/* $OpenBSD: acd.c,v 1.24 1997/06/15 02:37:59 downsj Exp $ */ /* * Copyright (c) 1996 Manuel Bouyer. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Manuel Bouyer. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CDUNIT(z) DISKUNIT(z) #define CDPART(z) DISKPART(z) #define MAKECDDEV(maj, unit, part) MAKEDISKDEV(maj, unit, part) #define MAXTRACK 99 #define CD_BLOCK_OFFSET 150 #define CD_FRAMES 75 #define CD_SECS 60 struct cd_toc { struct ioc_toc_header hdr; struct cd_toc_entry tab[MAXTRACK+1]; /* One extra for the leadout */ }; #define TOC_HEADER_LEN 0 #define TOC_HEADER_STARTING_TRACK 2 #define TOC_HEADER_ENDING_TRACK 3 #define TOC_HEADER_SZ 4 #define TOC_ENTRY_CONTROL_ADDR_TYPE 1 #define TOC_ENTRY_TRACK 2 #define TOC_ENTRY_MSF_LBA 4 #define TOC_ENTRY_SZ 8 #ifdef ACD_DEBUG #define ACD_DEBUG_PRINT(args) printf args #else #define ACD_DEBUG_PRINT(args) #endif #ifdef ATAPI_DEBUG #define ATAPI_DEBUG_PRINT(args) printf args #else #define ATAPI_DEBUG_PRINT(args) #endif struct acd_softc { struct device sc_dev; struct disk sc_dk; int flags; #define CDF_LOCKED 0x01 #define CDF_WANTED 0x02 #define CDF_WLABEL 0x04 /* label is writable */ #define CDF_LABELLING 0x08 /* writing label */ #define CDF_NOTREADY 0x10 /* not ready at boot */ struct at_dev_link *ad_link; /* contains our drive number, etc ... */ struct atapi_mode_data mode_page; /* drive capabilities */ struct cd_parms { int blksize; u_long disksize; /* total number sectors */ } params; struct buf buf_queue; }; int acdmatch __P((struct device *, void *, void *)); void acdattach __P((struct device *, struct device *, void *)); struct cfattach acd_ca = { sizeof(struct acd_softc), acdmatch, acdattach }; struct cfdriver acd_cd = { NULL, "acd", DV_DISK }; void acdgetdisklabel __P((struct acd_softc *)); int acd_get_parms __P((struct acd_softc *, int)); void acdstrategy __P((struct buf *)); void acdstart __P((void *)); int acd_pause __P((struct acd_softc *, int)); void acdminphys __P((struct buf*)); u_long acd_size __P((struct acd_softc*, int)); int acddone __P((void *)); #ifndef XXX int acdlock __P((struct acd_softc *)); void acdunlock __P((struct acd_softc *)); int acdopen __P((dev_t, int, int)); int acdclose __P((dev_t, int, int)); int acdread __P((dev_t, struct uio*)); int acdwrite __P((dev_t, struct uio*)); int acdioctl __P((dev_t, u_long, caddr_t, int, struct proc *)); int acd_reset __P((struct acd_softc *)); int acdsize __P((dev_t)); int acddump __P((dev_t, daddr_t, caddr_t, size_t)); #endif int acd_get_mode __P((struct acd_softc *, struct atapi_mode_data *, int, int, int)); int acd_set_mode __P((struct acd_softc *, struct atapi_mode_data *, int)); int acd_setchan __P((struct acd_softc *, u_char, u_char, u_char, u_char)); int acd_play __P((struct acd_softc *, int, int)); int acd_play_big __P((struct acd_softc *, int, int)); int acd_load_toc __P((struct acd_softc *, struct cd_toc *)); int acd_play_tracks __P((struct acd_softc *, int, int, int, int)); int acd_play_msf __P((struct acd_softc *, int, int, int, int, int, int)); int acd_read_subchannel __P((struct acd_softc *, int, int, int, struct cd_sub_channel_info *, int)); int acd_read_toc __P((struct acd_softc *, int, int, void *, int)); #if 0 /* Not used anywhere, left here in case that changes. */ static void lba2msf __P((u_int32_t, u_int8_t *, u_int8_t *, u_int8_t *)); #endif static __inline u_int32_t msf2lba __P((u_int8_t, u_int8_t, u_int8_t)); struct dkdriver acddkdriver = { acdstrategy }; /* * Called by the low level atapi code to find the right driver * for a drive on the bus. */ int acdmatch(parent, match, aux) struct device *parent; void *match, *aux; { struct at_dev_link *sa = aux; #ifdef ATAPI_DEBUG_PROBE printf("acdmatch: device %d\n", sa->id.config.device_type & ATAPI_DEVICE_TYPE_MASK); #endif if (((sa->id.config.device_type & ATAPI_DEVICE_TYPE_MASK) == ATAPI_DEVICE_TYPE_CD) || (sa->quirks & AQUIRK_CDROM)) return 1; return 0; } /* * The routine called by the low level atapi routine when it discovers * A device suitable for