(uap, path)); SCARG(&ap, path) = SCARG(uap, path); SCARG(&ap, argp) = SCARG(uap, argp); SCARG(&ap, envp) = NULL; return sys_execve(p, &ap, retval); } int svr4_sys_execve(p, v, retval) register struct proc *p; void *v; register_t *retval; { struct svr4_sys_execve_args /* { syscallarg(char *) path; syscallarg(char **) argv; syscallarg(char **) envp; } */ *uap = v; struct sys_execve_args ap; caddr_t sg; sg = stackgap_init(p->p_emul); SVR4_CHECK_ALT_EXIST(p, &sg, SCARG(uap, path)); SCARG(&ap, path) = SCARG(uap, path); SCARG(&ap, argp) = SCARG(uap, argp); SCARG(&ap, envp) = SCARG(uap, envp); return sys_execve(p, &ap, retval); } int svr4_sys_time(p, v, retval) register struct proc *p; void *v; register_t *retval; { struct svr4_sys_time_args *uap = v; int error = 0; struct timeval tv; microtime(&tv); if (SCARG(uap, t)) error = copyout(&tv.tv_sec, SCARG(uap, t), sizeof(*(SCARG(uap, t)))); *retval = (int) tv.tv_sec; return error; } /* * Read SVR4-style directory entries. We suck them into kernel space so * that they can be massaged before being copied out to user code. Like * SunOS, we squish out `empty' entries. * * This is quite ugly, but what do you expect from compatibility code? */ int svr4_sys_getdents(p, v, retval) register struct proc *p; void *v; register_t *retval; { struct svr4_sys_getdents_args *uap = v; register struct dirent *bdp; struct vnode *vp; caddr_t inp, buf; /* BSD-format */ int len, reclen; /* BSD-format */ caddr_t outp; /* SVR4-format */ int resid, svr4_reclen; /* SVR4-format */ struct file *fp; struct uio auio; struct iovec aiov; struct svr4_dirent idb; off_t off; /* true file offset */ int buflen, error, eofflag; u_long *cookiebuf = NULL, *cookie; int ncookies = 0; if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0) return (error); if ((fp->f_flag & FREAD) == 0) return (EBADF); vp = (struct vnode *)fp->f_data; if (vp->v_type != VDIR) /* XXX vnode readdir op should do this */ return (EINVAL); buflen = min(MAXBSIZE, SCARG(uap, nbytes)); buf = malloc(buflen, M_TEMP, M_WAITOK); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p); off = fp->f_offset; again: aiov.iov_base = buf; aiov.iov_len = buflen; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_rw = UIO_READ; auio.uio_segflg = UIO_SYSSPACE; auio.uio_procp = p; auio.uio_resid = buflen; auio.uio_offset = off; /* * First we read into the malloc'ed buffer, then * we massage it into user space, one record at a time. */ error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &ncookies, &cookiebuf); if (error) goto out; if (!error && !cookiebuf) { error = EPERM; goto out; } inp = buf; outp = SCARG(uap, buf); resid = SCARG(uap, nbytes); if ((len = buflen - auio.uio_resid) == 0) goto eof; for (cookie = cookiebuf; len > 0; len -= reclen) { bdp = (struct dirent *)inp; reclen = bdp->d_reclen; if (reclen & 3) panic("svr4_getdents"); off = *cookie++; /* each entry points to the next */ if (bdp->d_fileno == 0) { inp += reclen; /* it is a hole; squish it out */ continue; } svr4_reclen = SVR4_RECLEN(&idb, bdp->d_namlen); if (reclen > len || resid < svr4_reclen) { /* entry too big for buffer, so just stop */ outp++; break; } /* * Massage in place to make a SVR4-shaped dirent (otherwise * we have to worry about touching user memory outside of * the copyout() call). */ idb.d_ino = (svr4_ino_t)bdp->d_fileno; idb.d_off = (svr4_off_t)off; idb.d_reclen = (u_short)svr4_reclen; strcpy(idb.d_name, bdp->d_name); if ((error = copyout((caddr_t)&idb, outp, svr4_reclen))) goto out; /* advance past this real entry */ inp += reclen; /* advance output past SVR4-shaped entry */ outp += svr4_reclen; resid -= svr4_reclen; } /* if we squished out the whole block, try again */ if (outp == SCARG(uap, buf)) goto again; fp->f_offset = off; /* update the vnode offset */ eof: *retval = SCARG(uap, nbytes) - resid; out: VOP_UNLOCK(vp, 0, p); if (cookiebuf) free(cookiebuf, M_TEMP); free(buf, M_TEMP); return error; } int svr4_sys_mmap(p, v, retval) register struct proc *p; void *v; register_t *retval; { struct svr4_sys_mmap_args *uap = v; struct sys_mmap_args mm; void *rp; #define _MAP_NEW 0x80000000 /* * Verify the arguments. */ if (SCARG(uap, prot) & ~(PROT_READ | PROT_WRITE | PROT_EXEC)) return EINVAL; /* XXX still needed? */ if (SCARG(uap, len) == 0) return EINVAL; SCARG(&mm, prot) = SCARG(uap, prot); SCARG(&mm, len) = SCARG(uap, len); SCARG(&mm, flags) = SCARG(uap, flags) & ~_MAP_NEW; SCARG(&mm, fd) = SCARG(uap, fd); SCARG(&mm, addr) = SCARG(uap, addr); SCARG(&mm, pos) = SCARG(uap, pos); rp = (void *) round_page(p->p_vmspace->vm_daddr + MAXDSIZ); if ((SCARG(&mm, flags) & MAP_FIXED) == 0 && SCARG(&mm, addr) != 0 && SCARG(&mm, addr) < rp) SCARG(&mm, addr) = rp; return sys_mmap(p, &mm, retval); } int svr4_sys_fchroot(p, v, retval) register struct proc *p; void *v; register_t *retval; { struct svr4_sys_fchroot_args *uap = v; struct filedesc *fdp = p->p_fd; struct vnode *vp; struct file *fp; int error; if ((error = suser(p->p_ucred, &p->p_acflag)) != 0) return error; if ((error = getvnode(fdp, SCARG(uap, fd), &fp)) != 0) return error; vp = (struct vnode *) fp->f_data; vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p); if (vp->v_type != VDIR) error = ENOTDIR; else error = VOP_ACCESS(vp, VEXEC, p->p_ucred, p); VOP_UNLOCK(vp, 0, p); if (error) return error; VREF(vp); if (fdp->fd_rdir != NULL) vrele(fdp->fd_rdir); fdp->fd_rdir = vp; return 0; } static int svr4_mknod(p, retval, path, mode, dev) struct proc *p; register_t *retval; char *path; svr4_mode_t mode; svr4_dev_t dev; { caddr_t sg = stackgap_init(p->p_emul); SVR4_CHECK_ALT_EXIST(p, &sg, path); if (S_ISFIFO(mode)) { struct sys_mkfifo_args ap; SCARG(&ap, path) = path; SCARG(&ap, mode) = mode; return sys_mkfifo(p, &ap, retval); } else { struct sys_mknod_args ap; SCARG(&ap, path) = path; SCARG(&ap, mode) = mode; SCARG(&ap, dev) = dev; return sys_mknod(p, &ap, retval); } } int svr4_sys_mknod(p, v, retval) register struct proc *p; void *v; register_t *retval; { struct