/* $OpenBSD: advlib.c,v 1.9 2003/10/21 18:58:48 jmc Exp $ */ /* $NetBSD: advlib.c,v 1.7 1998/10/28 20:39:46 dante Exp $ */ /* * Low level routines for the Advanced Systems Inc. SCSI controllers chips * * Copyright (c) 1998 The NetBSD Foundation, Inc. * All rights reserved. * * Author: Baldassare Dante Profeta * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Ported from: */ /* * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters * * Copyright (c) 1995-1998 Advanced System Products, Inc. * All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that redistributions of source * code retain the above copyright notice and this comment without * modification. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* #define ASC_DEBUG */ /******************************************************************************/ /* Static functions */ /******************************************************************************/ /* Initialization routines */ static u_int32_t AscLoadMicroCode(bus_space_tag_t, bus_space_handle_t, u_int16_t, u_int16_t *, u_int16_t); static void AscInitLram(ASC_SOFTC *); static void AscInitQLinkVar(ASC_SOFTC *); static int AscResetChipAndScsiBus(bus_space_tag_t, bus_space_handle_t); static u_int16_t AscGetChipBusType(bus_space_tag_t, bus_space_handle_t); /* Chip register routines */ static void AscSetBank(bus_space_tag_t, bus_space_handle_t, u_int8_t); /* RISC Chip routines */ static int AscStartChip(bus_space_tag_t, bus_space_handle_t); static int AscStopChip(bus_space_tag_t, bus_space_handle_t); static u_int8_t AscSetChipScsiID(bus_space_tag_t, bus_space_handle_t, u_int8_t); static u_int8_t AscGetChipScsiCtrl(bus_space_tag_t, bus_space_handle_t); static u_int8_t AscGetChipVersion(bus_space_tag_t, bus_space_handle_t, u_int16_t); static int AscSetRunChipSynRegAtID(bus_space_tag_t, bus_space_handle_t, u_int8_t, u_int8_t); static int AscSetChipSynRegAtID(bus_space_tag_t, bus_space_handle_t, u_int8_t, u_int8_t); static int AscHostReqRiscHalt(bus_space_tag_t, bus_space_handle_t); static int AscIsChipHalted(bus_space_tag_t, bus_space_handle_t); static void AscSetChipIH(bus_space_tag_t, bus_space_handle_t, u_int16_t); /* Lram routines */ static u_int8_t AscReadLramByte(bus_space_tag_t, bus_space_handle_t, u_int16_t); static void AscWriteLramByte(bus_space_tag_t, bus_space_handle_t, u_int16_t, u_int8_t); static u_int16_t AscReadLramWord(bus_space_tag_t, bus_space_handle_t, u_int16_t); static void AscWriteLramWord(bus_space_tag_t, bus_space_handle_t, u_int16_t, u_int16_t); static u_int32_t AscReadLramDWord(bus_space_tag_t, bus_space_handle_t, u_int16_t); static void AscWriteLramDWord(bus_space_tag_t, bus_space_handle_t, u_int16_t, u_int32_t); static void AscMemWordSetLram(bus_space_tag_t, bus_space_handle_t, u_int16_t, u_int16_t, int); static void AscMemWordCopyToLram(bus_space_tag_t, bus_space_handle_t, u_int16_t, u_int16_t *, int); static void AscMemWordCopyFromLram(bus_space_tag_t, bus_space_handle_t, u_int16_t, u_int16_t *, int); static void AscMemDWordCopyToLram(bus_space_tag_t, bus_space_handle_t, u_int16_t, u_int32_t *, int); static u_int32_t AscMemSumLramWord(bus_space_tag_t, bus_space_handle_t, u_int16_t, int); static int AscTestExternalLram(bus_space_tag_t, bus_space_handle_t); /* MicroCode routines */ static u_int16_t AscInitMicroCodeVar(ASC_SOFTC *); static u_int32_t AscGetOnePhyAddr(ASC_SOFTC *, u_int8_t *, u_int32_t); static u_int32_t AscGetSGList(ASC_SOFTC *, u_int8_t *, u_int32_t, ASC_SG_HEAD *); /* EEProm routines */ static int AscWriteEEPCmdReg(bus_space_tag_t, bus_space_handle_t, u_int8_t); static int AscWriteEEPDataReg(bus_space_tag_t, bus_space_handle_t, u_int16_t); static void AscWaitEEPRead(void); static void AscWaitEEPWrite(void); static u_int16_t AscReadEEPWord(bus_space_tag_t, bus_space_handle_t, u_int8_t); static u_int16_t AscWriteEEPWord(bus_space_tag_t, bus_space_handle_t, u_int8_t, u_int16_t); static u_int16_t AscGetEEPConfig(bus_space_tag_t, bus_space_handle_t, ASCEEP_CONFIG *, u_int16_t); static int AscSetEEPConfig(bus_space_tag_t, bus_space_handle_t, ASCEEP_CONFIG *, u_int16_t); static int AscSetEEPConfigOnce(bus_space_tag_t, bus_space_handle_t, ASCEEP_CONFIG *, u_int16_t); #ifdef ASC_DEBUG static void AscPrintEEPConfig(ASCEEP_CONFIG *, u_int16_t); #endif /* Interrupt routines */ static void AscIsrChipHalted(ASC_SOFTC *); static int AscIsrQDone(ASC_SOFTC *); static int AscWaitTixISRDone(ASC_SOFTC *, u_int8_t); static int AscWaitISRDone(ASC_SOFTC *); static u_int8_t _AscCopyLramScsiDoneQ(bus_space_tag_t, bus_space_handle_t, u_int16_t, ASC_QDONE_INFO *, u_int32_t); static void AscGetQDoneInfo(bus_space_tag_t, bus_space_handle_t, u_int16_t, ASC_QDONE_INFO *); static void AscToggleIRQAct(bus_space_tag_t, bus_space_handle_t); static void AscDisableInterrupt(bus_space_tag_t, bus_space_handle_t); static void AscEnableInterrupt(bus_space_tag_t, bus_space_handle_t); static u_int8_t AscGetChipIRQ(bus_space_tag_t, bus_space_handle_t, u_int16_t); static u_int8_t AscSetChipIRQ(bus_space_tag_t, bus_space_handle_t, u_int8_t, u_int16_t); static void AscAckInterrupt(bus_space_tag_t, bus_space_handle_t); static u_int32_t AscGetMaxDmaCount(u_int16_t); static u_int16_t AscGetIsaDmaChannel(bus_space_tag_t, bus_space_handle_t); static u_int16_t AscSetIsaDmaChannel(bus_space_tag_t, bus_space_handle_t, u_int16_t); static u_int8_t AscGetIsaDmaSpeed(bus_space_tag_t, bus_space_handle_t); static u_int8_t AscSetIsaDmaSpeed(bus_space_tag_t, bus_space_handle_t, u_int8_t); /* Messages routines */ static void AscHandleExtMsgIn(ASC_SOFTC *, u_int16_t, u_int8_t, ASC_SCSI_BIT_ID_TYPE, int, u_int8_t); static u_int8_t AscMsgOutSDTR(ASC_SOFTC *, u_int8_t, u_int8_t); /* SDTR routines */ static void AscSetChipSDTR(bus_space_tag_t, bus_space_handle_t, u_int8_t, u_int8_t); static u_int8_t AscCalSDTRData(ASC_SOFTC *, u_int8_t, u_int8_t); static u_int8_t AscGetSynPeriodIndex(ASC_SOFTC *, u_int8_t); /* Queue