/* $OpenBSD: acpibat.c,v 1.67 2018/07/01 19:40:49 mlarkin Exp $ */ /* * Copyright (c) 2005 Marco Peereboom * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include int acpibat_match(struct device *, void *, void *); void acpibat_attach(struct device *, struct device *, void *); struct cfattach acpibat_ca = { sizeof(struct acpibat_softc), acpibat_match, acpibat_attach }; struct cfdriver acpibat_cd = { NULL, "acpibat", DV_DULL }; const char *acpibat_hids[] = { ACPI_DEV_CMB, NULL }; void acpibat_monitor(struct acpibat_softc *); void acpibat_refresh(void *); int acpibat_getbix(struct acpibat_softc *); int acpibat_getbst(struct acpibat_softc *); int acpibat_notify(struct aml_node *, int, void *); int acpibat_match(struct device *parent, void *match, void *aux) { struct acpi_attach_args *aa = aux; struct cfdata *cf = match; if (((struct acpi_softc *)parent)->sc_havesbs) return (0); /* sanity */ return (acpi_matchhids(aa, acpibat_hids, cf->cf_driver->cd_name)); } void acpibat_attach(struct device *parent, struct device *self, void *aux) { struct acpibat_softc *sc = (struct acpibat_softc *)self; struct acpi_attach_args *aa = aux; int64_t sta; sc->sc_acpi = (struct acpi_softc *)parent; sc->sc_devnode = aa->aaa_node; if (aml_evalinteger(sc->sc_acpi, sc->sc_devnode, "_STA", 0, NULL, &sta)) { dnprintf(10, "%s: no _STA\n", DEVNAME(sc)); return; } if ((sta & STA_BATTERY) != 0) { sc->sc_bat_present = 1; acpibat_getbix(sc); acpibat_getbst(sc); printf(": %s", sc->sc_devnode->name); if (sc->sc_bix.bix_model[0]) printf(" model \"%s\"", sc->sc_bix.bix_model); if (sc->sc_bix.bix_serial[0]) printf(" serial %s", sc->sc_bix.bix_serial); if (sc->sc_bix.bix_type[0]) printf(" type %s", sc->sc_bix.bix_type); if (sc->sc_bix.bix_oem[0]) printf(" oem \"%s\"", sc->sc_bix.bix_oem); printf("\n"); } else { sc->sc_bat_present = 0; printf(": %s not present\n", sc->sc_devnode->name); } /* create sensors */ acpibat_monitor(sc); /* populate sensors */ acpibat_refresh(sc); aml_register_notify(sc->sc_devnode, aa->aaa_dev, acpibat_notify, sc, ACPIDEV_POLL); } void acpibat_monitor(struct acpibat_softc *sc) { int type; /* assume _BIF/_BIX and _BST have been called */ strlcpy(sc->sc_sensdev.xname, DEVNAME(sc), sizeof(sc->sc_sensdev.xname)); type = sc->sc_bix.bix_power_unit ? SENSOR_AMPHOUR : SENSOR_WATTHOUR; strlcpy(sc->sc_sens[0].desc, "last full capacity", sizeof(sc->sc_sens[0].desc)); sc->sc_sens[0].type = type; sensor_attach(&sc->sc_sensdev, &sc->sc_sens[0]); sc->sc_sens[0].value = sc->sc_bix.bix_last_capacity * 1000; strlcpy(sc->sc_sens[1].desc, "warning capacity", sizeof(sc->sc_sens[1].desc)); sc->sc_sens[1].type = type; sensor_attach(&sc->sc_sensdev, &sc->sc_sens[1]); sc->sc_sens[1].value = sc->sc_bix.bix_warning * 1000; strlcpy(sc->sc_sens[2].desc, "low capacity", sizeof(sc->sc_sens[2].desc)); sc->sc_sens[2].type = type; sensor_attach(&sc->sc_sensdev, &sc->sc_sens[2]); sc->sc_sens[2].value = sc->sc_bix.bix_low * 1000; strlcpy(sc->sc_sens[3].desc, "voltage", sizeof(sc->sc_sens[3].desc)); sc->sc_sens[3].type = SENSOR_VOLTS_DC; sensor_attach(&sc->sc_sensdev, &sc->sc_sens[3]); sc->sc_sens[3].value = sc->sc_bix.bix_voltage * 1000; strlcpy(sc->sc_sens[4].desc, "battery unknown", sizeof(sc->sc_sens[4].desc)); sc->sc_sens[4].type = SENSOR_INTEGER; sensor_attach(&sc->sc_sensdev, &sc->sc_sens[4]); sc->sc_sens[4].value = sc->sc_bst.bst_state; strlcpy(sc->sc_sens[5].desc, "rate", sizeof(sc->sc_sens[5].desc)); sc->sc_sens[5].type = sc->sc_bix.bix_power_unit ? SENSOR_AMPS : SENSOR_WATTS; sensor_attach(&sc->sc_sensdev, &sc->sc_sens[5]); sc->sc_sens[5].value = sc->sc_bst.bst_rate * 1000; strlcpy(sc->sc_sens[6].desc, "remaining capacity", sizeof(sc->sc_sens[6].desc)); sc->sc_sens[6].type = type; sensor_attach(&sc->sc_sensdev, &sc->sc_sens[6]); sc->sc_sens[6].value = sc->sc_bix.bix_capacity * 1000; strlcpy(sc->sc_sens[7].desc, "current voltage", sizeof(sc->sc_sens[7].desc)); sc->sc_sens[7].type = SENSOR_VOLTS_DC; sensor_attach(&sc->sc_sensdev, &sc->sc_sens[7]); sc->sc_sens[7].value = sc->sc_bix.bix_voltage * 1000; strlcpy(sc->sc_sens[8].desc, "design capacity", sizeof(sc->sc_sens[8].desc)); sc->sc_sens[8].type = type; sensor_attach(&sc->sc_sensdev, &sc->sc_sens[8]); sc->sc_sens[8].value = sc->sc_bix.bix_capacity * 1000; if (!sc->sc_use_bif) { strlcpy(sc->sc_sens[9].desc, "discharge cycles", sizeof(sc->sc_sens[9].desc)); sc->sc_sens[9].type = SENSOR_INTEGER; sensor_attach(&sc->sc_sensdev, &sc->sc_sens[9]); sc->sc_sens[9].value = sc->sc_bix.bix_cycle_count; } sensordev_install(&sc->sc_sensdev); } void acpibat_refresh(void *arg) { struct acpibat_softc *sc = arg; int i; dnprintf(30, "%s: %s: refresh\n", DEVNAME(sc), sc->sc_devnode->name); if (!sc->sc_bat_present) { for (i = 0; i < nitems(sc->sc_sens); i++) { sc->sc_sens[i].value = 0; sc->sc_sens[i].status = SENSOR_S_UNSPEC; sc->sc_sens[i].flags = SENSOR_FINVALID; } /* override state */ strlcpy(sc->sc_sens[4].desc, "battery removed", sizeof(sc->sc_sens[4].desc)); return; } /* _BIF/_BIX values are static, sensor 0..3 */ if (sc->sc_bix.bix_last_capacity == BIX_UNKNOWN) { sc->sc_sens[0].value = 0; sc->sc_sens[0].status = SENSOR_S_UNKNOWN; sc->sc_sens[0].flags = SENSOR_FUNKNOWN; } else { sc->sc_sens[0].value = sc->sc_bix.bix_last_capacity * 1000; sc->sc_sens[0].status = SENSOR_S_UNSPEC; sc->sc_sens[0].flags = 0; } sc->sc_sens[1].value = sc->sc_bix.bix_warning * 