/* $OpenBSD: adv.c,v 1.4 1998/11/17 06:08:15 downsj Exp $ */ /* $NetBSD: adv.c,v 1.6 1998/10/28 20:39:45 dante Exp $ */ /* * Generic driver for the Advanced Systems Inc. Narrow SCSI controllers * * Copyright (c) 1998 The NetBSD Foundation, Inc. * All rights reserved. * * Author: Baldassare Dante Profeta * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef DDB #define Debugger() panic("should call debugger here (adv.c)") #endif /* ! DDB */ /* #define ASC_DEBUG */ /******************************************************************************/ static void adv_enqueue __P((ASC_SOFTC *, struct scsi_xfer *, int)); static struct scsi_xfer *adv_dequeue __P((ASC_SOFTC *)); static int adv_alloc_ccbs __P((ASC_SOFTC *)); static int adv_create_ccbs __P((ASC_SOFTC *, ADV_CCB *, int)); static void adv_free_ccb __P((ASC_SOFTC *, ADV_CCB *)); static void adv_reset_ccb __P((ADV_CCB *)); static int adv_init_ccb __P((ASC_SOFTC *, ADV_CCB *)); static ADV_CCB *adv_get_ccb __P((ASC_SOFTC *, int)); static void adv_queue_ccb __P((ASC_SOFTC *, ADV_CCB *)); static void adv_start_ccbs __P((ASC_SOFTC *)); static u_int8_t *adv_alloc_overrunbuf __P((char *dvname, bus_dma_tag_t)); static int adv_scsi_cmd __P((struct scsi_xfer *)); static void advminphys __P((struct buf *)); static void adv_narrow_isr_callback __P((ASC_SOFTC *, ASC_QDONE_INFO *)); static int adv_poll __P((ASC_SOFTC *, struct scsi_xfer *, int)); static void adv_timeout __P((void *)); static void adv_watchdog __P((void *)); /******************************************************************************/ struct cfdriver adv_cd = { NULL, "adv", DV_DULL }; struct scsi_adapter adv_switch = { adv_scsi_cmd, /* called to start/enqueue a SCSI command */ advminphys, /* to limit the transfer to max device can do */ 0, /* IT SEEMS IT IS NOT USED YET */ 0, /* as above... */ }; /* the below structure is so we have a default dev struct for out link struct */ struct scsi_device adv_dev = { NULL, /* Use default error handler */ NULL, /* have a queue, served by this */ NULL, /* have no async handler */ NULL, /* Use default 'done' routine */ }; #define ADV_ABORT_TIMEOUT 2000 /* time to wait for abort (mSec) */ #define ADV_WATCH_TIMEOUT 1000 /* time to wait for watchdog (mSec) */ /******************************************************************************/ /* scsi_xfer queue routines */ /******************************************************************************/ /* * Insert a scsi_xfer into the software queue. We overload xs->free_list * to avoid having to allocate additional resources (since we're used * only during resource shortages anyhow. */ static void adv_enqueue(sc, xs, infront) ASC_SOFTC *sc; struct scsi_xfer *xs; int infront; { if (infront || sc->sc_queue.lh_first == NULL) { if (sc->sc_queue.lh_first == NULL) sc->sc_queuelast = xs; LIST_INSERT_HEAD(&sc->sc_queue, xs, free_list); return; } LIST_INSERT_AFTER(sc->sc_queuelast, xs, free_list); sc->sc_queuelast = xs; } /* * Pull a scsi_xfer off the front of the software queue. */ static struct scsi_xfer * adv_dequeue(sc) ASC_SOFTC *sc; { struct scsi_xfer *xs; xs = sc->sc_queue.lh_first; LIST_REMOVE(xs, free_list); if (sc->sc_queue.lh_first == NULL) sc->sc_queuelast = NULL; return (xs); } /******************************************************************************/ /* Control Blocks routines */ /******************************************************************************/ static int adv_alloc_ccbs(sc) ASC_SOFTC *sc; { bus_dma_segment_t seg; int error, rseg; /* * Allocate the control blocks. */ if ((error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct adv_control), NBPG, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) { printf("%s: unable to allocate control structures," " error = %d\n", sc->sc_dev.dv_xname, error); return (error); } if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, sizeof(struct adv_control), (caddr_t *) & sc->sc_control, BUS_DMA_NOWAIT | BUS_DMAMEM_NOSYNC)) != 0) { printf("%s: unable to map control structures, error = %d\n", sc->sc_dev.dv_xname, error); return (error); } /* * Create and load the DMA map used for the control blocks. */ if ((error = bus_dmamap_create(sc->sc_dmat, sizeof(struct adv_control), 1, sizeof(struct adv_control), 0, BUS_DMA_NOWAIT, &sc->sc_dmamap_control)) != 0) { printf("%s: unable to create control DMA map, error = %d\n", sc->sc_dev.dv_xname, error); return (error); } if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap_control, sc->sc_control, sizeof(struct adv_control), NULL, BUS_DMA_NOWAIT)) != 0) { printf("%s: unable to load control DMA map, error = %d\n", sc->sc_dev.dv_xname, error); return (error); } return (0); } /* * Create a set of ccbs and add them to the free list. Called once * by adv_init(). We return the number of CCBs successfully created. */ static int adv_create_ccbs(sc, ccbstore, count) ASC_SOFTC *sc; ADV_CCB *ccbstore; int count; { ADV_CCB *ccb; int i, error; bzero(ccbstore, sizeof(ADV_CCB) * count); for (i = 0; i < count; i++) { ccb = &ccbstore[i]; if ((error = adv_init_ccb(sc, ccb)) != 0) { printf("%s: unable to initialize ccb, error = %d\n", sc->sc_dev.dv_xname, error); return (i); } TAILQ_INSERT_TAIL(&sc->sc_free_ccb, ccb, chain); } return (i); } /* * A ccb is put onto the free list. */ static void adv_free_ccb(sc, ccb) ASC_SOFTC *sc; ADV_CCB *ccb; { int s; s = splbio(); adv_reset_ccb(ccb); TAILQ_INSERT_HEAD(&sc->sc_free_ccb, ccb, chain); /* * If there were none, wake anybody waiting for one to come free, * starting with queued entries. */ if (ccb->chain.tqe_next == 0) wakeup(&sc->sc_free_ccb); splx(s); } static void adv_reset_ccb(ccb) ADV_CCB *ccb; { ccb->flags = 0; } static int adv_init_ccb(sc, ccb) ASC_SOFTC *sc; ADV_CCB *ccb; { int error; /* * Create the DMA map for this CCB. */ error = bus_dmamap_create(sc->sc_dmat, (ASC_MAX_SG_LIST - 1) * PAGE_SIZE, ASC_MAX_SG_LIST, (ASC_MAX_SG_LIST - 1) * PAGE_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ccb->dmamap_xfer); if (error) { printf("%s: unable to create DMA map, error = %d\n", sc->sc_dev.dv_xname, error); return (error); } adv_reset_ccb(ccb); return (0); } /* * Get a free ccb * * If there are none, see if we can allocate a new one */ static ADV_CCB * adv_get_ccb(sc, flags) ASC_SOFTC *sc; int flags; { ADV_CCB *ccb = 0; int s; s = splbio(); /* * If we can and have to, sleep waiting for one to come free * but only if we can't allocate a new one. */ for (;;) { ccb = sc->sc_free_ccb.tqh_first; if (ccb) { TAILQ_REMOVE(&sc->sc_free_ccb, ccb, chain); break; } if ((flags & SCSI_NOSLEEP) != 0) goto out; tsleep(&sc->sc_free_ccb, PRIBIO, "advccb", 0); } ccb->flags |= CCB_ALLOC; out: splx(s); return (ccb); } /* * Queue a CCB to be sent to the controller, and send it if possible. */ static void adv_queue_ccb(sc, ccb) ASC_SOFTC *sc; ADV_CCB *ccb; { TAILQ_INSERT_TAIL(&sc->sc_waiting_ccb, ccb, chain); adv_start_ccbs(sc); } static void adv_start_ccbs(sc) ASC_SOFTC *sc; { ADV_CCB *ccb; while ((ccb = sc->sc_waiting_ccb.tqh_first) != NULL) { if (ccb->flags & CCB_WATCHDOG) untimeout(adv_watchdog, ccb); if (AscExeScsiQueue(sc, &ccb->scsiq) == ASC_BUSY) { ccb->flags |= CCB_WATCHDOG; timeout(adv_watchdog, ccb, (ADV_WATCH_TIMEOUT * hz) / 1000); break; } TAILQ_REMOVE(&sc->sc_waiting_ccb, ccb, chain); if ((ccb->xs->flags & SCSI_POLL) == 0) timeout(adv_timeout, ccb, (ccb->timeout * hz) / 1000); } } /******************************************************************************/ /* DMA able memory allocation routines */ /******************************************************************************/ /* * Allocate a DMA able memory for overrun_buffer. * This memory can be safely shared among all the AdvanSys boards. */ u_int8_t * adv_alloc_overrunbuf(dvname, dmat) char *dvname; bus_dma_tag_t dmat; { static u_int8_t *overrunbuf = NULL; bus_dmamap_t ovrbuf_dmamap; bus_dma_segment_t seg; int rseg, error; /* * if an overrun buffer has been already allocated don't allocate it * again. Instead return the address of the allocated buffer. */ if (overrunbuf) return (overrunbuf); if ((error = bus_dmamem_alloc(dmat, ASC_OVERRUN_BSIZE, NBPG, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) { printf("%s: unable to allocate overrun buffer, error = %d\n", dvname, error); return (0); } if ((error = bus_dmamem_map(dmat, &seg, rseg, ASC_OVERRUN_BSIZE, (caddr_t *) & overrunbuf, BUS_DMA_NOWAIT | BUS_DMAMEM_NOSYNC)) != 0) { printf("%s: unable to map overrun buffer, error = %d\n", dvname, error); bus_dmamem_free(dmat, &seg, 1); return (0); } if ((error = bus_dmamap_create(dmat, ASC_OVERRUN_BSIZE, 1, ASC_OVERRUN_BSIZE, 0, BUS_DMA_NOWAIT, &ovrbuf_dmamap)) != 0) { printf("%s: unable to create overrun buffer DMA map," " error = %d\n", dvname, error); bus_dmamem_unmap(dmat, overrunbuf, ASC_OVERRUN_BSIZE); bus_dmamem_free(dmat, &seg, 1); return (0); } if ((error = bus_dmamap_load(dmat, ovrbuf_dmamap, overrunbuf, ASC_OVERRUN_BSIZE, NULL, BUS_DMA_NOWAIT)) != 0) { printf("%s: unable to load overrun buffer DMA map," " error = %d\n", dvname, error); bus_dmamap_destroy(dmat, ovrbuf_dmamap); bus_dmamem_unmap(dmat, overrunbuf, ASC_OVERRUN_BSIZE); bus_dmamem_free(dmat, &seg, 1); return (0); } return (overrunbuf); } /******************************************************************************/ /* SCSI layer interfacing routines */ /******************************************************************************/ int adv_init(sc) ASC_SOFTC *sc; { int warn; if (!AscFindSignature(sc->sc_iot, sc->sc_ioh)) panic("adv_init: adv_find_signature failed"); /* * Read the board configuration */ AscInitASC_SOFTC(sc); warn = AscInitFromEEP(sc); if (warn) { printf("%s -get: ", sc->sc_dev.dv_xname); switch (warn) { case -1: printf("Chip is not halted\n"); break; case -2: printf("Couldn't get MicroCode Start" " address\n"); break; case ASC_WARN_IO_PORT_ROTATE: printf("I/O port address modified\n"); break; case ASC_WARN_AUTO_CONFIG: printf("I/O port increment switch enabled\n"); break; case ASC_WARN_EEPROM_CHKSUM: printf("EEPROM checksum error\n"); break; case ASC_WARN_IRQ_MODIFIED: printf("IRQ modified\n"); break; case ASC_WARN_CMD_QNG_CONFLICT: printf("tag queuing enabled w/o disconnects\n"); break; default: printf("unknown warning %d\n", warn); } } if (sc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT) sc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT; /* * Modify the board configuration */ warn = AscInitFromASC_SOFTC(sc); if (warn) { printf("%s -set: ", sc->sc_dev.dv_xname); switch (warn) { case ASC_WARN_CMD_QNG_CONFLICT: printf("tag queuing enabled w/o disconnects\n"); break; case ASC_WARN_AUTO_CONFIG: printf("I/O port increment switch enabled\n"); break; default: printf("unknown warning %d\n", warn); } } sc->isr_callback = (ulong) adv_narrow_isr_callback; if (!