/* $OpenBSD: aes.c,v 1.2 2020/07/22 13:54:30 tobhe Exp $ */ /* * Copyright (c) 2016 Thomas Pornin * * Modified for OpenBSD by Thomas Pornin and Mike Belopuhov. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include "aes.h" static inline void enc32le(void *dst, uint32_t x) { unsigned char *buf = dst; buf[0] = (unsigned char)x; buf[1] = (unsigned char)(x >> 8); buf[2] = (unsigned char)(x >> 16); buf[3] = (unsigned char)(x >> 24); } static inline uint32_t dec32le(const void *src) { const unsigned char *buf = src; return (uint32_t)buf[0] | ((uint32_t)buf[1] << 8) | ((uint32_t)buf[2] << 16) | ((uint32_t)buf[3] << 24); } /* * This constant-time implementation is "bitsliced": the 128-bit state is * split over eight 32-bit words q* in the following way: * * -- Input block consists in 16 bytes: * a00 a10 a20 a30 a01 a11 a21 a31 a02 a12 a22 a32 a03 a13 a23 a33 * In the terminology of FIPS 197, this is a 4x4 matrix which is read * column by column. * * -- Each byte is split into eight bits which are distributed over the * eight words, at the same rank. Thus, for a byte x at rank k, bit 0 * (least significant) of x will be at rank k in q0 (if that bit is b, * then it contributes "b << k" to the value of q0), bit 1 of x will be * at rank k in q1, and so on. * * -- Ranks given to bits are in "row order" and are either all even, or * all odd. Two independent AES states are thus interleaved, one using * the even ranks, the other the odd ranks. Row order means: * a00 a01 a02 a03 a10 a11 a12 a13 a20 a21 a22 a23 a30 a31 a32 a33 * * Converting input bytes from two AES blocks to bitslice representation * is done in the following way: * -- Decode first block into the four words q0 q2 q4 q6, in that order, * using little-endian convention. * -- Decode second block into the four words q1 q3 q5 q7, in that order, * using little-endian convention. * -- Call aes_ct_ortho(). * * Converting back to bytes is done by using the reverse operations. Note * that aes_ct_ortho() is its own inverse. */ /* * The AES S-box, as a bitsliced constant-time version. The input array * consists in eight 32-bit words; 32 S-box instances are computed in * parallel. Bits 0 to 7 of each S-box input (bit 0 is least significant) * are spread over the words 0 to 7, at the same rank. */ static void aes_ct_bitslice_Sbox(uint32_t *q) { /* * This S-box implementation is a straightforward translation of * the circuit described by Boyar and Peralta in "A new * combinational logic minimization technique with applications * to cryptology" (https://eprint.iacr.org/2009/191.pdf). * * Note that variables x* (input) and s* (output) are