this driver */ void acdattach(parent, self, aux) struct device *parent, *self; void *aux; { struct acd_softc *acd = (void *)self; struct at_dev_link *sa = aux; struct atapi_cappage *cap; printf("\n"); sa->device_softc = acd; sa->start = acdstart; sa->done = acddone; sa->flags |= ADEV_REMOVABLE; sa->openings = 1; acd->ad_link = sa; /* * Initialize and attach the disk structure. */ acd->sc_dk.dk_driver = &acddkdriver; acd->sc_dk.dk_name = acd->sc_dev.dv_xname; disk_attach(&acd->sc_dk); dk_establish(&acd->sc_dk, &acd->sc_dev); if (atapi_test_unit_ready(sa, A_POLLED | A_SILENT) != 0) { /* To clear media change, etc ...*/ delay(1000); if (atapi_test_unit_ready(sa, A_POLLED | A_SILENT) != 0) acd->flags |= CDF_NOTREADY; } if (acd_get_mode(acd, &acd->mode_page, ATAPI_CAP_PAGE, CAPPAGESIZE, A_POLLED) != 0) { printf("%s: can't MODE SENSE: acd_get_mode failed\n", self->dv_xname); return; } /* * Display useful information about the drive (not media!). */ cap = &acd->mode_page.page_cap; /* Don't print anything unless it looks valid. */ if (cap->cur_speed > 0) { printf ("%s: ", self->dv_xname); if (cap->cur_speed != cap->max_speed) printf ("%d/", cap->cur_speed * 1000 / 1024); printf ("%dKb/sec", cap->max_speed * 1000 / 1024); if (cap->buf_size) printf (", %dKb cache", cap->buf_size); if (cap->format_cap & FORMAT_AUDIO_PLAY) printf (", audio play"); if (cap->max_vol_levels) printf (", %d volume levels", cap->max_vol_levels); printf ("\n"); } /* We can autoprobe AQUIRK_NODOORLOCK */ if (!(acd->ad_link->quirks & AQUIRK_NODOORLOCK)) { if (atapi_prevent(acd->ad_link, PR_PREVENT)) { acd->ad_link->quirks |= AQUIRK_NODOORLOCK; printf ("%s: disabling door locks.\n", self->dv_xname); } else atapi_prevent(acd->ad_link, PR_ALLOW); } } /* * Wait interruptibly for an exclusive lock. * * XXX * Several drivers do this; it should be abstracted and made MP-safe. */ int acdlock(acd) struct acd_softc *acd; { int error; while ((acd->flags & CDF_LOCKED) != 0) { acd->flags |= CDF_WANTED; if ((error = tsleep(acd, PRIBIO | PCATCH, "acdlck", 0)) != 0) return error; } acd->flags |= CDF_LOCKED; return 0; } /* * Unlock and wake up any waiters. */ void acdunlock(acd) struct acd_softc *acd; { acd->flags &= ~CDF_LOCKED; if ((acd->flags & CDF_WANTED) != 0) { acd->flags &= ~CDF_WANTED; wakeup(acd); } } /* * open the device. Make sure the partition info is a up-to-date as can be. */ int acdopen(dev, flag, fmt) dev_t dev; int flag, fmt; { struct acd_softc *acd; struct at_dev_link *ad_link; int unit, part; int error; ACD_DEBUG_PRINT(("acd: open\n")); unit = CDUNIT(dev); if (unit >= acd_cd.cd_ndevs) return ENXIO; acd = acd_cd.cd_devs[unit]; if (acd == NULL) return ENXIO; ad_link = acd->ad_link; error = atapi_test_unit_ready(ad_link, A_SILENT); if ((error != 0) && (acd->flags & CDF_NOTREADY)) { /* Do it again. */ delay(1000); error = atapi_test_unit_ready(ad_link, A_SILENT); } if (error != 0) { if (error != UNIT_ATTENTION) return EIO; if ((ad_link->flags & ADEV_OPEN) != 0) return EIO; } error = acdlock(acd); if (error) return error; if (acd->sc_dk.dk_openmask != 0) { /* * If any partition is open, but the disk has been invalidated, * disallow further opens. */ if ((ad_link->flags & ADEV_MEDIA_LOADED) == 0) { error = EIO; goto bad3; } } else { ad_link->flags |= ADEV_OPEN; /* Lock the pack in. */ if ((error = atapi_prevent(ad_link, PR_PREVENT)) != 0) goto bad; if ((ad_link->flags & ADEV_MEDIA_LOADED) == 0) { ad_link->flags |= ADEV_MEDIA_LOADED; /* Load the physical device parameters. */ if (acd_get_parms(acd, 0) != 0) { error = ENXIO; goto bad2; } /* Fabricate a disk label. */ acdgetdisklabel(acd); } } part = CDPART(dev); /* Check that the partition exists. */ if (part != RAW_PART && (part >= acd->sc_dk.dk_label->d_npartitions || acd->sc_dk.dk_label->d_partitions[part].p_fstype == FS_UNUSED)) { error = ENXIO; goto bad; } /* Insure only one open at a time. */ switch (fmt) { case S_IFCHR: acd->sc_dk.dk_copenmask |= (1 << part); break; case S_IFBLK: acd->sc_dk.dk_bopenmask |= (1 << part); break; } acd->sc_dk.dk_openmask = acd->sc_dk.dk_copenmask | acd->sc_dk.dk_bopenmask; ACD_DEBUG_PRINT(("acd: open complete\n")); acdunlock(acd); return 0; bad2: ad_link->flags &= ~ADEV_MEDIA_LOADED; bad: if (acd->sc_dk.dk_openmask == 0) { atapi_prevent(ad_link, PR_ALLOW); ad_link->flags &= ~ADEV_OPEN; } bad3: acdunlock(acd); return error; } /* * close the device.. only called if we are the LAST * occurence of an open device */ int acdclose(dev, flag, fmt) dev_t dev; int flag, fmt; { struct acd_softc *acd = acd_cd.cd_devs[CDUNIT(dev)]; int part = CDPART(dev); int error; if ((error = acdlock(acd)) != 0) return error; switch (fmt) { case S_IFCHR: acd->sc_dk.dk_copenmask &= ~(1 << part); break; case S_IFBLK: acd->sc_dk.dk_bopenmask &= ~(1 << part); break; } acd->sc_dk.dk_openmask = acd->sc_dk.dk_copenmask | acd->sc_dk.dk_bopenmask; if (acd->sc_dk.dk_openmask == 0) { /* XXXX Must wait for I/O to complete! */ atapi_prevent(acd->ad_link, PR_ALLOW); acd->ad_link->flags &= ~ADEV_OPEN; if (acd->ad_link->flags & ADEV_EJECTING) { atapi_start_stop(acd->ad_link, SSS_STOP|SSS_LOEJ, 0); acd->ad_link->flags &= ~ADEV_EJECTING; } } acdunlock(acd); return 0; } /* * Actually translate the requested transfer into one the physical driver can * understand. The transfer is described by a buf and will include only one * physical transfer. */ void acdstrategy(bp) struct buf *bp; { struct acd_softc *acd = acd_cd.cd_devs[CDUNIT(bp->b_dev)]; int opri; ACD_DEBUG_PRINT(("acdstrategy\n")); /* * The transfer must be a whole number of blocks. */ if ((bp->b_bcount % acd->sc_dk.dk_label->d_secsize) != 0) { bp->b_error = EINVAL; goto bad; } if ((bp->b_flags & (B_READ|B_WRITE)) == B_WRITE) { bp->b_error = EROFS; goto bad; } /* * If the device has been made invalid, error out * maybe the media changed */ if ((acd->ad_link->flags & ADEV_MEDIA_LOADED) == 0) { bp->b_error = EIO; goto bad; } /* * If it's a null transfer, return immediately */ if (bp->b_bcount == 0) goto done; /* * Do bounds checking, adjust transfer. if error, process. * If end of partition, just return. */ if (CDPART(bp->b_dev) != RAW_PART && bounds_check_with_label(bp, acd->sc_dk.dk_label, (acd->flags & (CDF_WLABEL|CDF_LABELLING)) != 0) <= 0) goto done; opri = splbio(); /* * Place it in the queue of disk activities for this disk */ disksort(&acd->buf_queue, bp); /* * Tell the device to get going on the transfer if it's * not doing anything, otherwise just wait for completion */ acdstart(acd); splx(opri); return; bad: bp->b_flags |= B_ERROR; done: /* * Correctly set the buf to indicate a completed xfer */ bp->b_resid = bp->b_bcount; biodone(bp); } /* * acdstart looks to see if there is a buf waiting for the device * and that the device is not already busy. If both are true, * It deques the buf and creates a atapi command to perform the * transfer in the buf. The transfer request will call atapi_done * on completion, which will in turn call this routine again * so that the next queued transfer is performed. * The bufs are queued by the strategy routine (cdstrategy) * * This routine is also called after other non-queued requests * have been made of the atapi driver, to ensure that the queue * continues to be drained. * * must be called at the correct (highish) spl level * cdstart() is called at splbio from cdstrategy and atapi_done */ void acdstart(vp) void *vp; { struct acd_softc *acd = vp; struct at_dev_link *ad_link; struct buf *bp = 0; struct buf *dp; struct atapi_read cmd; u_int32_t blkno, nblks; struct partition *p; ACD_DEBUG_PRINT(("acd: acdstart\n")); #ifdef DIAGNOSTIC if (acd == NULL) { printf("acdstart: null acd\n"); return; } #endif ad_link = acd->ad_link; #ifdef DIAGNOSTIC if (ad_link == NULL) { printf("acdstart: null ad_link\n"); return; } #endif /* * Check if the device has room for another command */ while (ad_link->openings > 0) { /* * there is excess capacity, but a special waits * It'll need the adapter as soon as we clear out of the * way and let it run (user level wait). */ if (ad_link->flags & ADEV_WAITING) { ATAPI_DEBUG_PRINT(("acdstart: waking up\n")); ad_link->flags &= ~ADEV_WAITING; wakeup((caddr_t)ad_link); return; } /* * See if there is a buf with work for us to do.. */ dp = &acd->buf_queue; #ifdef ACD_DEBUG if (dp == NULL) { printf("acdstart: null dp\n"); return; } #endif if ((bp = dp->b_actf) == NULL) /* yes, an assign */ return; ACD_DEBUG_PRINT(("acdstart: a buf\n")); dp->b_actf = bp->b_actf; /* * If the device has become invalid, abort all the * reads and writes until all files have been closed and * re-opened */ if ((ad_link->flags & ADEV_MEDIA_LOADED) == 0) { bp->b_error = EIO; bp->b_flags |= B_ERROR; bp->b_resid = bp->b_bcount; biodone(bp); continue; } /* * * First, translate the block to absolute and put it in terms * of the logical blocksize of the device. */ blkno = bp->b_blkno / (acd->sc_dk.dk_label->d_secsize / DEV_BSIZE); if (CDPART(bp->b_dev) != RAW_PART) { p = &acd->sc_dk.dk_label->d_partitions[ CDPART(bp->b_dev)]; blkno += p->p_offset; } nblks = howmany(bp->b_bcount, acd->sc_dk.dk_label->d_secsize); ACD_DEBUG_PRINT(("acdstart: blkno %d nblk %d\n", blkno, nblks)); /* * Fill out the atapi command */ bzero(&cmd, sizeof(cmd)); cmd.opcode = ATAPI_READ; _lto4b(blkno, cmd.lba); _lto2b(nblks, cmd.length); /* Instrumentation. */ disk_busy(&acd->sc_dk); /* * Call the routine that chats with the adapter. * Note: we cannot sleep as we may be an interrupt */ if (atapi_exec_io(ad_link, &cmd, sizeof(cmd), bp, A_NOSLEEP)) { disk_unbusy(&acd->sc_dk, 0); printf("%s: not queued", acd->sc_dev.dv_xname); } } } int acdread(dev, uio) dev_t dev; struct uio *uio; { return (physio(acdstrategy, NULL, dev, B_READ, acdminphys, uio)); } int acdwrite(dev, uio) dev_t dev; struct uio *uio; { return (physio(acdstrategy, NULL, dev, B_WRITE, acdminphys, uio)); } #if 0 /* Not used anywhere, left here in case that changes. */ /* * conversion between minute-seconde-frame and logical block adress * adresses format */ static void lba2msf (lba, m, s, f) u_int32_t lba; u_int8_t *m, *s, *f; { u_int32_t tmp; tmp = lba + CD_BLOCK_OFFSET; /* offset of first logical frame */ tmp &= 0xffffff; /* negative lbas use only 24 bits */ *m = tmp / (CD_SECS * CD_FRAMES); tmp %= (CD_SECS * CD_FRAMES); *s = tmp / CD_FRAMES; *f = tmp % CD_FRAMES; } #endif static __inline u_int32_t msf2lba (m, s, f) u_int8_t m, s, f; { return (((m * CD_SECS) + s) * CD_FRAMES + f) - CD_BLOCK_OFFSET; } /* * Perform special action on behalf of the user. * Knows about the internals of this device */ int acdioctl(dev, cmd, addr, flag, p) dev_t dev; u_long cmd; caddr_t addr; int flag; struct proc *p; { struct acd_softc *acd = acd_cd.cd_devs[CDUNIT(dev)]; int error; /* * If the device is not valid.. abandon ship */ if ((acd->ad_link->flags & ADEV_MEDIA_LOADED) == 0) return EIO; switch (cmd) { case DIOCGDINFO: *(struct disklabel *)addr = *acd->sc_dk.dk_label; return 0; case DIOCGPART: ((struct partinfo *)addr)->disklab = acd->sc_dk.dk_label; ((struct partinfo *)addr)->part = &acd->sc_dk.dk_label->d_partitions[CDPART(dev)]; return 0; case DIOCWDINFO: case DIOCSDINFO: if ((flag & FWRITE) == 0) return EBADF; if ((error = acdlock(acd)) != 0) return error; acd->flags |= CDF_LABELLING; error = setdisklabel(acd->sc_dk.dk_label, (struct disklabel *)addr, /*acd->sc_dk.dk_openmask : */0, acd->sc_dk.dk_cpulabel); if (error == 0) { /* XXX ?? */ } acd->flags &= ~CDF_LABELLING; acdunlock(acd); return error; case DIOCWLABEL: return EROFS; case CDIOCPLAYTRACKS: { struct ioc_play_track *args = (struct ioc_play_track *)addr; return acd_play_tracks(acd, args->start_track, args->start_index, args->end_track, args->end_index); } case CDIOCPLAYMSF: { struct ioc_play_msf *args = (struct ioc_play_msf *)addr; return acd_play_msf(acd, args->start_m, args->start_s, args->start_f, args->end_m, args->end_s, args->end_f); } case CDIOCPLAYBLOCKS: { struct ioc_play_blocks *args = (struct ioc_play_blocks *)addr; return acd_play_big(acd, args->blk, args->len); } case CDIOCREADSUBCHANNEL: { struct ioc_read_subchannel *args = (struct ioc_read_subchannel *)addr; struct cd_sub_channel_info data; int len = args->data_len; if (len > (int)sizeof(data) || len < (int)sizeof(struct cd_sub_channel_header)) return EINVAL; error = acd_read_subchannel(acd, args->address_format, args->data_format, args->track, &data, len); if (error) return error; return copyout(&data, args->data, len); } /* XXX Remove endian dependency */ case CDIOREADTOCHEADER: { struct ioc_toc_header hdr; error = acd_read_toc(acd, 0, 0, &hdr, sizeof(hdr)); if (error) return error; if (acd->ad_link->quirks & AQUIRK_LITTLETOC) { #if BYTE_ORDER == BIG_ENDIAN bswap((u_int8_t *)&hdr.len, sizeof(hdr.len)); #endif } else hdr.len = ntohs(hdr.len); bcopy(&hdr, addr, sizeof(hdr)); return 0; } /* XXX Remove endian dependency */ case CDIOREADTOCENTRYS: { struct ioc_read_toc_entry *te = (struct ioc_read_toc_entry *)addr; struct cd_toc toc; struct ioc_toc_header *th = &toc.hdr; int len = te->data_len; int ntracks; if (len > (int)sizeof(toc.tab) || len < (int)sizeof(struct cd_toc_entry)) return EINVAL; error = acd_read_toc(acd, te->address_format, te->starting_track, &toc, len + sizeof(struct ioc_toc_header)); if (error) return error; if (te->address_format == CD_LBA_FORMAT) { for (ntracks = th->ending_track - th->starting_track + 1; ntracks >= 0; ntracks--) { toc.tab[ntracks].addr_type = CD_LBA_FORMAT; if (acd->ad_link->quirks & AQUIRK_LITTLETOC) { #if BYTE_ORDER == BIG_ENDIAN bswap((u_int8_t*) &toc.tab[ntracks].addr.addr, sizeof(toc.tab[ntracks].addr.addr) ); #endif } else toc.tab[ntracks].addr.lba = ntohl(toc.tab[ntracks].addr.lba); } } if (acd->ad_link->quirks & AQUIRK_LITTLETOC) { #if BYTE_ORDER == BIG_ENDIAN bswap((u_int8_t*)&th->len, sizeof(th->len)); #endif } else th->len = ntohs(th->len); len = min(len, th->len - sizeof(struct ioc_toc_header)); return copyout(toc.tab, te->data, len); } case CDIOCSETPATCH: { struct ioc_patch *arg = (struct ioc_patch *)addr; return acd_setchan(acd, arg->patch[0], arg->patch[1], arg->patch[2], arg->patch[3]); } case CDIOCGETVOL: { struct ioc_vol *arg = (struct ioc_vol *)addr; struct atapi_mode_data data; error = acd_get_mode(acd, &data, ATAPI_AUDIO_PAGE, AUDIOPAGESIZE, 0); if (error) return error; arg->vol[0] = data.page_audio.port[0].volume; arg->vol[1] = data.page_audio.port[1].volume; arg->vol[2] = data.page_audio.port[2].volume; arg->vol[3] = data.page_audio.port[3].volume; return 0; } case CDIOCSETVOL: { struct ioc_vol *arg = (struct ioc_vol *)addr; struct atapi_mode_data data, mask; error = acd_get_mode(acd, &data, ATAPI_AUDIO_PAGE, AUDIOPAGESIZE, 0); if (error) return error; error = acd_get_mode(acd, &mask, ATAPI_AUDIO_PAGE_MASK, AUDIOPAGESIZE, 0); if (error) return error; data.page_audio.port[0].volume = arg->vol[0] & mask.page_audio.port[0].volume; data.page_audio.port[1].volume = arg->vol[1] & mask.page_audio.port[1].volume; data.page_audio.port[2].volume = arg->vol[2] & mask.page_audio.port[2].volume; data.page_audio.port[3].volume = arg->vol[3] & mask.page_audio.port[3].volume; return acd_set_mode(acd, &data, AUDIOPAGESIZE); } case CDIOCSETMONO: { return acd_setchan(acd, BOTH_CHANNEL, BOTH_CHANNEL, MUTE_CHANNEL, MUTE_CHANNEL); } case CDIOCSETSTEREO: { return acd_setchan(acd, LEFT_CHANNEL, RIGHT_CHANNEL, MUTE_CHANNEL, MUTE_CHANNEL); } case CDIOCSETMUTE: { return acd_setchan(acd, MUTE_CHANNEL, MUTE_CHANNEL, MUTE_CHANNEL, MUTE_CHANNEL); } case CDIOCSETLEFT: { return acd_setchan(acd, LEFT_CHANNEL, LEFT_CHANNEL, MUTE_CHANNEL, MUTE_CHANNEL); } case CDIOCSETRIGHT: { return acd_setchan(acd, RIGHT_CHANNEL, RIGHT_CHANNEL, MUTE_CHANNEL, MUTE_CHANNEL); } case CDIOCRESUME: return acd_pause(acd, PA_RESUME); case CDIOCPAUSE: return acd_pause(acd, PA_PAUSE); case CDIOCSTART: return atapi_start_stop(acd->ad_link, SSS_START, 0); case CDIOCSTOP: return atapi_start_stop(acd->ad_link, SSS_STOP, 0); case MTIOCTOP: if (((struct mtop *)addr)->mt_op != MTOFFL) return EIO; /* FALLTHROUGH */ case CDIOCEJECT: /* FALLTHROUGH */ case DIOCEJECT: acd->ad_link->flags |= ADEV_EJECTING; return 0; case