1000; sc->sc_sens[1].flags = 0; sc->sc_sens[2].value = sc->sc_bix.bix_low * 1000; sc->sc_sens[2].flags = 0; if (sc->sc_bix.bix_voltage == BIX_UNKNOWN) { sc->sc_sens[3].value = 0; sc->sc_sens[3].status = SENSOR_S_UNKNOWN; sc->sc_sens[3].flags = SENSOR_FUNKNOWN; } else { sc->sc_sens[3].value = sc->sc_bix.bix_voltage * 1000; sc->sc_sens[3].status = SENSOR_S_UNSPEC; sc->sc_sens[3].flags = 0; } /* _BST values are dynamic, sensor 4..7 */ sc->sc_sens[4].status = SENSOR_S_OK; sc->sc_sens[4].flags = 0; if (sc->sc_bix.bix_last_capacity == BIX_UNKNOWN || sc->sc_bst.bst_capacity == BST_UNKNOWN) { sc->sc_sens[4].status = SENSOR_S_UNKNOWN; sc->sc_sens[4].flags = SENSOR_FUNKNOWN; strlcpy(sc->sc_sens[4].desc, "battery unknown", sizeof(sc->sc_sens[4].desc)); } else if (sc->sc_bst.bst_capacity >= sc->sc_bix.bix_last_capacity) strlcpy(sc->sc_sens[4].desc, "battery full", sizeof(sc->sc_sens[4].desc)); else if (sc->sc_bst.bst_state & BST_DISCHARGE) strlcpy(sc->sc_sens[4].desc, "battery discharging", sizeof(sc->sc_sens[4].desc)); else if (sc->sc_bst.bst_state & BST_CHARGE) strlcpy(sc->sc_sens[4].desc, "battery charging", sizeof(sc->sc_sens[4].desc)); else if (sc->sc_bst.bst_state & BST_CRITICAL) { strlcpy(sc->sc_sens[4].desc, "battery critical", sizeof(sc->sc_sens[4].desc)); sc->sc_sens[4].status = SENSOR_S_CRIT; } else strlcpy(sc->sc_sens[4].desc, "battery idle", sizeof(sc->sc_sens[4].desc)); sc->sc_sens[4].value = sc->sc_bst.bst_state; if (sc->sc_bst.bst_rate == BST_UNKNOWN) { sc->sc_sens[5].value = 0; sc->sc_sens[5].status = SENSOR_S_UNKNOWN; sc->sc_sens[5].flags = SENSOR_FUNKNOWN; } else { sc->sc_sens[5].value = sc->sc_bst.bst_rate * 1000; sc->sc_sens[5].status = SENSOR_S_UNSPEC; sc->sc_sens[5].flags = 0; } if (sc->sc_bst.bst_capacity == BST_UNKNOWN) { sc->sc_sens[6].value = 0; sc->sc_sens[6].status = SENSOR_S_UNKNOWN; sc->sc_sens[6].flags = SENSOR_FUNKNOWN; } else { sc->sc_sens[6].value = sc->sc_bst.bst_capacity * 1000; sc->sc_sens[6].flags = 0; if (sc->sc_bst.bst_capacity < sc->sc_bix.bix_low) /* XXX we should shutdown the system */ sc->sc_sens[6].status = SENSOR_S_CRIT; else if (sc->sc_bst.bst_capacity < sc->sc_bix.bix_warning) sc->sc_sens[6].status = SENSOR_S_WARN; else sc->sc_sens[6].status = SENSOR_S_OK; } if (sc->sc_bst.bst_voltage == BST_UNKNOWN) { sc->sc_sens[7].value = 0; sc->sc_sens[7].status = SENSOR_S_UNKNOWN; sc->sc_sens[7].flags = SENSOR_FUNKNOWN; } else { sc->sc_sens[7].value = sc->sc_bst.bst_voltage * 1000; sc->sc_sens[7].status = SENSOR_S_UNSPEC; sc->sc_sens[7].flags = 0; } if (sc->sc_bix.bix_capacity == BIX_UNKNOWN) { sc->sc_sens[8].value = 0; sc->sc_sens[8].status = SENSOR_S_UNKNOWN; sc->sc_sens[8].flags = SENSOR_FUNKNOWN; } else { sc->sc_sens[8].value = sc->sc_bix.bix_capacity * 1000; sc->sc_sens[8].status = SENSOR_S_UNSPEC; sc->sc_sens[8].flags = 0; } if (!sc->sc_use_bif) { if (sc->sc_bix.bix_capacity == BIX_UNKNOWN) { sc->sc_sens[9].value = 0; sc->sc_sens[9].status = SENSOR_S_UNKNOWN; sc->sc_sens[9].flags = SENSOR_FUNKNOWN; } else { sc->sc_sens[9].value = sc->sc_bix.bix_cycle_count; sc->sc_sens[9].status = SENSOR_S_UNSPEC; sc->sc_sens[9].flags = 0; } } acpi_record_event(sc->sc_acpi, APM_POWER_CHANGE); } int acpibat_getbix(struct acpibat_softc *sc) { struct aml_value res; int rv = EINVAL; int n = 0; if (!sc->sc_bat_present) { memset(&sc->sc_bix, 0, sizeof(sc->sc_bix)); return (0); } sc->sc_use_bif = 1; if (aml_evalname(sc->sc_acpi, sc->sc_devnode, "_BIX", 0, NULL, &res) == 0) { if (res.length >= 20) sc->sc_use_bif = 0; else dnprintf(10, "%s: invalid _BIX (%d < 20)\n", DEVNAME(sc), res.length); } if (sc->sc_use_bif) { if (aml_evalname(sc->sc_acpi, sc->sc_devnode, "_BIF", 0, NULL, &res)) { dnprintf(10, "%s: no _BIX or _BIF\n", DEVNAME(sc)); goto out; } if (res.length != 13) { dnprintf(10, "%s: invalid _BIF (%d != 13)\n", DEVNAME(sc), res.length); goto out; } } if (!sc->sc_use_bif) sc->sc_bix.bix_revision = aml_val2int(res.v_package[n++]); sc->sc_bix.bix_power_unit = aml_val2int(res.v_package[n++]); sc->sc_bix.bix_capacity = aml_val2int(res.v_package[n++]); sc->sc_bix.bix_last_capacity = aml_val2int(res.v_package[n++]); sc->sc_bix.bix_technology = aml_val2int(res.v_package[n++]); sc->sc_bix.bix_voltage = aml_val2int(res.v_package[n++]); sc->sc_bix.bix_warning = aml_val2int(res.v_package[n++]); sc->sc_bix.bix_low = aml_val2int(res.v_package[n++]); if (!sc->sc_use_bif) { sc->sc_bix.bix_cycle_count = aml_val2int(res.v_package[n++]); sc->sc_bix.bix_accuracy = aml_val2int(res.v_package[n++]); sc->sc_bix.bix_max_sample = aml_val2int(res.v_package[n++]); sc->sc_bix.bix_min_sample = aml_val2int(res.v_package[n++]); sc->sc_bix.bix_max_avg = aml_val2int(res.v_package[n++]); sc->sc_bix.bix_min_avg = aml_val2int(res.v_package[n++]); } sc->sc_bix.bix_cap_granu1 = aml_val2int(res.v_package[n++]); sc->sc_bix.bix_cap_granu2 = aml_val2int(res.v_package[n++]); strlcpy(sc->sc_bix.bix_model, aml_val_to_string(res.v_package[n++]), sizeof(sc->sc_bix.bix_model)); strlcpy(sc->sc_bix.bix_serial, aml_val_to_string(res.v_package[n++]), sizeof(sc->sc_bix.bix_serial)); strlcpy(sc->sc_bix.bix_type, aml_val_to_string(res.v_package[n++]), sizeof(sc->sc_bix.bix_type)); strlcpy(sc->sc_bix.bix_oem, aml_val_to_string(res.v_package[n++]), sizeof(sc->sc_bix.bix_oem)); if (!sc->sc_use_bif) dnprintf(60, "revision: %u ", sc->sc_bix.bix_revision); dnprintf(60, "power_unit: %u capacity: %u