numbered * in "reverse" order (x0 is the high bit, x7 is the low bit). */ uint32_t x0, x1, x2, x3, x4, x5, x6, x7; uint32_t y1, y2, y3, y4, y5, y6, y7, y8, y9; uint32_t y10, y11, y12, y13, y14, y15, y16, y17, y18, y19; uint32_t y20, y21; uint32_t z0, z1, z2, z3, z4, z5, z6, z7, z8, z9; uint32_t z10, z11, z12, z13, z14, z15, z16, z17; uint32_t t0, t1, t2, t3, t4, t5, t6, t7, t8, t9; uint32_t t10, t11, t12, t13, t14, t15, t16, t17, t18, t19; uint32_t t20, t21, t22, t23, t24, t25, t26, t27, t28, t29; uint32_t t30, t31, t32, t33, t34, t35, t36, t37, t38, t39; uint32_t t40, t41, t42, t43, t44, t45, t46, t47, t48, t49; uint32_t t50, t51, t52, t53, t54, t55, t56, t57, t58, t59; uint32_t t60, t61, t62, t63, t64, t65, t66, t67; uint32_t s0, s1, s2, s3, s4, s5, s6, s7; x0 = q[7]; x1 = q[6]; x2 = q[5]; x3 = q[4]; x4 = q[3]; x5 = q[2]; x6 = q[1]; x7 = q[0]; /* * Top linear transformation. */ y14 = x3 ^ x5; y13 = x0 ^ x6; y9 = x0 ^ x3; y8 = x0 ^ x5; t0 = x1 ^ x2; y1 = t0 ^ x7; y4 = y1 ^ x3; y12 = y13 ^ y14; y2 = y1 ^ x0; y5 = y1 ^ x6; y3 = y5 ^ y8; t1 = x4 ^ y12; y15 = t1 ^ x5; y20 = t1 ^ x1; y6 = y15 ^ x7; y10 = y15 ^ t0; y11 = y20 ^ y9; y7 = x7 ^ y11; y17 = y10 ^ y11; y19 = y10 ^ y8; y16 = t0 ^ y11; y21 = y13 ^ y16; y18 = x0 ^ y16; /* * Non-linear section. */ t2 = y12 & y15; t3 = y3 & y6; t4 = t3 ^ t2; t5 = y4 & x7; t6 = t5 ^ t2; t7 = y13 & y16; t8 = y5 & y1; t9 = t8 ^ t7; t10 = y2 & y7; t11 = t10 ^ t7; t12 = y9 & y11; t13 = y14 & y17; t14 = t13 ^ t12; t15 = y8 & y10; t16 = t15 ^ t12; t17 = t4 ^ t14; t18 = t6 ^ t16; t19 = t9 ^ t14; t20 = t11 ^ t16; t21 = t17 ^ y20; t22 = t18 ^ y19; t23 = t19 ^ y21; t24 = t20 ^ y18; t25 = t21 ^ t22; t26 = t21 & t23; t27 = t24 ^ t26; t28 = t25 & t27; t29 = t28 ^ t22; t30 = t23 ^ t24; t31 = t22 ^ t26; t32 = t31 & t30; t33 = t32 ^ t24; t34 = t23 ^ t33; t35 = t27 ^ t33; t36 = t24 & t35; t37 = t36 ^ t34; t38 = t27 ^ t36; t39 = t29 & t38; t40 = t25 ^ t39; t41 = t40 ^ t37; t42 = t29 ^ t33; t43 = t29 ^ t40; t44 = t33 ^ t37; t45 = t42 ^ t41; z0 = t44 & y15; z1 = t37 & y6; z2 = t33 & x7; z3 = t43 & y16; z4 = t40 & y1; z5 = t29 & y7; z6 = t42 & y11; z7 = t45 & y17; z8 = t41 & y10; z9 = t44 & y12; z10 = t37 & y3; z11 = t33 & y4; z12 = t43 & y13; z13 = t40 & y5; z14 = t29 & y2; z15 = t42 & y9; z16 = t45 & y14; z17 = t41 & y8; /* * Bottom linear transformation. */ t46 = z15 ^ z16; t47 = z10 ^ z11; t48 = z5 ^ z13; t49 = z9 ^ z10; t50 = z2 ^ z12; t51 = z2 ^ z5; t52 = z7 ^ z8; t53 = z0 ^ z3; t54 = z6 ^ z7; t55 = z16 ^ z17; t56 = z12 ^ t48; t57 = t50 ^ t53; t58 = z4 ^ t46; t59 = z3 ^ t54; t60 = t46 ^ t57; t61 = z14 ^ t57; t62 = t52 ^ t58; t63 = t49 ^ t58; t64 = z4 ^ t59; t65 = t61 ^ t62; t66 = z1 ^ t63; s0 = t59 ^ t63; s6 = t56 ^ ~t62; s7 = t48 ^ ~t60; t67 = t64 ^ t65; s3 = t53 ^ t66; s4 = t51 ^ t66; s5 = t47 ^ t65; s1 = t64 ^ ~s3; s2 = t55 ^ ~t67; q[7] = s0; q[6] = s1; q[5] = s2; q[4] = s3; q[3] = s4; q[2] = s5; q[1] = s6; q[0] = s7; } /* * Perform bytewise orthogonalization of eight 32-bit words. Bytes * of q0..q7 are spread over all words: for a byte x that occurs * at rank i in q[j] (byte x uses bits 8*i to 8*i+7 in q[j]), the bit * of rank k in x (0 <= k <= 7) goes to q[k] at rank 8*i+j. * * This operation is an involution. */ static void aes_ct_ortho(uint32_t *q) { #define SWAPN(cl, ch, s, x, y) do { \ uint32_t a, b; \ a = (x); \ b = (y); \ (x) = (a & (uint32_t)cl) | ((b & (uint32_t)cl) << (s)); \ (y) = ((a & (uint32_t)ch) >> (s)) | (b & (uint32_t)ch); \ } while (0) #define SWAP2(x, y) SWAPN(0x55555555, 0xAAAAAAAA, 1, x, y) #define SWAP4(x, y) SWAPN(0x33333333, 0xCCCCCCCC, 2, x, y) #define SWAP8(x, y) SWAPN(0x0F0F0F0F, 0xF0F0F0F0, 4, x, y) SWAP2(q[0], q[1]); SWAP2(q[2], q[3]); SWAP2(q[4], q[5]); SWAP2(q[6], q[7]); SWAP4(q[0], q[2]); SWAP4(q[1], q[3]); SWAP4(q[4], q[6]); SWAP4(q[5], q[7]); SWAP8(q[0], q[4]); SWAP8(q[1], q[5]); SWAP8(q[2], q[6]); SWAP8(q[3], q[7]); } static inline uint32_t sub_word(uint32_t x) { uint32_t q[8]; int i; for (i = 0; i < 8; i ++) { q[i] = x; } aes_ct_ortho(q); aes_ct_bitslice_Sbox(q); aes_ct_ortho(q); return q[0]; } static const unsigned char Rcon[] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36 }; /* * Base key schedule code. The function sub_word() must be defined * below. Subkeys are produced in little-endian convention (but not * bitsliced). Key length is expressed in bytes. */ static unsigned aes_keysched_base(uint32_t *skey, const void *key, size_t key_len) { unsigned num_rounds; int i, j, k, nk, nkf; uint32_t tmp; switch (key_len) { case 16: num_rounds = 10; break; case 24: num_rounds = 12; break; case 32: num_rounds = 14; break; default: return 0; } nk = (int)(key_len >> 2); nkf = (int)((num_rounds + 1) << 2); for (i = 0; i < nk; i ++) { tmp = dec32le((const unsigned char *)key + (i << 2)); skey[i] = tmp; } tmp = skey[(key_len >> 2) - 1]; for (i = nk, j = 0, k = 0; i < nkf; i ++) { if (j == 0) { tmp = (tmp << 24) | (tmp >> 8); tmp = sub_word(tmp) ^ Rcon[k]; } else if (nk > 6 && j == 4) { tmp = sub_word(tmp); } tmp ^= skey[i - nk]; skey[i] = tmp; if (++ j == nk) { j = 0; k ++; } } return num_rounds; } /* * AES key schedule, constant-time version. skey[] is filled with n+1 * 128-bit subkeys, where n is the number of rounds (10 to 14, depending * on key size). The number of rounds is returned. If the