CDIOCALLOW: return atapi_prevent(acd->ad_link, PR_ALLOW); case CDIOCPREVENT: return atapi_prevent(acd->ad_link, PR_PREVENT); case DIOCLOCK: return atapi_prevent(acd->ad_link, (*(int *)addr) ? PR_PREVENT : PR_ALLOW); case CDIOCRESET: return acd_reset(acd); default: return ENOTTY; } #ifdef DIAGNOSTIC panic("acdioctl: impossible"); #endif } /* * Load the label information on the named device * Actually fabricate a disklabel * * EVENTUALLY take information about different * data tracks from the TOC and put it in the disklabel */ void acdgetdisklabel(acd) struct acd_softc *acd; { struct disklabel *lp = acd->sc_dk.dk_label; char *errstring; u_int8_t hdr[TOC_HEADER_SZ], *toc, *ent; u_int32_t lba, nlba; int i, n, len, is_data, data_track = -1; bzero(lp, sizeof(struct disklabel)); bzero(acd->sc_dk.dk_cpulabel, sizeof(struct cpu_disklabel)); lp->d_secsize = acd->params.blksize; lp->d_ntracks = 1; lp->d_nsectors = 100; lp->d_ncylinders = (acd->params.disksize / 100) + 1; lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors; if (lp->d_secpercyl == 0) { lp->d_secpercyl = 100; /* as long as it's not 0 - readdisklabel divides by it (?) */ } strncpy(lp->d_typename, "ATAPI CD-ROM", 16); lp->d_type = DTYPE_SCSI; /* XXX */ strncpy(lp->d_packname, "fictitious", 16); lp->d_secperunit = acd->params.disksize; lp->d_rpm = 300; lp->d_interleave = 1; lp->d_flags = D_REMOVABLE; lp->d_magic = DISKMAGIC; lp->d_magic2 = DISKMAGIC; lp->d_checksum = dkcksum(lp); /* * Read the TOC and loop throught the individual tracks and lay them * out in our disklabel. If there is a data track, call the generic * disklabel read routine. XXX should we move all data tracks up front * before any other tracks? */ if (acd_read_toc(acd, 0, 0, hdr, TOC_HEADER_SZ)) return; n = min(hdr[TOC_HEADER_ENDING_TRACK] - hdr[TOC_HEADER_STARTING_TRACK] + 1, MAXPARTITIONS); len = TOC_HEADER_SZ + (n + 1) * TOC_ENTRY_SZ; MALLOC(toc, u_int8_t *, len, M_TEMP, M_WAITOK); if (acd_read_toc (acd, CD_LBA_FORMAT, 0, toc, len)) goto done; /* The raw partition is special. */ lp->d_partitions[RAW_PART].p_offset = 0; lp->d_partitions[RAW_PART].p_size = lp->d_secperunit * lp->d_secsize / DEV_BSIZE; lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED; /* Create the partition table. */ lp->d_npartitions = max(RAW_PART, n) + 1; ent = toc + TOC_HEADER_SZ; lba = ((acd->ad_link->quirks & AQUIRK_LITTLETOC) ? ent[TOC_ENTRY_MSF_LBA] | ent[TOC_ENTRY_MSF_LBA + 1] << 8 | ent[TOC_ENTRY_MSF_LBA + 2] << 16 | ent[TOC_ENTRY_MSF_LBA + 3] << 24 : ent[TOC_ENTRY_MSF_LBA] << 24 | ent[TOC_ENTRY_MSF_LBA + 1] << 16 | ent[TOC_ENTRY_MSF_LBA + 2] << 8 | ent[TOC_ENTRY_MSF_LBA + 3]) * lp->d_secsize / DEV_BSIZE; for (i = 0; i < (n > RAW_PART + 1 ? n + 1 : n); i++) { /* The raw partition was specially handled above. */ if (i != RAW_PART) { is_data = toc[TOC_HEADER_SZ + TOC_ENTRY_CONTROL_ADDR_TYPE] & 4; lp->d_partitions[i].p_fstype = is_data ? FS_UNUSED : FS_OTHER; if (is_data && data_track == -1) data_track = i; ent += TOC_ENTRY_SZ; nlba = ((acd->ad_link->quirks & AQUIRK_LITTLETOC) ? ent[TOC_ENTRY_MSF_LBA] | ent[TOC_ENTRY_MSF_LBA + 1] << 8 | ent[TOC_ENTRY_MSF_LBA + 2] << 16 | ent[TOC_ENTRY_MSF_LBA + 3] << 24 : ent[TOC_ENTRY_MSF_LBA] << 24 | ent[TOC_ENTRY_MSF_LBA + 1] << 16 | ent[TOC_ENTRY_MSF_LBA + 2] << 8 | ent[TOC_ENTRY_MSF_LBA + 3]) * lp->d_secsize / DEV_BSIZE; lp->d_partitions[i].p_offset = lba; lp->d_partitions[i].p_size = nlba - lba; lba = nlba; } } /* We have a data track, look in there for a real disklabel. */ if (data_track != -1) { #ifdef notyet /* * Reading a disklabel inside the track we setup above * does not yet work, for unknown reasons. */ errstring = readdisklabel(MAKECDDEV(0, acd->sc_dev.dv_unit, data_track), acdstrategy, lp, acd->sc_dk.dk_cpulabel); #else errstring = readdisklabel(MAKECDDEV(0, acd->sc_dev.dv_unit, RAW_PART), acdstrategy, lp, acd->sc_dk.dk_cpulabel); #endif if (errstring) printf("%s: %s\n", acd->sc_dev.dv_xname, errstring); } done: FREE(toc, M_TEMP); } /* * Find out from the device what it's capacity