/* $OpenBSD: acpisbs.c,v 1.9 2020/01/27 11:04:18 jca Exp $ */ /* * Smart Battery subsystem device driver * ACPI 5.0 spec section 10 * * Copyright (c) 2016-2017 joshua stein * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * TODO: support multiple batteries based on _SBS, make sc_battery an array and * poll each battery independently */ #include #include #include #include #include #include #include #include #include #include #include /* #define ACPISBS_DEBUG */ #ifdef ACPISBS_DEBUG #define DPRINTF(x) printf x #else #define DPRINTF(x) #endif /* how often (in seconds) to re-poll data */ #define ACPISBS_POLL_FREQ 30 /* number of polls for reading data */ #define SMBUS_TIMEOUT 50 #define CHECK(kind, cmd, val, senst, sens) { \ SMBUS_READ_##kind, SMBATT_CMD_##cmd, \ offsetof(struct acpisbs_battery, val), \ (SMBUS_READ_##kind == SMBUS_READ_BLOCK ? SMBUS_DATA_SIZE : 2), \ #val, senst, sens } struct acpisbs_battery_check { uint8_t mode; uint8_t command; size_t offset; int len; char *name; int sensor_type; char *sensor_desc; } acpisbs_battery_checks[] = { /* mode must be checked first */ CHECK(WORD, BATTERY_MODE, mode, -1, "mode flags"), CHECK(WORD, TEMPERATURE, temperature, SENSOR_TEMP, "internal temperature"), CHECK(WORD, VOLTAGE, voltage, SENSOR_VOLTS_DC, "voltage"), CHECK(WORD, CURRENT, current, SENSOR_AMPS, "current being supplied"), CHECK(WORD, AVERAGE_CURRENT, avg_current, SENSOR_AMPS, "average current supplied"), CHECK(WORD, RELATIVE_STATE_OF_CHARGE, rel_charge, SENSOR_PERCENT, "remaining capacity"), CHECK(WORD, ABSOLUTE_STATE_OF_CHARGE, abs_charge, SENSOR_PERCENT, "remaining of design capacity"), CHECK(WORD, REMAINING_CAPACITY, capacity, SENSOR_AMPHOUR, "remaining capacity"), CHECK(WORD, FULL_CHARGE_CAPACITY, full_capacity, SENSOR_AMPHOUR, "capacity when fully charged"), CHECK(WORD, RUN_TIME_TO_EMPTY, run_time, SENSOR_INTEGER, "remaining run time minutes"), CHECK(WORD, AVERAGE_TIME_TO_EMPTY, avg_empty_time, SENSOR_INTEGER, "avg remaining minutes"), CHECK(WORD, AVERAGE_TIME_TO_FULL, avg_full_time, SENSOR_INTEGER, "avg minutes until full charge"), CHECK(WORD, CHARGING_CURRENT, charge_current, SENSOR_AMPS, "desired charging rate"), CHECK(WORD, CHARGING_VOLTAGE, charge_voltage, SENSOR_VOLTS_DC, "desired charging voltage"), CHECK(WORD, BATTERY_STATUS, status, -1, "status"), CHECK(WORD, CYCLE_COUNT, cycle_count, SENSOR_INTEGER, "charge and discharge cycles"), CHECK(WORD, DESIGN_CAPACITY, design_capacity, SENSOR_AMPHOUR, "capacity of new battery"), CHECK(WORD, DESIGN_VOLTAGE, design_voltage, SENSOR_VOLTS_DC, "voltage of new battery"), CHECK(WORD, SERIAL_NUMBER, serial, -1, "serial number"), CHECK(BLOCK, MANUFACTURER_NAME, manufacturer, -1, "manufacturer name"), CHECK(BLOCK, DEVICE_NAME, device_name, -1, "battery model number"), CHECK(BLOCK, DEVICE_CHEMISTRY, device_chemistry, -1, "battery chemistry"), #if 0 CHECK(WORD, SPECIFICATION_INFO, spec, -1, NULL), CHECK(WORD, MANUFACTURE_DATE, manufacture_date, -1, "date battery was manufactured"), CHECK(BLOCK, MANUFACTURER_DATA, oem_data, -1, "manufacturer-specific data"), #endif }; extern void acpiec_read(struct acpiec_softc *, uint8_t, int, uint8_t *); extern void acpiec_write(struct acpiec_softc *, uint8_t, int, uint8_t *); int acpisbs_match(struct device *, void *, void *); void acpisbs_attach(struct device *, struct device *, void *); void acpisbs_setup_sensors(struct acpisbs_softc *); void acpisbs_refresh_sensors(struct acpisbs_softc *); void acpisbs_read(struct acpisbs_softc *); int acpisbs_notify(struct