key size is * invalid (not 16, 24 or 32), then 0 is returned. */ unsigned aes_ct_keysched(uint32_t *comp_skey, const void *key, size_t key_len) { uint32_t skey[60]; unsigned u, num_rounds; num_rounds = aes_keysched_base(skey, key, key_len); for (u = 0; u <= num_rounds; u ++) { uint32_t q[8]; q[0] = q[1] = skey[(u << 2) + 0]; q[2] = q[3] = skey[(u << 2) + 1]; q[4] = q[5] = skey[(u << 2) + 2]; q[6] = q[7] = skey[(u << 2) + 3]; aes_ct_ortho(q); comp_skey[(u << 2) + 0] = (q[0] & 0x55555555) | (q[1] & 0xAAAAAAAA); comp_skey[(u << 2) + 1] = (q[2] & 0x55555555) | (q[3] & 0xAAAAAAAA); comp_skey[(u << 2) + 2] = (q[4] & 0x55555555) | (q[5] & 0xAAAAAAAA); comp_skey[(u << 2) + 3] = (q[6] & 0x55555555) | (q[7] & 0xAAAAAAAA); } return num_rounds; } /* * Expand AES subkeys as produced by aes_ct_keysched(), into * a larger array suitable for aes_ct_bitslice_encrypt() and * aes_ct_bitslice_decrypt(). */ void aes_ct_skey_expand(uint32_t *skey, unsigned num_rounds, const uint32_t *comp_skey) { unsigned u, v, n; n = (num_rounds + 1) << 2; for (u = 0, v = 0; u < n; u ++, v += 2) { uint32_t x, y; x = y = comp_skey[u]; x &= 0x55555555; skey[v + 0] = x | (x << 1); y &= 0xAAAAAAAA; skey[v + 1] = y | (y >> 1); } } static inline void add_round_key(uint32_t *q, const uint32_t *sk) { q[0] ^= sk[0]; q[1] ^= sk[1]; q[2] ^= sk[2]; q[3] ^= sk[3]; q[4] ^= sk[4]; q[5] ^= sk[5]; q[6] ^= sk[6]; q[7] ^= sk[7]; } static inline void shift_rows(uint32_t *q) { int i; for (i = 0; i < 8; i ++) { uint32_t x; x = q[i]; q[i] = (x & 0x000000FF) | ((x & 0x0000FC00) >> 2) | ((x & 0x00000300) << 6) | ((x & 0x00F00000) >> 4) | ((x & 0x000F0000) << 4) | ((x & 0xC0000000) >> 6) | ((x & 0x3F000000) << 2); } } static inline uint32_t rotr16(uint32_t x) { return (x << 16) | (x >> 16); } static inline void mix_columns(uint32_t *q) { uint32_t q0, q1, q2, q3, q4, q5, q6, q7; uint32_t r0, r1, r2, r3, r4, r5, r6, r7; q0 = q[0]; q1 = q[1]; q2 = q[2]; q3 = q[3]; q4 = q[4]; q5 = q[5]; q6 = q[6]; q7 = q[7]; r0 = (q0 >> 8) | (q0 << 24); r1 = (q1 >> 8) | (q1 << 24); r2 = (q2 >> 8) | (q2 << 24); r3 = (q3 >> 8) | (q3 << 24); r4 = (q4 >> 8) | (q4 << 24); r5 = (q5 >> 8) | (q5 << 24); r6 = (q6 >> 8) | (q6 << 24); r7 = (q7 >> 8) | (q7 << 24); q[0] = q7 ^ r7 ^ r0 ^ rotr16(q0 ^ r0); q[1] = q0 ^ r0 ^ q7 ^ r7 ^ r1 ^ rotr16(q1 ^ r1); q[2] = q1 ^ r1 ^ r2 ^ rotr16(q2 ^ r2); q[3] = q2 ^ r2 ^ q7 ^ r7 ^ r3 ^ rotr16(q3 ^ r3); q[4] = q3 ^ r3 ^ q7 ^ r7 ^ r4 ^ rotr16(q4 ^ r4); q[5] = q4 ^ r4 ^ r5 ^ rotr16(q5 ^ r5); q[6] = q5 ^ r5 ^ r6 ^ rotr16(q6 ^ r6); q[7] = q6 ^ r6 ^ r7 ^ rotr16(q7 ^ r7); } /* * Compute AES encryption on bitsliced data. Since input is stored on * eight 32-bit words, two block encryptions are actually performed * in parallel. */ void aes_ct_bitslice_encrypt(unsigned num_rounds, const uint32_t *skey, uint32_t *q) { unsigned u; add_round_key(q, skey); for (u = 1; u < num_rounds; u ++) { aes_ct_bitslice_Sbox(q); shift_rows(q); mix_columns(q); add_round_key(q, skey + (u << 3)); } aes_ct_bitslice_Sbox(q); shift_rows(q); add_round_key(q, skey + (num_rounds << 3)); } /* * Like aes_ct_bitslice_Sbox(), but for the inverse S-box. */ void aes_ct_bitslice_invSbox(uint32_t *q) { /* * AES S-box is: * S(x) = A(I(x)) ^ 0x63 * where I() is inversion in GF(256), and A() is a linear * transform (0 is formally defined to be its own inverse). * Since inversion is an involution, the inverse S-box can be * computed from the S-box as: * iS(x) = B(S(B(x ^ 0x63)) ^ 0x63) * where B() is the inverse of A(). Indeed, for any y in GF(256): * iS(S(y)) = B(A(I(B(A(I(y)) ^ 0x63 ^ 0x63))) ^ 0x63 ^ 0x63) = y * * Note: we reuse the implementation of the forward S-box, * instead of duplicating it here, so that total code size is * lower. By merging the B() transforms into the S-box circuit * we could make faster CBC decryption, but CBC decryption is * already quite faster than CBC encryption because we can * process two blocks in parallel. */ uint32_t q0, q1, q2, q3, q4, q5, q6, q7; q0 = ~q[0]; q1 = ~q[1]; q2 = q[2]; q3 = q[3]; q4 = q[4]; q5 = ~q[5]; q6 = ~q[6]; q7 = q[7]; q[7] = q1 ^ q4 ^ q6; q[6] = q0 ^ q3 ^ q5; q[5] = q7 ^ q2 ^ q4; q[4] = q6 ^ q1 ^ q3; q[3] = q5 ^ q0 ^ q2; q[2] = q4 ^ q7 ^ q1; q[1] = q3 ^ q6 ^ q0; q[0] = q2 ^ q5 ^ q7; aes_ct_bitslice_Sbox(q); q0 = ~q[0]; q1 = ~q[1]; q2 = q[2]; q3 = q[3]; q4 = q[4]; q5 = ~q[5]; q6 = ~q[6]; q7 = q[7]; q[7] = q1 ^ q4 ^ q6; q[6] = q0 ^ q3 ^ q5; q[5] = q7 ^ q2 ^ q4; q[4] = q6 ^ q1 ^ q3; q[3] = q5 ^ q0 ^ q2; q[2] = q4 ^ q7 ^ q1; q[1] = q3 ^ q6 ^ q0; q[0] = q2 ^ q5 ^ q7; } static inline void inv_shift_rows(uint32_t *q) { int i; for (i = 0; i < 8; i ++) { uint32_t x; x = q[i]; q[i] = (x & 0x000000FF) | ((x & 0x00003F00) << 2) | ((x & 0x0000C000) >> 6) | ((x & 0x000F0000) << 4) | ((x & 0x00F00000) >> 4) | ((x & 0x03000000) << 6) | ((x & 0xFC000000) >> 2); } } static void inv_mix_columns(uint32_t *q) { uint32_t q0, q1, q2, q3, q4, q5, q6, q7; uint32_t r0, r1, r2, r3, r4, r5, r6, r7; q0 = q[0]; q1 = q[1]; q2 = q[2]; q3 = q[3]; q4 = q[4]; q5 = q[5]; q6 = q[6]; q7 = q[7]; r0 = (q0 >> 8) | (q0 << 24); r1 = (q1 >> 8) | (q1 << 24); r2 = (q2 >> 8) | (q2 << 24); r3 = (q3 >> 8) | (q3 << 24); r4 = (q4 >> 8) | (q4 << 24); r5 = (q5 >> 8) | (q5 << 24); r6 = (q6 >> 8) | (q6 << 24); r7 = (q7 >> 8) | (q7 << 24); q[0] = q5 ^ q6 ^ q7 ^ r0 ^ r5 ^ r7 ^ rotr16(q0 ^ q5 ^ q6 ^ r0 ^ r5); q[1] = q0 ^ q5 ^ r0 ^ r1 ^ r5 ^ r6 ^ r7 ^ rotr16(q1 ^ q5 ^ q7 ^ r1 ^ r5 ^ r6); q[2] = q0 ^ q1 ^ q6 ^ r1 ^ r2 ^ r6 ^ r7 ^ rotr16(q0 ^ q2 ^ q6 ^ r2 ^ r6 ^ r7); q[3] = q0 ^ q1 ^ q2 ^ q5 ^ q6 ^ r0 ^ r2 ^ r3 ^ r5 ^ rotr16(q0 ^ q1 ^ q3 ^ q5 ^ q6 ^ q7 ^ r0 ^ r3 ^ r5 ^ r7); q[4] = q1 ^ q2 ^ q3 ^ q5 ^ r1 ^ r3 ^ r4 ^ r5 ^ r6 ^ r7 ^ rotr16(q1 ^ q2 ^ q4 ^ q5 ^ q7 ^ r1 ^ r4 ^ r5 ^ r6); q[5] = q2 ^ q3 ^ q4 ^ q6 ^ r2 ^ r4 ^ r5 ^ r6 ^ r7 ^ rotr16(q2 ^ q3 ^ q5 ^ q6 ^ r2 ^ r5 ^ r6 ^ r7); q[6] = q3 ^ q4 ^ q5 ^ q7 ^ r3 ^ r5 ^ r6 ^ r7 ^ rotr16(q3 ^ q4 ^ q6 ^ q7 ^ r3 ^ r6 ^ r7); q[7] = q4 ^ q5 ^ q6 ^ r4 ^ r6 ^ r7 ^ rotr16(q4 ^ q5 ^ q7 ^ r4 ^ r7); } /* * Compute AES decryption on bitsliced data. Since input is stored on * eight 32-bit words, two block decryptions are actually performed * in parallel. */ void aes_ct_bitslice_decrypt(unsigned num_rounds, const uint32_t *skey, uint32_t *q) { unsigned u; add_round_key(q, skey + (num_rounds << 3)); for (u = num_rounds - 1; u > 0; u --) { inv_shift_rows(q); aes_ct_bitslice_invSbox(q); add_round_key(q, skey + (u << 3)); inv_mix_columns(q); } inv_shift_rows(q); aes_ct_bitslice_invSbox(q); add_round_key(q, skey); } int AES_Setkey(AES_CTX *ctx, const uint8_t *key, int len) { ctx->num_rounds = aes_ct_keysched(ctx->sk, key, len); if (ctx->num_rounds == 0) return -1; aes_ct_skey_expand(ctx->sk_exp, ctx->num_rounds, ctx->sk); return 0; } void AES_Encrypt_ECB(AES_CTX *ctx, const uint8_t *src, uint8_t *dst, size_t num_blocks) { while (num_blocks > 0) { uint32_t q[8]; q[0] = dec32le(src); q[2] = dec32le(src + 4); q[4] = dec32le(src + 8); q[6] = dec32le(src + 12); if (num_blocks > 1) { q[1] = dec32le(src + 16); q[3] = dec32le(src + 20); q[5] = dec32le(src + 24); q[7] = dec32le(src + 28); } else { q[1] = 0; q[3] = 0; q[5] = 0; q[7] = 0; } aes_ct_ortho(q); aes_ct_bitslice_encrypt(ctx->num_rounds, ctx->sk_exp, q); aes_ct_ortho(q); enc32le(dst, q[0]); enc32le(dst + 4, q[2]); enc32le(dst + 8, q[4]); enc32le(dst + 12, q[6]); if (num_blocks > 1) { enc32le(dst + 16, q[1]); enc32le(dst + 20, q[3]); enc32le(dst + 24, q[5]); enc32le(dst + 28, q[7]); src += 32; dst += 32; num_blocks -= 2; } else { break; } } } void AES_Decrypt_ECB(AES_CTX *ctx, const uint8_t *src, uint8_t *dst, size_t num_blocks) { while (num_blocks > 0) { uint32_t q[8]; q[0] = dec32le(src); q[2] = dec32le(src + 4); q[4] = dec32le(src + 8); q[6] = dec32le(src + 12); if (num_blocks > 1) { q[1] = dec32le(src + 16); q[3] = dec32le(src + 20); q[5] = dec32le(src + 24); q[7] = dec32le(src + 28); } else { q[1] = 0; q[3] = 0; q[5] = 0; q[7] = 