is */ u_long acd_size(acd, flags) struct acd_softc *acd; int flags; { struct atapi_read_cd_capacity_data rdcap; struct atapi_read_cd_capacity cmd; if (acd->ad_link->quirks & AQUIRK_NOCAPACITY) { /* * the drive doesn't support the READ_CD_CAPACITY command * use a fake size */ acd->params.blksize = 2048; acd->params.disksize = 400000; return 400000; } /* * make up a atapi command and ask the atapi driver to do * it for you. */ bzero(&cmd, sizeof(cmd)); cmd.opcode = ATAPI_READ_CD_CAPACITY; cmd.len = sizeof(rdcap); /* * If the command works, interpret the result as a 4 byte * number of blocks and a blocksize */ if (atapi_exec_cmd(acd->ad_link, &cmd, sizeof(cmd), &rdcap, sizeof(rdcap), B_READ, 0) != 0) { ATAPI_DEBUG_PRINT(("ATAPI_READ_CD_CAPACITY failed\n")); return 0; } acd->params.blksize = _4btol((u_int8_t*)&rdcap.blksize); if (acd->params.blksize < 512 || acd->params.blksize > 2048) acd->params.blksize = 2048; /* some drives lie ! */ acd->params.disksize = _4btol((u_int8_t*)&rdcap.size); ATAPI_DEBUG_PRINT(("acd_size: %ld %ld\n", acd->params.blksize, acd->params.disksize)); return acd->params.disksize; } /* * Get the requested page into the buffer given */ int acd_get_mode(acd, data, page, len, flags) struct acd_softc *acd; struct atapi_mode_data *data; int page, len, flags; { struct atapi_mode_sense atapi_cmd; int error; bzero(&atapi_cmd, sizeof(atapi_cmd)); bzero(data, sizeof(struct atapi_mode_data)); atapi_cmd.opcode = ATAPI_MODE_SENSE; atapi_cmd.page_code_control = page; _lto2b(len, atapi_cmd.length); error = atapi_exec_cmd(acd->ad_link, &atapi_cmd, sizeof(atapi_cmd), data, len, B_READ, flags); if (!error) { switch(page) { case ATAPI_CAP_PAGE: { struct atapi_cappage *fix = &data->page_cap; /* * Fix cappage entries in place. */ fix->max_speed = _2btos((u_int8_t *)&fix->max_speed); fix->max_vol_levels = _2btos((u_int8_t *)&fix->max_vol_levels); fix->buf_size = _2btos((u_int8_t *)&fix->buf_size); fix->cur_speed = _2btos((u_int8_t *)&fix->cur_speed); break; } } } return(error); } /* * Get the requested page into the buffer given */ int acd_set_mode(acd, data, len) struct acd_softc *acd; struct atapi_mode_data *data; int len; { struct atapi_mode_select atapi_cmd; bzero(&data->header.length, sizeof(data->header.length)); bzero(&atapi_cmd, sizeof(atapi_cmd)); atapi_cmd.opcode = ATAPI_MODE_SELECT; atapi_cmd.flags |= MODE_BIT; atapi_cmd.page = data->page_code; _lto2b(len, atapi_cmd.length); return atapi_exec_cmd(acd->ad_link, &atapi_cmd, sizeof(atapi_cmd), data, len, B_WRITE, 0); } int acd_setchan(acd, c0, c1, c2, c3) struct acd_softc *acd; u_char c0, c1, c2, c3; { struct atapi_mode_data data; int error; error = acd_get_mode(acd, &data, ATAPI_AUDIO_PAGE, AUDIOPAGESIZE, 0); if (error) return error; data.page_audio.port[0].channels = c0; data.page_audio.port[1].channels = c1; data.page_audio.port[2].channels = c2; data.page_audio.port[3].channels = c3; return acd_set_mode(acd, &data, AUDIOPAGESIZE); } /* * Get atapi driver to send a "start playing" command */ int acd_play(acd, blkno, nblks) struct acd_softc *acd; int blkno, nblks; { struct atapi_play atapi_cmd; bzero(&atapi_cmd, sizeof(atapi_cmd)); atapi_cmd.opcode = ATAPI_PLAY_AUDIO; _lto4b(blkno, atapi_cmd.lba); _lto2b(nblks, atapi_cmd.length); return atapi_exec_cmd(acd->ad_link, &atapi_cmd, sizeof(atapi_cmd), NULL, 0, 0, 0); } /* * Get atapi driver to send a "start playing" command */ int acd_play_big(acd, blkno, nblks) struct acd_softc *acd; int blkno, nblks; { struct atapi_play_big atapi_cmd; bzero(&atapi_cmd, sizeof(atapi_cmd)); atapi_cmd.opcode = ATAPI_PLAY_BIG; _lto4b(blkno, atapi_cmd.lba); _lto4b(nblks, atapi_cmd.length); return atapi_exec_cmd(acd->ad_link, &atapi_cmd, sizeof(atapi_cmd), NULL, 0, 0, 0); } int acd_load_toc(acd, toc) struct acd_softc *acd; struct cd_toc *toc; { int i, ntracks, len, error; u_int32_t *lba; error = acd_read_toc(acd, 0, 0, toc, sizeof(toc->hdr)); if (error) return error; ntracks = toc->hdr.ending_track-toc->hdr.starting_track + 1; len = (ntracks+1) * sizeof(struct