/* $OpenBSD: aha1742.c,v 1.38 2010/03/23 01:57:19 krw Exp $ */ /* $NetBSD: aha1742.c,v 1.61 1996/05/12 23:40:01 mycroft Exp $ */ /* * Copyright (c) 1994 Charles Hannum. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Charles Hannum. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Originally written by Julian Elischer (julian@tfs.com) * for TRW Financial Systems for use under the MACH(2.5) operating system. * * TRW Financial Systems, in accordance with their agreement with Carnegie * Mellon University, makes this software available to CMU to distribute * or use in any manner that they see fit as long as this message is kept with * the software. For this reason TFS also grants any other persons or * organisations permission to use or modify this software. * * TFS supplies this software to be publicly redistributed * on the understanding that TFS is not responsible for the correct * functioning of this software in any circumstances. * * commenced: Sun Sep 27 18:14:01 PDT 1992 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include typedef u_long physaddr; typedef u_long physlen; #define KVTOPHYS(x) kvtop((caddr_t)x) #define AHB_ECB_MAX 32 /* store up to 32 ECBs at one time */ #define ECB_HASH_SIZE 32 /* hash table size for phystokv */ #define ECB_HASH_SHIFT 9 #define ECB_HASH(x) ((((long)(x))>>ECB_HASH_SHIFT) & (ECB_HASH_SIZE - 1)) #define AHB_NSEG 33 /* number of dma segments supported */ /* * EISA registers (offset from slot base) */ #define EISA_VENDOR 0x0c80 /* vendor ID (2 ports) */ #define EISA_MODEL 0x0c82 /* model number (2 ports) */ #define EISA_CONTROL 0x0c84 #define EISA_RESET 0x04 #define EISA_ERROR 0x02 #define EISA_ENABLE 0x01 /* * AHA1740 EISA board mode registers (Offset from slot base) */ #define PORTADDR 0xCC0 #define PORTADDR_ENHANCED 0x80 #define BIOSADDR 0xCC1 #define INTDEF 0xCC2 #define SCSIDEF 0xCC3 #define BUSDEF 0xCC4 #define RESV0 0xCC5 #define RESV1 0xCC6 #define RESV2 0xCC7 /**** bit definitions for INTDEF ****/ #define INT9 0x00 #define INT10 0x01 #define INT11 0x02 #define INT12 0x03 #define INT14 0x05 #define INT15 0x06 #define INTHIGH 0x08 /* int high=ACTIVE (else edge) */ #define INTEN 0x10 /**** bit definitions for SCSIDEF ****/ #define HSCSIID 0x0F /* our SCSI ID */ #define RSTPWR 0x10 /* reset scsi bus on power up or reset */ /**** bit definitions for BUSDEF ****/ #define B0uS 0x00 /* give up bus immediately */ #define B4uS 0x01 /* delay 4uSec. */ #define B8uS 0x02 /* * AHA1740 ENHANCED mode mailbox control regs (Offset from slot base) */ #define MBOXOUT0 0xCD0 #define MBOXOUT1 0xCD1 #define MBOXOUT2 0xCD2 #define MBOXOUT3 0xCD3 #define ATTN 0xCD4 #define G2CNTRL 0xCD5 #define G2INTST 0xCD6 #define G2STAT 0xCD7 #define MBOXIN0 0xCD8 #define MBOXIN1 0xCD9 #define MBOXIN2 0xCDA #define MBOXIN3 0xCDB #define G2STAT2 0xCDC /* * Bit definitions for the 5 control/status registers */ #define ATTN_TARGET 0x0F #define ATTN_OPCODE 0xF0 #define OP_IMMED 0x10 #define AHB_TARG_RESET 0x80 #define OP_START_ECB 0x40 #define OP_ABORT_ECB 0x50 #define G2CNTRL_SET_HOST_READY 