0; } aes_ct_ortho(q); aes_ct_bitslice_decrypt(ctx->num_rounds, ctx->sk_exp, q); aes_ct_ortho(q); enc32le(dst, q[0]); enc32le(dst + 4, q[2]); enc32le(dst + 8, q[4]); enc32le(dst + 12, q[6]); if (num_blocks > 1) { enc32le(dst + 16, q[1]); enc32le(dst + 20, q[3]); enc32le(dst + 24, q[5]); enc32le(dst + 28, q[7]); src += 32; dst += 32; num_blocks -= 2; } else { break; } } } void AES_Encrypt(AES_CTX *ctx, const uint8_t *src, uint8_t *dst) { AES_Encrypt_ECB(ctx, src, dst, 1); } void AES_Decrypt(AES_CTX *ctx, const uint8_t *src, uint8_t *dst) { AES_Decrypt_ECB(ctx, src, dst, 1); } int AES_KeySetup_Encrypt(uint32_t *skey, const uint8_t *key, int len) { unsigned r, u; uint32_t tkey[60]; r = aes_keysched_base(tkey, key, len); if (r == 0) { return 0; } for (u = 0; u < ((r + 1) << 2); u ++) { uint32_t w; w = tkey[u]; skey[u] = (w << 24) | ((w & 0x0000FF00) << 8) | ((w & 0x00FF0000) >> 8) | (w >> 24); } return r; } /* * Reduce value x modulo polynomial x^8+x^4+x^3+x+1. This works as * long as x fits on 12 bits at most. */ static inline uint32_t redgf256(uint32_t x) { uint32_t h; h = x >> 8; return (x ^ h ^ (h << 1) ^ (h << 3) ^ (h << 4)) & 0xFF; } /* * Multiplication by 0x09 in GF(256). */ static inline uint32_t mul9(uint32_t x) { return redgf256(x ^ (x << 3)); } /* * Multiplication by 0x0B in GF(256). */ static inline uint32_t mulb(uint32_t x) { return redgf256(x ^ (x << 1) ^ (x << 3)); } /* * Multiplication by 0x0D in GF(256). */ static inline uint32_t muld(uint32_t x) { return redgf256(x ^ (x << 2) ^ (x << 3)); } /* * Multiplication by 0x0E in GF(256). */ static inline uint32_t mule(uint32_t x) { return redgf256((x << 1) ^ (x << 2) ^ (x << 3)); } int AES_KeySetup_Decrypt(uint32_t *skey, const uint8_t *key, int len) { unsigned r, u; uint32_t tkey[60]; /* * Compute encryption subkeys. We get them in big-endian * notation. */ r = AES_KeySetup_Encrypt(tkey, key, len); if (r == 0) { return 0; } /* * Copy the subkeys in reverse order. Also, apply InvMixColumns() * on the subkeys (except first and last). */ memcpy(skey + (r << 2), tkey, 4 * sizeof(uint32_t)); memcpy(skey, tkey + (r << 2), 4 * sizeof(uint32_t)); for (u = 4; u < (r << 2); u ++) { uint32_t sk, sk0, sk1, sk2, sk3; uint32_t tk, tk0, tk1, tk2, tk3; sk = tkey[u]; sk0 = sk >> 24; sk1 = (sk >> 16) & 0xFF; sk2 = (sk >> 8) & 0xFF; sk3 = sk & 0xFF; tk0 = mule(sk0) ^ mulb(sk1) ^ muld(sk2) ^ mul9(sk3); tk1 = mul9(sk0) ^ mule(sk1) ^ mulb(sk2) ^ muld(sk3); tk2 = muld(sk0) ^ mul9(sk1) ^ mule(sk2) ^ mulb(sk3); tk3 = mulb(sk0) ^ muld(sk1) ^ mul9(sk2) ^ mule(sk3); tk = (tk0 << 24) ^ (tk1 << 16) ^ (tk2 << 8) ^ tk3; skey[((r - (u >> 2)) << 2) + (u & 3)] = tk; } return r; }