/* $OpenBSD: cryptosoft.c,v 1.71 2014/07/13 23:24:47 deraadt Exp $ */ /* * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) * * This code was written by Angelos D. Keromytis in Athens, Greece, in * February 2000. Network Security Technologies Inc. (NSTI) kindly * supported the development of this code. * * Copyright (c) 2000, 2001 Angelos D. Keromytis * * Permission to use, copy, and modify this software with or without fee * is hereby granted, provided that this entire notice is included in * all source code copies of any software which is or includes a copy or * modification of this software. * * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR * PURPOSE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include const u_int8_t hmac_ipad_buffer[HMAC_MAX_BLOCK_LEN] = { 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36 }; const u_int8_t hmac_opad_buffer[HMAC_MAX_BLOCK_LEN] = { 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C }; struct swcr_data **swcr_sessions = NULL; u_int32_t swcr_sesnum = 0; int32_t swcr_id = -1; #define COPYBACK(x, a, b, c, d) \ do { \ if ((x) == CRYPTO_BUF_MBUF) \ m_copyback((struct mbuf *)a,b,c,d,M_NOWAIT); \ else \ cuio_copyback((struct uio *)a,b,c,d); \ } while (0) #define COPYDATA(x, a, b, c, d) \ do { \ if ((x) == CRYPTO_BUF_MBUF) \ m_copydata((struct mbuf *)a,b,c,d); \ else \ cuio_copydata((struct uio *)a,b,c,d); \ } while (0) /* * Apply a symmetric encryption/decryption algorithm. */ int swcr_encdec(struct cryptodesc *crd, struct swcr_data *sw, caddr_t buf, int outtype) { unsigned char iv[EALG_MAX_BLOCK_LEN], blk[EALG_MAX_BLOCK_LEN], *idat; unsigned char *ivp, *nivp, iv2[EALG_MAX_BLOCK_LEN]; struct enc_xform *exf; int i, k, j, blks, ind, count, ivlen; struct mbuf *m = NULL; struct uio *uio = NULL; exf = sw->sw_exf; blks = exf->blocksize; ivlen = exf->ivsize; /* Check for non-padded data */ if (crd->crd_len % blks) return EINVAL; if (outtype == CRYPTO_BUF_MBUF) m = (struct mbuf *) buf; else uio = (struct uio *) buf; /* Initialize the IV */ if (crd->crd_flags & CRD_F_ENCRYPT) { /* IV explicitly provided ? */ if (crd->crd_flags & CRD_F_IV_EXPLICIT) bcopy(crd->crd_iv, iv, ivlen); else arc4random_buf(iv, ivlen); /* Do we need to write the IV */ if (!(crd->crd_flags & CRD_F_IV_PRESENT)) COPYBACK(outtype, buf, crd->crd_inject, ivlen, iv); } else { /* Decryption */ /* IV explicitly provided ? */ if (crd->crd_flags & CRD_F_IV_EXPLICIT) bcopy(crd->crd_iv, iv, ivlen); else { /* Get IV off buf */ COPYDATA(outtype, buf, crd->crd_inject, ivlen, iv); } } ivp = iv; /* * xforms that provide a reinit method perform all IV * handling themselves. */ if (exf->reinit) exf->reinit(sw->sw_kschedule, iv); if (outtype == CRYPTO_BUF_MBUF) { /* Find beginning of data */ m = m_getptr(m, crd->crd_skip, &k); if (m == NULL) return EINVAL; i = crd->crd_len; while (i > 0) { /* * If there's insufficient data at the end of * an mbuf, we have to do some copying. */ if (m->m_len < k + blks && m->m_len != k) { m_copydata(m, k, blks, blk); /* Actual encryption/decryption */ if (exf->reinit) { if (crd->crd_flags & CRD_F_ENCRYPT) { exf->encrypt(sw->sw_kschedule, blk); } else { exf->decrypt(sw->sw_kschedule, blk); } } else if (crd->crd_flags & CRD_F_ENCRYPT) { /* XOR with previous