svr4_sys_mknod_args *uap = v; return svr4_mknod(p, retval, SCARG(uap, path), SCARG(uap, mode), SCARG(uap, dev)); } int svr4_sys_xmknod(p, v, retval) register struct proc *p; void *v; register_t *retval; { struct svr4_sys_xmknod_args *uap = v; return svr4_mknod(p, retval, SCARG(uap, path), SCARG(uap, mode), SCARG(uap, dev)); } int svr4_sys_vhangup(p, v, retval) struct proc *p; void *v; register_t *retval; { return 0; } int svr4_sys_sysconfig(p, v, retval) register struct proc *p; void *v; register_t *retval; { struct svr4_sys_sysconfig_args *uap = v; extern int maxfiles; switch (SCARG(uap, name)) { case SVR4_CONFIG_UNUSED: *retval = 0; break; case SVR4_CONFIG_NGROUPS: *retval = NGROUPS_MAX; break; case SVR4_CONFIG_CHILD_MAX: *retval = maxproc; break; case SVR4_CONFIG_OPEN_FILES: *retval = maxfiles; break; case SVR4_CONFIG_POSIX_VER: *retval = 198808; break; case SVR4_CONFIG_PAGESIZE: *retval = NBPG; break; case SVR4_CONFIG_CLK_TCK: *retval = 60; /* should this be `hz', ie. 100? */ break; case SVR4_CONFIG_XOPEN_VER: *retval = 2; /* XXX: What should that be? */ break; case SVR4_CONFIG_PROF_TCK: *retval = 60; /* XXX: What should that be? */ break; case SVR4_CONFIG_NPROC_CONF: *retval = 1; /* Only one processor for now */ break; case SVR4_CONFIG_NPROC_ONLN: *retval = 1; /* And it better be online */ break; case SVR4_CONFIG_AIO_LISTIO_MAX: case SVR4_CONFIG_AIO_MAX: case SVR4_CONFIG_AIO_PRIO_DELTA_MAX: *retval = 0; /* No aio support */ break; case SVR4_CONFIG_DELAYTIMER_MAX: *retval = 0; /* No delaytimer support */ break; case SVR4_CONFIG_MQ_OPEN_MAX: *retval = msginfo.msgmni; break; case SVR4_CONFIG_MQ_PRIO_MAX: *retval = 0; /* XXX: Don't know */ break; case SVR4_CONFIG_RTSIG_MAX: *retval = 0; break; case SVR4_CONFIG_SEM_NSEMS_MAX: *retval = seminfo.semmni; break; case SVR4_CONFIG_SEM_VALUE_MAX: *retval = seminfo.semvmx; break; case SVR4_CONFIG_SIGQUEUE_MAX: *retval = 0; /* XXX: Don't know */ break; case SVR4_CONFIG_SIGRT_MIN: case SVR4_CONFIG_SIGRT_MAX: *retval = 0; /* No real time signals */ break; case SVR4_CONFIG_TIMER_MAX: *retval = 3; /* XXX: real, virtual, profiling */ break; case SVR4_CONFIG_PHYS_PAGES: *retval = cnt.v_free_count; /* XXX: free instead of total */ break; case SVR4_CONFIG_AVPHYS_PAGES: *retval = cnt.v_active_count; /* XXX: active instead of avg */ break; default: return EINVAL; } return 0; } #define SVR4_RLIMIT_NOFILE 5 /* Other RLIMIT_* are the same */ #define SVR4_RLIMIT_VMEM 6 /* Other RLIMIT_* are the same */ #define SVR4_RLIM_NLIMITS 7 int svr4_sys_getrlimit(p, v, retval) register struct proc *p; void *v; register_t *retval; { struct svr4_sys_getrlimit_args *uap = v; struct compat_43_sys_getrlimit_args ap; if (SCARG(uap, which) >= SVR4_RLIM_NLIMITS) return EINVAL; if (SCARG(uap, which) == SVR4_RLIMIT_NOFILE) SCARG(uap, which) = RLIMIT_NOFILE; if (SCARG(uap, which) == SVR4_RLIMIT_VMEM) SCARG(uap, which) = RLIMIT_RSS; SCARG(&ap, which) = SCARG(uap, which); SCARG(&ap, rlp) = SCARG(uap, rlp); return