routines */ static int AscSendScsiQueue(ASC_SOFTC *, ASC_SCSI_Q *, u_int8_t); static int AscSgListToQueue(int); static u_int AscGetNumOfFreeQueue(ASC_SOFTC *, u_int8_t, u_int8_t); static int AscPutReadyQueue(ASC_SOFTC *, ASC_SCSI_Q *, u_int8_t); static void AscPutSCSIQ(bus_space_tag_t, bus_space_handle_t, u_int16_t, ASC_SCSI_Q *); static int AscPutReadySgListQueue(ASC_SOFTC *, ASC_SCSI_Q *, u_int8_t); static u_int8_t AscAllocFreeQueue(bus_space_tag_t, bus_space_handle_t, u_int8_t); static u_int8_t AscAllocMultipleFreeQueue(bus_space_tag_t, bus_space_handle_t, u_int8_t, u_int8_t); static int AscStopQueueExe(bus_space_tag_t, bus_space_handle_t); static void AscStartQueueExe(bus_space_tag_t, bus_space_handle_t); static void AscCleanUpBusyQueue(bus_space_tag_t, bus_space_handle_t); static int _AscWaitQDone(bus_space_tag_t, bus_space_handle_t, ASC_SCSI_Q *); static int AscCleanUpDiscQueue(bus_space_tag_t, bus_space_handle_t); /* Abort and Reset CCB routines */ static int AscRiscHaltedAbortCCB(ASC_SOFTC *, u_int32_t); static int AscRiscHaltedAbortTIX(ASC_SOFTC *, u_int8_t); /* Error Handling routines */ static int AscSetLibErrorCode(ASC_SOFTC *, u_int16_t); /* Handle bugged borads routines */ static int AscTagQueuingSafe(ASC_SCSI_INQUIRY *); static void AscAsyncFix(ASC_SOFTC *, u_int8_t, ASC_SCSI_INQUIRY *); /* Miscellaneous routines */ static int AscCompareString(u_char *, u_char *, int); /* Device oriented routines */ static int DvcEnterCritical(void); static void DvcLeaveCritical(int); static void DvcSleepMilliSecond(u_int32_t); //static void DvcDelayMicroSecond(u_int32_t); static void DvcDelayNanoSecond(u_int32_t); /******************************************************************************/ /* Initialization routines */ /******************************************************************************/ /* * This function perform the following steps: * - initialize ASC_SOFTC structure with defaults values. * - inquire board registers to know what kind of board it is. * - keep track of bugged borads. */ void AscInitASC_SOFTC(sc) ASC_SOFTC *sc; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; int i; u_int8_t chip_version; ASC_SET_CHIP_CONTROL(iot, ioh, ASC_CC_HALT); ASC_SET_CHIP_STATUS(iot, ioh, 0); sc->bug_fix_cntl = 0; sc->pci_fix_asyn_xfer = 0; sc->pci_fix_asyn_xfer_always = 0; sc->sdtr_done = 0; sc->cur_total_qng = 0; sc->last_q_shortage = 0; sc->use_tagged_qng = 0; sc->unit_not_ready = 0; sc->queue_full_or_busy = 0; sc->host_init_sdtr_index = 0; sc->can_tagged_qng = 0; sc->cmd_qng_enabled = 0; sc->dvc_cntl = ASC_DEF_DVC_CNTL; sc->init_sdtr = 0; sc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG; sc->scsi_reset_wait = 3; sc->start_motor = ASC_SCSI_WIDTH_BIT_SET; sc->max_dma_count = AscGetMaxDmaCount(sc->bus_type); sc->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET; sc->disc_enable = ASC_SCSI_WIDTH_BIT_SET; sc->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID; sc->lib_serial_no = ASC_LIB_SERIAL_NUMBER; sc->lib_version = (ASC_LIB_VERSION_MAJOR << 8) | ASC_LIB_VERSION_MINOR; chip_version = AscGetChipVersion(iot, ioh, sc->bus_type); sc->chip_version = chip_version; if ((sc->bus_type & ASC_IS_PCI) && (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) { sc->bus_type = ASC_IS_PCI_ULTRA; sc->sdtr_period_tbl[0] = SYN_ULTRA_XFER_NS_0; sc->sdtr_period_tbl[1] = SYN_ULTRA_XFER_NS_1; sc->sdtr_period_tbl[2] = SYN_ULTRA_XFER_NS_2; sc->sdtr_period_tbl[3] = SYN_ULTRA_XFER_NS_3; sc->sdtr_period_tbl[4] = SYN_ULTRA_XFER_NS_4; sc->sdtr_period_tbl[5] = SYN_ULTRA_XFER_NS_5; sc->sdtr_period_tbl[6] = SYN_ULTRA_XFER_NS_6; sc->sdtr_period_tbl[7] = SYN_ULTRA_XFER_NS_7; sc->sdtr_period_tbl[8] = SYN_ULTRA_XFER_NS_8; sc->sdtr_period_tbl[9] = SYN_ULTRA_XFER_NS_9; sc->sdtr_period_tbl[10] = SYN_ULTRA_XFER_NS_10; sc->sdtr_period_tbl[11] = SYN_ULTRA_XFER_NS_11; sc->sdtr_period_tbl[12] = SYN_ULTRA_XFER_NS_12; sc->sdtr_period_tbl[13] = SYN_ULTRA_XFER_NS_13; sc->sdtr_period_tbl[14] = SYN_ULTRA_XFER_NS_14; sc->sdtr_period_tbl[15] = SYN_ULTRA_XFER_NS_15; sc->max_sdtr_index = 15; if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) ASC_SET_EXTRA_CONTROL(iot, ioh, (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE)); else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) ASC_SET_EXTRA_CONTROL(iot, ioh, (SEC_ACTIVE_NEGATE | SEC_ENABLE_FILTER)); } else { sc->sdtr_period_tbl[0] = SYN_XFER_NS_0; sc->sdtr_period_tbl[1] = SYN_XFER_NS_1; sc->sdtr_period_tbl[2] = SYN_XFER_NS_2; sc->sdtr_period_tbl[3] = SYN_XFER_NS_3; sc->sdtr_period_tbl[4] = SYN_XFER_NS_4; sc->sdtr_period_tbl[5] = SYN_XFER_NS_5; sc->sdtr_period_tbl[6] = SYN_XFER_NS_6; sc->sdtr_period_tbl[7] = SYN_XFER_NS_7; sc->max_sdtr_index = 7; } if (sc->bus_type == ASC_IS_PCI) ASC_SET_EXTRA_CONTROL(iot, ioh, (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE)); sc->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED; if (AscGetChipBusType(iot, ioh) == ASC_IS_ISAPNP) { ASC_SET_CHIP_IFC(iot, ioh, ASC_IFC_INIT_DEFAULT); sc->bus_type = ASC_IS_ISAPNP; } if ((sc->bus_type & ASC_IS_ISA) != 0) sc->isa_dma_channel = AscGetIsaDmaChannel(iot, ioh); for (i = 0; i <= ASC_MAX_TID; i++) { sc->cur_dvc_qng[i] = 0; sc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG; sc->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG; } } /* * This function initialize some ASC_SOFTC fields with values read from * on-board EEProm. */ u_int16_t AscInitFromEEP(sc) ASC_SOFTC *sc; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; ASCEEP_CONFIG eep_config_buf; ASCEEP_CONFIG *eep_config; u_int16_t chksum; u_int16_t warn_code; u_int16_t cfg_msw, cfg_lsw; int i; int write_eep = 0; warn_code = 0; AscWriteLramWord(iot, ioh, ASCV_HALTCODE_W, 0x00FE); AscStopQueueExe(iot, ioh); if ((AscStopChip(iot, ioh) == FALSE) || (AscGetChipScsiCtrl(iot, ioh) != 0)) { AscResetChipAndScsiBus(iot, ioh); DvcSleepMilliSecond(sc->scsi_reset_wait * 1000); } if (AscIsChipHalted(iot, ioh) == FALSE) return (-1); ASC_SET_PC_ADDR(iot, ioh, ASC_MCODE_START_ADDR); if (ASC_GET_PC_ADDR(iot, ioh) != ASC_MCODE_START_ADDR) return (-2); eep_config = &eep_config_buf; cfg_msw = ASC_GET_CHIP_CFG_MSW(iot, ioh); cfg_lsw = ASC_GET_CHIP_CFG_LSW(iot, ioh); if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) { cfg_msw &= (~(ASC_CFG_MSW_CLR_MASK)); warn_code |= ASC_WARN_CFG_MSW_RECOVER; ASC_SET_CHIP_CFG_MSW(iot, ioh, cfg_msw); } chksum = AscGetEEPConfig(iot, ioh, eep_config, sc->bus_type); #ifdef ASC_DEBUG AscPrintEEPConfig(eep_config, chksum); #endif if (chksum == 0) chksum = 0xAA55; if (ASC_GET_CHIP_STATUS(iot, ioh) & ASC_CSW_AUTO_CONFIG) { warn_code |= ASC_WARN_AUTO_CONFIG; if (sc->chip_version == 3) { if (eep_config->cfg_lsw != cfg_lsw) { warn_code |= ASC_WARN_EEPROM_RECOVER; eep_config->cfg_lsw = ASC_GET_CHIP_CFG_LSW(iot, ioh); } if (eep_config->cfg_msw != cfg_msw) { warn_code |= ASC_WARN_EEPROM_RECOVER; eep_config->cfg_msw = ASC_GET_CHIP_CFG_MSW(iot, ioh); } } } eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON; if (chksum != eep_config->chksum) { if (AscGetChipVersion(iot, ioh, sc->bus_type) == ASC_CHIP_VER_PCI_ULTRA_3050) { eep_config->init_sdtr = 0xFF; eep_config->disc_enable = 0xFF; eep_config->start_motor = 0xFF; eep_config->use_cmd_qng = 0; eep_config->max_total_qng = 0xF0; eep_config->max_tag_qng = 0x20; eep_config->cntl = 0xBFFF; eep_config->chip_scsi_id = 7; eep_config->no_scam = 0; eep_config->adapter_info[0] = 0; eep_config->adapter_info[1] = 0; eep_config->adapter_info[2] = 0; eep_config->adapter_info[3] = 0; #if BYTE_ORDER == BIG_ENDIAN eep_config->adapter_info[5] = 0; /* Indicate EEPROM-less board. */ eep_config->adapter_info[4] = 0xBB; #else eep_config->adapter_info[4] = 0; /* Indicate EEPROM-less board. */ eep_config->adapter_info[5] = 0xBB; #endif } else { write_eep = 1; warn_code |= ASC_WARN_EEPROM_CHKSUM; } } sc->sdtr_enable = eep_config->init_sdtr; sc->disc_enable = eep_config->disc_enable; sc->cmd_qng_enabled = eep_config->use_cmd_qng; sc->isa_dma_speed = eep_config->isa_dma_speed; sc->start_motor = eep_config->start_motor; sc->dvc_cntl = eep_config->cntl; #if BYTE_ORDER == BIG_ENDIAN sc->adapter_info[0] = eep_config->adapter_info[1]; sc->adapter_info[1] = eep_config->adapter_info[0]; sc->adapter_info[2] = eep_config->adapter_info[3]; sc->adapter_info[3] = eep_config->adapter_info[2]; sc->adapter_info[4] = eep_config->adapter_info[5]; sc->adapter_info[5] = eep_config->adapter_info[4]; #else sc->adapter_info[0] = eep_config->adapter_info[0]; sc->adapter_info[1] = eep_config->adapter_info[1]; sc->adapter_info[2] = eep_config->adapter_info[2]; sc->adapter_info[3] = eep_config->adapter_info[3]; sc->adapter_info[4] = eep_config->adapter_info[4]; sc->adapter_info[5] = eep_config->adapter_info[5]; #endif if (!AscTestExternalLram(iot, ioh)) { if (((sc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA)) { eep_config->max_total_qng = ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG; eep_config->max_tag_qng = ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG; } else { eep_config->cfg_msw |= 0x0800; cfg_msw |= 0x0800; ASC_SET_CHIP_CFG_MSW(iot, ioh, cfg_msw); eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG; eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG; } } if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) eep_config->max_total_qng = ASC_MIN_TOTAL_QNG; if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) eep_config->max_total_qng = ASC_MAX_TOTAL_QNG; if (eep_config->max_tag_qng > eep_config->max_total_qng) eep_config->max_tag_qng = eep_config->max_total_qng; if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC; sc->max_total_qng = eep_config->max_total_qng; if ((eep_config->use_cmd_qng & eep_config->disc_enable) != eep_config->use_cmd_qng) { eep_config->disc_enable = eep_config->use_cmd_qng; warn_code |= ASC_WARN_CMD_QNG_CONFLICT; } if (sc->bus_type & (ASC_IS_ISA | ASC_IS_VL | ASC_IS_EISA)) sc->irq_no = AscGetChipIRQ(iot, ioh, sc->bus_type); eep_config->chip_scsi_id &= ASC_MAX_TID; sc->chip_scsi_id = eep_config->chip_scsi_id; if (((sc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) && !(sc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) { sc->host_init_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX; } for (i = 0; i <= ASC_MAX_TID; i++) { sc->max_tag_qng[i] = eep_config->max_tag_qng; sc->sdtr_period_offset[i] = ASC_DEF_SDTR_OFFSET | (sc->host_init_sdtr_index << 4); } eep_config->cfg_msw = ASC_GET_CHIP_CFG_MSW(iot, ioh); if (write_eep) { AscSetEEPConfig(iot, ioh, eep_config, sc->bus_type); #ifdef ASC_DEBUG AscPrintEEPConfig(eep_config, 0); #endif } return (warn_code); } u_int16_t AscInitFromASC_SOFTC(sc) ASC_SOFTC *sc; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; u_int16_t cfg_msw; u_int16_t warn_code; u_int16_t pci_device_id = sc->pci_device_id; warn_code = 0; cfg_msw = ASC_GET_CHIP_CFG_MSW(iot, ioh); if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) { cfg_msw &= (~(ASC_CFG_MSW_CLR_MASK)); warn_code |= ASC_WARN_CFG_MSW_RECOVER; ASC_SET_CHIP_CFG_MSW(iot, ioh, cfg_msw); } if ((sc->cmd_qng_enabled & sc->disc_enable) != sc->cmd_qng_enabled) { sc->disc_enable = sc->cmd_qng_enabled; warn_code |= ASC_WARN_CMD_QNG_CONFLICT; } if (ASC_GET_CHIP_STATUS(iot, ioh) & ASC_CSW_AUTO_CONFIG) { warn_code |= ASC_WARN_AUTO_CONFIG; } if ((sc->bus_type & (ASC_IS_ISA | ASC_IS_VL)) != 0) { AscSetChipIRQ(iot, ioh, sc->irq_no, sc->bus_type); } if (sc->bus_type & ASC_IS_PCI) { cfg_msw &= 0xFFC0; ASC_SET_CHIP_CFG_MSW(iot, ioh, cfg_msw); if ((sc->bus_type & ASC_IS_PCI_ULTRA) != ASC_IS_PCI_ULTRA) { if ((pci_device_id == ASC_PCI_DEVICE_ID_REV_A) || (pci_device_id == ASC_PCI_DEVICE_ID_REV_B)) { sc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB; sc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN; } } } else if (sc->bus_type == ASC_IS_ISAPNP) { if (AscGetChipVersion(iot, ioh, sc->bus_type) == ASC_CHIP_VER_ASYN_BUG) { sc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN; } } AscSetChipScsiID(iot, ioh, sc->chip_scsi_id); if (sc->bus_type & ASC_IS_ISA) { AscSetIsaDmaChannel(iot, ioh, sc->isa_dma_channel); AscSetIsaDmaSpeed(iot, ioh, sc->isa_dma_speed); } return (warn_code); } /* * - Initialize RISC chip * - Initialize Lram * - Load uCode into Lram * - Enable Interrupts */ int AscInitDriver(sc) ASC_SOFTC *sc; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; u_int32_t chksum; if (!AscFindSignature(iot, ioh)) return (1); AscDisableInterrupt(iot, ioh); AscInitLram(sc); chksum = AscLoadMicroCode(iot, ioh, 0, (u_int16_t *) asc_mcode, asc_mcode_size); if (chksum != asc_mcode_chksum) return (2); if (AscInitMicroCodeVar(sc) == 0) return (3); AscEnableInterrupt(iot, ioh); return (0); } int AscFindSignature(iot, ioh) bus_space_tag_t iot; bus_space_handle_t ioh; { u_int16_t sig_word; if (ASC_GET_CHIP_SIGNATURE_BYTE(iot, ioh) == ASC_1000_ID1B) { sig_word = ASC_GET_CHIP_SIGNATURE_WORD(iot, ioh); if (sig_word == ASC_1000_ID0W || sig_word == ASC_1000_ID0W_FIX) return (1); } return (0); } static void AscInitLram(sc) ASC_SOFTC *sc; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; u_int8_t i; u_int16_t s_addr; AscMemWordSetLram(iot, ioh, ASC_QADR_BEG, 0, (((sc->max_total_qng + 2 + 1) * 64) >> 1)); i = ASC_MIN_ACTIVE_QNO; s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE; AscWriteLramByte(iot, ioh, s_addr + ASC_SCSIQ_B_FWD, i + 1); AscWriteLramByte(iot, ioh, s_addr + ASC_SCSIQ_B_BWD, sc->max_total_qng); AscWriteLramByte(iot, ioh, s_addr + ASC_SCSIQ_B_QNO, i); i++; s_addr += ASC_QBLK_SIZE; for (; i < sc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) { AscWriteLramByte(iot, ioh, s_addr + ASC_SCSIQ_B_FWD, i + 1); AscWriteLramByte(iot, ioh, s_addr + ASC_SCSIQ_B_BWD, i - 1); AscWriteLramByte(iot, ioh, s_addr + ASC_SCSIQ_B_QNO, i); } AscWriteLramByte(iot, ioh, s_addr + ASC_SCSIQ_B_FWD, ASC_QLINK_END); AscWriteLramByte(iot, ioh, s_addr + ASC_SCSIQ_B_BWD, sc->max_total_qng - 1); AscWriteLramByte(iot, ioh, s_addr + ASC_SCSIQ_B_QNO, sc->max_total_qng); i++; s_addr += ASC_QBLK_SIZE; for (; i <= (u_int8_t) (sc->max_total_qng + 3); i++, s_addr += ASC_QBLK_SIZE) { AscWriteLramByte(iot, ioh, s_addr + ASC_SCSIQ_B_FWD, i); AscWriteLramByte(iot, ioh, s_addr + ASC_SCSIQ_B_BWD, i); AscWriteLramByte(iot, ioh, s_addr + ASC_SCSIQ_B_QNO, i); } } void AscReInitLram(sc) ASC_SOFTC *sc; { AscInitLram(sc); AscInitQLinkVar(sc); } static void AscInitQLinkVar(sc) ASC_SOFTC *sc; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; u_int8_t i; u_int16_t lram_addr; ASC_PUT_RISC_VAR_FREE_QHEAD(iot, ioh, 1); ASC_PUT_RISC_VAR_DONE_QTAIL(iot, ioh, sc->max_total_qng); ASC_PUT_VAR_FREE_QHEAD(iot, ioh, 1); ASC_PUT_VAR_DONE_QTAIL(iot, ioh, sc->max_total_qng); AscWriteLramByte(iot, ioh, ASCV_BUSY_QHEAD_B, sc->max_total_qng + 1); AscWriteLramByte(iot, ioh, ASCV_DISC1_QHEAD_B, sc->max_total_qng + 2); AscWriteLramByte(iot, ioh, ASCV_TOTAL_READY_Q_B, sc->max_total_qng); AscWriteLramWord(iot, ioh, ASCV_ASCDVC_ERR_CODE_W, 0); AscWriteLramWord(iot, ioh, ASCV_HALTCODE_W, 0); AscWriteLramByte(iot, ioh, ASCV_STOP_CODE_B, 0); AscWriteLramByte(iot, ioh, ASCV_SCSIBUSY_B, 0); AscWriteLramByte(iot, ioh, ASCV_WTM_FLAG_B, 0); ASC_PUT_QDONE_IN_PROGRESS(iot, ioh, 0); lram_addr = ASC_QADR_BEG; for (i = 0; i < 32; i++, lram_addr += 2) AscWriteLramWord(iot, ioh, lram_addr, 0); } static int AscResetChipAndScsiBus(bus_space_tag_t iot, bus_space_handle_t ioh) { while (ASC_GET_CHIP_STATUS(iot, ioh) & ASC_CSW_SCSI_RESET_ACTIVE); AscStopChip(iot, ioh); ASC_SET_CHIP_CONTROL(iot, ioh, ASC_CC_CHIP_RESET | ASC_CC_SCSI_RESET | ASC_CC_HALT); DvcDelayNanoSecond(60000); AscSetChipIH(iot, ioh, ASC_INS_RFLAG_WTM); AscSetChipIH(iot, ioh, ASC_INS_HALT); ASC_SET_CHIP_CONTROL(iot, ioh, ASC_CC_CHIP_RESET | ASC_CC_HALT); ASC_SET_CHIP_CONTROL(iot, ioh, ASC_CC_HALT); DvcSleepMilliSecond(200); ASC_SET_CHIP_STATUS(iot, ioh, ASC_CIW_CLR_SCSI_RESET_INT); AscStartChip(iot, ioh); DvcSleepMilliSecond(200); return (AscIsChipHalted(iot, ioh)); } static u_int16_t AscGetChipBusType(iot, ioh) bus_space_tag_t iot; bus_space_handle_t ioh; { u_int16_t chip_ver; chip_ver = ASC_GET_CHIP_VER_NO(iot, ioh); if ((chip_ver >= ASC_CHIP_MIN_VER_VL) && (chip_ver <= ASC_CHIP_MAX_VER_VL)) { /* * if(((iop_base & 0x0C30) == 0x0C30) || ((iop_base & 0x0C50) * == 0x0C50)) return (ASC_IS_EISA); */ return (ASC_IS_VL); } if ((chip_ver >= ASC_CHIP_MIN_VER_ISA) && (chip_ver <= ASC_CHIP_MAX_VER_ISA)) { if (chip_ver >= ASC_CHIP_MIN_VER_ISA_PNP) return (ASC_IS_ISAPNP); return (ASC_IS_ISA); } else if ((chip_ver >= ASC_CHIP_MIN_VER_PCI) && (chip_ver <= ASC_CHIP_MAX_VER_PCI)) return (ASC_IS_PCI); return (0); } /******************************************************************************/ /* Chip register routines */ /******************************************************************************/ static void AscSetBank(iot, ioh, bank) bus_space_tag_t iot; bus_space_handle_t ioh; u_int8_t bank; { u_int8_t val; val = ASC_GET_CHIP_CONTROL(iot, ioh) & (~(ASC_CC_SINGLE_STEP | ASC_CC_TEST | ASC_CC_DIAG | ASC_CC_SCSI_RESET | ASC_CC_CHIP_RESET)); switch (bank) { case 1: val |= ASC_CC_BANK_ONE; break; case 2: val |= ASC_CC_DIAG | ASC_CC_BANK_ONE; break; default: val &= ~ASC_CC_BANK_ONE; } ASC_SET_CHIP_CONTROL(iot, ioh, val); return; } /******************************************************************************/ /* Chip routines */ /******************************************************************************/ static int AscStartChip(iot, ioh) bus_space_tag_t iot; bus_space_handle_t ioh; { ASC_SET_CHIP_CONTROL(iot, ioh, 0); if ((ASC_GET_CHIP_STATUS(iot, ioh) & ASC_CSW_HALTED) != 0) return (0); return (1); } static int AscStopChip(iot, ioh) bus_space_tag_t iot; bus_space_handle_t ioh; { u_int8_t cc_val; cc_val = ASC_GET_CHIP_CONTROL(iot, ioh) & (~(ASC_CC_SINGLE_STEP | ASC_CC_TEST | ASC_CC_DIAG)); ASC_SET_CHIP_CONTROL(iot, ioh, cc_val | ASC_CC_HALT); AscSetChipIH(iot, ioh, ASC_INS_HALT); AscSetChipIH(iot, ioh, ASC_INS_RFLAG_WTM); if ((ASC_GET_CHIP_STATUS(iot, ioh) & ASC_CSW_HALTED) == 0) return (0); return (1); } static u_int8_t AscGetChipVersion(iot, ioh, bus_type) bus_space_tag_t iot; bus_space_handle_t ioh; u_int16_t bus_type; { if (bus_type & ASC_IS_EISA) { /* * u_int16_t eisa_iop; u_int8_t revision; * * eisa_iop = ASC_GET_EISA_SLOT(iop_base) | * ASC_EISA_REV_IOP_MASK; revision = inp(eisa_iop); * return((ASC_CHIP_MIN_VER_EISA - 1) + revision); */ } return (ASC_GET_CHIP_VER_NO(iot, ioh)); } static u_int8_t AscSetChipScsiID(iot, ioh, new_id) bus_space_tag_t iot; bus_space_handle_t ioh; u_int8_t new_id; { u_int16_t cfg_lsw; if (ASC_GET_CHIP_SCSI_ID(iot, ioh) == new_id) return (new_id); cfg_lsw = ASC_GET_CHIP_SCSI_ID(iot, ioh); cfg_lsw &= 0xF8FF; cfg_lsw |= (new_id & ASC_MAX_TID) << 8; ASC_SET_CHIP_CFG_LSW(iot, ioh, cfg_lsw); return (ASC_GET_CHIP_SCSI_ID(iot, ioh)); } static u_int8_t AscGetChipScsiCtrl(iot, ioh) bus_space_tag_t iot; bus_space_handle_t ioh; { u_int8_t scsi_ctrl; AscSetBank(iot, ioh, 1); scsi_ctrl = bus_space_read_1(iot, ioh, ASC_IOP_REG_SC); AscSetBank(iot, ioh, 0); return (scsi_ctrl); } static int AscSetRunChipSynRegAtID(iot, ioh, tid_no, sdtr_data) bus_space_tag_t iot; bus_space_handle_t ioh; u_int8_t tid_no; u_int8_t sdtr_data; { int retval = FALSE; if (AscHostReqRiscHalt(iot, ioh)) { retval = AscSetChipSynRegAtID(iot, ioh, tid_no, sdtr_data); AscStartChip(iot, ioh); } return (retval); } static int AscSetChipSynRegAtID(iot, ioh, id, sdtr_data) bus_space_tag_t iot; bus_space_handle_t ioh; u_int8_t id; u_int8_t sdtr_data; { ASC_SCSI_BIT_ID_TYPE org_id; int i; int sta = TRUE; AscSetBank(iot, ioh, 1); org_id = ASC_READ_CHIP_DVC_ID(iot, ioh); for (i = 0; i <= ASC_MAX_TID; i++) if (org_id == (0x01 << i)) break; org_id = i; ASC_WRITE_CHIP_DVC_ID(iot, ioh, id); if (ASC_READ_CHIP_DVC_ID(iot, ioh) == (0x01 << id)) { AscSetBank(iot, ioh, 0); ASC_SET_CHIP_SYN(iot, ioh, sdtr_data); if (ASC_GET_CHIP_SYN(iot, ioh) != sdtr_data) sta = FALSE; } else sta = FALSE; AscSetBank(iot, ioh, 1); ASC_WRITE_CHIP_DVC_ID(iot, ioh, org_id); AscSetBank(iot, ioh, 0); return (sta); } static int AscHostReqRiscHalt(iot, ioh) bus_space_tag_t iot; bus_space_handle_t ioh; { int count = 0; int retval = 0; u_int8_t saved_stop_code; if (AscIsChipHalted(iot, ioh)) return (1); saved_stop_code = AscReadLramByte(iot, ioh, ASCV_STOP_CODE_B); AscWriteLramByte(iot, ioh, ASCV_STOP_CODE_B, ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP); do { if (AscIsChipHalted(iot, ioh)) { retval = 1; break; } DvcSleepMilliSecond(100); } while (count++ < 20); AscWriteLramByte(iot, ioh, ASCV_STOP_CODE_B, saved_stop_code); return (retval); } static int AscIsChipHalted(iot, ioh) bus_space_tag_t iot; bus_space_handle_t ioh; { if ((ASC_GET_CHIP_STATUS(iot, ioh) & ASC_CSW_HALTED) != 0) if ((ASC_GET_CHIP_CONTROL(iot, ioh) & ASC_CC_HALT) != 0) return (1); return (0); } static void AscSetChipIH(iot, ioh, ins_code) bus_space_tag_t iot; bus_space_handle_t ioh; u_int16_t ins_code; { AscSetBank(iot, ioh, 1); ASC_WRITE_CHIP_IH(iot, ioh, ins_code); AscSetBank(iot, ioh, 0); return; } /******************************************************************************/ /* Lram routines */ /******************************************************************************/ static u_int8_t AscReadLramByte(iot, ioh, addr) bus_space_tag_t iot; bus_space_handle_t ioh; u_int16_t addr; { u_int8_t byte_data; u_int16_t word_data; ASC_SET_CHIP_LRAM_ADDR(iot, ioh, addr & 0xFFFE); word_data = ASC_GET_CHIP_LRAM_DATA(iot, ioh); if (addr & 1) { /* odd address */ byte_data = (u_int8_t) ((word_data >> 8) & 0xFF); } else { /* even address */ byte_data = (u_int8_t) (word_data & 0xFF); } return (byte_data); } static void AscWriteLramByte(iot, ioh, addr, data) bus_space_tag_t iot; bus_space_handle_t ioh; u_int16_t addr; u_int8_t data; { u_int16_t word_data; word_data = AscReadLramWord(iot, ioh, addr & 0xFFFE); if (addr & 1) { /* odd address */ word_data &= 0x00FF; word_data |= (((u_int16_t) data) << 8) & 0xFF00; } else { /* even address */ word_data &= 0xFF00; word_data |= ((u_int16_t) data) & 0x00FF; } AscWriteLramWord(iot, ioh, addr, word_data); } static u_int16_t AscReadLramWord(iot, ioh, addr) bus_space_tag_t iot; bus_space_handle_t ioh; u_int16_t addr; { ASC_SET_CHIP_LRAM_ADDR(iot, ioh, addr); return (ASC_GET_CHIP_LRAM_DATA(iot, ioh)); } static void AscWriteLramWord(iot, ioh, addr, data) bus_space_tag_t iot; bus_space_handle_t ioh; u_int16_t addr; u_int16_t data; { ASC_SET_CHIP_LRAM_ADDR(iot, ioh, addr); ASC_SET_CHIP_LRAM_DATA(iot, ioh, data); } static u_int32_t AscReadLramDWord(iot, ioh, addr) bus_space_tag_t iot; bus_space_handle_t ioh; u_int16_t addr; { u_int16_t low_word, hi_word; ASC_SET_CHIP_LRAM_ADDR(iot, ioh, addr); low_word = ASC_GET_CHIP_LRAM_DATA(iot, ioh); hi_word = ASC_GET_CHIP_LRAM_DATA(iot, ioh); return ((((u_int32_t) hi_word) << 16) | (u_int32_t) low_word); } static void AscWriteLramDWord(iot, ioh, addr, data) bus_space_tag_t iot; bus_space_handle_t ioh; u_int16_t addr; u_int32_t data; { ASC_SET_CHIP_LRAM_ADDR(iot, ioh, addr); ASC_SET_CHIP_LRAM_DATA(iot, ioh, (u_int16_t) (data & 0x0000FFFF)); ASC_SET_CHIP_LRAM_DATA(iot, ioh, (u_int16_t) (data >> 16)); } static void AscMemWordSetLram(iot, ioh, s_addr, s_words, count) bus_space_tag_t iot; bus_space_handle_t ioh; u_int16_t s_addr; u_int16_t s_words; int count; { int i; ASC_SET_CHIP_LRAM_ADDR(iot, ioh, s_addr); for (i = 0; i < count; i++) ASC_SET_CHIP_LRAM_DATA(iot, ioh, s_words); } static void AscMemWordCopyToLram(iot, ioh, s_addr, s_buffer, words) bus_space_tag_t iot; bus_space_handle_t ioh; u_int16_t s_addr; u_int16_t *s_buffer; int words; { int i; ASC_SET_CHIP_LRAM_ADDR(iot, ioh, s_addr); for (i = 0; i < words; i++, s_buffer++) ASC_SET_CHIP_LRAM_DATA_NO_SWAP(iot, ioh, *s_buffer); } static void AscMemWordCopyFromLram(iot, ioh, s_addr, s_buffer, words) bus_space_tag_t