block */ for (j = 0; j < blks; j++) blk[j] ^= ivp[j]; exf->encrypt(sw->sw_kschedule, blk); /* * Keep encrypted block for XOR'ing * with next block */ bcopy(blk, iv, blks); ivp = iv; } else { /* decrypt */ /* * Keep encrypted block for XOR'ing * with next block */ nivp = (ivp == iv) ? iv2 : iv; bcopy(blk, nivp, blks); exf->decrypt(sw->sw_kschedule, blk); /* XOR with previous block */ for (j = 0; j < blks; j++) blk[j] ^= ivp[j]; ivp = nivp; } /* Copy back decrypted block */ m_copyback(m, k, blks, blk, M_NOWAIT); /* Advance pointer */ m = m_getptr(m, k + blks, &k); if (m == NULL) return EINVAL; i -= blks; /* Could be done... */ if (i == 0) break; } /* Skip possibly empty mbufs */ if (k == m->m_len) { for (m = m->m_next; m && m->m_len == 0; m = m->m_next) ; k = 0; } /* Sanity check */ if (m == NULL) return EINVAL; /* * Warning: idat may point to garbage here, but * we only use it in the while() loop, only if * there are indeed enough data. */ idat = mtod(m, unsigned char *) + k; while (m->m_len >= k + blks && i > 0) { if (exf->reinit) { if (crd->crd_flags & CRD_F_ENCRYPT) { exf->encrypt(sw->sw_kschedule, idat); } else { exf->decrypt(sw->sw_kschedule, idat); } } else if (crd->crd_flags & CRD_F_ENCRYPT) { /* XOR with previous block/IV */ for (j = 0; j < blks; j++) idat[j] ^= ivp[j]; exf->encrypt(sw->sw_kschedule, idat); ivp = idat; } else { /* decrypt */ /* * Keep encrypted block to be used * in next block's processing. */ nivp = (ivp == iv) ? iv2 : iv; bcopy(idat, nivp, blks); exf->decrypt(sw->sw_kschedule, idat); /* XOR with previous block/IV */ for (j = 0; j < blks; j++) idat[j] ^= ivp[j]; ivp = nivp; } idat += blks; k += blks; i -= blks; } } } else { /* Find beginning of data */ count = crd->crd_skip; ind = cuio_getptr(uio, count, &k); if (ind == -1) return EINVAL; i = crd->crd_len; while (i > 0) { /* * If there's insufficient data at the end, * we have to do some copying. */ if (uio->uio_iov[ind].iov_len < k + blks && uio->uio_iov[ind].iov_len != k) { cuio_copydata(uio, count, blks, blk); /* Actual encryption/decryption */ if (exf->reinit) { if (crd->crd_flags & CRD_F_ENCRYPT) { exf->encrypt(sw->sw_kschedule, blk); } else { exf->decrypt(sw->sw_kschedule, blk); } } else if (crd->crd_flags & CRD_F_ENCRYPT) { /* XOR with previous block */ for (j = 0; j < blks; j++) blk[j] ^= ivp[j]; exf->encrypt(sw->sw_kschedule, blk); /* * Keep encrypted block for XOR'ing * with next block */ bcopy(blk, iv, blks); ivp = iv; } else { /* decrypt */ /* * Keep encrypted block for XOR'ing * with next block */ nivp = (ivp == iv) ? iv2 : iv; bcopy(blk, nivp, blks); exf->decrypt(sw->sw_kschedule, blk); /* XOR with previous block */ for (j = 0; j < blks; j++) blk[j] ^= ivp[j]; ivp = nivp; } /* Copy back decrypted block */ cuio_copyback(uio, count, blks, blk); count += blks; /* Advance pointer */ ind = cuio_getptr(uio, count, &k); if (ind == -1) return (EINVAL); i -= blks; /* Could be done... */ if (i == 0) break; } /* * Warning: idat may point to garbage here, but * we only use it in the while() loop, only if * there are indeed enough data. */ idat = (char *)uio->uio_iov[ind].iov_base + k; while (uio->uio_iov[ind].iov_len >= k + blks && i > 0) { if (exf->reinit) { if (crd->crd_flags & CRD_F_ENCRYPT) { exf->encrypt(sw->sw_kschedule, idat); } else { exf->decrypt(sw->sw_kschedule, idat); } } else if (crd->crd_flags & CRD_F_ENCRYPT) { /* XOR with previous block/IV */ for (j = 0; j < blks; j++) idat[j] ^= ivp[j]; exf->encrypt(sw->sw_kschedule, idat); ivp = idat; } else { /* decrypt */ /* * Keep encrypted block to be used * in next block's processing. */ nivp = (ivp == iv) ? iv2 : iv; bcopy(idat, nivp, blks); exf->decrypt(sw->sw_kschedule, idat); /* XOR with previous block/IV */ for (j = 0; j < blks; j++) idat[j] ^= ivp[j]; ivp = nivp; } idat += blks; count += blks; k += blks; i -= blks; } /* * Advance to the next iov if the end of the current iov * is aligned with the end of a cipher block. * Note that the code is equivalent to calling: * ind = cuio_getptr(uio, count, &k); */ if (i > 0 && k == uio->uio_iov[ind].iov_len) { k = 0; ind++; if (ind >= uio->uio_iovcnt) return (EINVAL); } } } return 0; /* Done with encryption/decryption */ } /* * Compute keyed-hash authenticator. */ int swcr_authcompute(struct cryptop *crp, struct cryptodesc *crd, struct swcr_data *sw, caddr_t buf, int outtype) { unsigned char aalg[AALG_MAX_RESULT_LEN]; struct auth_hash *axf; union authctx ctx; int err; if (sw->sw_ictx == 0) return EINVAL; axf = sw->sw_axf; bcopy(sw->sw_ictx, &ctx, axf->ctxsize); if (outtype == CRYPTO_BUF_MBUF) err = m_apply((struct mbuf *) buf, crd->crd_skip, crd->crd_len, (int (*)(caddr_t, caddr_t, unsigned int)) axf->Update, (caddr_t) &ctx); else err = cuio_apply((struct uio *) buf, crd->crd_skip, crd->crd_len, (int (*)(caddr_t, caddr_t, unsigned int)) axf->Update, (caddr_t) &ctx); if (err) return err; if (crd->crd_flags & CRD_F_ESN) axf->Update(&ctx, crd->crd_esn, 4); switch (sw->sw_alg) { case CRYPTO_MD5_HMAC: case CRYPTO_SHA1_HMAC: case CRYPTO_RIPEMD160_HMAC: case CRYPTO_SHA2_256_HMAC: case CRYPTO_SHA2_384_HMAC: case CRYPTO_SHA2_512_HMAC: if (sw->sw_octx == NULL) return EINVAL; axf->Final(aalg, &ctx); bcopy(sw->sw_octx, &ctx, axf->ctxsize); axf->Update(&ctx, aalg, axf->hashsize); axf->Final(aalg, &ctx); break; case CRYPTO_MD5_KPDK: case CRYPTO_SHA1_KPDK: if (sw->sw_octx == NULL) return EINVAL; axf->Update(&ctx, sw->sw_octx, sw->sw_klen); axf->Final(aalg, &ctx); break; case CRYPTO_MD5: case CRYPTO_SHA1: axf->Final(aalg, &ctx); break; } /* Inject the authentication data */ if (outtype == CRYPTO_BUF_MBUF) COPYBACK(outtype, buf, crd->crd_inject, axf->authsize, aalg); else bcopy(aalg, crp->crp_mac, axf->authsize); return 0; } /* * Apply a combined encryption-authentication transformation */ int swcr_authenc(struct cryptop *crp) { uint32_t blkbuf[howmany(EALG_MAX_BLOCK_LEN, sizeof(uint32_t))]; u_char *blk = (u_char *)blkbuf; u_char aalg[AALG_MAX_RESULT_LEN]; u_char iv[EALG_MAX_BLOCK_LEN]; union authctx ctx; struct cryptodesc *crd, *crda = NULL, *crde = NULL; struct swcr_data *sw, *swa, *swe = NULL; struct auth_hash *axf = NULL; struct enc_xform *exf = NULL; struct mbuf *m = NULL; struct uio *uio = NULL; caddr_t buf = (caddr_t)crp->crp_buf; uint32_t *blkp; int aadlen, blksz, i, ivlen, outtype, len, iskip, oskip; ivlen = blksz = iskip = oskip = 0; for (crd = crp->crp_desc; crd; crd = crd->crd_next) { for (sw = swcr_sessions[crp->crp_sid & 0xffffffff]; sw && sw->sw_alg != crd->crd_alg; sw = sw->sw_next) ; if (sw == NULL) return (EINVAL); switch (sw->sw_alg) { case CRYPTO_AES_GCM_16: case CRYPTO_AES_GMAC: swe = sw; crde = crd; exf = swe->sw_exf; ivlen = exf->ivsize; break; case CRYPTO_AES_128_GMAC: case CRYPTO_AES_192_GMAC: case CRYPTO_AES_256_GMAC: swa = sw; crda = crd; axf = swa->sw_axf; if (swa->sw_ictx == 0) return (EINVAL); bcopy(swa->sw_ictx, &ctx, axf->ctxsize); blksz = axf->blocksize; break; default: return (EINVAL); } } if (crde == NULL || crda == NULL) return (EINVAL); if (crp->crp_flags & CRYPTO_F_IMBUF) { outtype = CRYPTO_BUF_MBUF; m = (struct mbuf *)buf; } else { outtype = CRYPTO_BUF_IOV; uio = (struct uio *)buf; } /* Initialize the IV */ if (crde->crd_flags & CRD_F_ENCRYPT) { /* IV explicitly provided ? */ if (crde->crd_flags & CRD_F_IV_EXPLICIT) bcopy(crde->crd_iv, iv, ivlen); else arc4random_buf(iv, ivlen); /* Do we need to write the IV */ if (!(crde->crd_flags & CRD_F_IV_PRESENT)) COPYBACK(outtype, buf, crde->crd_inject, ivlen, iv); } else { /* Decryption */ /* IV explicitly provided ? */ if (crde->crd_flags & CRD_F_IV_EXPLICIT) bcopy(crde->crd_iv, iv, ivlen); else { /* Get IV off buf */ COPYDATA(outtype, buf, crde->crd_inject, ivlen, iv); } } /* Supply MAC with IV */ if (axf->Reinit) axf->Reinit(&ctx, iv, ivlen); /* Supply MAC with AAD */ aadlen = crda->crd_len; /* * Section 5 of RFC 4106 specifies that AAD construction consists of * {SPI, ESN, SN} whereas the real packet contains only {SPI, SN}. * Unfortunately it doesn't follow a good example set in the Section * 3.3.2.1 of RFC 4303 where upper part of the ESN, located in the * external (to the packet) memory buffer, is processed by the hash * function in the end thus allowing to retain simple programming * interfaces and avoid kludges like the one below. */ if (crda->crd_flags & CRD_F_ESN) { aadlen += 4; /* SPI */ COPYDATA(outtype, buf, crda->crd_skip, 4, blk); iskip = 4; /* loop below will start with an offset of 4 */ /* ESN */ bcopy(crda->crd_esn, blk + 4, 4); oskip = iskip + 4; /* offset output buffer blk by 8 */ } for (i = iskip; i < crda->crd_len; i += blksz) { len = MIN(crda->crd_len - i, blksz - oskip); COPYDATA(outtype, buf, crda->crd_skip + i, len, blk + oskip); bzero(blk + len + oskip, blksz - len - oskip); axf->Update(&ctx, blk, blksz); oskip = 0; /* reset initial output offset */ } if (exf->reinit) exf->reinit(swe->sw_kschedule, iv); /* Do encryption/decryption with MAC */ for (i = 0; i < crde->crd_len; i += blksz) { len = MIN(crde->crd_len - i, blksz); if (len < blksz) bzero(blk, blksz); COPYDATA(outtype, buf, crde->crd_skip + i, len, blk); if (crde->crd_flags & CRD_F_ENCRYPT) { exf->encrypt(swe->sw_kschedule, blk); axf->Update(&ctx, blk, len); } else { axf->Update(&ctx, blk, len); exf->decrypt(swe->sw_kschedule, blk); } COPYBACK(outtype, buf, crde->crd_skip + i, len, blk); } /* Do any required special finalization */ switch (crda->crd_alg) { case CRYPTO_AES_128_GMAC: case CRYPTO_AES_192_GMAC: case CRYPTO_AES_256_GMAC: /* length block */ bzero(blk, blksz); blkp = (uint32_t *)blk + 1; *blkp = htobe32(aadlen * 8); blkp = (uint32_t *)blk + 3; *blkp = htobe32(crde->crd_len * 8); axf->Update(&ctx, blk, blksz); break; } /* Finalize MAC */ axf->Final(aalg, &ctx); /* Inject the authentication data */ if (outtype == CRYPTO_BUF_MBUF) COPYBACK(outtype, buf, crda->crd_inject, axf->authsize, aalg); else bcopy(aalg, crp->crp_mac, axf->authsize); return (0); } /* * Apply a compression/decompression algorithm */ int swcr_compdec(struct cryptodesc *crd, struct swcr_data *sw, caddr_t buf, int outtype) { u_int8_t *data, *out; struct comp_algo *cxf; int adj; u_int32_t result; cxf = sw->sw_cxf; /* We must handle the whole buffer of data in one time * then if there is not all the data in the mbuf, we must * copy in a buffer. */ data = malloc(crd->crd_len, M_CRYPTO_DATA, M_NOWAIT); if (data == NULL) return (EINVAL); COPYDATA(outtype, buf, crd->crd_skip, crd->crd_len, data); if (crd->crd_flags & CRD_F_COMP) result = cxf->compress(data, crd->crd_len, &out); else result = cxf->decompress(data, crd->crd_len, &out); free(data, M_CRYPTO_DATA, 0); if (result == 0) return EINVAL; /* Copy back the (de)compressed data. m_copyback is * extending the mbuf as necessary. */ sw->sw_size = result; /* Check the compressed size when doing compression */ if (crd->crd_flags & CRD_F_COMP) { if (result > crd->crd_len) { /* Compression was useless, we lost time */ free(out, M_CRYPTO_DATA, 0); return 0; } } COPYBACK(outtype, buf, crd->crd_skip, result, out); if (result < crd->crd_len) { adj = result - crd->crd_len; if (outtype == CRYPTO_BUF_MBUF) { adj = result - crd->crd_len; m_adj((struct mbuf *)buf, adj); } else { struct uio *uio = (struct uio *)buf; int ind; adj = crd->crd_len - result; ind = uio->uio_iovcnt - 1; while (adj > 0 && ind >= 0) { if (adj < uio->uio_iov[ind].iov_len) { uio->uio_iov[ind].iov_len -= adj; break; } adj -= uio->uio_iov[ind].iov_len; uio->uio_iov[ind].iov_len = 0; ind--; uio->uio_iovcnt--; } } } free(out, M_CRYPTO_DATA, 0); return 0; } /* * Generate a new software session. */ int swcr_newsession(u_int32_t *sid, struct cryptoini *cri) { struct swcr_data **swd; struct auth_hash *axf; struct enc_xform *txf; struct comp_algo *cxf; u_int32_t i; int k; if (sid == NULL || cri == NULL) return EINVAL; if (swcr_sessions) { for (i = 1; i < swcr_sesnum; i++) if (swcr_sessions[i] == NULL) break; } if (swcr_sessions == NULL || i == swcr_sesnum) { if (swcr_sessions == NULL) { i = 1; /* We leave swcr_sessions[0] empty */ swcr_sesnum = CRYPTO_SW_SESSIONS; } else swcr_sesnum *= 2; swd = mallocarray(swcr_sesnum, sizeof(struct swcr_data *), M_CRYPTO_DATA, M_NOWAIT | M_ZERO); if (swd == NULL) { /* Reset session number */ if (swcr_sesnum == CRYPTO_SW_SESSIONS) swcr_sesnum = 0; else swcr_sesnum /= 2; return ENOBUFS; } /* Copy existing sessions */ if (swcr_sessions) { bcopy(swcr_sessions, swd, (swcr_sesnum / 2) * sizeof(struct swcr_data *)); free(swcr_sessions, M_CRYPTO_DATA, 0); } swcr_sessions = swd; } swd = &swcr_sessions[i]; *sid = i; while (cri) { *swd = malloc(sizeof(struct swcr_data), M_CRYPTO_DATA, M_NOWAIT | M_ZERO); if (*swd == NULL) { swcr_freesession(i); return ENOBUFS; } switch (cri->cri_alg) { case CRYPTO_DES_CBC: txf = &enc_xform_des; goto enccommon; case CRYPTO_3DES_CBC: txf = &enc_xform_3des; goto enccommon; case CRYPTO_BLF_CBC: txf = &enc_xform_blf; goto enccommon; case CRYPTO_CAST_CBC: txf = &enc_xform_cast5; goto enccommon; case CRYPTO_RIJNDAEL128_CBC: txf = &enc_xform_rijndael128; goto enccommon; case CRYPTO_AES_CTR: txf = &enc_xform_aes_ctr; goto enccommon; case CRYPTO_AES_XTS: txf = &enc_xform_aes_xts; goto enccommon; case CRYPTO_AES_GCM_16: txf = &enc_xform_aes_gcm; goto enccommon; case CRYPTO_AES_GMAC: txf = &enc_xform_aes_gmac; (*swd)->sw_exf = txf; break; case CRYPTO_NULL: txf = &enc_xform_null; goto enccommon; enccommon: if (txf->ctxsize > 0) { (*swd)->sw_kschedule = malloc(txf->ctxsize, M_CRYPTO_DATA, M_NOWAIT | M_ZERO); if ((*swd)->sw_kschedule == NULL) { swcr_freesession(i); return EINVAL; } } if (txf->setkey((*swd)->sw_kschedule, cri->cri_key, cri->cri_klen / 8) < 0) { swcr_freesession(i); return EINVAL; } (*swd)->sw_exf = txf; break; case CRYPTO_MD5_HMAC: axf = &auth_hash_hmac_md5_96; goto authcommon; case CRYPTO_SHA1_HMAC: axf = &auth_hash_hmac_sha1_96; goto authcommon; case CRYPTO_RIPEMD160_HMAC: axf = &auth_hash_hmac_ripemd_160_96; goto authcommon; case CRYPTO_SHA2_256_HMAC: axf = &auth_hash_hmac_sha2_256_128; goto authcommon; case CRYPTO_SHA2_384_HMAC: axf = &auth_hash_hmac_sha2_384_192; goto authcommon; case CRYPTO_SHA2_512_HMAC: axf = &auth_hash_hmac_sha2_512_256; authcommon: (*swd)->sw_ictx = malloc(axf->ctxsize, M_CRYPTO_DATA, M_NOWAIT); if ((*swd)->sw_ictx == NULL) { swcr_freesession(i); return ENOBUFS; } (*swd)->sw_octx = malloc(axf->ctxsize, M_CRYPTO_DATA, M_NOWAIT); if ((*swd)->sw_octx == NULL) { swcr_freesession(i); return ENOBUFS; } for (k = 0; k < cri->cri_klen / 8; k++) cri->cri_key[k] ^= HMAC_IPAD_VAL; axf->Init((*swd)->sw_ictx); axf->Update((*swd)->sw_ictx, cri->cri_key, cri->cri_klen / 8); axf->Update((*swd)->sw_ictx, hmac_ipad_buffer, axf->blocksize - (cri->cri_klen / 8)); for (k = 0; k < cri->cri_klen / 8; k++) cri->cri_key[k] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL); axf->Init((*swd)->sw_octx); axf->Update((*swd)->sw_octx, cri->cri_key, cri->cri_klen / 8); axf->Update((*swd)->sw_octx, hmac_opad_buffer, axf->blocksize - (cri->cri_klen / 8)); for (k = 0; k < cri->cri_klen / 8; k++) cri->cri_key[k] ^= HMAC_OPAD_VAL; (*swd)->sw_axf = axf; break; case CRYPTO_MD5_KPDK: axf = &auth_hash_key_md5; goto auth2common; case CRYPTO_SHA1_KPDK: axf = &auth_hash_key_sha1; auth2common: (*swd)->sw_ictx = malloc(axf->ctxsize, M_CRYPTO_DATA, M_NOWAIT); if ((*swd)->sw_ictx == NULL) { swcr_freesession(i); return ENOBUFS; } /* Store the key so we can "append" it to the payload */ (*swd)->sw_octx = malloc(cri->cri_klen / 8, M_CRYPTO_DATA, M_NOWAIT); if ((*swd)->sw_octx == NULL) { swcr_freesession(i); return ENOBUFS; } (*swd)->sw_klen = cri->cri_klen / 8; bcopy(cri->cri_key, (*swd)->sw_octx, cri->cri_klen / 8); axf->Init((*swd)->sw_ictx); axf->Update((*swd)->sw_ictx, cri->cri_key, cri->cri_klen / 8); axf->Final(NULL, (*swd)->sw_ictx); (*swd)->sw_axf = axf; break; case CRYPTO_MD5: axf = &auth_hash_md5; goto auth3common; case CRYPTO_SHA1: axf = &auth_hash_sha1; auth3common: (*swd)->sw_ictx = malloc(axf->ctxsize, M_CRYPTO_DATA, M_NOWAIT); if ((*swd)->sw_ictx == NULL) { swcr_freesession(i); return ENOBUFS; } axf->Init((*swd)->sw_ictx); (*swd)->sw_axf = axf; break; case CRYPTO_AES_128_GMAC: axf = &auth_hash_gmac_aes_128; goto auth4common; case CRYPTO_AES_192_GMAC: axf = &auth_hash_gmac_aes_192; goto auth4common; case CRYPTO_AES_256_GMAC: axf = &auth_hash_gmac_aes_256; auth4common: (*swd)->sw_ictx = malloc(axf->ctxsize, M_CRYPTO_DATA, M_NOWAIT); if ((*swd)->sw_ictx == NULL) { swcr_freesession(i); return ENOBUFS; } axf->Init((*swd)->sw_ictx); axf->Setkey((*swd)->sw_ictx, cri->cri_key, cri->cri_klen / 8); (*swd)->sw_axf = axf; break; case CRYPTO_DEFLATE_COMP: cxf = &comp_algo_deflate; (*swd)->sw_cxf = cxf; break; case CRYPTO_ESN: /* nothing to do */ break; default: swcr_freesession(i); return EINVAL; } (*swd)->sw_alg = cri->cri_alg; cri = cri->cri_next; swd = &((*swd)->sw_next); } return 0; } /* * Free a session. */ int swcr_freesession(u_int64_t tid) { struct swcr_data *swd; struct enc_xform *txf; struct auth_hash *axf; u_int32_t sid = ((u_int32_t) tid) & 0xffffffff; if (sid > swcr_sesnum || swcr_sessions == NULL || swcr_sessions[sid] == NULL) return EINVAL; /* Silently accept and return */ if (sid == 0) return 0; while ((swd = swcr_sessions[sid]) != NULL) { swcr_sessions[sid] = swd->sw_next; switch (swd->sw_alg) { case CRYPTO_DES_CBC: case CRYPTO_3DES_CBC: case CRYPTO_BLF_CBC: case CRYPTO_CAST_CBC: case CRYPTO_RIJNDAEL128_CBC: case CRYPTO_AES_CTR: case CRYPTO_AES_XTS: case CRYPTO_AES_GCM_16: case CRYPTO_AES_GMAC: case CRYPTO_NULL: txf = swd->sw_exf; if (swd->sw_kschedule) { explicit_bzero(swd->sw_kschedule, txf->ctxsize); free(swd->sw_kschedule, M_CRYPTO_DATA, 0); } break; case CRYPTO_MD5_HMAC: case CRYPTO_SHA1_HMAC: case CRYPTO_RIPEMD160_HMAC: case CRYPTO_SHA2_256_HMAC: case CRYPTO_SHA2_384_HMAC: case CRYPTO_SHA2_512_HMAC: axf = swd->sw_axf; if (swd->sw_ictx) { explicit_bzero(swd->sw_ictx, axf->ctxsize); free(swd->sw_ictx, M_CRYPTO_DATA, 0); } if (swd->sw_octx) { explicit_bzero(swd->sw_octx, axf->ctxsize); free(swd->sw_octx, M_CRYPTO_DATA, 0); } break; case CRYPTO_MD5_KPDK: case CRYPTO_SHA1_KPDK: axf = swd->sw_axf; if (swd->sw_ictx) { explicit_bzero(swd->sw_ictx, axf->ctxsize); free(swd->sw_ictx, M_CRYPTO_DATA, 0); } if (swd->sw_octx) { explicit_bzero(swd->sw_octx, swd->sw_klen); free(swd->sw_octx, M_CRYPTO_DATA, 0); } break; case CRYPTO_AES_128_GMAC: case CRYPTO_AES_192_GMAC: case CRYPTO_AES_256_GMAC: case CRYPTO_MD5: case CRYPTO_SHA1: axf = swd->sw_axf; if (swd->sw_ictx) { explicit_bzero(swd->sw_ictx, axf->ctxsize); free(swd->sw_ictx, M_CRYPTO_DATA, 0); } break; } free(swd, M_CRYPTO_DATA, 0); } return 0; } /* * Process a software request. */ int swcr_process(struct cryptop *crp) { struct cryptodesc *crd; struct swcr_data *sw; u_int32_t lid; int type; /* Sanity check */ if (crp == NULL) return EINVAL; if (crp->crp_desc == NULL || crp->crp_buf == NULL) { crp->crp_etype = EINVAL; goto done; } lid = crp->crp_sid & 0xffffffff; if (lid >= swcr_sesnum || lid == 0 || swcr_sessions[lid] == NULL) { crp->crp_etype = ENOENT; goto done; } if (crp->crp_flags & CRYPTO_F_IMBUF) type = CRYPTO_BUF_MBUF; else type = CRYPTO_BUF_IOV; /* Go through crypto descriptors, processing as we go */ for (crd = crp->crp_desc; crd; crd = crd->crd_next) { /* * Find the crypto context. * * XXX Note that the logic here prevents us from having * XXX the same algorithm multiple times in a session * XXX (or rather, we can but it won't give us the right * XXX results). To do that, we'd need some way of differentiating * XXX between the various instances of an algorithm (so we can * XXX locate the correct crypto