(sc->overrun_buf = adv_alloc_overrunbuf(sc->sc_dev.dv_xname, sc->sc_dmat))) { return (1); } return (0); } void adv_attach(sc) ASC_SOFTC *sc; { int i, error; /* * Initialize board RISC chip and enable interrupts. */ switch (AscInitDriver(sc)) { case 0: /* AllOK */ break; case 1: panic("%s: bad signature", sc->sc_dev.dv_xname); break; case 2: panic("%s: unable to load MicroCode", sc->sc_dev.dv_xname); break; case 3: panic("%s: unable to initialize MicroCode", sc->sc_dev.dv_xname); break; default: panic("%s: unable to initialize board RISC chip", sc->sc_dev.dv_xname); } /* * fill in the prototype scsi_link. */ sc->sc_link.adapter_softc = sc; sc->sc_link.adapter_target = sc->chip_scsi_id; sc->sc_link.adapter = &adv_switch; sc->sc_link.device = &adv_dev; sc->sc_link.openings = 4; sc->sc_link.adapter_buswidth = 7; TAILQ_INIT(&sc->sc_free_ccb); TAILQ_INIT(&sc->sc_waiting_ccb); LIST_INIT(&sc->sc_queue); /* * Allocate the Control Blocks. */ error = adv_alloc_ccbs(sc); if (error) return; /* (error) */ ; /* * Create and initialize the Control Blocks. */ i = adv_create_ccbs(sc, sc->sc_control->ccbs, ADV_MAX_CCB); if (i == 0) { printf("%s: unable to create control blocks\n", sc->sc_dev.dv_xname); return; /* (ENOMEM) */ ; } else if (i != ADV_MAX_CCB) { printf("%s: WARNING: only %d of %d control blocks created\n", sc->sc_dev.dv_xname, i, ADV_MAX_CCB); } config_found(&sc->sc_dev, &sc->sc_link, scsiprint); } static void advminphys(bp) struct buf *bp; { if (bp->b_bcount > ((ASC_MAX_SG_LIST - 1) * PAGE_SIZE)) bp->b_bcount = ((ASC_MAX_SG_LIST - 1) * PAGE_SIZE); minphys(bp); } /* * start a scsi operation given the command and the data address. Also needs * the unit, target and lu. */ static int adv_scsi_cmd(xs) struct scsi_xfer *xs; { struct scsi_link *sc_link = xs->sc_link; ASC_SOFTC *sc = sc_link->adapter_softc; bus_dma_tag_t dmat = sc->sc_dmat; ADV_CCB *ccb; int s, flags, error, nsegs; int fromqueue = 1, dontqueue = 0; s = splbio(); /* protect the queue */ /* * If we're running the queue from adv_done(), we've been * called with the first queue entry as our argument. */ if (xs == sc->sc_queue.lh_first) { xs = adv_dequeue(sc); fromqueue = 1; } else { /* Polled requests can't be queued for later. */ dontqueue = xs->flags & SCSI_POLL; /* * If there are jobs in the queue, run them first. */ if (sc->sc_queue.lh_first != NULL) { /* * If we can't queue, we have to abort, since * we have to preserve order. */ if (dontqueue) { splx(s); xs->error = XS_DRIVER_STUFFUP; return (TRY_AGAIN_LATER); } /* * Swap with the first queue entry. */ adv_enqueue(sc, xs, 0); xs = adv_dequeue(sc); fromqueue = 1; } } /* * get a ccb to use. If the transfer * is from a buf (possibly from interrupt time) * then we can't allow it to sleep */ flags = xs->flags; if ((ccb = adv_get_ccb(sc, flags)) == NULL) { /* * If we can't queue, we lose. */ if (dontqueue) { splx(s); xs->error = XS_DRIVER_STUFFUP; return (TRY_AGAIN_LATER); } /* * Stuff ourselves into the queue, in front * if we came off in the first place. */ adv_enqueue(sc, xs, fromqueue); splx(s); return (SUCCESSFULLY_QUEUED); } splx(s); /* done playing with the queue */ ccb->xs = xs; ccb->timeout = xs->timeout; /* * Build up the request */ memset(&ccb->scsiq, 0, sizeof(ASC_SCSI_Q)); ccb->scsiq.q2.ccb_ptr = (ulong) ccb; ccb->scsiq.cdbptr = &xs->cmd->opcode; ccb->scsiq.q2.cdb_len = xs->cmdlen; ccb->scsiq.q1.target_id = ASC_TID_TO_TARGET_ID(sc_link->target); ccb->scsiq.q1.target_lun = sc_link->lun; ccb->scsiq.q2.target_ix = ASC_TIDLUN_TO_IX(sc_link->target, sc_link->lun); ccb->scsiq.q1.sense_addr = sc->sc_dmamap_control->dm_segs[0].ds_addr + ADV_CCB_OFF(ccb) + offsetof(struct adv_ccb, scsi_sense); ccb->scsiq.q1.sense_len = sizeof(struct scsi_sense_data); /* * If there are any outstanding requests for the current target, * then every 255th request send an ORDERED request. This heuristic * tries to retain the benefit of request sorting while preventing * request starvation. 