0x20 #define G2CNTRL_CLEAR_EISA_INT 0x40 #define G2CNTRL_HARD_RESET 0x80 #define G2INTST_TARGET 0x0F #define G2INTST_INT_STAT 0xF0 #define AHB_ECB_OK 0x10 #define AHB_ECB_RECOVERED 0x50 #define AHB_HW_ERR 0x70 #define AHB_IMMED_OK 0xA0 #define AHB_ECB_ERR 0xC0 #define AHB_ASN 0xD0 /* for target mode */ #define AHB_IMMED_ERR 0xE0 #define G2STAT_BUSY 0x01 #define G2STAT_INT_PEND 0x02 #define G2STAT_MBOX_EMPTY 0x04 #define G2STAT2_HOST_READY 0x01 struct ahb_dma_seg { physaddr seg_addr; physlen seg_len; }; struct ahb_ecb_status { u_short status; #define ST_DON 0x0001 #define ST_DU 0x0002 #define ST_QF 0x0008 #define ST_SC 0x0010 #define ST_DO 0x0020 #define ST_CH 0x0040 #define ST_INT 0x0080 #define ST_ASA 0x0100 #define ST_SNS 0x0200 #define ST_INI 0x0800 #define ST_ME 0x1000 #define ST_ECA 0x4000 u_char host_stat; #define HS_OK 0x00 #define HS_CMD_ABORTED_HOST 0x04 #define HS_CMD_ABORTED_ADAPTER 0x05 #define HS_TIMED_OUT 0x11 #define HS_HARDWARE_ERR 0x20 #define HS_SCSI_RESET_ADAPTER 0x22 #define HS_SCSI_RESET_INCOMING 0x23 u_char target_stat; u_long resid_count; u_long resid_addr; u_short addit_status; u_char sense_len; u_char unused[9]; u_char cdb[6]; }; struct ahb_ecb { u_char opcode; #define ECB_SCSI_OP 0x01 u_char:4; u_char options:3; u_char:1; short opt1; #define ECB_CNE 0x0001 #define ECB_DI 0x0080 #define ECB_SES 0x0400 #define ECB_S_G 0x1000 #define ECB_DSB 0x4000 #define ECB_ARS 0x8000 short opt2; #define ECB_LUN 0x0007 #define ECB_TAG 0x0008 #define ECB_TT 0x0030 #define ECB_ND 0x0040 #define ECB_DAT 0x0100 #define ECB_DIR 0x0200 #define ECB_ST 0x0400 #define ECB_CHK 0x0800 #define ECB_REC 0x4000 #define ECB_NRB 0x8000 u_short unused1; physaddr data_addr; physlen data_length; physaddr status; physaddr link_addr; short unused2; short unused3; physaddr sense_ptr; u_char req_sense_length; u_char scsi_cmd_length; short cksum; struct scsi_generic scsi_cmd; /*-----------------end of hardware supported fields----------------*/ TAILQ_ENTRY(ahb_ecb) chain; struct ahb_ecb *nexthash; long hashkey; struct scsi_xfer *xs; /* the scsi_xfer for this cmd */ int flags; #define ECB_FREE 0 #define ECB_ACTIVE 1 #define ECB_ABORTED 2 #define ECB_IMMED 4 #define ECB_IMMED_FAIL 8 struct ahb_dma_seg ahb_dma[AHB_NSEG]; struct ahb_ecb_status ecb_status; struct scsi_sense_data ecb_sense; }; struct ahb_softc { struct device sc_dev; bus_space_tag_t sc_iot; eisa_chipset_tag_t sc_ec; bus_space_handle_t sc_ioh; int sc_irq; void *sc_ih; struct ahb_ecb *immed_ecb; /* an outstanding immediete command */ struct ahb_ecb *ecbhash[ECB_HASH_SIZE]; TAILQ_HEAD(, ahb_ecb) free_ecb; int numecbs; int ahb_scsi_dev; /* our scsi id */ struct scsi_link sc_link; }; void ahb_send_mbox(struct ahb_softc *, int, struct ahb_ecb *); int ahb_poll(struct ahb_softc *, struct scsi_xfer *, int); void ahb_send_immed(struct ahb_softc *, int, u_long); int ahbintr(void *); void ahb_done(struct ahb_softc *, struct ahb_ecb *); void ahb_free_ecb(struct ahb_softc *, struct ahb_ecb *, int); struct ahb_ecb *ahb_get_ecb(struct ahb_softc *, int); struct ahb_ecb *ahb_ecb_phys_kv(struct ahb_softc *, physaddr); int ahb_find(bus_space_tag_t, bus_space_handle_t, struct ahb_softc *); void ahb_init(struct ahb_softc *); void ahbminphys(struct buf *, struct scsi_link *); void ahb_scsi_cmd(struct scsi_xfer *); void ahb_timeout(void *); void ahb_print_ecb(struct ahb_ecb *); void ahb_print_active_ecb(struct ahb_softc *); int ahbprint(void *, const char *); #define MAX_SLOTS 15 #ifdef AHBDEBUG int ahb_debug = 0; #endif /* AHBDEBUG */ #define AHB_SHOWECBS 0x01 #define AHB_SHOWINTS 0x02 #define AHB_SHOWCMDS 0x04 #define AHB_SHOWMISC 0x08 struct scsi_adapter ahb_switch = { ahb_scsi_cmd, ahbminphys, 0, 0, }; /* the below structure is so we have a default dev struct for our link struct */ struct scsi_device ahb_dev = { NULL, /* Use default error handler */ NULL, /* have a queue, served by this */ NULL, /* have no async handler */ NULL, /* Use default 'done' routine */ }; int ahbmatch(struct device *, void *, void *); void ahbattach(struct device *, struct device *, void *); struct cfattach ahb_ca = { sizeof(struct ahb_softc), ahbmatch, ahbattach }; struct cfdriver ahb_cd = { NULL, "ahb", DV_DULL }; /* * Function to send a command out through a mailbox */ void ahb_send_mbox(sc, opcode, ecb) struct ahb_softc *sc; int opcode; struct ahb_ecb *ecb; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; int wait = 300; /* 1ms should be enough */ while (--wait) { if ((bus_space_read_1(iot, ioh, G2STAT) & (G2STAT_BUSY | G2STAT_MBOX_EMPTY)) == (G2STAT_MBOX_EMPTY)) break; delay(10); } if (!wait) panic("%s: board not responding\n", sc->sc_dev.dv_xname); /* don't know this will work */ bus_space_write_4(iot, ioh, MBOXOUT0, KVTOPHYS(ecb)); bus_space_write_1(iot, ioh, ATTN, opcode | ecb->xs->sc_link->target); } /* * Function to poll for command completion when in poll mode */ int ahb_poll(sc, xs, count) struct ahb_softc *sc; struct scsi_xfer *xs; int count; { /* in msec */ bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; int s; while (count) { /* * If we had interrupts enabled, would we * have got an interrupt? */ if (bus_space_read_1(iot, ioh, G2STAT) & G2STAT_INT_PEND) { s = splbio(); ahbintr(sc); splx(s); } if (xs->flags & ITSDONE) return 0; delay(1000); count--; } return 1; } /* * Function to send an immediate type command to the adapter */ void ahb_send_immed(sc, target, cmd) struct ahb_softc *sc; int target; u_long cmd; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; int wait = 100; /* 1 ms enough? */ while (--wait) { if ((bus_space_read_1(iot, ioh, G2STAT) & (G2STAT_BUSY | G2STAT_MBOX_EMPTY)) == (G2STAT_MBOX_EMPTY)) break; delay(10); } if (!wait) panic("%s: board not responding\n", sc->sc_dev.dv_xname); /* don't know this will work */ bus_space_write_4(iot, ioh, MBOXOUT0, cmd); bus_space_write_1(iot, ioh, G2CNTRL, G2CNTRL_SET_HOST_READY); bus_space_write_1(iot, ioh, ATTN, OP_IMMED | target); } /* * Check the slots looking for a board we recognise * If we find one, note its address (slot) and call * the actual probe routine to check it out. */ int ahbmatch(parent, match, aux) struct