/* $OpenBSD: rkpmic.c,v 1.9 2021/10/24 17:52:27 mpi Exp $ */ /* * Copyright (c) 2017 Mark Kettenis * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include extern todr_chip_handle_t todr_handle; #define RK80X_SECONDS 0x00 #define RK80X_MINUTES 0x01 #define RK80X_HOURS 0x02 #define RK80X_DAYS 0x03 #define RK80X_MONTHS 0x04 #define RK80X_YEARS 0x05 #define RK80X_WEEKS 0x06 #define RK80X_NRTC_REGS 7 #define RK805_RTC_CTRL 0x10 #define RK808_RTC_CTRL 0x10 #define RK809_RTC_CTRL 0x0d #define RK80X_RTC_CTRL_STOP_RTC 0x01 #define RK805_RTC_STATUS 0x11 #define RK808_RTC_STATUS 0x11 #define RK809_RTC_STATUS 0x0e #define RK80X_RTC_STATUS_POWER_UP 0x80 struct rkpmic_vsel_range { uint32_t base, delta; uint8_t vsel_min, vsel_max; }; struct rkpmic_regdata { const char *name; uint8_t reg, mask; struct rkpmic_vsel_range *vsel_range; }; /* * Used by RK805 for BUCK1, BUCK2 * 0-59: 0.7125V-1.45V, step=12.5mV * 60-62: 1.8V-2.2V, step=200mV * 63: 2.3V */ struct rkpmic_vsel_range rk805_vsel_range1[] = { { 712500, 12500, 0, 59 }, { 1800000, 200000, 60, 62 }, { 2300000, 0, 63, 63 }, {} }; /* * Used by RK805 for BUCK4 * 0-27: 0.8V-3.5V, step=100mV */ struct rkpmic_vsel_range rk805_vsel_range2[] = { { 800000, 100000, 0, 27 }, {} }; /* * Used by RK805 for LDO1-3 * 0-26: 0.8V-3.4V, step=100mV */ struct rkpmic_vsel_range rk805_vsel_range3[] = { { 800000, 100000, 0, 26 }, {} }; struct rkpmic_regdata rk805_regdata[] = { { "DCDC_REG1", 0x2f, 0x3f, rk805_vsel_range1 }, { "DCDC_REG2", 0x33, 0x3f, rk805_vsel_range1 }, { "DCDC_REG4", 0x38, 0x1f, rk805_vsel_range2 }, { "LDO_REG1", 0x3b, 0x1f, rk805_vsel_range3 }, { "LDO_REG2", 0x3d, 0x1f, rk805_vsel_range3 }, { "LDO_REG3", 0x3f, 0x1f, rk805_vsel_range3 }, { } }; /* * Used by RK808 for BUCK1 & BUCK2 * 0-63: 0.7125V-1.5V, step=12.5mV */ struct rkpmic_vsel_range rk808_vsel_range1[] = { { 712500, 12500, 0, 63 }, {} }; /* * Used by RK808 for BUCK4 * 0-15: 1.8V-3.3V,step=100mV */ struct rkpmic_vsel_range rk808_vsel_range2[] = { { 1800000, 100000, 0, 15 }, {} }; /* * Used by RK808 for LDO1-2, 4-5, 8 * 0-16: 1.8V-3.4V, step=100mV */ struct rkpmic_vsel_range rk808_vsel_range3[] = { { 1800000, 100000, 0, 16 }, {} }; /* * Used by RK808 for LDO3 * 0-12: 0.8V~2.0V, step=100mV * 13: 2.2V * 15: 2.5V */ struct rkpmic_vsel_range rk808_vsel_range4[] = { { 800000, 100000, 0, 12 }, { 2200000, 0, 13, 13 }, { 2500000, 0, 15, 15 }, {} }; /* * Used by RK808 for LDO6-7 * 0-17: 0.8V-2.5V,step=100mV */ struct rkpmic_vsel_range rk808_vsel_range5[] = { { 800000, 100000, 0, 17 }, {} }; struct rkpmic_regdata rk808_regdata[] = { { "DCDC_REG1", 0x2f, 0x3f, rk808_vsel_range1 }, { "DCDC_REG2", 0x33, 0x3f, rk808_vsel_range1 }, { "DCDC_REG4", 0x38, 0x0f, rk808_vsel_range2 }, { "LDO_REG1", 0x3b, 0x1f, rk808_vsel_range3 }, { "LDO_REG2", 0x3d, 0x1f, rk808_vsel_range3 }, { "LDO_REG3", 0x3f, 0x0f, rk808_vsel_range4 }, { "LDO_REG4", 0x41, 0x1f, rk808_vsel_range3 }, { "LDO_REG5", 0x43, 0x1f, rk808_vsel_range3 }, { "LDO_REG6", 0x45, 0x1f, rk808_vsel_range5 }, { "LDO_REG7", 0x47, 0x1f, rk808_vsel_range5 }, { "LDO_REG8", 0x49, 0x1f, rk808_vsel_range3 }, { } }; /* * Used by RK809 for BUCK1-3 * 0-80: 0.5V-1.5V,step=12.5mV * 81-89: 1.6V-2.4V,step=100mV */ struct rkpmic_vsel_range rk809_vsel_range1[] = { { 500000, 12500, 0, 80 }, { 1600000, 100000, 81, 89 }, {} }; /* * Used by RK809 for BUCK4 * 0-80: 0.5V-1.5V,step=12.5mV * 81-99: 1.6V-3.4V,step=100mV */ struct rkpmic_vsel_range rk809_vsel_range2[] = { { 500000, 12500, 0, 80 }, { 1600000, 100000, 81, 99 }, {} }; /* * Used by RK809 for BUCK5 * 0: 1.5V * 1-3: 1.8V-2.2V,step=200mV * 4-5: 2.8V-3.0V,step=200mV * 6-7: 3.3V-3.6V,step=300mV */ struct rkpmic_vsel_range rk809_vsel_range3[] = { { 1500000, 0, 0, 0 }, { 1800000, 200000, 1, 3 }, { 2800000, 200000, 4, 5 }, { 3300000, 300000, 6, 7 }, {} }; /* * Used by RK809 for LDO1-7 * 0-112: 0.6V-3.4V,step=25mV */ struct rkpmic_vsel_range rk809_vsel_range4[] = { { 600000, 25000, 0, 112 }, {} }; struct rkpmic_regdata rk809_regdata[] = { { "DCDC_REG1", 0xbb, 0x7f, rk809_vsel_range1 }, { "DCDC_REG2", 0xbe, 0x7f, rk809_vsel_range1 }, { "DCDC_REG3", 0xc1, 0x7f, rk809_vsel_range1 }, { "DCDC_REG4", 0xc4, 0x7f, rk809_vsel_range2 }, { "DCDC_REG5", 0xde, 0x0f, rk809_vsel_range3}, { "LDO_REG1", 0xcc, 0x7f, rk809_vsel_range4 }, { "LDO_REG2", 0xce, 0x7f, rk809_vsel_range4 }, { "LDO_REG3", 0xd0, 0x7f, rk809_vsel_range4 }, { "LDO_REG4", 0xd2, 0x7f, rk809_vsel_range4 }, { "LDO_REG5", 0xd4, 0x7f, rk809_vsel_range4 }, { "LDO_REG6", 0xd6, 0x7f, rk809_vsel_range4 }, { "LDO_REG7", 0xd8, 0x7f, rk809_vsel_range4 }, { "LDO_REG8", 0xda, 0x7f, rk809_vsel_range4 }, { "LDO_REG9", 0xdc, 0x7f, rk809_vsel_range4 }, { } }; struct rkpmic_softc { struct device sc_dev; i2c_tag_t sc_tag; i2c_addr_t sc_addr; int sc_rtc_ctrl_reg, sc_rtc_status_reg; struct todr_chip_handle sc_todr; struct rkpmic_regdata *sc_regdata; }; int rkpmic_match(struct device *, void *, void *); void rkpmic_attach(struct device *, struct device *, void *); const struct cfattach rkpmic_ca = { sizeof(struct rkpmic_softc), rkpmic_match, rkpmic_attach }; struct cfdriver rkpmic_cd = { NULL, "rkpmic", DV_DULL }; void rkpmic_attach_regulator(struct rkpmic_softc *, int); uint8_t rkpmic_reg_read(struct rkpmic_softc *, int); void rkpmic_reg_write(struct rkpmic_softc *, int, uint8_t); int rkpmic_clock_read(struct rkpmic_softc *, struct clock_ymdhms *); int rkpmic_clock_write(struct rkpmic_softc *, struct clock_ymdhms *); int rkpmic_gettime(struct todr_chip_handle *, struct timeval *); int rkpmic_settime(struct todr_chip_handle *, struct timeval *); int rkpmic_match(struct device *parent, void *match, void *aux) { struct i2c_attach_args *ia = aux; return (strcmp(ia->ia_name, "rockchip,rk805") == 0 || strcmp(ia->ia_name, "rockchip,rk808") == 0 || strcmp(ia->ia_name, "rockchip,rk809") == 0); } void rkpmic_attach(struct device *parent, struct device *self, void *aux) { struct rkpmic_softc *sc = (struct rkpmic_softc *)self; struct i2c_attach_args *ia = aux; int node = *(int *)ia->ia_cookie; const char *chip; sc->sc_tag = ia->ia_tag; sc->sc_addr = ia->ia_addr; sc->sc_todr.cookie = sc; sc->sc_todr.todr_gettime = rkpmic_gettime; sc->sc_todr.todr_settime = rkpmic_settime; if (todr_handle == NULL) todr_handle = &sc->sc_todr; if (OF_is_compatible(node, "rockchip,rk805")) { chip = "RK805"; sc->sc_rtc_ctrl_reg = RK805_RTC_CTRL; sc->sc_rtc_status_reg = RK805_RTC_STATUS; sc->sc_regdata = rk805_regdata; } else if (OF_is_compatible(node, "rockchip,rk808")) { chip = "RK808"; sc->sc_rtc_ctrl_reg = RK808_RTC_CTRL; sc->sc_rtc_status_reg = RK808_RTC_STATUS; sc->sc_regdata = rk808_regdata; } else { chip = "RK809"; sc->sc_rtc_ctrl_reg = RK809_RTC_CTRL; sc->sc_rtc_status_reg = RK809_RTC_STATUS; sc->sc_regdata = rk809_regdata; } printf(": %s\n", chip); node = OF_getnodebyname(node, "regulators"); if (node == 0) return; for (node = OF_child(node); node; node = OF_peer(node)) rkpmic_attach_regulator(sc, node); } struct rkpmic_regulator { struct rkpmic_softc *rr_sc; uint8_t rr_reg, rr_mask; struct rkpmic_vsel_range *rr_vsel_range; struct regulator_device rr_rd; }; uint32_t rkpmic_get_voltage(void *); int rkpmic_set_voltage(void *, uint32_t); void rkpmic_attach_regulator(struct rkpmic_softc *sc, int node) { struct rkpmic_regulator *rr; char name[32]; int i; name[0] = 0; OF_getprop(node, "name", name, sizeof(name)); name[sizeof(name) - 1] = 0; for (i = 0; sc->sc_regdata[i].name; i++) { if (strcmp(sc->sc_regdata[i].name, name) == 0) break; } if (sc->sc_regdata[i].name == NULL) return; rr = malloc(sizeof(*rr), M_DEVBUF, M_WAITOK | M_ZERO); rr->rr_sc = sc; rr->rr_reg = sc->sc_regdata[i].reg; rr->rr_mask = sc->sc_regdata[i].mask; rr->rr_vsel_range = sc->sc_regdata[i].vsel_range; rr->rr_rd.rd_node = node; rr->rr_rd.rd_cookie = rr; rr->rr_rd.rd_get_voltage = rkpmic_get_voltage; rr->rr_rd.rd_set_voltage = rkpmic_set_voltage; regulator_register(&rr->rr_rd); } uint32_t rkpmic_get_voltage(void *cookie) { struct rkpmic_regulator *rr = cookie; struct rkpmic_vsel_range *vsel_range = rr->rr_vsel_range; uint8_t