compat_43_sys_getrlimit(p, &ap, retval); } int svr4_sys_setrlimit(p, v, retval) register struct proc *p; void *v; register_t *retval; { struct svr4_sys_setrlimit_args *uap = v; struct compat_43_sys_setrlimit_args ap; if (SCARG(uap, which) >= SVR4_RLIM_NLIMITS) return EINVAL; if (SCARG(uap, which) == SVR4_RLIMIT_NOFILE) SCARG(uap, which) = RLIMIT_NOFILE; if (SCARG(uap, which) == SVR4_RLIMIT_VMEM) SCARG(uap, which) = RLIMIT_RSS; SCARG(&ap, which) = SCARG(uap, which); SCARG(&ap, rlp) = SCARG(uap, rlp); return compat_43_sys_setrlimit(p, uap, retval); } /* ARGSUSED */ int svr4_sys_break(p, v, retval) register struct proc *p; void *v; register_t *retval; { struct svr4_sys_break_args *uap = v; register struct vmspace *vm = p->p_vmspace; vm_offset_t new, old; int rv; register int diff; old = (vm_offset_t) vm->vm_daddr; new = round_page(SCARG(uap, nsize)); diff = new - old; DPRINTF(("break(1): old %lx new %lx diff %x\n", old, new, diff)); if (diff > p->p_rlimit[RLIMIT_DATA].rlim_cur) return ENOMEM; old = round_page(old + ctob(vm->vm_dsize)); DPRINTF(("break(2): dsize = %x ctob %x\n", vm->vm_dsize, ctob(vm->vm_dsize))); diff = new - old; DPRINTF(("break(3): old %lx new %lx diff %x\n", old, new, diff)); if (diff > 0) { rv = vm_allocate(&vm->vm_map, &old, diff, FALSE); if (rv != KERN_SUCCESS) { uprintf("sbrk: grow failed, return = %d\n", rv); return ENOMEM; } vm->vm_dsize += btoc(diff); } else if (diff < 0) { diff = -diff; rv = vm_deallocate(&vm->vm_map, new, diff); if (rv != KERN_SUCCESS) { uprintf("sbrk: shrink failed, return = %d\n", rv); return ENOMEM; } vm->vm_dsize -= btoc(diff); } return 0; } static __inline clock_t timeval_to_clock_t(tv) struct timeval *tv; { return tv->tv_sec * hz + tv->tv_usec / (1000000 / hz); } int svr4_sys_times(p, v, retval) register struct proc *p; void *v; register_t *retval; { struct svr4_sys_times_args *uap = v; int error; struct tms tms; struct timeval t; struct rusage *ru; struct rusage r; struct sys_getrusage_args ga; caddr_t sg = stackgap_init(p->p_emul); ru = stackgap_alloc(&sg, sizeof(struct rusage)); SCARG(&ga, who) = RUSAGE_SELF; SCARG(&ga, rusage) = ru; error = sys_getrusage(p, &ga, retval); if (error) return error; if ((error = copyin(ru, &r, sizeof r)) != 0) return error; tms.tms_utime = timeval_to_clock_t(&r.ru_utime); tms.tms_stime = timeval_to_clock_t(&r.ru_stime); SCARG(&ga, who) = RUSAGE_CHILDREN; error = sys_getrusage(p, &ga, retval); if (error) return error; if ((error = copyin(ru, &r, sizeof r)) != 0) return error; tms.tms_cutime = timeval_to_clock_t(&r.ru_utime); tms.tms_cstime = timeval_to_clock_t(&r.ru_stime); microtime(&t); *retval = timeval_to_clock_t(&t); return copyout(&tms, SCARG(uap, tp), sizeof(tms)); } int svr4_sys_ulimit(p, v, retval) register struct proc *p; void *v; register_t *retval; { struct svr4_sys_ulimit_args *uap = v; switch (SCARG(uap, cmd)) { case SVR4_GFILLIM: *retval = p->p_rlimit[RLIMIT_FSIZE].rlim_cur / 512; return 0; case SVR4_SFILLIM: { int error; struct sys_setrlimit_args