/* $OpenBSD: rkpcie.c,v 1.8 2019/06/03 00:43:26 kettenis Exp $ */ /* * Copyright (c) 2018 Mark Kettenis * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PCIE_CLIENT_BASIC_STRAP_CONF 0x0000 #define PCIE_CLIENT_PCIE_GEN_SEL_1 (((1 << 7) << 16) | (0 << 7)) #define PCIE_CLIENT_PCIE_GEN_SEL_2 (((1 << 7) << 16) | (1 << 7)) #define PCIE_CLIENT_MODE_SELECT_RC (((1 << 6) << 16) | (1 << 6)) #define PCIE_CLIENT_LINK_TRAIN_EN (((1 << 1) << 16) | (1 << 1)) #define PCIE_CLIENT_CONF_EN (((1 << 0) << 16) | (1 << 0)) #define PCIE_CLIENT_BASIC_STATUS1 0x0048 #define PCIE_CLIENT_LINK_ST (0x3 << 20) #define PCIE_CLIENT_LINK_ST_UP (0x3 << 20) #define PCIE_CLIENT_INT_MASK 0x004c #define PCIE_CLIENT_INTD_MASK (((1 << 8) << 16) | (1 << 8)) #define PCIE_CLIENT_INTD_UNMASK (((1 << 8) << 16) | (0 << 8)) #define PCIE_CLIENT_INTC_MASK (((1 << 7) << 16) | (1 << 7)) #define PCIE_CLIENT_INTC_UNMASK (((1 << 7) << 16) | (0 << 7)) #define PCIE_CLIENT_INTB_MASK (((1 << 6) << 16) | (1 << 6)) #define PCIE_CLIENT_INTB_UNMASK (((1 << 6) << 16) | (0 << 6)) #define PCIE_CLIENT_INTA_MASK (((1 << 5) << 16) | (1 << 5)) #define PCIE_CLIENT_INTA_UNMASK (((1 << 5) << 16) | (0 << 5)) #define PCIE_RC_NORMAL_BASE 0x800000 #define PCIE_LM_BASE 0x900000 #define PCIE_LM_VENDOR_ID (PCIE_LM_BASE + 0x44) #define PCIE_LM_RCBAR (PCIE_LM_BASE + 0x300) #define PCIE_LM_RCBARPIE (1 << 19) #define PCIE_LM_RCBARPIS (1 << 20) #define PCIE_RC_BASE 0xa00000 #define PCIE_RC_PCIE_LCAP (PCIE_RC_BASE + 0x0cc) #define PCIE_RC_PCIE_LCAP_APMS_L0S (1 << 10) #define PCIE_ATR_BASE 0xc00000 #define PCIE_ATR_OB_ADDR0(i) (PCIE_ATR_BASE + 0x000 + (i) * 0x20) #define PCIE_ATR_OB_ADDR1(i) (PCIE_ATR_BASE + 0x004 + (i) * 0x20) #define PCIE_ATR_OB_DESC0(i) (PCIE_ATR_BASE + 0x008 + (i) * 0x20) #define PCIE_ATR_OB_DESC1(i) (PCIE_ATR_BASE + 0x00c + (i) * 0x20) #define PCIE_ATR_IB_ADDR0(i) (PCIE_ATR_BASE + 0x800 + (i) * 0x8) #define PCIE_ATR_IB_ADDR1(i) (PCIE_ATR_BASE + 0x804 + (i) * 0x8) #define PCIE_ATR_HDR_MEM 0x2 #define PCIE_ATR_HDR_IO 0x6 #define PCIE_ATR_HDR_CFG_TYPE0 0xa #define PCIE_ATR_HDR_CFG_TYPE1 0xb #define PCIE_ATR_HDR_RID (1 << 23) #define PCIE_ATR_OB_REGION0_SIZE (32 * 1024 * 1024) #define PCIE_ATR_OB_REGION_SIZE (1 * 1024 * 1024) #define HREAD4(sc, reg) \ (bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))) #define HWRITE4(sc, reg, val) \ bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val)) struct rkpcie_softc { struct device sc_dev; bus_space_tag_t sc_iot; bus_space_handle_t sc_ioh; bus_space_handle_t sc_axi_ioh; bus_addr_t sc_axi_addr; bus_addr_t sc_apb_addr; int sc_node; int sc_phy_node; struct arm64_pci_chipset sc_pc; struct extent *sc_busex; struct extent *sc_memex; struct extent *sc_ioex; int sc_bus; }; int rkpcie_match(struct device *, void *, void *); void rkpcie_attach(struct device *, struct device *, void *); struct cfattach rkpcie_ca = { sizeof (struct rkpcie_softc), rkpcie_match, rkpcie_attach }; struct cfdriver rkpcie_cd = { NULL, "rkpcie", DV_DULL }; int rkpcie_match(struct device *parent, void *match, void *aux) { struct fdt_attach_args *faa = aux; return OF_is_compatible(faa->fa_node, "rockchip,rk3399-pcie"); } void rkpcie_atr_init(struct rkpcie_softc *); void rkpcie_phy_init(struct rkpcie_softc *); void rkpcie_phy_poweron(struct rkpcie_softc *); void rkpcie_attach_hook(struct device *, struct device *, struct pcibus_attach_args *); int rkpcie_bus_maxdevs(void *, int); pcitag_t rkpcie_make_tag(void *, int, int, int); void rkpcie_decompose_tag(void *, pcitag_t, int *, int *, int *); int rkpcie_conf_size(void *, pcitag_t); pcireg_t rkpcie_conf_read(void *, pcitag_t, int); void rkpcie_conf_write(void *, pcitag_t, int, pcireg_t); int rkpcie_intr_map(struct pci_attach_args *, pci_intr_handle_t *); const char *rkpcie_intr_string(void *, pci_intr_handle_t); void *rkpcie_intr_establish(void *, pci_intr_handle_t, int, int (*)(void *), void *, char *); void rkpcie_intr_disestablish(void *, void *); void rkpcie_attach(struct device *parent, struct device *self, void *aux) { struct rkpcie_softc *sc = (struct rkpcie_softc *)self; struct fdt_attach_args *faa = aux; struct pcibus_attach_args pba; uint32_t *ep_gpio; uint32_t bus_range[2]; uint32_t status; int len, timo; if (faa->fa_nreg < 2) { printf(": no registers\n"); return; } sc->sc_iot = faa->fa_iot; if (bus_space_map(sc->sc_iot, faa->fa_reg[1].addr, faa->fa_reg[1].size, 0, &sc->sc_ioh)) { printf(": can't map registers\n"); return; } if (bus_space_map(sc->sc_iot, faa->fa_reg[0].addr, faa->fa_reg[0].size, 0, &sc->sc_axi_ioh)) { printf(": can't map AXI registers\n"); bus_space_unmap(sc->sc_iot, sc->sc_ioh, faa->fa_reg[1].size); return; } sc->sc_axi_addr = faa->fa_reg[0].addr; sc->sc_apb_addr = faa->fa_reg[1].addr; sc->sc_node = faa->fa_node; printf("\n"); len = OF_getproplen(sc->sc_node, "ep-gpios"); if (len < 0) return; ep_gpio = malloc(len, M_TEMP, M_WAITOK); OF_getpropintarray(sc->sc_node, "ep-gpios", ep_gpio, len); clock_enable_all(sc->sc_node); gpio_controller_config_pin(ep_gpio, GPIO_CONFIG_OUTPUT); gpio_controller_set_pin(ep_gpio, 0); reset_assert(sc->sc_node, "aclk"); reset_assert(sc->sc_node, "pclk"); reset_assert(sc->sc_node, "pm"); rkpcie_phy_init(sc); reset_assert(sc->sc_node, "core"); reset_assert(sc->sc_node, "mgmt"); reset_assert(sc->sc_node, "mgmt-sticky"); reset_assert(sc->sc_node, "pipe"); delay(10); reset_deassert(sc->sc_node, "pm"); reset_deassert(sc->sc_node, "aclk"); reset_deassert(sc->sc_node, "pclk"); /* Only advertise Gen 1 support for now. */ HWRITE4(sc, PCIE_CLIENT_BASIC_STRAP_CONF, PCIE_CLIENT_PCIE_GEN_SEL_1); /* Switch into Root Complex mode. */ HWRITE4(sc, PCIE_CLIENT_BASIC_STRAP_CONF, PCIE_CLIENT_MODE_SELECT_RC | PCIE_CLIENT_CONF_EN); rkpcie_phy_poweron(sc); reset_deassert(sc->sc_node, "core"); reset_deassert(sc->sc_node, "mgmt"); reset_deassert(sc->sc_node, "mgmt-sticky"); reset_deassert(sc->sc_node, "pipe"); /* Start link training. */ HWRITE4(sc, PCIE_CLIENT_BASIC_STRAP_CONF, PCIE_CLIENT_LINK_TRAIN_EN); /* XXX Advertise power limits? */ gpio_controller_set_pin(ep_gpio, 1); free(ep_gpio, M_TEMP, len); for (timo = 500; timo > 0; timo--) { status = HREAD4(sc, PCIE_CLIENT_BASIC_STATUS1); if ((status & PCIE_CLIENT_LINK_ST) == PCIE_CLIENT_LINK_ST_UP) break; delay(1000); } if (timo == 0) { printf("%s: link training timeout\n", sc->sc_dev.dv_xname); return; } /* Initialize Root Complex registers. */ HWRITE4(sc, PCIE_LM_VENDOR_ID, PCI_VENDOR_ROCKCHIP); HWRITE4(sc, PCIE_RC_BASE + PCI_CLASS_REG, PCI_CLASS_BRIDGE << PCI_CLASS_SHIFT | PCI_SUBCLASS_BRIDGE_PCI << PCI_SUBCLASS_SHIFT); HWRITE4(sc, PCIE_LM_RCBAR, PCIE_LM_RCBARPIE | PCIE_LM_RCBARPIS); if (OF_getproplen(sc->sc_node, "aspm-no-l0s") == 0) { status = HREAD4(sc, PCIE_RC_PCIE_LCAP); status &= ~PCIE_RC_PCIE_LCAP_APMS_L0S; HWRITE4(sc, PCIE_RC_PCIE_LCAP, status); } /* Create extents for our address spaces. */ sc->sc_busex = extent_create("pcibus", 0, 255, M_DEVBUF, NULL, 0, EX_WAITOK | EX_FILLED); sc->sc_memex = extent_create("pcimem", 0, (u_long)-1, M_DEVBUF, NULL, 0, EX_WAITOK | EX_FILLED); sc->sc_ioex = extent_create("pciio", 0, 0xffffffff, M_DEVBUF, NULL, 0, EX_WAITOK | EX_FILLED); /* Set up bus range. */ if (OF_getpropintarray(sc->sc_node, "bus-range", bus_range, sizeof(bus_range)) != sizeof(bus_range) || bus_range[0] >= 32 || bus_range[1] >= 32) { bus_range[0] = 0; bus_range[1] = 31; } sc->sc_bus = bus_range[0]; extent_free(sc->sc_busex, bus_range[0], bus_range[1] - bus_range[0] + 1, EX_WAITOK); /* Configure Address Translation. */ rkpcie_atr_init(sc); sc->sc_pc.pc_conf_v = sc; sc->sc_pc.pc_attach_hook = rkpcie_attach_hook; sc->sc_pc.pc_bus_maxdevs = rkpcie_bus_maxdevs; sc->sc_pc.pc_make_tag = rkpcie_make_tag; sc->sc_pc.pc_decompose_tag = rkpcie_decompose_tag; sc->sc_pc.pc_conf_size = rkpcie_conf_size; sc->sc_pc.pc_conf_read = rkpcie_conf_read; sc->sc_pc.pc_conf_write = rkpcie_conf_write; sc->sc_pc.pc_intr_v = sc; sc->sc_pc.pc_intr_map = rkpcie_intr_map; sc->sc_pc.pc_intr_map_msi = _pci_intr_map_msi; sc->sc_pc.pc_intr_map_msix = _pci_intr_map_msix; sc->sc_pc.pc_intr_string = rkpcie_intr_string; sc->sc_pc.pc_intr_establish = rkpcie_intr_establish; sc->sc_pc.pc_intr_disestablish = rkpcie_intr_disestablish; memset(&pba, 0, sizeof(pba)); pba.pba_busname = "pci"; pba.pba_iot = faa->fa_iot; pba.pba_memt = faa->fa_iot; pba.pba_dmat = faa->fa_dmat; pba.pba_pc = &sc->sc_pc; pba.pba_busex = sc->sc_busex; pba.pba_memex = sc->sc_memex; pba.pba_ioex = sc->sc_ioex; pba.pba_domain = pci_ndomains++; pba.pba_bus = sc->sc_bus; pba.pba_flags |= PCI_FLAGS_MSI_ENABLED; config_found(self, &pba, NULL); } void rkpcie_atr_init(struct rkpcie_softc *sc) { uint32_t *ranges = NULL; struct extent *ex; bus_addr_t addr; bus_size_t size, offset; uint32_t type; int len, region; int i; /* Use region 0 to map PCI configuration space. */ HWRITE4(sc, PCIE_ATR_OB_ADDR0(0), 25 - 1); HWRITE4(sc, PCIE_ATR_OB_ADDR1(0), 0); HWRITE4(sc, PCIE_ATR_OB_DESC0(0), PCIE_ATR_HDR_CFG_TYPE0 | PCIE_ATR_HDR_RID); HWRITE4(sc, PCIE_ATR_OB_DESC1(0), 0); len = OF_getproplen(sc->sc_node, "ranges"); if (len <= 0 || (len % (7 * sizeof(uint32_t))) != 0) goto fail; ranges = malloc(len, M_TEMP, M_WAITOK); OF_getpropintarray(sc->sc_node, "ranges", ranges, len); for (i = 0; i < len / sizeof(uint32_t); i += 7) { /* Handle IO and MMIO. */ switch (ranges[i] & 0x03000000) { case 0x01000000: type = PCIE_ATR_HDR_IO; ex = sc->sc_ioex; break; case 0x02000000: case 0x03000000: type = PCIE_ATR_HDR_MEM; ex = sc->sc_memex; break; default: continue; } /* Only support identity mappings. */ if (ranges[i + 1] != ranges[i + 3] || ranges[i + 2] != ranges[i + 4]) goto fail; /* Only support mappings aligned on a region boundary. */ addr = ((uint64_t)ranges[i + 1] << 32) + ranges[i + 2]; if (addr & (PCIE_ATR_OB_REGION_SIZE - 1)) goto fail; /* Mappings should lie between AXI and APB regions. */ size = ranges[i + 6]; if (addr < sc->sc_axi_addr + PCIE_ATR_OB_REGION0_SIZE) goto fail; if (addr + size > sc->sc_apb_addr) goto fail; offset = addr - sc->sc_axi_addr - PCIE_ATR_OB_REGION0_SIZE; region = 1 + (offset / PCIE_ATR_OB_REGION_SIZE); while (size > 0) { HWRITE4(sc, PCIE_ATR_OB_ADDR0(region), 32 - 1); HWRITE4(sc, PCIE_ATR_OB_ADDR1(region), 0); HWRITE4(sc, PCIE_ATR_OB_DESC0(region), type | PCIE_ATR_HDR_RID); HWRITE4(sc, PCIE_ATR_OB_DESC1(region), 0); extent_free(ex, addr, PCIE_ATR_OB_REGION_SIZE, EX_WAITOK); addr += PCIE_ATR_OB_REGION_SIZE; size -= PCIE_ATR_OB_REGION_SIZE; region++; } } /* Passthrought inbound translations unmodified. */ HWRITE4(sc, PCIE_ATR_IB_ADDR0(2), 32 - 1); HWRITE4(sc, PCIE_ATR_IB_ADDR1(2), 0); free(ranges, M_TEMP, len); return; fail: printf("%s: can't map ranges\n", sc->sc_dev.dv_xname); free(ranges, M_TEMP, len); } void rkpcie_attach_hook(struct device *parent, struct device *self, struct pcibus_attach_args *pba) { } int rkpcie_bus_maxdevs(void *v, int bus) { struct rkpcie_softc *sc = v; if (bus == sc->sc_bus || bus == sc->sc_bus + 1) return 1; return 32; } pcitag_t rkpcie_make_tag(void *v, int bus, int device, int function) { /* Return ECAM address. */ return ((bus << 20) | (device << 15) | (function << 12)); } void rkpcie_decompose_tag(void *v, pcitag_t tag, int *bp, int *dp, int *fp) { if (bp != NULL) *bp = (tag >> 20) & 