iot; bus_space_handle_t ioh; u_int16_t s_addr; u_int16_t *s_buffer; int words; { int i; ASC_SET_CHIP_LRAM_ADDR(iot, ioh, s_addr); for (i = 0; i < words; i++, s_buffer++) *s_buffer = ASC_GET_CHIP_LRAM_DATA_NO_SWAP(iot, ioh); } static void AscMemDWordCopyToLram(iot, ioh, s_addr, s_buffer, dwords) bus_space_tag_t iot; bus_space_handle_t ioh; u_int16_t s_addr; u_int32_t *s_buffer; int dwords; { int i; u_int32_t *pw; ASC_SET_CHIP_LRAM_ADDR(iot, ioh, s_addr); pw = s_buffer; for (i = 0; i < dwords; i++, pw++) { ASC_SET_CHIP_LRAM_DATA(iot, ioh, LO_WORD(*pw)); DELAY(1); ASC_SET_CHIP_LRAM_DATA(iot, ioh, HI_WORD(*pw)); } } static u_int32_t AscMemSumLramWord(iot, ioh, s_addr, words) bus_space_tag_t iot; bus_space_handle_t ioh; u_int16_t s_addr; int words; { u_int32_t sum = 0L; u_int16_t i; for (i = 0; i < words; i++, s_addr += 2) sum += AscReadLramWord(iot, ioh, s_addr); return (sum); } static int AscTestExternalLram(iot, ioh) bus_space_tag_t iot; bus_space_handle_t ioh; { u_int16_t q_addr; u_int16_t saved_word; int retval; retval = 0; q_addr = ASC_QNO_TO_QADDR(241); saved_word = AscReadLramWord(iot, ioh, q_addr); ASC_SET_CHIP_LRAM_ADDR(iot, ioh, q_addr); ASC_SET_CHIP_LRAM_DATA(iot, ioh, 0x55AA); DvcSleepMilliSecond(10); ASC_SET_CHIP_LRAM_ADDR(iot, ioh, q_addr); if (ASC_GET_CHIP_LRAM_DATA(iot, ioh) == 0x55AA) { retval = 1; AscWriteLramWord(iot, ioh, q_addr, saved_word); } return (retval); } /******************************************************************************/ /* MicroCode routines */ /******************************************************************************/ static u_int16_t AscInitMicroCodeVar(sc) ASC_SOFTC *sc; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; u_int32_t phy_addr; int i; for (i = 0; i <= ASC_MAX_TID; i++) ASC_PUT_MCODE_INIT_SDTR_AT_ID(iot, ioh, i, sc->sdtr_period_offset[i]); AscInitQLinkVar(sc); AscWriteLramByte(iot, ioh, ASCV_DISC_ENABLE_B, sc->disc_enable); AscWriteLramByte(iot, ioh, ASCV_HOSTSCSI_ID_B, ASC_TID_TO_TARGET_ID(sc->chip_scsi_id)); if ((phy_addr = AscGetOnePhyAddr(sc, sc->overrun_buf, ASC_OVERRUN_BSIZE)) == 0L) { return (0); } else { phy_addr = (phy_addr & 0xFFFFFFF8ul) + 8; AscWriteLramDWord(iot, ioh, ASCV_OVERRUN_PADDR_D, phy_addr); AscWriteLramDWord(iot, ioh, ASCV_OVERRUN_BSIZE_D, ASC_OVERRUN_BSIZE - 8); } sc->mcode_date = AscReadLramWord(iot, ioh, ASCV_MC_DATE_W); sc->mcode_version = AscReadLramWord(iot, ioh, ASCV_MC_VER_W); ASC_SET_PC_ADDR(iot, ioh, ASC_MCODE_START_ADDR); if (ASC_GET_PC_ADDR(iot, ioh) != ASC_MCODE_START_ADDR) { return (0); } if (AscStartChip(iot, ioh) != 1) { return (0); } return (1); } static u_int32_t AscLoadMicroCode(iot, ioh, s_addr, mcode_buf, mcode_size) bus_space_tag_t iot; bus_space_handle_t ioh; u_int16_t s_addr; u_int16_t *mcode_buf; u_int16_t mcode_size; { u_int32_t chksum; u_int16_t mcode_word_size; u_int16_t mcode_chksum; mcode_word_size = mcode_size >> 1; /* clear board memory */ AscMemWordSetLram(iot, ioh, s_addr, 0, mcode_word_size); /* copy uCode to board memory */ AscMemWordCopyToLram(iot, ioh, s_addr, mcode_buf, mcode_word_size); chksum = AscMemSumLramWord(iot, ioh, s_addr, mcode_word_size); mcode_chksum = AscMemSumLramWord(iot, ioh, ASC_CODE_SEC_BEG, ((mcode_size - s_addr - ASC_CODE_SEC_BEG) >> 1)); AscWriteLramWord(iot, ioh, ASCV_MCODE_CHKSUM_W, mcode_chksum); AscWriteLramWord(iot, ioh, ASCV_MCODE_SIZE_W, mcode_size); return (chksum); } static u_int32_t AscGetOnePhyAddr(sc, buf_addr, buf_size) ASC_SOFTC *sc; u_int8_t *buf_addr; u_int32_t buf_size; { ASC_MIN_SG_HEAD sg_head; sg_head.entry_cnt = ASC_MIN_SG_LIST; if (AscGetSGList(sc, buf_addr, buf_size, (ASC_SG_HEAD *) & sg_head) != buf_size) { return (0L); } if (sg_head.entry_cnt > 1) { return (0L); } return (sg_head.sg_list[0].addr); } static u_int32_t AscGetSGList(sc, buf_addr, buf_len, asc_sg_head_ptr) ASC_SOFTC *sc; u_int8_t *buf_addr; u_int32_t buf_len; ASC_SG_HEAD *asc_sg_head_ptr; { u_int32_t buf_size; buf_size = buf_len; asc_sg_head_ptr->entry_cnt = 1; asc_sg_head_ptr->sg_list[0].addr = (u_int32_t) buf_addr; asc_sg_head_ptr->sg_list[0].bytes = buf_size; return (buf_size); } /******************************************************************************/ /* EEProm routines */ /******************************************************************************/ static int AscWriteEEPCmdReg(iot, ioh, cmd_reg) bus_space_tag_t iot; bus_space_handle_t ioh; u_int8_t cmd_reg; { u_int8_t read_back; int retry; retry = 0; while (TRUE) { ASC_SET_CHIP_EEP_CMD(iot, ioh, cmd_reg); DvcSleepMilliSecond(1); read_back = ASC_GET_CHIP_EEP_CMD(iot, ioh); if (read_back == cmd_reg) return (1); if (retry++ > ASC_EEP_MAX_RETRY) return (0); } } static int AscWriteEEPDataReg(iot, ioh, data_reg) bus_space_tag_t iot; bus_space_handle_t ioh; u_int16_t data_reg; { u_int16_t read_back; int retry; retry = 0; while (TRUE) { ASC_SET_CHIP_EEP_DATA(iot, ioh, data_reg); DvcSleepMilliSecond(1); read_back = ASC_GET_CHIP_EEP_DATA(iot, ioh); if (read_back == data_reg) return (1); if (retry++ > ASC_EEP_MAX_RETRY) return (0); } } static void AscWaitEEPRead(void) { DvcSleepMilliSecond(1); } static void AscWaitEEPWrite(void) { DvcSleepMilliSecond(1); } static u_int16_t AscReadEEPWord(iot, ioh, addr) bus_space_tag_t iot; bus_space_handle_t ioh; u_int8_t addr; { u_int16_t read_wval; u_int8_t cmd_reg; AscWriteEEPCmdReg(iot, ioh, ASC_EEP_CMD_WRITE_DISABLE); AscWaitEEPRead(); cmd_reg = addr | ASC_EEP_CMD_READ; AscWriteEEPCmdReg(iot, ioh, cmd_reg); AscWaitEEPRead(); read_wval = ASC_GET_CHIP_EEP_DATA(iot, ioh); AscWaitEEPRead(); return (read_wval); } static u_int16_t AscWriteEEPWord(iot, ioh, addr, word_val) bus_space_tag_t iot; bus_space_handle_t ioh; u_int8_t addr; u_int16_t word_val; { u_int16_t read_wval; read_wval = AscReadEEPWord(iot, ioh, addr); if (read_wval != word_val) { AscWriteEEPCmdReg(iot, ioh, ASC_EEP_CMD_WRITE_ABLE); AscWaitEEPRead(); AscWriteEEPDataReg(iot, ioh, word_val); AscWaitEEPRead(); AscWriteEEPCmdReg(iot, ioh, ASC_EEP_CMD_WRITE | addr); AscWaitEEPWrite(); AscWriteEEPCmdReg(iot, ioh, ASC_EEP_CMD_WRITE_DISABLE); AscWaitEEPRead(); return (AscReadEEPWord(iot, ioh, addr)); } return (read_wval); } static u_int16_t AscGetEEPConfig(iot, ioh, cfg_buf, bus_type) bus_space_tag_t iot; bus_space_handle_t ioh; ASCEEP_CONFIG *cfg_buf; u_int16_t bus_type; { u_int16_t wval; u_int16_t sum; u_int16_t *wbuf; int cfg_beg; int cfg_end; int s_addr; int isa_pnp_wsize; wbuf = (u_int16_t *) cfg_buf; sum = 0; isa_pnp_wsize = 0; for (s_addr = 0; s_addr < (2 + isa_pnp_wsize); s_addr++, wbuf++) { wval = AscReadEEPWord(iot, ioh, s_addr); sum += wval; *wbuf = wval; } if (bus_type & ASC_IS_VL) { cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; } else { cfg_beg = ASC_EEP_DVC_CFG_BEG; cfg_end = ASC_EEP_MAX_DVC_ADDR; } for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { wval = AscReadEEPWord(iot, ioh, s_addr); sum += wval; *wbuf = wval; } *wbuf = AscReadEEPWord(iot, ioh, s_addr); return (sum); } static int AscSetEEPConfig(iot, ioh, cfg_buf, bus_type) bus_space_tag_t iot; bus_space_handle_t ioh; ASCEEP_CONFIG *cfg_buf; u_int16_t bus_type; { int retry; int n_error; retry = 0; while (TRUE) { if ((n_error = AscSetEEPConfigOnce(iot, ioh, cfg_buf, bus_type)) == 0) break; if (++retry > ASC_EEP_MAX_RETRY) break; } return (n_error); } static int AscSetEEPConfigOnce(iot, ioh, cfg_buf, bus_type) bus_space_tag_t iot; bus_space_handle_t ioh; ASCEEP_CONFIG *cfg_buf; u_int16_t bus_type; { int n_error; u_int16_t *wbuf; u_int16_t sum; int s_addr; int cfg_beg; int cfg_end; wbuf = (u_int16_t *) cfg_buf; n_error = 0; sum = 0; for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { sum += *wbuf; if (*wbuf != AscWriteEEPWord(iot, ioh, s_addr, *wbuf)) n_error++; } if (bus_type & ASC_IS_VL) { cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; } else { cfg_beg = ASC_EEP_DVC_CFG_BEG; cfg_end = ASC_EEP_MAX_DVC_ADDR; } for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { sum += *wbuf; if (*wbuf != AscWriteEEPWord(iot, ioh, s_addr, *wbuf)) n_error++; } *wbuf = sum; if (sum != AscWriteEEPWord(iot, ioh, s_addr, sum)) n_error++; wbuf = (u_int16_t *) cfg_buf; for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { if (*wbuf != AscReadEEPWord(iot, ioh, s_addr)) n_error++; } for (s_addr = cfg_beg; s_addr <= cfg_end; s_addr++, wbuf++) { if (*wbuf != AscReadEEPWord(iot, ioh, s_addr)) n_error++; } return (n_error); } #ifdef ASC_DEBUG static void AscPrintEEPConfig(eep_config, chksum) ASCEEP_CONFIG *eep_config; u_int16_t chksum; { printf("---- ASC EEprom settings ----\n"); printf("cfg_lsw = 0x%x\n", eep_config->cfg_lsw); printf("cfg_msw = 0x%x\n", eep_config->cfg_msw); printf("init_sdtr = 0x%x\n", eep_config->init_sdtr); printf("disc_enable = 0x%x\n", eep_config->disc_enable); printf("use_cmd_qng = %d\n", eep_config->use_cmd_qng); printf("start_motor = 0x%x\n", eep_config->start_motor); printf("max_total_qng = 0x%x\n", eep_config->max_total_qng); printf("max_tag_qng = 0x%x\n", eep_config->max_tag_qng); printf("bios_scan = 0x%x\n", eep_config->bios_scan); printf("power_up_wait = 0x%x\n", eep_config->power_up_wait); printf("no_scam = %d\n", eep_config->no_scam); printf("chip_scsi_id = %d\n", eep_config->chip_scsi_id); printf("isa_dma_speed = %d\n", eep_config->isa_dma_speed); printf("cntl = 0x%x\n", eep_config->cntl); #if BYTE_ORDER == BIG_ENDIAN printf("adapter_info[0] = 0x%x\n", eep_config->adapter_info[1]); printf("adapter_info[1] = 0x%x\n", eep_config->adapter_info[0]); printf("adapter_info[2] = 0x%x\n", eep_config->adapter_info[3]); printf("adapter_info[3] = 0x%x\n", eep_config->adapter_info[2]); printf("adapter_info[4] = 0x%x\n", eep_config->adapter_info[5]); printf("adapter_info[5] = 0x%x\n", eep_config->adapter_info[4]); #else printf("adapter_info[0] = 0x%x\n", eep_config->adapter_info[0]); printf("adapter_info[1] = 0x%x\n", eep_config->adapter_info[1]); printf("adapter_info[2] = 0x%x\n", eep_config->adapter_info[2]); printf("adapter_info[3] = 0x%x\n", eep_config->adapter_info[3]); printf("adapter_info[4] = 0x%x\n", eep_config->adapter_info[4]); printf("adapter_info[5] = 0x%x\n", eep_config->adapter_info[5]); #endif printf("checksum = 0x%x\n", eep_config->chksum); printf("calculated checksum = 0x%x\n", chksum); printf("-----------------------------\n"); } #endif /******************************************************************************/ /* Interrupt routines */ /******************************************************************************/ int AscISR(sc) ASC_SOFTC *sc; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; u_int16_t chipstat; u_int16_t saved_ram_addr; u_int8_t ctrl_reg; u_int8_t saved_ctrl_reg; int int_pending; int status; u_int8_t host_flag; int_pending = FALSE; ctrl_reg = ASC_GET_CHIP_CONTROL(iot, ioh); saved_ctrl_reg = ctrl_reg & (~(ASC_CC_SCSI_RESET | ASC_CC_CHIP_RESET | ASC_CC_SINGLE_STEP | ASC_CC_DIAG | ASC_CC_TEST)); chipstat = ASC_GET_CHIP_STATUS(iot, ioh); if (chipstat & ASC_CSW_SCSI_RESET_LATCH) { if (!