aml_node *, int, void *); int acpi_smbus_read(struct acpisbs_softc *, uint8_t, uint8_t, int, void *); const struct cfattach acpisbs_ca = { sizeof(struct acpisbs_softc), acpisbs_match, acpisbs_attach, }; struct cfdriver acpisbs_cd = { NULL, "acpisbs", DV_DULL }; const char *acpisbs_hids[] = { ACPI_DEV_SBS, NULL }; int acpisbs_match(struct device *parent, void *match, void *aux) { struct acpi_attach_args *aa = aux; struct cfdata *cf = match; return (acpi_matchhids(aa, acpisbs_hids, cf->cf_driver->cd_name)); } void acpisbs_attach(struct device *parent, struct device *self, void *aux) { struct acpisbs_softc *sc = (struct acpisbs_softc *)self; struct acpi_attach_args *aa = aux; int64_t sbs, val; sc->sc_acpi = (struct acpi_softc *)parent; sc->sc_devnode = aa->aaa_node; sc->sc_batteries_present = 0; memset(&sc->sc_battery, 0, sizeof(sc->sc_battery)); getmicrouptime(&sc->sc_lastpoll); if (aml_evalinteger(sc->sc_acpi, sc->sc_devnode, "_SBS", 0, NULL, &sbs)) return; /* * The parent node of the device block containing the _HID must also * have an _EC node, which contains the base address and query value. */ if (aml_evalinteger(sc->sc_acpi, sc->sc_devnode->parent, "_EC", 0, NULL, &val)) return; sc->sc_ec_base = (val >> 8) & 0xff; if (!sc->sc_acpi->sc_ec) return; sc->sc_ec = sc->sc_acpi->sc_ec; printf(": %s", sc->sc_devnode->name); if (sbs > 0) acpisbs_read(sc); if (sc->sc_batteries_present) { if (sc->sc_battery.device_name[0]) printf(" model \"%s\"", sc->sc_battery.device_name); if (sc->sc_battery.serial) printf(" serial %d", sc->sc_battery.serial); if (sc->sc_battery.device_chemistry[0]) printf(" type %s", sc->sc_battery.device_chemistry); if (sc->sc_battery.manufacturer[0]) printf(" oem \"%s\"", sc->sc_battery.manufacturer); } printf("\n"); acpisbs_setup_sensors(sc); acpisbs_refresh_sensors(sc); /* * Request notification of SCI events on the subsystem itself, but also * periodically poll as a fallback in case those events never arrive. */ aml_register_notify(sc->sc_devnode->parent, aa->aaa_dev, acpisbs_notify, sc, ACPIDEV_POLL); sc->sc_acpi->sc_havesbs = 1; } void acpisbs_read(struct acpisbs_softc *sc) { int i; for (i = 0; i < nitems(acpisbs_battery_checks); i++) { struct acpisbs_battery_check check = acpisbs_battery_checks[i]; void *p = (void *)&sc->sc_battery + check.offset; acpi_smbus_read(sc, check.mode, check.command, check.len, p); if (check.mode == SMBUS_READ_BLOCK) DPRINTF(("%s: %s: %s\n", sc->sc_dev.dv_xname, check.name, (char *)p)); else DPRINTF(("%s: %s: %u\n", sc->sc_dev.dv_xname, check.name, *(uint16_t *)p)); if (check.command == SMBATT_CMD_BATTERY_MODE) { uint16_t *ival = (uint16_t *)p; if (*ival == 0) { /* battery not present, skip further checks */ sc->sc_batteries_present = 0; break; } sc->sc_batteries_present = 1; if (*ival & SMBATT_BM_CAPACITY_MODE) sc->sc_battery.units = ACPISBS_UNITS_MW; else sc->sc_battery.units = ACPISBS_UNITS_MA; } } } void acpisbs_setup_sensors(struct acpisbs_softc *sc) { int i; memset(&sc->sc_sensordev, 0, sizeof(sc->sc_sensordev)); strlcpy(sc->sc_sensordev.xname, DEVNAME(sc), sizeof(sc->sc_sensordev.xname)); sc->sc_sensors = mallocarray(sizeof(struct ksensor), nitems(acpisbs_battery_checks), M_DEVBUF, M_WAITOK | M_ZERO); for (i = 0; i < nitems(acpisbs_battery_checks); i++) { struct acpisbs_battery_check check = acpisbs_battery_checks[i]; if (check.sensor_type < 0) continue; strlcpy(sc->sc_sensors[i].desc, check.sensor_desc, sizeof(sc->sc_sensors[i].desc)); if (check.sensor_type == SENSOR_AMPHOUR && sc->sc_battery.units == ACPISBS_UNITS_MW) /* translate to watt-hours */ sc->sc_sensors[i].type = SENSOR_WATTHOUR; else sc->sc_sensors[i].type = check.sensor_type; sc->sc_sensors[i].value = 0; sensor_attach(&sc->sc_sensordev, &sc->sc_sensors[i]); } sensordev_install(&sc->sc_sensordev); } void acpisbs_refresh_sensors(struct acpisbs_softc *sc) { int i; for (i = 0; i < nitems(acpisbs_battery_checks); i++) { struct acpisbs_battery_check check = acpisbs_battery_checks[i]; void *p = (void *)&sc->sc_battery + check.offset; uint16_t *ival = (uint16_t *)p; if (check.sensor_type < 0) continue; if (sc->sc_batteries_present) { sc->sc_sensors[i].flags = 0; sc->sc_sensors[i].status = SENSOR_S_OK; switch (check.sensor_type) { case SENSOR_AMPS: sc->sc_sensors[i].value = *ival * 100; break; case SENSOR_AMPHOUR: case SENSOR_WATTHOUR: sc->sc_sensors[i].value = *ival * 10000; break; case SENSOR_PERCENT: sc->sc_sensors[i].value = *ival * 1000; break; #if 0 case SENSOR_STRING: strlcpy(sc->sc_sensors[i].string, (char *)p, sizeof(sc->sc_sensors[i].string)); break; #endif case SENSOR_TEMP: /* .1 degK */ sc->sc_sensors[i].value = (*ival * 10000) + 273150000; break; case SENSOR_VOLTS_DC: sc->sc_sensors[i].value = *ival * 1000; break; default: if (*ival == ACPISBS_VALUE_UNKNOWN) { sc->sc_sensors[i].value = 0; sc->sc_sensors[i].status = SENSOR_S_UNKNOWN; sc->sc_sensors[i].flags = SENSOR_FUNKNOWN; } else sc->sc_sensors[i].value = *ival; } } else { sc->sc_sensors[i].value = 0; sc->sc_sensors[i].status = SENSOR_S_UNKNOWN; sc->sc_sensors[i].flags = SENSOR_FUNKNOWN; } } } int acpisbs_notify(struct aml_node *node, int notify_type, void *arg) { struct acpisbs_softc *sc = arg; struct timeval diff, now; DPRINTF(("%s: %s: %d\n", sc->sc_dev.dv_xname, __func__, notify_type)); getmicrouptime(&now); switch (notify_type) { case 0x00: /* fallback poll */ case 0x80: /* * EC SCI will come for every data point, so only run once in a * while */ timersub(&now, &sc->sc_lastpoll, &diff); if (diff.tv_sec > ACPISBS_POLL_FREQ) { acpisbs_read(sc); acpisbs_refresh_sensors(sc); acpi_record_event(sc->sc_acpi, APM_POWER_CHANGE); getmicrouptime(&sc->sc_lastpoll); } break; default: break; } return 0; } int acpi_smbus_read(struct acpisbs_softc *sc, uint8_t type, uint8_t cmd, int len, void *buf) { int j; uint8_t addr = SMBATT_ADDRESS; uint8_t val; acpiec_write(sc->sc_ec, sc->sc_ec_base + SMBUS_ADDR, 1, &addr); acpiec_write(sc->sc_ec, sc->sc_ec_base + SMBUS_CMD, 1, &cmd); acpiec_write(sc->sc_ec, sc->sc_ec_base + SMBUS_PRTCL, 1, &type); for (j = SMBUS_TIMEOUT; j > 0; j--) { acpiec_read(sc->sc_ec, sc->sc_ec_base + SMBUS_PRTCL, 1, &val); if (val == 0) break; } if (j == 0) { printf("%s: %s: timeout reading 0x%x\n", sc->sc_dev.dv_xname, __func__, addr); return 1; } acpiec_read(sc->sc_ec, sc->sc_ec_base + SMBUS_STS, 1, &val); if (val & SMBUS_STS_MASK) { printf("%s: %s: error reading status: 0x%x\n", sc->sc_dev.dv_xname, __func__, addr); return 1; } switch (type) { case SMBUS_READ_WORD: { uint8_t word[2]; acpiec_read(sc->sc_ec, sc->sc_ec_base + SMBUS_DATA, 2, (uint8_t *)&word); *(uint16_t *)buf = (word[1] << 8) | word[0]; break; } case SMBUS_READ_BLOCK: bzero(buf, len); /* find number of bytes to read */ acpiec_read(sc->sc_ec, sc->sc_ec_base + SMBUS_BCNT, 1, &val); val &= 0x1f; if (len > val) len = val; for (j = 0; j < len; j++) { acpiec_read(sc->sc_ec, sc->sc_ec_base + SMBUS_DATA + j, 1, &val); ((char *)buf)[j] = val; } break; default: printf("%s: %s: unknown mode 0x%x\n", sc->sc_dev.dv_xname, __func__, type); return 1; } return 0; }