/* $OpenBSD: acpibat.c,v 1.53 2008/11/06 23:41:28 marco Exp $ */ /* * Copyright (c) 2005 Marco Peereboom * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include int acpibat_match(struct device *, void *, void *); void acpibat_attach(struct device *, struct device *, void *); struct cfattach acpibat_ca = { sizeof(struct acpibat_softc), acpibat_match, acpibat_attach }; struct cfdriver acpibat_cd = { NULL, "acpibat", DV_DULL }; const char *acpibat_hids[] = { ACPI_DEV_CMB, 0 }; void acpibat_monitor(struct acpibat_softc *); void acpibat_refresh(void *); int acpibat_getbif(struct acpibat_softc *); int acpibat_getbst(struct acpibat_softc *); int acpibat_notify(struct aml_node *, int, void *); int acpibat_match(struct device *parent, void *match, void *aux) { struct acpi_attach_args *aa = aux; struct cfdata *cf = match; /* sanity */ return (acpi_matchhids(aa, acpibat_hids, cf->cf_driver->cd_name)); } void acpibat_attach(struct device *parent, struct device *self, void *aux) { struct acpibat_softc *sc = (struct acpibat_softc *)self; struct acpi_attach_args *aa = aux; struct aml_value res; sc->sc_acpi = (struct acpi_softc *)parent; sc->sc_devnode = aa->aaa_node; if (aml_evalname(sc->sc_acpi, sc->sc_devnode, "_STA", 0, NULL, &res)) { dnprintf(10, "%s: no _STA\n", DEVNAME(sc)); return; } if ((res.v_integer & STA_BATTERY) != 0) { sc->sc_bat_present = 1; acpibat_getbif(sc); acpibat_getbst(sc); printf(": %s", sc->sc_devnode->name); if (sc->sc_bif.bif_model[0]) printf(" model \"%s\"", sc->sc_bif.bif_model); if (sc->sc_bif.bif_serial[0]) printf(" serial %s", sc->sc_bif.bif_serial); if (sc->sc_bif.bif_type[0]) printf(" type %s", sc->sc_bif.bif_type); if (sc->sc_bif.bif_oem[0]) printf(" oem \"%s\"", sc->sc_bif.bif_oem); printf("\n"); } else { sc->sc_bat_present = 0; printf(": %s not present\n", sc->sc_devnode->name); } aml_freevalue(&res); /* create sensors */ acpibat_monitor(sc); /* populate sensors */ acpibat_refresh(sc); aml_register_notify(sc->sc_devnode, aa->aaa_dev, acpibat_notify, sc, ACPIDEV_POLL); } void acpibat_monitor(struct acpibat_softc *sc) { int type; /* assume _BIF and _BST have been called */ strlcpy(sc->sc_sensdev.xname, DEVNAME(sc), sizeof(sc->sc_sensdev.xname)); type = sc->sc_bif.bif_power_unit ? SENSOR_AMPHOUR : SENSOR_WATTHOUR; strlcpy(sc->sc_sens[0].desc, "last full capacity", sizeof(sc->sc_sens[0].desc)); sc->sc_sens[0].type = type; sensor_attach(&sc->sc_sensdev, &sc->sc_sens[0]); sc->sc_sens[0].value = sc->sc_bif.bif_last_capacity * 1000; strlcpy(sc->sc_sens[1].desc, "warning capacity", sizeof(sc->sc_sens[1].desc)); sc->sc_sens[1].type = type; sensor_attach(&sc->sc_sensdev, &sc->sc_sens[1]); sc->sc_sens[1].value = sc->sc_bif.bif_warning * 1000; strlcpy(sc->sc_sens[2].desc, "low capacity", sizeof(sc->sc_sens[2].desc)); sc->sc_sens[2].type = type; sensor_attach(&sc->sc_sensdev, &sc->sc_sens[2]); sc->sc_sens[2].value = sc->sc_bif.bif_low * 1000; strlcpy(sc->sc_sens[3].desc, "voltage", sizeof(sc->sc_sens[3].desc)); sc->sc_sens[3].type = SENSOR_VOLTS_DC; sensor_attach(&sc->sc_sensdev, &sc->sc_sens[3]); sc->sc_sens[3].value = sc->sc_bif.bif_voltage * 1000; strlcpy(sc->sc_sens[4].desc, "battery unknown", sizeof(sc->sc_sens[4].desc)); sc->sc_sens[4].type = SENSOR_INTEGER; sensor_attach(&sc->sc_sensdev, &sc->sc_sens[4]); sc->sc_sens[4].value = sc->sc_bst.bst_state; strlcpy(sc->sc_sens[5].desc, "rate", sizeof(sc->sc_sens[5].desc)); sc->sc_sens[5].type = SENSOR_INTEGER; sensor_attach(&sc->sc_sensdev, &sc->sc_sens[5]); sc->sc_sens[5].value = sc->sc_bst.bst_rate; strlcpy(sc->sc_sens[6].desc, "remaining capacity", sizeof(sc->sc_sens[6].desc)); sc->sc_sens[6].type = type; sensor_attach(&sc->sc_sensdev, &sc->sc_sens[6]); sc->sc_sens[6].value = sc->sc_bst.bst_capacity * 1000; strlcpy(sc->sc_sens[7].desc, "current voltage", sizeof(sc->sc_sens[7].desc)); sc->sc_sens[7].type = SENSOR_VOLTS_DC; sensor_attach(&sc->sc_sensdev, &sc->sc_sens[7]); sc->sc_sens[7].value = sc->sc_bst.bst_voltage * 1000; sensordev_install(&sc->sc_sensdev); } void acpibat_refresh(void *arg) { struct acpibat_softc *sc = arg; int i; dnprintf(30, "%s: %s: refresh\n", DEVNAME(sc), sc->sc_devnode->name); if (!sc->sc_bat_present) { for (i = 0; i < 8; i++) { sc->sc_sens[i].value = 0; sc->sc_sens[i].status = SENSOR_S_UNSPEC; sc->sc_sens[i].flags = SENSOR_FINVALID; } /* override state */ strlcpy(sc->sc_sens[4].desc, "battery removed", sizeof(sc->sc_sens[4].desc)); return; } /* * XXX don't really need _BIF but keep it here in case we * miss an insertion/removal event */ acpibat_getbif(sc); acpibat_getbst(sc); /* _BIF values are static, sensor 0..3 */ if (sc->sc_bif.bif_last_capacity == BIF_UNKNOWN) { sc->sc_sens[0].value = 0; sc->sc_sens[0].status = SENSOR_S_UNKNOWN; sc->sc_sens[0].flags = SENSOR_FUNKNOWN; } else { sc->sc_sens[0].value = sc->sc_bif.bif_last_capacity * 1000; sc->sc_sens[0].status = SENSOR_S_UNSPEC; sc->sc_sens[0].flags = 0; } sc->sc_sens[1].value = sc->sc_bif.bif_warning * 1000; sc->sc_sens[1].flags = 0; sc->sc_sens[2].value = sc->sc_bif.bif_low * 1000; sc->sc_sens[2].flags = 0; if (sc->sc_bif.bif_voltage == BIF_UNKNOWN) { sc->sc_sens[3].value = 0; sc->sc_sens[3].status = SENSOR_S_UNKNOWN; sc->sc_sens[3].flags = SENSOR_FUNKNOWN; } else { sc->sc_sens[3].value = sc->sc_bif.bif_voltage * 1000; sc->sc_sens[3].status = SENSOR_S_UNSPEC; sc->sc_sens[3].flags = 0; } /* _BST values are dynamic, sensor 4..7 */ sc->sc_sens[4].status = SENSOR_S_OK; sc->sc_sens[4].flags = 0; if (sc->sc_bif.bif_last_capacity == BIF_UNKNOWN || sc->sc_bst.bst_capacity == BST_UNKNOWN) { sc->sc_sens[4].status = SENSOR_S_UNKNOWN; sc->sc_sens[4].flags = SENSOR_FUNKNOWN; strlcpy(sc->sc_sens[4].desc, "battery unknown", sizeof(sc->sc_sens[4].desc)); } else