srl; struct rlimit krl; caddr_t sg = stackgap_init(p->p_emul); struct rlimit *url = (struct rlimit *) stackgap_alloc(&sg, sizeof *url); krl.rlim_cur = SCARG(uap, newlimit) * 512; krl.rlim_max = p->p_rlimit[RLIMIT_FSIZE].rlim_max; error = copyout(&krl, url, sizeof(*url)); if (error) return error; SCARG(&srl, which) = RLIMIT_FSIZE; SCARG(&srl, rlp) = url; error = sys_setrlimit(p, &srl, retval); if (error) return error; *retval = p->p_rlimit[RLIMIT_FSIZE].rlim_cur; return 0; } case SVR4_GMEMLIM: { struct vmspace *vm = p->p_vmspace; *retval = (long) vm->vm_daddr + p->p_rlimit[RLIMIT_DATA].rlim_cur; return 0; } case SVR4_GDESLIM: *retval = p->p_rlimit[RLIMIT_NOFILE].rlim_cur; return 0; default: return EINVAL; } } static struct proc * svr4_pfind(pid) pid_t pid; { struct proc *p; /* look in the live processes */ if ((p = pfind(pid)) != NULL) return p; /* look in the zombies */ for (p = zombproc.lh_first; p != 0; p = p->p_list.le_next) if (p->p_pid == pid) return p; return NULL; } int svr4_sys_pgrpsys(p, v, retval) register struct proc *p; void *v; register_t *retval; { struct svr4_sys_pgrpsys_args *uap = v; int error; switch (SCARG(uap, cmd)) { case 0: /* getpgrp() */ *retval = p->p_pgrp->pg_id; return 0; case 1: /* setpgrp() */ { struct sys_setpgid_args sa; SCARG(&sa, pid) = 0; SCARG(&sa, pgid) = 0; if ((error = sys_setpgid(p, &sa, retval)) != 0) return error; *retval = p->p_pgrp->pg_id; return 0; } case 2: /* getsid(pid) */ if (SCARG(uap, pid) != 0 && (p = svr4_pfind(SCARG(uap, pid))) == NULL) return ESRCH; /* * we return the pid of the session leader for this * process */ *retval = (register_t) p->p_session->s_leader->p_pid; return 0; case 3: /* setsid() */ return sys_setsid(p, NULL, retval); case 4: /* getpgid(pid) */ if (SCARG(uap, pid) != 0 && (p = svr4_pfind(SCARG(uap, pid))) == NULL) return ESRCH; *retval = (int) p->p_pgrp->pg_id; return 0; case 5: /* setpgid(pid, pgid); */ { struct sys_setpgid_args sa; SCARG(&sa, pid) = SCARG(uap, pid); SCARG(&sa, pgid) = SCARG(uap, pgid); return sys_setpgid(p, &sa, retval); } default: return EINVAL; } } #define syscallarg(x) union { x datum; register_t pad; } struct svr4_hrtcntl_args { syscallarg(int) cmd; syscallarg(int) fun; syscallarg(int) clk; syscallarg(svr4_hrt_interval_t *) iv; syscallarg(svr4_hrt_time_t *) ti; }; static int svr4_hrtcntl(p, uap, retval) register struct proc *p; register struct svr4_hrtcntl_args *uap; register_t *retval; { switch (SCARG(uap, fun)) { case SVR4_HRT_CNTL_RES: DPRINTF(("htrcntl(RES)\n")); *retval = SVR4_HRT_USEC; return 0; case SVR4_HRT_CNTL_TOFD: DPRINTF(("htrcntl(TOFD)\n")); { struct timeval tv; svr4_hrt_time_t t; if (SCARG(uap, clk) != SVR4_HRT_CLK_STD) { DPRINTF(("clk == %d\n", SCARG(uap, clk))); return EINVAL; } if (SCARG(uap, ti) == NULL) { DPRINTF(("ti NULL\n")); return EINVAL; } microtime(&tv); t.h_sec = tv.tv_sec; t.h_rem = tv.tv_usec; t.h_res = SVR4_HRT_USEC; return copyout(&t, SCARG(uap, ti), sizeof(t)); } case SVR4_HRT_CNTL_START: DPRINTF(("htrcntl(START)\n")); return ENOSYS; case SVR4_HRT_CNTL_GET: DPRINTF(("htrcntl(GET)\n")); return ENOSYS; default: DPRINTF(("Bad htrcntl command %d\n", SCARG(uap, fun))); return ENOSYS; } } int svr4_sys_hrtsys(p, v, retval) register struct proc *p; void *v; register_t *retval; { struct svr4_sys_hrtsys_args *uap = v; switch (SCARG(uap, cmd)) { case SVR4_HRT_CNTL: return svr4_hrtcntl(p, (struct svr4_hrtcntl_args *) uap, retval); case SVR4_HRT_ALRM: DPRINTF(("hrtalarm\n")); return ENOSYS; case SVR4_HRT_SLP: DPRINTF(("hrtsleep\n")); return ENOSYS; case SVR4_HRT_CAN: DPRINTF(("hrtcancel\n")); return ENOSYS; default: DPRINTF(("Bad hrtsys command %d\n", SCARG(uap, cmd))); return EINVAL; } } static int svr4_setinfo(p, st, s) struct proc *p; int st; svr4_siginfo_t *s; { svr4_siginfo_t i; bzero(&i, sizeof(i)); i.svr4_si_signo = SVR4_SIGCHLD; i.svr4_si_errno = 0; /* XXX? */ if (p) { i.svr4_si_pid = p->p_pid; if (p->p_stat == SZOMB) { i.svr4_si_stime = p->p_ru->ru_stime.tv_sec; i.svr4_si_utime = p->p_ru->ru_utime.tv_sec; } else { i.svr4_si_stime = p->p_stats->p_ru.ru_stime.tv_sec; i.svr4_si_utime = p->p_stats->p_ru.ru_utime.tv_sec; } } if (WIFEXITED(st)) { i.svr4_si_status = WEXITSTATUS(st); i.svr4_si_code = SVR4_CLD_EXITED; } else if (WIFSTOPPED(st)) { i.svr4_si_status = bsd_to_svr4_sig[WSTOPSIG(st)]; if (i.svr4_si_status == SVR4_SIGCONT) i.svr4_si_code = SVR4_CLD_CONTINUED; else i.svr4_si_code = SVR4_CLD_STOPPED; } else { i.svr4_si_status = bsd_to_svr4_sig[WTERMSIG(st)]; if (WCOREDUMP(st)) i.svr4_si_code = SVR4_CLD_DUMPED; else i.svr4_si_code = SVR4_CLD_KILLED; } DPRINTF(("siginfo [pid %ld signo %d code %d errno %d status %d]\n", i.svr4_si_pid, i.svr4_si_signo, i.svr4_si_code, i.svr4_si_errno, i.svr4_si_status)); return copyout(&i, s, sizeof(i)); } int svr4_sys_waitsys(p, v, retval) register struct proc *p; void *v; register_t *retval; { struct svr4_sys_waitsys_args *uap = v; int nfound; int error; struct proc *q, *t; switch (SCARG(uap, grp)) { case SVR4_P_PID: break; case SVR4_P_PGID: SCARG(uap, id) = -p->p_pgid; break; case SVR4_P_ALL: SCARG(uap, id) = WAIT_ANY; break; default: return EINVAL; } DPRINTF(("waitsys(%d, %d, %p, %x)\n", SCARG(uap, grp), SCARG(uap, id), SCARG(uap, info), SCARG(uap, options))); loop: nfound = 0; for (q = p->p_children.lh_first; q != 0; q = q->p_sibling.le_next) { if (SCARG(uap, id) != WAIT_ANY && q->p_pid != SCARG(uap, id) && q->p_pgid != -SCARG(uap, id)) { DPRINTF(("pid %d pgid %d != %d\n", q->p_pid, q->p_pgid, SCARG(uap, id))); continue; } nfound++; if (q->p_stat == SZOMB && ((SCARG(uap, options) & (SVR4_WEXITED|SVR4_WTRAPPED)))) { *retval = 0; DPRINTF(("found %d\n", q->p_pid)); if ((error = svr4_setinfo(q, q->p_xstat, SCARG(uap, info))) != 0) return error; if ((SCARG(uap, options) & SVR4_WNOWAIT)) { DPRINTF(("Don't wait\n")); return 0; } /* * If we got the child via a ptrace 'attach', * we need to give it back to the old parent. */ if (q->p_oppid && (t = pfind(q->p_oppid))) { q->p_oppid = 