vsel; uint32_t ret = 0; vsel = rkpmic_reg_read(rr->rr_sc, rr->rr_reg) & rr->rr_mask; while (vsel_range->base) { ret = vsel_range->base; if (vsel >= vsel_range->vsel_min && vsel <= vsel_range->vsel_max) { ret += (vsel - vsel_range->vsel_min) * vsel_range->delta; break; } else ret += (vsel_range->vsel_max - vsel_range->vsel_min) * vsel_range->delta; vsel_range++; } return ret; } int rkpmic_set_voltage(void *cookie, uint32_t voltage) { struct rkpmic_regulator *rr = cookie; struct rkpmic_vsel_range *vsel_range = rr->rr_vsel_range; uint32_t vmin, vmax, volt; uint8_t reg, vsel; while (vsel_range->base) { vmin = vsel_range->base; vmax = vmin + (vsel_range->vsel_max - vsel_range->vsel_min) * vsel_range->delta; if (voltage < vmin) return EINVAL; if (voltage <= vmax) { vsel = vsel_range->vsel_min; volt = vsel_range->base; while (vsel <= vsel_range->vsel_max) { if (volt == voltage) break; else { vsel++; volt += vsel_range->delta; } } if (volt != voltage) return EINVAL; break; } vsel_range++; } if (vsel_range->base == 0) return EINVAL; reg = rkpmic_reg_read(rr->rr_sc, rr->rr_reg); reg &= ~rr->rr_mask; reg |= vsel; rkpmic_reg_write(rr->rr_sc, rr->rr_reg, reg); return 0; } int rkpmic_gettime(struct todr_chip_handle *handle, struct timeval *tv) { struct rkpmic_softc *sc = handle->cookie; struct clock_ymdhms dt; time_t secs; int error; error = rkpmic_clock_read(sc, &dt); if (error) return error; if (dt.dt_sec > 59 || dt.dt_min > 59 || dt.dt_hour > 23 || dt.dt_day > 31 || dt.dt_day == 0 || dt.dt_mon > 12 || dt.dt_mon == 0 || dt.dt_year < POSIX_BASE_YEAR) return EINVAL; /* * The RTC thinks November has 31 days. Match what Linux does * and undo the damage by considering the calenders to be in * sync on January 1st 2016. */ secs = clock_ymdhms_to_secs(&dt); secs += (dt.dt_year - 2016 + (dt.dt_mon == 12 ? 1 : 0)) * 86400; tv->tv_sec = secs; tv->tv_usec = 0; return 0; } int rkpmic_settime(struct todr_chip_handle *handle, struct timeval *tv) { struct rkpmic_softc *sc = handle->cookie; struct clock_ymdhms dt; time_t secs; /* * Take care of the November 31st braindamage here as well. * Don't try to be clever, just do the conversion in two * steps, first taking care of November 31 in previous years, * and then taking care of days in December of the current * year. Decmber 1st turns into November 31st! */ secs = tv->tv_sec; clock_secs_to_ymdhms(secs, &dt); secs -= (dt.dt_year - 2016) * 86400; clock_secs_to_ymdhms(secs, &dt); if (dt.dt_mon == 12) { dt.dt_day--; if (dt.dt_day == 0) { dt.dt_mon = 11; dt.dt_day = 31; } } return rkpmic_clock_write(sc, &dt); } uint8_t rkpmic_reg_read(struct rkpmic_softc *sc, int reg) { uint8_t cmd = reg; uint8_t val; int error; iic_acquire_bus(sc->sc_tag, I2C_F_POLL); error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_addr, &cmd, sizeof cmd, &val, sizeof val, I2C_F_POLL); iic_release_bus(sc->sc_tag, I2C_F_POLL); if (error) { printf("%s: can't read register 0x%02x\n", sc->sc_dev.dv_xname, reg); val = 0xff; } return val; } void rkpmic_reg_write(struct rkpmic_softc *sc, int reg, uint8_t val) { uint8_t cmd = reg; int error; iic_acquire_bus(sc->sc_tag, I2C_F_POLL); error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_addr, &cmd, sizeof cmd, &val, sizeof val, I2C_F_POLL); iic_release_bus(sc->sc_tag, I2C_F_POLL); if (error) { printf("%s: can't write register 0x%02x\n", sc->sc_dev.dv_xname, reg); } } int rkpmic_clock_read(struct rkpmic_softc *sc, struct clock_ymdhms *dt) { uint8_t regs[RK80X_NRTC_REGS]; uint8_t cmd = RK80X_SECONDS; uint8_t status; int error; iic_acquire_bus(sc->sc_tag, I2C_F_POLL); error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_addr, &cmd, sizeof(cmd), regs, RK80X_NRTC_REGS, I2C_F_POLL); iic_release_bus(sc->sc_tag, I2C_F_POLL); if (error) { printf("%s: can't read RTC\n", sc->sc_dev.dv_xname); return error; } /* * Convert the RK80x's register values into something useable. */ dt->dt_sec = FROMBCD(regs[0]); dt->dt_min = FROMBCD(regs[1]); dt->dt_hour = FROMBCD(regs[2]); dt->dt_day = FROMBCD(regs[3]); dt->dt_mon = FROMBCD(regs[4]); dt->dt_year = FROMBCD(regs[5]) + 2000; /* Consider the time to be invalid if the POWER_UP bit is set. */ status = rkpmic_reg_read(sc, sc->sc_rtc_status_reg); if (status & RK80X_RTC_STATUS_POWER_UP) return EINVAL; return 0; } int rkpmic_clock_write(struct rkpmic_softc *sc, struct clock_ymdhms *dt) { uint8_t regs[RK80X_NRTC_REGS]; uint8_t cmd = RK80X_SECONDS; int error; /* * Convert our time representation into something the RK80x * can understand. */ regs[0] = TOBCD(dt->dt_sec); regs[1] = TOBCD(dt->dt_min); regs[2] = TOBCD(dt->dt_hour); regs[3] = TOBCD(dt->dt_day); regs[4] = TOBCD(dt->dt_mon); regs[5] = TOBCD(dt->dt_year - 2000); regs[6] = TOBCD(dt->dt_wday); /* Stop RTC such that we can write to it. */ rkpmic_reg_write(sc, sc->sc_rtc_ctrl_reg, RK80X_RTC_CTRL_STOP_RTC); iic_acquire_bus(sc->sc_tag, I2C_F_POLL); error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_addr, &cmd, sizeof(cmd), regs, RK80X_NRTC_REGS, I2C_F_POLL); iic_release_bus(sc->sc_tag, I2C_F_POLL); /* Restart RTC. */ rkpmic_reg_write(sc, sc->sc_rtc_ctrl_reg, 0); if (error) { printf("%s: can't write RTC\n", sc->sc_dev.dv_xname); return error; } /* Clear POWER_UP bit to indicate the time is now valid. */ rkpmic_reg_write(sc, sc->sc_rtc_status_reg, RK80X_RTC_STATUS_POWER_UP); return 0; }