device *parent; void *match, *aux; { struct eisa_attach_args *ea = aux; bus_space_tag_t iot = ea->ea_iot; bus_space_handle_t ioh; int rv; /* must match one of our known ID strings */ if (strcmp(ea->ea_idstring, "ADP0000") && strcmp(ea->ea_idstring, "ADP0001") && strcmp(ea->ea_idstring, "ADP0002") && strcmp(ea->ea_idstring, "ADP0400")) return (0); if (bus_space_map(iot, EISA_SLOT_ADDR(ea->ea_slot), EISA_SLOT_SIZE, 0, &ioh)) return (0); #ifdef notyet /* This won't compile as-is, anyway. */ bus_space_write_1(iot, ioh, EISA_CONTROL, EISA_ENABLE | EISA_RESET); delay(10); bus_space_write_1(iot, ioh, EISA_CONTROL, EISA_ENABLE); /* Wait for reset? */ delay(1000); #endif rv = !ahb_find(iot, ioh, NULL); bus_space_unmap(ea->ea_iot, ioh, EISA_SLOT_SIZE); return (rv); } int ahbprint(aux, name) void *aux; const char *name; { return UNCONF; } /* * Attach all the sub-devices we can find */ void ahbattach(parent, self, aux) struct device *parent, *self; void *aux; { struct eisa_attach_args *ea = aux; struct ahb_softc *sc = (void *)self; struct scsibus_attach_args saa; bus_space_tag_t iot = ea->ea_iot; bus_space_handle_t ioh; eisa_chipset_tag_t ec = ea->ea_ec; eisa_intr_handle_t ih; const char *model, *intrstr; sc->sc_iot = iot; sc->sc_ec = ec; if (bus_space_map(iot, EISA_SLOT_ADDR(ea->ea_slot), EISA_SLOT_SIZE, 0, &ioh)) panic("ahbattach: can't map i/o addresses"); sc->sc_ioh = ioh; if (ahb_find(iot, ioh, sc)) panic("ahbattach: ahb_find failed!"); ahb_init(sc); TAILQ_INIT(&sc->free_ecb); /* * fill in the prototype scsi_link. */ sc->sc_link.adapter_softc = sc; sc->sc_link.adapter_target = sc->ahb_scsi_dev; sc->sc_link.adapter = &ahb_switch; sc->sc_link.device = &ahb_dev; sc->sc_link.openings = 2; if (!strcmp(ea->ea_idstring, "ADP0000")) model = EISA_PRODUCT_ADP0000; else if (!strcmp(ea->ea_idstring, "ADP0001")) model = EISA_PRODUCT_ADP0001; else if (!strcmp(ea->ea_idstring, "ADP0002")) model = EISA_PRODUCT_ADP0002; else if (!strcmp(ea->ea_idstring, "ADP0400")) model = EISA_PRODUCT_ADP0400; else model = "unknown model!"; printf(": <%s> ", model); if (eisa_intr_map(ec, sc->sc_irq, &ih)) { printf("%s: couldn't map interrupt (%d)\n", sc->sc_dev.dv_xname, sc->sc_irq); return; } intrstr = eisa_intr_string(ec, ih); sc->sc_ih = eisa_intr_establish(ec, ih, IST_LEVEL, IPL_BIO, ahbintr, sc, sc->sc_dev.dv_xname); if (sc->sc_ih == NULL) { printf("%s: couldn't establish interrupt", sc->sc_dev.dv_xname); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); return; } if (intrstr != NULL) printf("%s\n", intrstr); bzero(&saa, sizeof(saa)); saa.saa_sc_link = &sc->sc_link; /* * ask the adapter what subunits are present */ config_found(self, &saa, ahbprint); } /* * Catch an interrupt from the adaptor */ int ahbintr(arg) void *arg; { struct ahb_softc *sc = arg; bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; struct ahb_ecb *ecb; u_char ahbstat; u_long mboxval; #ifdef AHBDEBUG printf("%s: ahbintr ", sc->sc_dev.dv_xname); #endif /* AHBDEBUG */ if ((bus_space_read_1(iot, ioh, G2STAT) & G2STAT_INT_PEND) == 0) return 0; for (;;) { /* * First