0; proc_reparent(q, t); psignal(t, SIGCHLD); wakeup((caddr_t)t); return 0; } q->p_xstat = 0; ruadd(&p->p_stats->p_cru, q->p_ru); FREE(q->p_ru, M_ZOMBIE); /* * Decrement the count of procs running with this uid. */ (void)chgproccnt(q->p_cred->p_ruid, -1); /* * Free up credentials. */ if (--q->p_cred->p_refcnt == 0) { crfree(q->p_cred->pc_ucred); FREE(q->p_cred, M_SUBPROC); } /* * Release reference to text vnode */ if (q->p_textvp) vrele(q->p_textvp); /* * Finally finished with old proc entry. * Unlink it from its process group and free it. */ leavepgrp(q); LIST_REMOVE(q, p_list); /* off zombproc */ LIST_REMOVE(q, p_sibling); /* * Give machine-dependent layer a chance * to free anything that cpu_exit couldn't * release while still running in process context. */ cpu_wait(q); FREE(q, M_PROC); nprocs--; return 0; } if (q->p_stat == SSTOP && (q->p_flag & P_WAITED) == 0 && (q->p_flag & P_TRACED || (SCARG(uap, options) & (SVR4_WSTOPPED|SVR4_WCONTINUED)))) { DPRINTF(("jobcontrol %d\n", q->p_pid)); if (((SCARG(uap, options) & SVR4_WNOWAIT)) == 0) q->p_flag |= P_WAITED; *retval = 0; return svr4_setinfo(q, W_STOPCODE(q->p_xstat), SCARG(uap, info)); } } if (nfound == 0) return ECHILD; if (SCARG(uap, options) & SVR4_WNOHANG) { *retval = 0; if ((error = svr4_setinfo(NULL, 0, SCARG(uap, info))) != 0) return error; return 0; } if ((error = tsleep((caddr_t)p, PWAIT | PCATCH, "svr4_wait", 0)) != 0) return error; goto loop; } static void bsd_statfs_to_svr4_statvfs(bfs, sfs) const struct statfs *bfs; struct svr4_statvfs *sfs; { sfs->f_bsize = bfs->f_iosize; /* XXX */ sfs->f_frsize = bfs->f_bsize; sfs->f_blocks = bfs->f_blocks; sfs->f_bfree = bfs->f_bfree; sfs->f_bavail = bfs->f_bavail; sfs->f_files = bfs->f_files; sfs->f_ffree = bfs->f_ffree; sfs->f_favail = bfs->f_ffree; sfs->f_fsid = bfs->f_fsid.val[0]; bcopy(bfs->f_fstypename, sfs->f_basetype, sizeof(sfs->f_basetype)); sfs->f_flag = 0; if (bfs->f_flags & MNT_RDONLY) sfs->f_flag |= SVR4_ST_RDONLY; if (bfs->f_flags & MNT_NOSUID) sfs->f_flag |= SVR4_ST_NOSUID; sfs->f_namemax = MAXNAMLEN; bcopy(bfs->f_fstypename, sfs->f_fstr, sizeof(sfs->f_fstr)); /* XXX */ bzero(sfs->f_filler, sizeof(sfs->f_filler)); } int svr4_sys_statvfs(p, v, retval) register struct proc *p; void *v; register_t *retval; { struct svr4_sys_statvfs_args *uap = v; struct sys_statfs_args fs_args; caddr_t sg = stackgap_init(p->p_emul); struct statfs *fs = stackgap_alloc(&sg, sizeof(struct statfs)); struct statfs bfs; struct svr4_statvfs sfs; int error; SVR4_CHECK_ALT_EXIST(p, &sg, SCARG(uap, path)); SCARG(&fs_args, path) = SCARG(uap, path); SCARG(&fs_args, buf) = fs; if ((error = sys_statfs(p, &fs_args, retval)) != 0) return error; if ((error = copyin(fs, &bfs, sizeof(bfs))) != 0) return error; bsd_statfs_to_svr4_statvfs(&bfs, &sfs); return copyout(&sfs, SCARG(uap, fs), sizeof(sfs)); } int svr4_sys_fstatvfs(p, v, retval) register struct proc *p; void *v; register_t *retval; { struct svr4_sys_fstatvfs_args *uap = v; struct sys_fstatfs_args fs_args; caddr_t