/* $OpenBSD: xform.c,v 1.44 2013/08/25 14:26:56 jsing Exp $ */ /* * The authors of this code are John Ioannidis (ji@tla.org), * Angelos D. Keromytis (kermit@csd.uch.gr), * Niels Provos (provos@physnet.uni-hamburg.de) and * Damien Miller (djm@mindrot.org). * * This code was written by John Ioannidis for BSD/OS in Athens, Greece, * in November 1995. * * Ported to OpenBSD and NetBSD, with additional transforms, in December 1996, * by Angelos D. Keromytis. * * Additional transforms and features in 1997 and 1998 by Angelos D. Keromytis * and Niels Provos. * * Additional features in 1999 by Angelos D. Keromytis. * * AES XTS implementation in 2008 by Damien Miller * * Copyright (C) 1995, 1996, 1997, 1998, 1999 by John Ioannidis, * Angelos D. Keromytis and Niels Provos. * * Copyright (C) 2001, Angelos D. Keromytis. * * Copyright (C) 2008, Damien Miller * * Permission to use, copy, and modify this software with or without fee * is hereby granted, provided that this entire notice is included in * all copies of any software which is or includes a copy or * modification of this software. * You may use this code under the GNU public license if you so wish. Please * contribute changes back to the authors under this freer than GPL license * so that we may further the use of strong encryption without limitations to * all. * * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR * PURPOSE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern void des_ecb3_encrypt(caddr_t, caddr_t, caddr_t, caddr_t, caddr_t, int); extern void des_ecb_encrypt(caddr_t, caddr_t, caddr_t, int); int des_set_key(void *, caddr_t); int des1_setkey(void *, u_int8_t *, int); int des3_setkey(void *, u_int8_t *, int); int blf_setkey(void *, u_int8_t *, int); int cast5_setkey(void *, u_int8_t *, int); int rijndael128_setkey(void *, u_int8_t *, int); int aes_ctr_setkey(void *, u_int8_t *, int); int aes_xts_setkey(void *, u_int8_t *, int); int null_setkey(void *, u_int8_t *, int); void des1_encrypt(caddr_t, u_int8_t *); void des3_encrypt(caddr_t, u_int8_t *); void blf_encrypt(caddr_t, u_int8_t *); void cast5_encrypt(caddr_t, u_int8_t *); void rijndael128_encrypt(caddr_t, u_int8_t *); void null_encrypt(caddr_t, u_int8_t *); void aes_xts_encrypt(caddr_t, u_int8_t *); void des1_decrypt(caddr_t, u_int8_t *); void des3_decrypt(caddr_t, u_int8_t *); void blf_decrypt(caddr_t, u_int8_t *); void cast5_decrypt(caddr_t, u_int8_t *); void rijndael128_decrypt(caddr_t, u_int8_t *); void null_decrypt(caddr_t, u_int8_t *); void aes_xts_decrypt(caddr_t, u_int8_t *); void aes_ctr_crypt(caddr_t, u_int8_t *); void aes_ctr_reinit(caddr_t, u_int8_t *); void aes_xts_reinit(caddr_t, u_int8_t *); void aes_gcm_reinit(caddr_t, u_int8_t *); int MD5Update_int(void *, const u_int8_t *, u_int16_t); int SHA1Update_int(void *, const u_int8_t *, u_int16_t); int RMD160Update_int(void *, const u_int8_t *, u_int16_t); int SHA256Update_int(void *, const u_int8_t *, u_int16_t); int SHA384Update_int(void *, const u_int8_t *, u_int16_t); int SHA512Update_int(void *, const u_int8_t *, u_int16_t); u_int32_t deflate_compress(u_int8_t *, u_int32_t, u_int8_t **); u_int32_t deflate_decompress(u_int8_t *, u_int32_t, u_int8_t **); u_int32_t lzs_dummy(u_int8_t *, u_int32_t, u_int8_t **); #define AESCTR_NONCESIZE 4 #define AESCTR_IVSIZE 8 #define AESCTR_BLOCKSIZE 16 struct aes_ctr_ctx { u_int32_t ac_ek[4*(AES_MAXROUNDS + 1)]; u_int8_t ac_block[AESCTR_BLOCKSIZE]; int ac_nr; }; #define AES_XTS_BLOCKSIZE 16 #define AES_XTS_IVSIZE 8 #define AES_XTS_ALPHA 0x87 /* GF(2^128) generator polynomial */ struct aes_xts_ctx { rijndael_ctx key1; rijndael_ctx key2; u_int8_t tweak[AES_XTS_BLOCKSIZE]; }; /* Helper */ void aes_xts_crypt(struct aes_xts_ctx *, u_int8_t *, u_int); /* Encryption instances */ struct enc_xform enc_xform_des = { CRYPTO_DES_CBC, "DES", 8, 8, 8, 8, 128, des1_encrypt, des1_decrypt, des1_setkey, NULL }; struct enc_xform enc_xform_3des = { CRYPTO_3DES_CBC, "3DES", 8, 8, 24, 24, 384, des3_encrypt, des3_decrypt, des3_setkey, NULL }; struct enc_xform enc_xform_blf = { CRYPTO_BLF_CBC, "Blowfish", 8, 8, 5, 56 /* 448 bits, max key */, sizeof(blf_ctx), blf_encrypt, blf_decrypt, blf_setkey, NULL }; struct enc_xform enc_xform_cast5 = { CRYPTO_CAST_CBC, "CAST-128", 8, 8, 5, 16, sizeof(cast_key), cast5_encrypt, cast5_decrypt, cast5_setkey, NULL }; struct enc_xform enc_xform_rijndael128 = { CRYPTO_RIJNDAEL128_CBC, "Rijndael-128/AES", 16, 16, 16, 32, sizeof(rijndael_ctx), rijndael128_encrypt, rijndael128_decrypt, rijndael128_setkey, NULL }; struct enc_xform enc_xform_aes_ctr = { CRYPTO_AES_CTR, "AES-CTR", 16, 8, 16+4, 32+4, sizeof(struct aes_ctr_ctx), aes_ctr_crypt, aes_ctr_crypt, aes_ctr_setkey, aes_ctr_reinit }; struct enc_xform enc_xform_aes_gcm = { CRYPTO_AES_GCM_16, "AES-GCM", 1, 8, 16+4, 32+4, sizeof(struct aes_ctr_ctx), aes_ctr_crypt, aes_ctr_crypt, aes_ctr_setkey, aes_gcm_reinit }; struct enc_xform enc_xform_aes_gmac = { CRYPTO_AES_GMAC, "AES-GMAC", 1, 8, 16+4, 32+4, 0, NULL, NULL, NULL, NULL }; struct enc_xform enc_xform_aes_xts = { CRYPTO_AES_XTS, "AES-XTS", 16, 8, 32, 64, sizeof(struct aes_xts_ctx), aes_xts_encrypt, aes_xts_decrypt, aes_xts_setkey, aes_xts_reinit }; struct enc_xform enc_xform_arc4 = { CRYPTO_ARC4, "ARC4", 1, 1, 1, 32, 0, NULL, NULL, NULL, NULL }; struct enc_xform enc_xform_null = { CRYPTO_NULL, "NULL", 4, 0, 0, 256, 0, null_encrypt, null_decrypt, null_setkey, NULL }; /* Authentication instances */ struct auth_hash auth_hash_hmac_md5_96 = { CRYPTO_MD5_HMAC, "HMAC-MD5", 16, 16, 12, sizeof(MD5_CTX), HMAC_MD5_BLOCK_LEN, (void (*) (void *)) MD5Init, NULL, NULL, MD5Update_int, (void (*) (u_int8_t *, void *)) MD5Final }; struct auth_hash auth_hash_hmac_sha1_96 = { CRYPTO_SHA1_HMAC, "HMAC-SHA1", 20, 20, 12, sizeof(SHA1_CTX), HMAC_SHA1_BLOCK_LEN, (void (*) (void *)) SHA1Init, NULL, NULL, SHA1Update_int, (void (*) (u_int8_t *, void *)) SHA1Final }; struct auth_hash auth_hash_hmac_ripemd_160_96 = { CRYPTO_RIPEMD160_HMAC, "HMAC-RIPEMD-160", 20, 20, 12, sizeof(RMD160_CTX), HMAC_RIPEMD160_BLOCK_LEN, (void (*)(void *)) RMD160Init, NULL, NULL, RMD160Update_int, (void (*)(u_int8_t *, void *)) RMD160Final }; struct auth_hash auth_hash_hmac_sha2_256_128 = { CRYPTO_SHA2_256_HMAC, "HMAC-SHA2-256", 32, 32, 16, sizeof(SHA2_CTX), HMAC_SHA2_256_BLOCK_LEN, (void (*)(void *)) SHA256Init, NULL, NULL, SHA256Update_int, (void (*)(u_int8_t *, void *)) SHA256Final }; struct auth_hash auth_hash_hmac_sha2_384_192 = { CRYPTO_SHA2_384_HMAC, "HMAC-SHA2-384", 48, 48, 24, sizeof(SHA2_CTX), HMAC_SHA2_384_BLOCK_LEN, (void (*)(void *)) SHA384Init, NULL, NULL, SHA384Update_int, (void (*)(u_int8_t *, void *)) SHA384Final }; struct auth_hash auth_hash_hmac_sha2_512_256 = { CRYPTO_SHA2_512_HMAC, "HMAC-SHA2-512", 64, 64, 32, sizeof(SHA2_CTX), HMAC_SHA2_512_BLOCK_LEN, (void (*)(void *)) SHA512Init, NULL, NULL, SHA512Update_int, (void (*)(u_int8_t *, void *)) SHA512Final }; struct auth_hash auth_hash_gmac_aes_128 = { CRYPTO_AES_128_GMAC, "GMAC-AES-128", 16+4, 16, 16, sizeof(AES_GMAC_CTX), GMAC_BLOCK_LEN, (void (*)(void *)) AES_GMAC_Init, (void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Setkey, (void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Reinit, (int (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Update, (void (*)(u_int8_t *, void *)) AES_GMAC_Final }; struct auth_hash auth_hash_gmac_aes_192 = { CRYPTO_AES_192_GMAC, "GMAC-AES-192", 24+4, 16, 16, sizeof(AES_GMAC_CTX), GMAC_BLOCK_LEN, (void (*)(void *)) AES_GMAC_Init, (void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Setkey, (void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Reinit, (int (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Update, (void (*)(u_int8_t *, void *)) AES_GMAC_Final }; struct auth_hash auth_hash_gmac_aes_256 = { CRYPTO_AES_256_GMAC, "GMAC-AES-256", 32+4, 16, 16, sizeof(AES_GMAC_CTX), GMAC_BLOCK_LEN, (void (*)(void *)) AES_GMAC_Init, (void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Setkey, (void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Reinit, (int (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Update, (void (*)(u_int8_t *, void *)) AES_GMAC_Final }; struct auth_hash auth_hash_key_md5 = { CRYPTO_MD5_KPDK, "Keyed MD5", 0, 16, 16, sizeof(MD5_CTX), 0, (void (*)(void *)) MD5Init, NULL, NULL, MD5Update_int, (void (*)(u_int8_t *, void *)) MD5Final }; struct auth_hash auth_hash_key_sha1 = { CRYPTO_SHA1_KPDK, "Keyed SHA1", 0, 20, 20, sizeof(SHA1_CTX), 0, (void (*)(void *)) SHA1Init, NULL, NULL, SHA1Update_int, (void (*)(u_int8_t *, void *)) SHA1Final }; struct auth_hash auth_hash_md5 = { CRYPTO_MD5, "MD5", 0, 16, 16, sizeof(MD5_CTX), 0, (void (*) (void *)) MD5Init, NULL, NULL, MD5Update_int, (void (*) (u_int8_t *, void *)) MD5Final }; struct auth_hash auth_hash_sha1 = { CRYPTO_SHA1, "SHA1", 0, 20, 20, sizeof(SHA1_CTX), 0, (void (*)(void *)) SHA1Init, NULL, NULL, SHA1Update_int, (void (*)(u_int8_t *, void *)) SHA1Final }; /* Compression instance */ struct comp_algo comp_algo_deflate = { CRYPTO_DEFLATE_COMP, "Deflate", 90, deflate_compress, deflate_decompress }; struct comp_algo comp_algo_lzs = { CRYPTO_LZS_COMP, "LZS", 90, lzs_dummy, lzs_dummy }; /* * Encryption wrapper routines. */ void des1_encrypt(caddr_t key, u_int8_t *blk) { des_ecb_encrypt(blk, blk, key, 1); } void des1_decrypt(caddr_t key, u_int8_t *blk) { des_ecb_encrypt(blk, blk, key, 0); } int des1_setkey(void *sched, u_int8_t *key, int len) { return des_set_key(key, sched); } void des3_encrypt(caddr_t key, u_int8_t *blk) { des_ecb3_encrypt(blk, blk, key, key + 128, key + 256, 1); } void des3_decrypt(caddr_t key, u_int8_t *blk) { des_ecb3_encrypt(blk, blk, key + 256, key + 128, key, 0); } int des3_setkey(void *sched, u_int8_t *key, int len) { if (des_set_key(key, sched) < 0 || des_set_key(key + 8, sched + 128) < 0 || des_set_key(key + 16, sched + 256) < 0) return -1; return 0; } void blf_encrypt(caddr_t key, u_int8_t *blk) { blf_ecb_encrypt((blf_ctx *) key, blk, 8); } void blf_decrypt(caddr_t key, u_int8_t *blk) { blf_ecb_decrypt((blf_ctx *) key, blk, 8); } int blf_setkey(void *sched, u_int8_t *key, int len) { blf_key((blf_ctx *)sched, key, len); return 0; } int null_setkey(void *sched, u_int8_t *key, int len) { return 0; } void null_encrypt(caddr_t key, u_int8_t *blk) { } void null_decrypt(caddr_t key, u_int8_t *blk) { } void cast5_encrypt(caddr_t key, u_int8_t *blk) { cast_encrypt((cast_key *) key, blk, blk); } void cast5_decrypt(caddr_t key, u_int8_t *blk) { cast_decrypt((cast_key *) key, blk, blk); } int cast5_setkey(void *sched, u_int8_t *key, int len) { cast_setkey((cast_key *)sched, key, len); return 0; } void rijndael128_encrypt(caddr_t key, u_int8_t *blk) { rijndael_encrypt((rijndael_ctx *) key, (u_char *) blk, (u_char *) blk); } void rijndael128_decrypt(caddr_t key, u_int8_t *blk) { rijndael_decrypt((rijndael_ctx *) key, (u_char *) blk, (u_char *) blk); } int rijndael128_setkey(void *sched, u_int8_t *key, int len) { return rijndael_set_key((rijndael_ctx *)sched, (u_char *)key, len * 8); } void aes_ctr_reinit(caddr_t key, u_int8_t *iv) { struct aes_ctr_ctx *ctx; ctx = (struct aes_ctr_ctx *)key; bcopy(iv, ctx->ac_block + AESCTR_NONCESIZE, AESCTR_IVSIZE); /* reset counter */ bzero(ctx->ac_block + AESCTR_NONCESIZE + AESCTR_IVSIZE, 4); } void aes_gcm_reinit(caddr_t key, u_int8_t *iv) { struct aes_ctr_ctx *ctx; ctx = (struct aes_ctr_ctx *)key; bcopy(iv, ctx->ac_block + AESCTR_NONCESIZE, AESCTR_IVSIZE); /* reset counter */ bzero(ctx->ac_block + AESCTR_NONCESIZE + AESCTR_IVSIZE, 4); ctx->ac_block[AESCTR_BLOCKSIZE - 1] = 1; /* GCM starts with 1 */ } void aes_ctr_crypt(caddr_t key, u_int8_t *data) { struct aes_ctr_ctx *ctx; u_int8_t keystream[AESCTR_BLOCKSIZE]; int i; ctx = (struct aes_ctr_ctx *)key; /* increment counter */ for (i = AESCTR_BLOCKSIZE - 1; i >= AESCTR_NONCESIZE + AESCTR_IVSIZE; i--) if (++ctx->ac_block[i]) /* continue on overflow */ break; rijndaelEncrypt(ctx->ac_ek, ctx->ac_nr, ctx->ac_block, keystream); for (i = 0; i < AESCTR_BLOCKSIZE; i++) data[i] ^= keystream[i]; explicit_bzero(keystream, sizeof(keystream)); } int aes_ctr_setkey(void *sched, u_int8_t *key, int len) { struct aes_ctr_ctx *ctx; if (len < AESCTR_NONCESIZE) return -1; ctx = (struct aes_ctr_ctx *)sched; ctx->ac_nr = rijndaelKeySetupEnc(ctx->ac_ek, (u_char *)key, (len - AESCTR_NONCESIZE) * 8); if (ctx->ac_nr == 0) return -1; bcopy(key + len - AESCTR_NONCESIZE, ctx->ac_block, AESCTR_NONCESIZE); return 0; } void aes_xts_reinit(caddr_t key, u_int8_t *iv) { struct aes_xts_ctx *ctx = (struct aes_xts_ctx *)key; u_int64_t blocknum; u_int i; /* * Prepare tweak as E_k2(IV). IV is specified as LE representation * of a 64-bit block number which we allow to be passed in directly. */ bcopy(iv, &blocknum, AES_XTS_IVSIZE); for (i = 0; i < AES_XTS_IVSIZE; i++) { ctx->tweak[i] = blocknum & 0xff; blocknum >>= 8; } /* Last 64 bits of IV are always zero */ bzero(ctx->tweak + AES_XTS_IVSIZE, AES_XTS_IVSIZE); rijndael_encrypt(&ctx->key2, ctx->tweak, ctx->tweak); } void aes_xts_crypt(struct aes_xts_ctx *ctx, u_int8_t *data, u_int do_encrypt) { u_int8_t block[AES_XTS_BLOCKSIZE]; u_int i, carry_in, carry_out; for (i = 0; i < AES_XTS_BLOCKSIZE; i++) block[i] = data[i] ^ ctx->tweak[i]; if (do_encrypt) rijndael_encrypt(&ctx->key1, block, data); else rijndael_decrypt(&ctx->key1, block, data); for (i = 0; i < AES_XTS_BLOCKSIZE; i++) data[i] ^= ctx->tweak[i]; /* Exponentiate tweak */ carry_in = 0; for (i = 0; i < AES_XTS_BLOCKSIZE; i++) { carry_out = ctx->tweak[i] & 0x80; ctx->tweak[i] = (ctx->tweak[i] << 1) | (carry_in ? 1 : 0); carry_in = carry_out; } if (carry_in) ctx->tweak[0] ^= AES_XTS_ALPHA; explicit_bzero(block, sizeof(block)); } void aes_xts_encrypt(caddr_t key, u_int8_t *data) { aes_xts_crypt((struct aes_xts_ctx *)key, data, 1); } void aes_xts_decrypt(caddr_t key, u_int8_t *data) { aes_xts_crypt((struct aes_xts_ctx *)key, data, 0); } int aes_xts_setkey(void *sched, u_int8_t *key, int len) { struct aes_xts_ctx *ctx; if (len != 32 && len != 64) return -1; ctx = (struct aes_xts_ctx *)sched; rijndael_set_key(&ctx->key1, key, len * 4); rijndael_set_key(&ctx->key2, key + (len / 2), len * 4); return 0; } /* * And now for auth. */ int RMD160Update_int(void *ctx, const u_int8_t *buf, u_int16_t len) { RMD160Update(ctx, buf, len); return 0; } int MD5Update_int(void *ctx, const u_int8_t *buf, u_int16_t len) { MD5Update(ctx, buf, len); return 0; } int SHA1Update_int(void *ctx, const u_int8_t *buf, u_int16_t len) { SHA1Update(ctx, buf, len); return 0; } int SHA256Update_int(void *ctx, const u_int8_t *buf, u_int16_t len) { SHA256Update(ctx, buf, len); return 0; } int SHA384Update_int(void *ctx, const u_int8_t *buf, u_int16_t len) { SHA384Update(ctx, buf, len); return 0; } int SHA512Update_int(void *ctx, const u_int8_t *buf, u_int16_t len) { SHA512Update(ctx, buf, len); return 0; } u_int32_t deflate_global(u_int8_t *, u_int32_t, int, u_int8_t **); struct deflate_buf { u_int8_t *out; u_int32_t size; int flag; }; /* * And compression */ u_int32_t deflate_compress(u_int8_t *data, u_int32_t size, u_int8_t **out) { return deflate_global(data, size, 0, out); } u_int32_t deflate_decompress(u_int8_t *data, u_int32_t size, u_int8_t **out) { return deflate_global(data, size, 1, out); } u_int32_t lzs_dummy(u_int8_t *data, u_int32_t size, u_int8_t **out) { *out = NULL; return (0); }