get all the information and then * acknowledge the interrupt */ ahbstat = bus_space_read_1(iot, ioh, G2INTST); mboxval = bus_space_read_4(iot, ioh, MBOXIN0); bus_space_write_1(iot, ioh, G2CNTRL, G2CNTRL_CLEAR_EISA_INT); #ifdef AHBDEBUG printf("status = 0x%x ", ahbstat); #endif /*AHBDEBUG */ /* * Process the completed operation */ switch (ahbstat & G2INTST_INT_STAT) { case AHB_ECB_OK: case AHB_ECB_RECOVERED: case AHB_ECB_ERR: ecb = ahb_ecb_phys_kv(sc, mboxval); if (!ecb) { printf("%s: BAD ECB RETURNED!\n", sc->sc_dev.dv_xname); continue; /* whatever it was, it'll timeout */ } break; case AHB_IMMED_ERR: ecb->flags |= ECB_IMMED_FAIL; case AHB_IMMED_OK: ecb = sc->immed_ecb; sc->immed_ecb = 0; break; default: printf("%s: unexpected interrupt %x\n", sc->sc_dev.dv_xname, ahbstat); ecb = 0; break; } if (ecb) { #ifdef AHBDEBUG if (ahb_debug & AHB_SHOWCMDS) show_scsi_cmd(ecb->xs); if ((ahb_debug & AHB_SHOWECBS) && ecb) printf("", ecb); #endif /*AHBDEBUG */ timeout_del(&ecb->xs->stimeout); ahb_done(sc, ecb); } if ((bus_space_read_1(iot, ioh, G2STAT) & G2STAT_INT_PEND) == 0) return 1; } } /* * We have a ecb which has been processed by the adaptor, now we look to see * how the operation went. */ void ahb_done(sc, ecb) struct ahb_softc *sc; struct ahb_ecb *ecb; { struct ahb_ecb_status *stat = &ecb->ecb_status; struct scsi_sense_data *s1, *s2; struct scsi_xfer *xs = ecb->xs; SC_DEBUG(xs->sc_link, SDEV_DB2, ("ahb_done\n")); /* * Otherwise, put the results of the operation * into the xfer and call whoever started it */ if (ecb->flags & ECB_IMMED) { if (ecb->flags & ECB_IMMED_FAIL) xs->error = XS_DRIVER_STUFFUP; goto done; } if (xs->error == XS_NOERROR) { if (stat->host_stat != HS_OK) { switch (stat->host_stat) { case HS_SCSI_RESET_ADAPTER: break; case HS_SCSI_RESET_INCOMING: break; case HS_CMD_ABORTED_HOST: case HS_CMD_ABORTED_ADAPTER: xs->error = XS_DRIVER_STUFFUP; break; case HS_TIMED_OUT: /* No response */ xs->error = XS_SELTIMEOUT; break; default: /* Other scsi protocol messes */ printf("%s: host_stat %x\n", sc->sc_dev.dv_xname, stat->host_stat); xs->error = XS_DRIVER_STUFFUP; } } else if (stat->target_stat != SCSI_OK) { switch (stat->target_stat) { case SCSI_CHECK: s1 = &ecb->ecb_sense; s2 = &xs->sense; *s2 = *s1; xs->error = XS_SENSE; break; case SCSI_BUSY: xs->error = XS_BUSY; break; default: printf("%s: target_stat %x\n", sc->sc_dev.dv_xname, stat->target_stat); xs->error = XS_DRIVER_STUFFUP; } } else xs->resid = 0; } done: ahb_free_ecb(sc, ecb, xs->flags); scsi_done(xs); } /* * A ecb (and hence a mbx-out is put onto the * free list. */ void ahb_free_ecb(sc, ecb, flags) struct ahb_softc *sc; struct ahb_ecb *ecb; int flags; { int s; s = splbio(); ecb->flags = ECB_FREE; TAILQ_INSERT_HEAD(&sc->free_ecb, ecb, chain); /* * If there were none, wake anybody waiting for one to come free, * starting with queued entries. */ if (TAILQ_NEXT(ecb, chain) == NULL) wakeup(&sc->free_ecb); splx(s); } static inline void ahb_init_ecb(struct ahb_softc *, struct ahb_ecb *); static inline void ahb_init_ecb(sc, ecb) struct ahb_softc *sc; struct ahb_ecb *ecb; { int hashnum; bzero(ecb, sizeof(struct ahb_ecb)); /* * put in the phystokv hash table * Never gets taken out. */ ecb->hashkey = KVTOPHYS(ecb); hashnum = ECB_HASH(ecb->hashkey); ecb->nexthash = sc->ecbhash[hashnum]; sc->ecbhash[hashnum] = ecb; } static inline void ahb_reset_ecb(struct ahb_softc *, struct ahb_ecb *); static inline void ahb_reset_ecb(sc, ecb) struct ahb_softc *sc; struct ahb_ecb *ecb; { } /* * Get a free ecb * * If there are none, see if we can allocate a new one. If so, put it in the * hash table too otherwise either return an error or sleep. */ struct ahb_ecb * ahb_get_ecb(sc, flags) struct ahb_softc *sc; int flags; { struct ahb_ecb *ecb; int s; s = splbio(); /* * If we can and have to, sleep waiting for one to come free * but only if we can't allocate a new one. */ for (;;) { ecb = TAILQ_FIRST(&sc->free_ecb); if (ecb) { TAILQ_REMOVE(&sc->free_ecb, ecb, chain); break; } if (sc->numecbs < AHB_ECB_MAX) { ecb = (struct ahb_ecb *) malloc(sizeof(struct ahb_ecb), M_TEMP, M_NOWAIT); if (ecb) { ahb_init_ecb(sc, ecb); sc->numecbs++; } else { printf("%s: can't malloc ecb\n", sc->sc_dev.dv_xname); goto out; } break; } if ((flags & SCSI_NOSLEEP) != 0) goto out; tsleep(&sc->free_ecb, PRIBIO, "ahbecb", 0); } ahb_reset_ecb(sc, ecb); ecb->flags = ECB_ACTIVE; out: splx(s); return ecb; } /* * given a physical address, find the ecb that it corresponds to. */ struct ahb_ecb * ahb_ecb_phys_kv(sc, ecb_phys) struct ahb_softc *sc; physaddr ecb_phys; { int hashnum = ECB_HASH(ecb_phys); struct ahb_ecb *ecb = sc->ecbhash[hashnum]; while (ecb) { if (ecb->hashkey == ecb_phys) break; ecb = ecb->nexthash; } return ecb; } /* * Start the board, ready for normal operation */ int ahb_find(iot, ioh, sc) bus_space_tag_t iot; bus_space_handle_t ioh; struct ahb_softc *sc; { u_char intdef; int i, irq, busid; int wait = 1000; /* 1 sec enough? */ bus_space_write_1(iot, ioh, PORTADDR, PORTADDR_ENHANCED); #define NO_NO 1 #ifdef NO_NO /* * reset board, If it doesn't respond, assume * that it's not there.. good for the probe */ bus_space_write_1(iot, ioh, G2CNTRL, G2CNTRL_HARD_RESET); delay(1000); bus_space_write_1(iot, ioh, G2CNTRL, 0); delay(10000); while (--wait) { if ((bus_space_read_1(iot, ioh, G2STAT) & G2STAT_BUSY) == 0) break; delay(1000); } if (!wait) { #ifdef AHBDEBUG if (ahb_debug & AHB_SHOWMISC) printf("ahb_find: No answer from aha1742 board\n"); #endif /*AHBDEBUG */ return ENXIO; } i = bus_space_read_1(iot, ioh, MBOXIN0); if (i) { printf("self test failed, val = 0x%x\n", i); return EIO; } /* Set it again, just to be sure. */ bus_space_write_1(iot, ioh, PORTADDR, PORTADDR_ENHANCED); #endif while (bus_space_read_1(iot, ioh, G2STAT) & G2STAT_INT_PEND) { printf("."); bus_space_write_1(iot, ioh, G2CNTRL, G2CNTRL_CLEAR_EISA_INT); delay(10000); } intdef = bus_space_read_1(iot, ioh, INTDEF); switch (intdef & 0x07) { case INT9: irq = 9; break; case INT10: irq = 10; break; case INT11: irq = 11; break; case INT12: irq = 12; break; case INT14: irq = 14; break; case INT15: irq = 15; break; default: printf("illegal int setting %x\n", intdef); return EIO; } /* make sure we can interrupt */ bus_space_write_1(iot, ioh, INTDEF, (intdef | INTEN)); /* who are we on the scsi bus? */ busid = (bus_space_read_1(iot, ioh, SCSIDEF) & HSCSIID); /* if we want to fill in softc, do so now */ if (sc != NULL) { sc->sc_irq = irq; sc->ahb_scsi_dev = busid; } /* * Note that we are going and return (to probe) */ return 0; } void ahb_init(sc) struct ahb_softc *sc; { } void ahbminphys(struct buf *bp, struct scsi_link *sl) { if (bp->b_bcount > ((AHB_NSEG - 1) << PGSHIFT)) bp->b_bcount = ((AHB_NSEG - 1) << PGSHIFT); minphys(bp); } /* * start a scsi operation given the command and the data address. Also needs * the unit, target and lu. */ void ahb_scsi_cmd(xs) struct scsi_xfer *xs; { struct scsi_link *sc_link = xs->sc_link; struct ahb_softc *sc = sc_link->adapter_softc; struct ahb_ecb *ecb; struct ahb_dma_seg *sg; int seg; /* scatter gather seg being worked on */ u_long thiskv, thisphys, nextphys; int bytes_this_seg, bytes_this_page, datalen, flags; int s; SC_DEBUG(sc_link, SDEV_DB2, ("ahb_scsi_cmd\n")); /* * get a ecb (mbox-out) to use. If the transfer * is from a buf (possibly from interrupt time) * then we can't allow it to sleep */ flags = xs->flags; if ((ecb = ahb_get_ecb(sc, flags)) == NULL) { xs->error = XS_NO_CCB; s = splbio(); scsi_done(xs); splx(s); return; } ecb->xs = xs; timeout_set(&ecb->xs->stimeout, ahb_timeout, ecb); /* * If it's a reset, we need to do an 'immediate' * command, and store its ecb for later * if there is already an immediate waiting, * then WE must wait */ if (flags & SCSI_RESET) { ecb->flags |= ECB_IMMED; if (sc->immed_ecb) { xs->error = XS_NO_CCB; s = splbio(); scsi_done(xs); splx(s); return; } sc->immed_ecb = ecb; s = splbio(); ahb_send_immed(sc, sc_link->target, AHB_TARG_RESET); if ((flags & SCSI_POLL) == 0) { splx(s); timeout_add_msec(&ecb->xs->stimeout, xs->timeout); return; } splx(s); /* * If we can't use interrupts, poll on completion */ if (ahb_poll(sc, xs, xs->timeout)) ahb_timeout(ecb); return; } /* * Put all the arguments for the xfer in the ecb */ ecb->opcode = ECB_SCSI_OP; ecb->opt1 = ECB_SES | ECB_DSB | ECB_ARS; if (xs->datalen) ecb->opt1 |= ECB_S_G; ecb->opt2 = sc_link->lun | ECB_NRB; ecb->scsi_cmd_length = xs->cmdlen; ecb->sense_ptr = KVTOPHYS(&ecb->ecb_sense); ecb->req_sense_length = sizeof(ecb->ecb_sense); ecb->status = KVTOPHYS(&ecb->ecb_status); ecb->ecb_status.host_stat = 0x00; ecb->ecb_status.target_stat = 0x00; if (xs->datalen && (flags & SCSI_RESET) == 0) { ecb->data_addr = KVTOPHYS(ecb->ahb_dma); sg = ecb->ahb_dma; seg = 0; /* * Set up the scatter gather block */ SC_DEBUG(sc_link, SDEV_DB4, ("%d @0x%x:- ", xs->datalen, xs->data)); datalen = xs->datalen; thiskv = (long) xs->data; thisphys = KVTOPHYS(thiskv); while (datalen && seg < AHB_NSEG) { bytes_this_seg = 0; /* put in the base address */ sg->seg_addr = thisphys; SC_DEBUGN(sc_link, SDEV_DB4, ("0x%x", thisphys)); /* do it at least once */ nextphys = thisphys; while (datalen && thisphys == nextphys) { /* * This page is