0xff; if (dp != NULL) *dp = (tag >> 15) & 0x1f; if (fp != NULL) *fp = (tag >> 12) & 0x7; } int rkpcie_conf_size(void *v, pcitag_t tag) { return PCIE_CONFIG_SPACE_SIZE; } pcireg_t rkpcie_conf_read(void *v, pcitag_t tag, int reg) { struct rkpcie_softc *sc = v; int bus, dev, fn; rkpcie_decompose_tag(sc, tag, &bus, &dev, &fn); if (bus == sc->sc_bus) { KASSERT(dev == 0); return HREAD4(sc, PCIE_RC_NORMAL_BASE + tag | reg); } if (bus == sc->sc_bus + 1) { KASSERT(dev == 0); return bus_space_read_4(sc->sc_iot, sc->sc_axi_ioh, tag | reg); } return 0xffffffff; } void rkpcie_conf_write(void *v, pcitag_t tag, int reg, pcireg_t data) { struct rkpcie_softc *sc = v; int bus, dev, fn; rkpcie_decompose_tag(sc, tag, &bus, &dev, &fn); if (bus == sc->sc_bus) { KASSERT(dev == 0); HWRITE4(sc, PCIE_RC_NORMAL_BASE + tag | reg, data); return; } if (bus == sc->sc_bus + 1) { KASSERT(dev == 0); bus_space_write_4(sc->sc_iot, sc->sc_axi_ioh, tag | reg, data); return; } } int rkpcie_intr_map(struct pci_attach_args *pa, pci_intr_handle_t *ihp) { int pin = pa->pa_rawintrpin; if (pin == 0 || pin > PCI_INTERRUPT_PIN_MAX) return -1; if (pa->pa_tag == 0) return -1; ihp->ih_pc = pa->pa_pc; ihp->ih_tag = pa->pa_intrtag; ihp->ih_intrpin = pa->pa_intrpin; ihp->ih_type = PCI_INTX; return 0; } const char * rkpcie_intr_string(void *v, pci_intr_handle_t ih) { switch (ih.ih_type) { case PCI_MSI: return "msi"; case PCI_MSIX: return "msix"; } return "intx"; } void * rkpcie_intr_establish(void *v, pci_intr_handle_t ih, int level, int (*func)(void *), void *arg, char *name) { struct rkpcie_softc *sc = v; void *cookie; KASSERT(ih.ih_type != PCI_NONE); if (ih.ih_type != PCI_INTX) { uint64_t addr, data; /* Assume hardware passes Requester ID as sideband data. */ data = pci_requester_id(ih.ih_pc, ih.ih_tag); cookie = fdt_intr_establish_msi(sc->sc_node, &addr, &data, level, func, arg, name); if (cookie == NULL) return NULL; /* TODO: translate address to the PCI device's view */ if (ih.ih_type == PCI_MSIX) { pci_msix_enable(ih.ih_pc, ih.ih_tag, sc->sc_iot, ih.ih_intrpin, addr, data); } else pci_msi_enable(ih.ih_pc, ih.ih_tag, addr, data); } else { /* Unmask legacy interrupts. */ HWRITE4(sc, PCIE_CLIENT_INT_MASK, PCIE_CLIENT_INTA_UNMASK | PCIE_CLIENT_INTB_UNMASK | PCIE_CLIENT_INTC_UNMASK | PCIE_CLIENT_INTD_UNMASK); cookie = fdt_intr_establish_idx(sc->sc_node, 1, level, func, arg, name); } return cookie; } void rkpcie_intr_disestablish(void *v, void *cookie) { } /* * PHY Support. */ #define RK3399_GRF_SOC_CON5_PCIE 0xe214 #define RK3399_TX_ELEC_IDLE_OFF_MASK ((1 << 3) << 16) #define RK3399_TX_ELEC_IDLE_OFF (1 << 3) #define RK3399_GRF_SOC_CON8 0xe220 #define RK3399_PCIE_TEST_DATA_MASK ((0xf << 7) << 16) #define RK3399_PCIE_TEST_DATA_SHIFT 7 #define RK3399_PCIE_TEST_ADDR_MASK ((0x3f << 1) << 16) #define