sg = stackgap_init(p->p_emul); struct statfs *fs = stackgap_alloc(&sg, sizeof(struct statfs)); struct statfs bfs; struct svr4_statvfs sfs; int error; SCARG(&fs_args, fd) = SCARG(uap, fd); SCARG(&fs_args, buf) = fs; if ((error = sys_fstatfs(p, &fs_args, retval)) != 0) return error; if ((error = copyin(fs, &bfs, sizeof(bfs))) != 0) return error; bsd_statfs_to_svr4_statvfs(&bfs, &sfs); return copyout(&sfs, SCARG(uap, fs), sizeof(sfs)); } int svr4_sys_alarm(p, v, retval) register struct proc *p; void *v; register_t *retval; { struct svr4_sys_alarm_args *uap = v; int error; struct itimerval *ntp, *otp, tp; struct sys_setitimer_args sa; caddr_t sg = stackgap_init(p->p_emul); ntp = stackgap_alloc(&sg, sizeof(struct itimerval)); otp = stackgap_alloc(&sg, sizeof(struct itimerval)); timerclear(&tp.it_interval); tp.it_value.tv_sec = SCARG(uap, sec); tp.it_value.tv_usec = 0; if ((error = copyout(&tp, ntp, sizeof(tp))) != 0) return error; SCARG(&sa, which) = ITIMER_REAL; SCARG(&sa, itv) = ntp; SCARG(&sa, oitv) = otp; if ((error = sys_setitimer(p, &sa, retval)) != 0) return error; if ((error = copyin(otp, &tp, sizeof(tp))) != 0) return error; if (tp.it_value.tv_usec) tp.it_value.tv_sec++; *retval = (register_t) tp.it_value.tv_sec; return 0; } int svr4_sys_gettimeofday(p, v, retval) register struct proc *p; void *v; register_t *retval; { struct svr4_sys_gettimeofday_args *uap = v; if (SCARG(uap, tp)) { struct timeval atv; microtime(&atv); return copyout(&atv, SCARG(uap, tp), sizeof (atv)); } return 0; } int svr4_sys_facl(p, v, retval) register struct proc *p; void *v; register_t *retval; { struct svr4_sys_facl_args *uap = v; *retval = 0; switch (SCARG(uap, cmd)) { case SVR4_SYS_SETACL: /* We don't support acls on any filesystem */ return ENOSYS; case SVR4_SYS_GETACL: return copyout(retval, &SCARG(uap, num), sizeof(SCARG(uap, num))); case SVR4_SYS_GETACLCNT: return 0; default: return EINVAL; } } int svr4_sys_acl(p, v, retval) register struct proc *p; void *v; register_t *retval; { return svr4_sys_facl(p, v, retval); /* XXX: for now the same */ } int svr4_sys_auditsys(p, v, retval) register struct proc *p; void *v; register_t *retval; { /* * XXX: Big brother is *not* watching. */ return 0; } int svr4_sys_memcntl(p, v, retval) register struct proc *p; void *v; register_t *retval; { struct svr4_sys_memcntl_args *uap = v; struct sys_mprotect_args ap; SCARG(&ap, addr) = SCARG(uap, addr); SCARG(&ap, len) = SCARG(uap, len); SCARG(&ap, prot) = SCARG(uap, attr); /* XXX: no locking, invalidating, or syncing supported */ return sys_mprotect(p, &ap, retval); } int svr4_sys_nice(p, v, retval) register struct proc *p; void *v; register_t *retval; { struct svr4_sys_nice_args *uap = v; struct sys_setpriority_args ap; int error; SCARG(&ap, which) = PRIO_PROCESS; SCARG(&ap, who) = 0; SCARG(&ap, prio) = SCARG(uap, prio); if ((error = sys_setpriority(p, &ap, retval)) != 0) return error; if ((error = sys_getpriority(p, &ap, retval)) != 0) return error; return 0; }