contiguous (physically) * with the last, just extend the * length */ /* how far to the end of the page */ nextphys = (thisphys & ~PGOFSET) + NBPG; bytes_this_page = nextphys - thisphys; /**** or the data ****/ bytes_this_page = min(bytes_this_page, datalen); bytes_this_seg += bytes_this_page; datalen -= bytes_this_page; /* get more ready for the next page */ thiskv = (thiskv & ~PGOFSET) + NBPG; if (datalen) thisphys = KVTOPHYS(thiskv); } /* * next page isn't contiguous, finish the seg */ SC_DEBUGN(sc_link, SDEV_DB4, ("(0x%x)", bytes_this_seg)); sg->seg_len = bytes_this_seg; sg++; seg++; } ecb->data_length = seg * sizeof(struct ahb_dma_seg); SC_DEBUGN(sc_link, SDEV_DB4, ("\n")); if (datalen) { /* * there's still data, must have run out of segs! */ printf("%s: ahb_scsi_cmd, more than %d dma segs\n", sc->sc_dev.dv_xname, AHB_NSEG); xs->error = XS_DRIVER_STUFFUP; ahb_free_ecb(sc, ecb, flags); s = splbio(); scsi_done(xs); splx(s); return; } } else { /* No data xfer, use non S/G values */ ecb->data_addr = (physaddr)0; ecb->data_length = 0; } ecb->link_addr = (physaddr)0; /* * Put the scsi command in the ecb and start it */ if ((flags & SCSI_RESET) == 0) bcopy(xs->cmd, &ecb->scsi_cmd, ecb->scsi_cmd_length); s = splbio(); ahb_send_mbox(sc, OP_START_ECB, ecb); /* * Usually return SUCCESSFULLY QUEUED */ if ((flags & SCSI_POLL) == 0) { splx(s); timeout_add_msec(&ecb->xs->stimeout, xs->timeout); return; } splx(s); /* * If we can't use interrupts, poll on completion */ if (ahb_poll(sc, xs, xs->timeout)) { ahb_timeout(ecb); if (ahb_poll(sc, xs, 2000)) ahb_timeout(ecb); } } void ahb_timeout(arg) void *arg; { struct ahb_ecb *ecb = arg; struct scsi_xfer *xs = ecb->xs; struct scsi_link *sc_link = xs->sc_link; struct ahb_softc *sc = sc_link->adapter_softc; int s; sc_print_addr(sc_link); printf("timed out"); s = splbio(); if (ecb->flags & ECB_IMMED) { printf("\n"); ecb->xs->retries = 0; /* I MEAN IT ! */ ecb->flags |= ECB_IMMED_FAIL; ahb_done(sc, ecb); splx(s); return; } /* * If it has been through before, then * a previous abort has failed, don't * try abort again */ if (ecb->flags == ECB_ABORTED) { /* abort timed out */ printf(" AGAIN\n"); ecb->xs->retries = 0; /* I MEAN IT ! */ ahb_done(sc, ecb); } else { /* abort the operation that has timed out */ printf("\n"); ecb->xs->error = XS_TIMEOUT; ecb->flags = ECB_ABORTED; ahb_send_mbox(sc, OP_ABORT_ECB, ecb); /* 2 secs for the abort */ if ((xs->flags & SCSI_POLL) == 0) timeout_add_sec(&ecb->xs->stimeout, 2); } splx(s); } #ifdef AHBDEBUG void ahb_print_ecb(ecb) struct ahb_ecb *ecb; { printf("ecb:%x op:%x cmdlen:%d senlen:%d\n", ecb, ecb->opcode, ecb->cdblen, ecb->senselen); printf(" datlen:%d hstat:%x tstat:%x flags:%x\n", ecb->datalen, ecb->ecb_status.host_stat, ecb->ecb_status.target_stat, ecb->flags); show_scsi_cmd(ecb->xs); } void ahb_print_active_ecb(sc) struct ahb_softc *sc; { struct ahb_ecb *ecb; int i = 0; while (i++ < ECB_HASH_SIZE) { ecb = sc->ecb_hash_list[i]; while (ecb) { if (ecb->flags != ECB_FREE) ahb_print_ecb(ecb); ecb = ecb->hash_list; } } } #endif /* AHBDEBUG */