255 is the max number of tags or pending commands * a device may have outstanding. */ sc->reqcnt[sc_link->target]++; if ((sc->reqcnt[sc_link->target] > 0) && (sc->reqcnt[sc_link->target] % 255) == 0) { ccb->scsiq.q2.tag_code = M2_QTAG_MSG_ORDERED; } else { ccb->scsiq.q2.tag_code = M2_QTAG_MSG_SIMPLE; } if (xs->datalen) { /* * Map the DMA transfer. */ #ifdef TFS if (flags & SCSI_DATA_UIO) { error = bus_dmamap_load_uio(dmat, ccb->dmamap_xfer, (struct uio *) xs->data, (flags & SCSI_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK); } else #endif /* TFS */ { error = bus_dmamap_load(dmat, ccb->dmamap_xfer, xs->data, xs->datalen, NULL, (flags & SCSI_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK); } if (error) { if (error == EFBIG) { printf("%s: adv_scsi_cmd, more than %d dma" " segments\n", sc->sc_dev.dv_xname, ASC_MAX_SG_LIST); } else { printf("%s: adv_scsi_cmd, error %d loading" " dma map\n", sc->sc_dev.dv_xname, error); } xs->error = XS_DRIVER_STUFFUP; adv_free_ccb(sc, ccb); return (COMPLETE); } bus_dmamap_sync(dmat, ccb->dmamap_xfer, (flags & SCSI_DATA_IN) ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE); memset(&ccb->sghead, 0, sizeof(ASC_SG_HEAD)); for (nsegs = 0; nsegs < ccb->dmamap_xfer->dm_nsegs; nsegs++) { ccb->sghead.sg_list[nsegs].addr = ccb->dmamap_xfer->dm_segs[nsegs].ds_addr; ccb->sghead.sg_list[nsegs].bytes = ccb->dmamap_xfer->dm_segs[nsegs].ds_len; } ccb->sghead.entry_cnt = ccb->scsiq.q1.sg_queue_cnt = ccb->dmamap_xfer->dm_nsegs; ccb->scsiq.q1.cntl |= ASC_QC_SG_HEAD; ccb->scsiq.sg_head = &ccb->sghead; ccb->scsiq.q1.data_addr = 0; ccb->scsiq.q1.data_cnt = 0; } else { /* * No data xfer, use non S/G values. */ ccb->scsiq.q1.data_addr = 0; ccb->scsiq.q1.data_cnt = 0; } #ifdef ASC_DEBUG printf("id = %d, lun = %d, cmd = %d, ccb = 0x%lX \n", sc_link->scsipi_scsi.target, sc_link->scsipi_scsi.lun, xs->cmd->opcode, (unsigned long)ccb); #endif s = splbio(); adv_queue_ccb(sc, ccb); splx(s); /* * Usually return SUCCESSFULLY QUEUED */ if ((flags & SCSI_POLL) == 0) return (SUCCESSFULLY_QUEUED); /* * If we can't use interrupts, poll on completion */ if (adv_poll(sc, xs, ccb->timeout)) { adv_timeout(ccb); if (adv_poll(sc, xs, ccb->timeout)) adv_timeout(ccb); } return (COMPLETE); } int adv_intr(arg) void *arg; { ASC_SOFTC *sc = arg; struct scsi_xfer *xs; #ifdef ASC_DEBUG int int_pend = FALSE; if(ASC_IS_INT_PENDING(sc->sc_iot, sc->sc_ioh)) { int_pend = TRUE; printf("ISR - "); } #endif AscISR(sc); #ifdef ASC_DEBUG if(int_pend) printf("\n"); #endif /* * If there are queue entries in the software queue, try to * run the first one. We should be more or less guaranteed * to succeed, since we just freed a CCB. * * NOTE: adv_scsi_cmd() relies on our calling it with * the first entry in the queue. */ if ((xs = sc->sc_queue.lh_first) != NULL) (void) adv_scsi_cmd(xs); return (1); } /* * Poll a particular unit, looking for a particular xs */ static int adv_poll(sc, xs, count) ASC_SOFTC *sc; struct scsi_xfer *xs; int count; { /* timeouts are in msec, so we loop in 1000 usec cycles */ while (count) { adv_intr(sc); if (xs->flags & ITSDONE) return (0); delay(1000); /* only happens in boot so ok */ count--; } return (1); } static void adv_timeout(arg) void *arg; { ADV_CCB *ccb = arg; struct scsi_xfer *xs = ccb->xs; struct scsi_link *sc_link = xs->sc_link; ASC_SOFTC *sc = sc_link->adapter_softc; int s; sc_print_addr(sc_link); printf("timed out"); s = splbio(); /* * If it has been through before, then a previous abort has failed, * don't try abort again, reset the bus instead. */ if (ccb->flags & CCB_ABORT) { /* abort timed out */ printf(" AGAIN. Resetting Bus\n"); /* Lets try resetting the bus! */ if (AscResetBus(sc) == ASC_ERROR) { ccb->timeout = sc->scsi_reset_wait; adv_queue_ccb(sc, ccb); } } else { /* abort the operation that has timed out */ printf("\n"); AscAbortCCB(sc, (u_int32_t) ccb); ccb->xs->error = XS_TIMEOUT; ccb->timeout = ADV_ABORT_TIMEOUT; ccb->flags |= CCB_ABORT; adv_queue_ccb(sc, ccb); } splx(s); } static void adv_watchdog(arg) void *arg; { ADV_CCB *ccb = arg; struct scsi_xfer *xs = ccb->xs; struct scsi_link *sc_link = xs->sc_link; ASC_SOFTC *sc = sc_link->adapter_softc; int s; s = splbio(); ccb->flags &= ~CCB_WATCHDOG; adv_start_ccbs(sc); splx(s); } /******************************************************************************/ /* NARROW and WIDE boards Interrupt callbacks */ /******************************************************************************/ /* * adv_narrow_isr_callback() - Second Level Interrupt Handler called by AscISR() * * Interrupt callback function for the Narrow SCSI Asc Library. */ static void adv_narrow_isr_callback(sc, qdonep) ASC_SOFTC *sc; ASC_QDONE_INFO *qdonep; { bus_dma_tag_t dmat = sc->sc_dmat; ADV_CCB *ccb = (ADV_CCB *) qdonep->d2.ccb_ptr; struct scsi_xfer *xs = ccb->xs; struct scsi_sense_data *s1, *s2; #ifdef ASC_DEBUG printf(" - ccb=0x%lx, id=%d, lun=%d, cmd=%d, ", (unsigned long)ccb, xs->sc_link->scsipi_scsi.target, xs->sc_link->scsipi_scsi.lun, xs->cmd->opcode); #endif untimeout(adv_timeout, ccb); /* * If we were a data transfer, unload the map that described * the data buffer. */ if (xs->datalen) { bus_dmamap_sync(dmat, ccb->dmamap_xfer, (xs->flags & SCSI_DATA_IN) ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(dmat, ccb->dmamap_xfer); } if ((ccb->flags & CCB_ALLOC) == 0) { printf("%s: exiting ccb not allocated!\n", sc->sc_dev.dv_xname); Debugger(); return; } /* * 'qdonep' contains the command's ending status. */ #ifdef ASC_DEBUG printf("d_s=%d, h_s=%d", qdonep->d3.done_stat, qdonep->d3.host_stat); #endif switch (qdonep->d3.done_stat) { case ASC_QD_NO_ERROR: switch (qdonep->d3.host_stat) { case ASC_QHSTA_NO_ERROR: xs->error = XS_NOERROR; xs->resid = 0; break; default: /* QHSTA error occurred */ xs->error = XS_DRIVER_STUFFUP; break; } /* * If an INQUIRY command completed successfully, then call * the AscInquiryHandling() function to patch bugged boards. */ if ((xs->cmd->opcode == SCSICMD_Inquiry) && (xs->sc_link->lun == 0) && (xs->datalen - qdonep->remain_bytes) >= 8) { AscInquiryHandling(sc, xs->sc_link->target & 0x7, (ASC_SCSI_INQUIRY *) xs->data); } break; case ASC_QD_WITH_ERROR: switch (qdonep->d3.host_stat) { case ASC_QHSTA_NO_ERROR: if (qdonep->d3.scsi_stat == SS_CHK_CONDITION) { s1 = &ccb->scsi_sense; s2 = &xs->sense; *s2 = *s1; xs->error = XS_SENSE; } else { xs->error = XS_DRIVER_STUFFUP; } break; default: /* QHSTA error occurred */ xs->error = XS_DRIVER_STUFFUP; break; } break; case ASC_QD_ABORTED_BY_HOST: default: xs->error = XS_DRIVER_STUFFUP; break; } adv_free_ccb(sc, ccb); xs->flags |= ITSDONE; scsi_done(xs); }