if (sc->sc_bst.bst_capacity >= sc->sc_bif.bif_last_capacity) strlcpy(sc->sc_sens[4].desc, "battery full", sizeof(sc->sc_sens[4].desc)); else if (sc->sc_bst.bst_state & BST_DISCHARGE) strlcpy(sc->sc_sens[4].desc, "battery discharging", sizeof(sc->sc_sens[4].desc)); else if (sc->sc_bst.bst_state & BST_CHARGE) strlcpy(sc->sc_sens[4].desc, "battery charging", sizeof(sc->sc_sens[4].desc)); else if (sc->sc_bst.bst_state & BST_CRITICAL) { strlcpy(sc->sc_sens[4].desc, "battery critical", sizeof(sc->sc_sens[4].desc)); sc->sc_sens[4].status = SENSOR_S_CRIT; } else strlcpy(sc->sc_sens[4].desc, "battery idle", sizeof(sc->sc_sens[4].desc)); sc->sc_sens[4].value = sc->sc_bst.bst_state; if (sc->sc_bst.bst_rate == BST_UNKNOWN) { sc->sc_sens[5].value = 0; sc->sc_sens[5].status = SENSOR_S_UNKNOWN; sc->sc_sens[5].flags = SENSOR_FUNKNOWN; } else { sc->sc_sens[5].value = sc->sc_bst.bst_rate; sc->sc_sens[5].status = SENSOR_S_UNSPEC; sc->sc_sens[5].flags = 0; } if (sc->sc_bst.bst_capacity == BST_UNKNOWN) { sc->sc_sens[6].value = 0; sc->sc_sens[6].status = SENSOR_S_UNKNOWN; sc->sc_sens[6].flags = SENSOR_FUNKNOWN; } else { sc->sc_sens[6].value = sc->sc_bst.bst_capacity * 1000; sc->sc_sens[6].flags = 0; if (sc->sc_bst.bst_capacity < sc->sc_bif.bif_low) /* XXX we should shutdown the system */ sc->sc_sens[6].status = SENSOR_S_CRIT; else if (sc->sc_bst.bst_capacity < sc->sc_bif.bif_warning) sc->sc_sens[6].status = SENSOR_S_WARN; else sc->sc_sens[6].status = SENSOR_S_OK; } if (sc->sc_bst.bst_voltage == BST_UNKNOWN) { sc->sc_sens[7].value = 0; sc->sc_sens[7].status = SENSOR_S_UNKNOWN; sc->sc_sens[7].flags = SENSOR_FUNKNOWN; } else { sc->sc_sens[7].value = sc->sc_bst.bst_voltage * 1000; sc->sc_sens[7].status = SENSOR_S_UNSPEC; sc->sc_sens[7].flags = 0; } } int acpibat_getbif(struct acpibat_softc *sc) { struct aml_value res; int rv = EINVAL; if (!sc->sc_bat_present) { memset(&sc->sc_bif, 0, sizeof(sc->sc_bif)); return (0); } if (aml_evalname(sc->sc_acpi, sc->sc_devnode, "_BIF", 0, NULL, &res)) { dnprintf(10, "%s: no _BIF\n", DEVNAME(sc)); goto out; } if (res.length != 13) { dnprintf(10, "%s: invalid _BIF, battery info not saved\n", DEVNAME(sc)); goto out; } sc->sc_bif.bif_power_unit = aml_val2int(res.v_package[0]); sc->sc_bif.bif_capacity = aml_val2int(res.v_package[1]); sc->sc_bif.bif_last_capacity = aml_val2int(res.v_package[2]); sc->sc_bif.bif_technology = aml_val2int(res.v_package[3]); sc->sc_bif.bif_voltage = aml_val2int(res.v_package[4]); sc->sc_bif.bif_warning = aml_val2int(res.v_package[5]); sc->sc_bif.bif_low = aml_val2int(res.v_package[6]); sc->sc_bif.bif_cap_granu1 = aml_val2int(res.v_package[7]); sc->sc_bif.bif_cap_granu2 = aml_val2int(res.v_package[8]); strlcpy(sc->sc_bif.bif_model, aml_val_to_string(res.v_package[9]), sizeof(sc->sc_bif.bif_model)); strlcpy(sc->sc_bif.bif_serial, aml_val_to_string(res.v_package[10]), sizeof(sc->sc_bif.bif_serial)); strlcpy(sc->sc_bif.bif_type, aml_val_to_string(res.v_package[11]), sizeof(sc->sc_bif.bif_type)); strlcpy(sc->sc_bif.bif_oem, aml_val_to_string(res.v_package[12]), sizeof(sc->sc_bif.bif_oem)); dnprintf(60, "power_unit: %u capacity: %u last_cap: %u tech: %u " "volt: %u warn: %u low: %u gran1: %u gran2: %d model: %s " "serial: %s type: %s oem: %s\n", sc->sc_bif.bif_power_unit, sc->sc_bif.bif_capacity, sc->sc_bif.bif_last_capacity, sc->sc_bif.bif_technology, sc->sc_bif.bif_voltage, sc->sc_bif.bif_warning, sc->sc_bif.bif_low, sc->sc_bif.bif_cap_granu1, sc->sc_bif.bif_cap_granu2, sc->sc_bif.bif_model, sc->sc_bif.bif_serial, sc->sc_bif.bif_type, sc->sc_bif.bif_oem); rv = 0; out: aml_freevalue(&res); return (rv); } int acpibat_getbst(struct acpibat_softc *sc) { struct aml_value res; int rv = EINVAL; if (!sc->sc_bat_present) { memset(&sc->sc_bst, 0, sizeof(sc->sc_bst)); return (0); } if (aml_evalname(sc->sc_acpi, sc->sc_devnode, "_BST", 0, NULL, &res)) { dnprintf(10, "%s: no _BST\n", DEVNAME(sc)); goto out; } if (res.length != 4) { dnprintf(10, "%s: invalid _BST, battery status not saved\n", DEVNAME(sc)); goto out; } sc->sc_bst.bst_state = aml_val2int(res.v_package[0]); sc->sc_bst.bst_rate = aml_val2int(res.v_package[1]); sc->sc_bst.bst_capacity = aml_val2int(res.v_package[2]); sc->sc_bst.bst_voltage = aml_val2int(res.v_package[3]); dnprintf(60, "state: %u rate: %u cap: %u volt: %u ", sc->sc_bst.bst_state, sc->sc_bst.bst_rate, sc->sc_bst.bst_capacity, sc->sc_bst.bst_voltage); rv = 0; out: aml_freevalue(&res); return (rv); } /* XXX it has been observed that some systems do not propagate battery * insertion events up to the driver. What seems to happen is that DSDT * does receive an interrupt however the originator bit is not set. * This seems to happen when one inserts a 100% full battery. Removal * of the power cord or insertion of a not 100% full battery breaks this * behavior and all events will then be sent upwards. Currently there * is no known work-around for it. */ int acpibat_notify(struct aml_node *node, int notify_type, void *arg) { struct acpibat_softc *sc = arg; struct aml_value res; int present; dnprintf(10, "acpibat_notify: %.2x %s\n", notify_type, sc->sc_devnode->name); /* Check if installed state of battery has changed */ memset(&res, 0, sizeof(res)); if (aml_evalname(sc->sc_acpi, node, "_STA", 0, NULL, &res) == 0) { present = res.v_integer & STA_BATTERY; if (!sc->sc_bat_present && present) { printf("%s: %s inserted\n", DEVNAME(sc), sc->sc_devnode->name); sc->sc_bat_present = 1; } else if (sc->sc_bat_present && !present) { printf("%s: %s removed\n", DEVNAME(sc), sc->sc_devnode->name); sc->sc_bat_present = 0; } } switch (notify_type) { case 0x80: /* _BST changed */ break; case 0x81: /* _BIF changed */ break; default: break; } acpibat_refresh(sc); return (0); }