cd_toc_entry) + sizeof(toc->hdr); error = acd_read_toc(acd, CD_MSF_FORMAT, 0, toc, len); if (error) return(error); for (i = 0; i <= ntracks; i++) { lba = (u_int32_t*)toc->tab[i].addr.addr; *lba = msf2lba(toc->tab[i].addr.addr[1], toc->tab[i].addr.addr[2], toc->tab[i].addr.addr[3]); } return 0; } /* * Get atapi driver to send a "start playing" command */ int acd_play_tracks(acd, strack, sindex, etrack, eindex) struct acd_softc *acd; int strack, sindex, etrack, eindex; { u_int32_t *start, *end, len; struct cd_toc toc; int error; if (!etrack) return EIO; if (strack > etrack) return EINVAL; error = acd_load_toc(acd, &toc); if (error) return error; if (++etrack > (toc.hdr.ending_track + 1)) etrack = toc.hdr.ending_track + 1; strack -= toc.hdr.starting_track; etrack -= toc.hdr.starting_track; if (strack < 0) return EINVAL; start = (u_int32_t*)toc.tab[strack].addr.addr; end = (u_int32_t*)toc.tab[etrack].addr.addr; len = *end - *start; return acd_play_big(acd, *start, len); } /* * Get atapi driver to send a "play msf" command */ int acd_play_msf(acd, startm, starts, startf, endm, ends, endf) struct acd_softc *acd; int startm, starts, startf, endm, ends, endf; { struct atapi_play_msf atapi_cmd; bzero(&atapi_cmd, sizeof(atapi_cmd)); atapi_cmd.opcode = ATAPI_PLAY_MSF; atapi_cmd.start_m = startm; atapi_cmd.start_s = starts; atapi_cmd.start_f = startf; atapi_cmd.end_m = endm; atapi_cmd.end_s = ends; atapi_cmd.end_f = endf; return atapi_exec_cmd(acd->ad_link, (struct atapi_generic *)&atapi_cmd, sizeof(atapi_cmd), NULL, 0, 0, 0); } /* * Get atapi driver to send a "start up" command */ int acd_pause(acd, go) struct acd_softc *acd; int go; { struct atapi_pause_resume cmd; bzero(&cmd, sizeof(cmd)); cmd.opcode = ATAPI_PAUSE_RESUME; cmd.resume = go & 0xff; return atapi_exec_cmd(acd->ad_link, &cmd , sizeof(cmd), 0, 0, 0, 0); } /* * Get atapi driver to send a "RESET" command */ int acd_reset(acd) struct acd_softc *acd; { #ifdef notyet return atapi_soft_reset(acd->ad_link); #else return 0; #endif } /* * Read subchannel */ int acd_read_subchannel(acd, mode, format, track, data, len) struct acd_softc *acd; int mode, format, len; struct cd_sub_channel_info *data; { struct atapi_read_subchannel atapi_cmd; bzero(&atapi_cmd, sizeof(atapi_cmd)); atapi_cmd.opcode = ATAPI_READ_SUBCHANNEL; if (mode == CD_MSF_FORMAT) atapi_cmd.flags[0] |= SUBCHAN_MSF; if (len > (int)sizeof(struct cd_sub_channel_header)) atapi_cmd.flags[1] |= SUBCHAN_SUBQ; atapi_cmd.subchan_format = format; atapi_cmd.track = track; _lto2b(len, atapi_cmd.length); return atapi_exec_cmd(acd->ad_link, (struct atapi_generic *)&atapi_cmd, sizeof(struct atapi_read_subchannel), (u_char *)data, len, B_READ, 0); } /* * Read table of contents */ int acd_read_toc(acd, mode, start, data, len) struct acd_softc *acd; int mode, start, len; void *data; { struct atapi_read_toc atapi_cmd; bzero(&atapi_cmd, sizeof(atapi_cmd)); atapi_cmd.opcode = ATAPI_READ_TOC; if (mode == CD_MSF_FORMAT) atapi_cmd.flags |= TOC_MSF; atapi_cmd.track = start; _lto2b(len, atapi_cmd.length); return atapi_exec_cmd(acd->ad_link, (struct atapi_generic *)&atapi_cmd, sizeof(struct atapi_read_toc), data, len, B_READ, 0); } /* * Get the atapi driver to send a full inquiry to the device and use the * results to fill out the disk parameter structure. */ int acd_get_parms(acd, flags) struct acd_softc *acd; int flags; { /* * give a number of sectors so that sec * trks * cyls * is <= disk_size */ if (acd_size(acd, flags) == 0) return ENXIO; return 0; } int acdsize(dev) dev_t dev; { /* CD-ROMs are read-only. */ return -1; } void acdminphys(bp) struct buf *bp; { minphys(bp); } int acddump(dev, blkno, va, size) dev_t dev; daddr_t blkno; caddr_t va; size_t size; { /* Not implemented. */ return ENXIO; } int acddone(vp) void *vp; { struct atapi_command_packet *acp = vp; struct at_dev_link *ad_link = acp->ad_link; struct acd_softc *acd = ad_link->device_softc; if (acp->bp != NULL) disk_unbusy(&acd->sc_dk, (acp->bp->b_bcount - acp->bp->b_resid)); return (0); }