last_cap: %u " "tech: %u volt: %u warn: %u low: %u ", sc->sc_bix.bix_power_unit, sc->sc_bix.bix_capacity, sc->sc_bix.bix_last_capacity, sc->sc_bix.bix_technology, sc->sc_bix.bix_voltage, sc->sc_bix.bix_warning, sc->sc_bix.bix_low); if (!sc->sc_use_bif) dnprintf(60, "cycles: %u accuracy: %u max_sample: %u " "min_sample: %u max_avg: %u min_avg: %u ", sc->sc_bix.bix_cycle_count, sc->sc_bix.bix_accuracy, sc->sc_bix.bix_max_sample, sc->sc_bix.bix_min_sample, sc->sc_bix.bix_max_avg, sc->sc_bix.bix_min_avg); dnprintf(60, "gran1: %u gran2: %d model: %s serial: %s type: %s " "oem: %s\n", sc->sc_bix.bix_cap_granu1, sc->sc_bix.bix_cap_granu2, sc->sc_bix.bix_model, sc->sc_bix.bix_serial, sc->sc_bix.bix_type, sc->sc_bix.bix_oem); rv = 0; out: aml_freevalue(&res); return (rv); } int acpibat_getbst(struct acpibat_softc *sc) { struct aml_value res; int rv = EINVAL; if (!sc->sc_bat_present) { memset(&sc->sc_bst, 0, sizeof(sc->sc_bst)); return (0); } if (aml_evalname(sc->sc_acpi, sc->sc_devnode, "_BST", 0, NULL, &res)) { dnprintf(10, "%s: no _BST\n", DEVNAME(sc)); goto out; } if (res.length != 4) { dnprintf(10, "%s: invalid _BST, battery status not saved\n", DEVNAME(sc)); goto out; } sc->sc_bst.bst_state = aml_val2int(res.v_package[0]); sc->sc_bst.bst_rate = aml_val2int(res.v_package[1]); sc->sc_bst.bst_capacity = aml_val2int(res.v_package[2]); sc->sc_bst.bst_voltage = aml_val2int(res.v_package[3]); dnprintf(60, "state: %u rate: %u cap: %u volt: %u ", sc->sc_bst.bst_state, sc->sc_bst.bst_rate, sc->sc_bst.bst_capacity, sc->sc_bst.bst_voltage); rv = 0; out: aml_freevalue(&res); return (rv); } /* * XXX it has been observed that some systems do not propagate battery * insertion events up to the driver. What seems to happen is that DSDT * does receive an interrupt however the originator bit is not set. * This seems to happen when one inserts a 100% full battery. Removal * of the power cord or insertion of a not 100% full battery breaks this * behavior and all events will then be sent upwards. Currently there * is no known work-around for it. */ int acpibat_notify(struct aml_node *node, int notify_type, void *arg) { struct acpibat_softc *sc = arg; int64_t sta; dnprintf(10, "acpibat_notify: %.2x %s\n", notify_type, sc->sc_devnode->name); /* Check if installed state of battery has changed */ if (aml_evalinteger(sc->sc_acpi, node, "_STA", 0, NULL, &sta) == 0) { if (sta & STA_BATTERY) sc->sc_bat_present = 1; else sc->sc_bat_present = 0; } switch (notify_type) { case 0x00: /* Poll sensors */ case 0x80: /* _BST changed */ acpibat_getbst(sc); break; case 0x81: /* _BIF/_BIX changed */ acpibat_getbix(sc); break; default: break; } acpibat_refresh(sc); return (0); }