RK3399_PCIE_TEST_ADDR_SHIFT 1 #define RK3399_PCIE_TEST_WRITE_ENABLE (((1 << 0) << 16) | (1 << 0)) #define RK3399_PCIE_TEST_WRITE_DISABLE (((1 << 0) << 16) | (0 << 0)) #define RK3399_GRF_SOC_STATUS1 0xe2a4 #define RK3399_PCIE_PHY_PLL_LOCKED (1 << 9) #define RK3399_PCIE_PHY_PLL_OUTPUT (1 << 10) #define RK3399_PCIE_PHY_CFG_PLL_LOCK 0x10 #define RK3399_PCIE_PHY_CFG_CLK_TEST 0x10 #define RK3399_PCIE_PHY_CFG_SEPE_RATE (1 << 3) #define RK3399_PCIE_PHY_CFG_CLK_SCC 0x12 #define RK3399_PCIE_PHY_CFG_PLL_100M (1 << 3) void rkpcie_phy_init(struct rkpcie_softc *sc) { uint32_t phys[8]; int len; len = OF_getpropintarray(sc->sc_node, "phys", phys, sizeof(phys)); if (len < sizeof(phys[0])) return; sc->sc_phy_node = OF_getnodebyphandle(phys[0]); if (sc->sc_phy_node == 0) return; clock_enable(sc->sc_phy_node, "refclk"); reset_assert(sc->sc_phy_node, "phy"); } void rkpcie_phy_write_conf(struct regmap *rm, uint8_t addr, uint8_t data) { regmap_write_4(rm, RK3399_GRF_SOC_CON8, RK3399_PCIE_TEST_ADDR_MASK | (addr << RK3399_PCIE_TEST_ADDR_SHIFT) | RK3399_PCIE_TEST_DATA_MASK | (data << RK3399_PCIE_TEST_DATA_SHIFT) | RK3399_PCIE_TEST_WRITE_DISABLE); delay(1); regmap_write_4(rm, RK3399_GRF_SOC_CON8, RK3399_PCIE_TEST_WRITE_ENABLE); delay(1); regmap_write_4(rm, RK3399_GRF_SOC_CON8, RK3399_PCIE_TEST_WRITE_DISABLE); } void rkpcie_phy_poweron(struct rkpcie_softc *sc) { struct regmap *rm; uint32_t status; int lane = 0; int timo; reset_deassert(sc->sc_phy_node, "phy"); rm = regmap_bynode(OF_parent(sc->sc_phy_node)); if (rm == NULL) return; regmap_write_4(rm, RK3399_GRF_SOC_CON8, RK3399_PCIE_TEST_ADDR_MASK | RK3399_PCIE_PHY_CFG_PLL_LOCK << RK3399_PCIE_TEST_ADDR_SHIFT); regmap_write_4(rm, RK3399_GRF_SOC_CON5_PCIE, RK3399_TX_ELEC_IDLE_OFF_MASK << lane | 0); for (timo = 50; timo > 0; timo--) { status = regmap_read_4(rm, RK3399_GRF_SOC_STATUS1); if (status & RK3399_PCIE_PHY_PLL_LOCKED) break; delay(20000); } if (timo == 0) { printf("%s: PHY PLL lock timeout\n", sc->sc_dev.dv_xname); return; } rkpcie_phy_write_conf(rm, RK3399_PCIE_PHY_CFG_CLK_TEST, RK3399_PCIE_PHY_CFG_SEPE_RATE); rkpcie_phy_write_conf(rm, RK3399_PCIE_PHY_CFG_CLK_SCC, RK3399_PCIE_PHY_CFG_PLL_100M); for (timo = 50; timo > 0; timo--) { status = regmap_read_4(rm, RK3399_GRF_SOC_STATUS1); if ((status & RK3399_PCIE_PHY_PLL_OUTPUT) == 0) break; delay(20000); } if (timo == 0) { printf("%s: PHY PLL output enable timeout\n", sc->sc_dev.dv_xname); return; } regmap_write_4(rm, RK3399_GRF_SOC_CON8, RK3399_PCIE_TEST_ADDR_MASK | RK3399_PCIE_PHY_CFG_PLL_LOCK << RK3399_PCIE_TEST_ADDR_SHIFT); for (timo = 50; timo > 0; timo--) { status = regmap_read_4(rm, RK3399_GRF_SOC_STATUS1); if (status & RK3399_PCIE_PHY_PLL_LOCKED) break; delay(20000); } if (timo == 0) { printf("%s: PHY PLL relock timeout\n", sc->sc_dev.dv_xname); return; } }