context). */ for (sw = swcr_sessions[lid]; sw && sw->sw_alg != crd->crd_alg; sw = sw->sw_next) ; /* No such context ? */ if (sw == NULL) { crp->crp_etype = EINVAL; goto done; } switch (sw->sw_alg) { case CRYPTO_NULL: break; case CRYPTO_DES_CBC: case CRYPTO_3DES_CBC: case CRYPTO_BLF_CBC: case CRYPTO_CAST_CBC: case CRYPTO_RIJNDAEL128_CBC: case CRYPTO_AES_CTR: case CRYPTO_AES_XTS: if ((crp->crp_etype = swcr_encdec(crd, sw, crp->crp_buf, type)) != 0) goto done; break; case CRYPTO_MD5_HMAC: case CRYPTO_SHA1_HMAC: case CRYPTO_RIPEMD160_HMAC: case CRYPTO_SHA2_256_HMAC: case CRYPTO_SHA2_384_HMAC: case CRYPTO_SHA2_512_HMAC: case CRYPTO_MD5_KPDK: case CRYPTO_SHA1_KPDK: case CRYPTO_MD5: case CRYPTO_SHA1: if ((crp->crp_etype = swcr_authcompute(crp, crd, sw, crp->crp_buf, type)) != 0) goto done; break; case CRYPTO_AES_GCM_16: case CRYPTO_AES_GMAC: case CRYPTO_AES_128_GMAC: case CRYPTO_AES_192_GMAC: case CRYPTO_AES_256_GMAC: crp->crp_etype = swcr_authenc(crp); goto done; case CRYPTO_DEFLATE_COMP: if ((crp->crp_etype = swcr_compdec(crd, sw, crp->crp_buf, type)) != 0) goto done; else crp->crp_olen = (int)sw->sw_size; break; default: /* Unknown/unsupported algorithm */ crp->crp_etype = EINVAL; goto done; } } done: crypto_done(crp); return 0; } /* * Initialize the driver, called from the kernel main(). */ void swcr_init(void) { int algs[CRYPTO_ALGORITHM_MAX + 1]; int flags = CRYPTOCAP_F_SOFTWARE | CRYPTOCAP_F_ENCRYPT_MAC | CRYPTOCAP_F_MAC_ENCRYPT; swcr_id = crypto_get_driverid(flags); if (swcr_id < 0) { /* This should never happen */ panic("Software crypto device cannot initialize!"); } bzero(algs, sizeof(algs)); algs[CRYPTO_DES_CBC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_3DES_CBC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_BLF_CBC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_CAST_CBC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_MD5_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_SHA1_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_RIPEMD160_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_MD5_KPDK] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_SHA1_KPDK] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_MD5] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_SHA1] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_RIJNDAEL128_CBC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_AES_CTR] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_AES_XTS] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_AES_GCM_16] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_AES_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_DEFLATE_COMP] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_NULL] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_SHA2_256_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_SHA2_384_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_SHA2_512_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_AES_128_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_AES_192_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_AES_256_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED; algs[CRYPTO_ESN] = CRYPTO_ALG_FLAG_SUPPORTED; crypto_register(swcr_id, algs, swcr_newsession, swcr_freesession, swcr_process); }