(sc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) { int_pending = TRUE; sc->sdtr_done = 0; saved_ctrl_reg &= (u_int8_t) (~ASC_CC_HALT); while (ASC_GET_CHIP_STATUS(iot, ioh) & ASC_CSW_SCSI_RESET_ACTIVE); ASC_SET_CHIP_CONTROL(iot, ioh, (ASC_CC_CHIP_RESET | ASC_CC_HALT)); ASC_SET_CHIP_CONTROL(iot, ioh, ASC_CC_HALT); ASC_SET_CHIP_STATUS(iot, ioh, ASC_CIW_CLR_SCSI_RESET_INT); ASC_SET_CHIP_STATUS(iot, ioh, 0); chipstat = ASC_GET_CHIP_STATUS(iot, ioh); } } saved_ram_addr = ASC_GET_CHIP_LRAM_ADDR(iot, ioh); host_flag = AscReadLramByte(iot, ioh, ASCV_HOST_FLAG_B) & (u_int8_t) (~ASC_HOST_FLAG_IN_ISR); AscWriteLramByte(iot, ioh, ASCV_HOST_FLAG_B, (host_flag | ASC_HOST_FLAG_IN_ISR)); if ((chipstat & ASC_CSW_INT_PENDING) || (int_pending)) { AscAckInterrupt(iot, ioh); int_pending = TRUE; if ((chipstat & ASC_CSW_HALTED) && (ctrl_reg & ASC_CC_SINGLE_STEP)) { AscIsrChipHalted(sc); saved_ctrl_reg &= ~ASC_CC_HALT; } else { if (sc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) { while (((status = AscIsrQDone(sc)) & 0x01) != 0); } else { do { if ((status = AscIsrQDone(sc)) == 1) break; } while (status == 0x11); } if (status & 0x80) int_pending = -1; } } AscWriteLramByte(iot, ioh, ASCV_HOST_FLAG_B, host_flag); ASC_SET_CHIP_LRAM_ADDR(iot, ioh, saved_ram_addr); ASC_SET_CHIP_CONTROL(iot, ioh, saved_ctrl_reg); return (1); /* return(int_pending); */ } static int AscIsrQDone(sc) ASC_SOFTC *sc; { u_int8_t next_qp; u_int8_t n_q_used; u_int8_t sg_list_qp; u_int8_t sg_queue_cnt; u_int8_t q_cnt; u_int8_t done_q_tail; u_int8_t tid_no; ASC_SCSI_BIT_ID_TYPE scsi_busy; ASC_SCSI_BIT_ID_TYPE target_id; bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; u_int16_t q_addr; u_int16_t sg_q_addr; u_int8_t cur_target_qng; ASC_QDONE_INFO scsiq_buf; ASC_QDONE_INFO *scsiq; ASC_ISR_CALLBACK asc_isr_callback; asc_isr_callback = (ASC_ISR_CALLBACK) sc->isr_callback; n_q_used = 1; scsiq = (ASC_QDONE_INFO *) & scsiq_buf; done_q_tail = ASC_GET_VAR_DONE_QTAIL(iot, ioh); q_addr = ASC_QNO_TO_QADDR(done_q_tail); next_qp = AscReadLramByte(iot, ioh, (q_addr + ASC_SCSIQ_B_FWD)); if (next_qp != ASC_QLINK_END) { ASC_PUT_VAR_DONE_QTAIL(iot, ioh, next_qp); q_addr = ASC_QNO_TO_QADDR(next_qp); sg_queue_cnt = _AscCopyLramScsiDoneQ(iot, ioh, q_addr, scsiq, sc->max_dma_count); AscWriteLramByte(iot, ioh, (q_addr + ASC_SCSIQ_B_STATUS), (scsiq->q_status & ~(ASC_QS_READY | ASC_QS_ABORTED))); tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix); target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix); if ((scsiq->cntl & ASC_QC_SG_HEAD) != 0) { sg_q_addr = q_addr; sg_list_qp = next_qp; for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) { sg_list_qp = AscReadLramByte(iot, ioh, sg_q_addr + ASC_SCSIQ_B_FWD); sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp); if (sg_list_qp == ASC_QLINK_END) { AscSetLibErrorCode(sc, ASCQ_ERR_SG_Q_LINKS); scsiq->d3.done_stat = ASC_QD_WITH_ERROR; scsiq->d3.host_stat = ASC_QHSTA_D_QDONE_SG_LIST_CORRUPTED; panic("AscIsrQDone: Corrupted SG list encountered"); } AscWriteLramByte(iot, ioh, sg_q_addr + ASC_SCSIQ_B_STATUS, ASC_QS_FREE); } n_q_used = sg_queue_cnt + 1; ASC_PUT_VAR_DONE_QTAIL(iot, ioh, sg_list_qp); } if (sc->queue_full_or_busy & target_id) { cur_target_qng = AscReadLramByte(iot, ioh, ASC_QADR_BEG + scsiq->d2.target_ix); if (cur_target_qng < sc->max_dvc_qng[tid_no]) { scsi_busy = AscReadLramByte(iot, ioh, ASCV_SCSIBUSY_B); scsi_busy &= ~target_id; AscWriteLramByte(iot, ioh, ASCV_SCSIBUSY_B, scsi_busy); sc->queue_full_or_busy &= ~target_id; } } if (sc->cur_total_qng >= n_q_used) { sc->cur_total_qng -= n_q_used; if (sc->cur_dvc_qng[tid_no] != 0) { sc->cur_dvc_qng[tid_no]--; } } else { AscSetLibErrorCode(sc, ASCQ_ERR_CUR_QNG); scsiq->d3.done_stat = ASC_QD_WITH_ERROR; panic("AscIsrQDone: Attempting to free more queues than are active"); } if ((scsiq->d2.ccb_ptr == 0UL) || ((scsiq->q_status & ASC_QS_ABORTED) != 0)) { return (0x11); } else if (scsiq->q_status == ASC_QS_DONE) { scsiq->remain_bytes += scsiq->extra_bytes; if (scsiq->d3.done_stat == ASC_QD_WITH_ERROR) { if (scsiq->d3.host_stat == ASC_QHSTA_M_DATA_OVER_RUN) { if ((scsiq->cntl & (ASC_QC_DATA_IN | ASC_QC_DATA_OUT)) == 0) { scsiq->d3.done_stat = ASC_QD_NO_ERROR; scsiq->d3.host_stat = ASC_QHSTA_NO_ERROR; } } else if (scsiq->d3.host_stat == ASC_QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) { AscStopChip(iot, ioh); ASC_SET_CHIP_CONTROL(iot, ioh, (ASC_CC_SCSI_RESET | ASC_CC_HALT)); DvcDelayNanoSecond(60000); ASC_SET_CHIP_CONTROL(iot, ioh, ASC_CC_HALT); ASC_SET_CHIP_STATUS(iot, ioh, ASC_CIW_CLR_SCSI_RESET_INT); ASC_SET_CHIP_STATUS(iot, ioh, 0); ASC_SET_CHIP_CONTROL(iot, ioh, 0); } } (*asc_isr_callback) (sc, scsiq); return (1); } else { AscSetLibErrorCode(sc, ASCQ_ERR_Q_STATUS); panic("AscIsrQDone: completed scsiq with unknown status"); return (0x80); } } return (0); } /* * handle all the conditions that may halt the board * waiting us to intervene */ static void AscIsrChipHalted(sc) ASC_SOFTC *sc; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; EXT_MSG out_msg; u_int16_t int_halt_code; u_int16_t halt_q_addr; u_int8_t halt_qp; u_int8_t target_ix; u_int8_t tag_code; u_int8_t q_status; u_int8_t q_cntl; u_int8_t tid_no; u_int8_t cur_dvc_qng; u_int8_t asyn_sdtr; u_int8_t scsi_status; u_int8_t sdtr_data; ASC_SCSI_BIT_ID_TYPE scsi_busy; ASC_SCSI_BIT_ID_TYPE target_id; int_halt_code = AscReadLramWord(iot, ioh, ASCV_HALTCODE_W); halt_qp = AscReadLramByte(iot, ioh, ASCV_CURCDB_B); halt_q_addr = ASC_QNO_TO_QADDR(halt_qp); target_ix = AscReadLramByte(iot, ioh, halt_q_addr + ASC_SCSIQ_B_TARGET_IX); q_cntl = AscReadLramByte(iot, ioh, halt_q_addr + ASC_SCSIQ_B_CNTL); tid_no = ASC_TIX_TO_TID(target_ix); target_id = ASC_TID_TO_TARGET_ID(tid_no); if (sc->pci_fix_asyn_xfer & target_id) { asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB; } else { asyn_sdtr = 0; } if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) { if (sc->pci_fix_asyn_xfer & target_id) { AscSetChipSDTR(iot, ioh, 0, tid_no); sc->sdtr_data[tid_no] = 0; } AscWriteLramWord(iot, ioh, ASCV_HALTCODE_W, 0); } else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) { if (sc->pci_fix_asyn_xfer & target_id) { AscSetChipSDTR(iot, ioh, asyn_sdtr, tid_no); sc->sdtr_data[tid_no] = asyn_sdtr; } AscWriteLramWord(iot, ioh, ASCV_HALTCODE_W, 0); } else if (int_halt_code == ASC_HALT_EXTMSG_IN) { AscHandleExtMsgIn(sc, halt_q_addr, q_cntl, target_id, tid_no, asyn_sdtr); AscWriteLramWord(iot, ioh, ASCV_HALTCODE_W, 0); } else if (int_halt_code == ASC_HALT_CHK_CONDITION) { q_cntl |= ASC_QC_REQ_SENSE; if (sc->init_sdtr & target_id) { sc->sdtr_done &= ~target_id; sdtr_data = ASC_GET_MCODE_INIT_SDTR_AT_ID(iot, ioh, tid_no); q_cntl |= ASC_QC_MSG_OUT; AscMsgOutSDTR(sc, sc->sdtr_period_tbl[(sdtr_data >> 4) & (sc->max_sdtr_index - 1)], (sdtr_data & ASC_SYN_MAX_OFFSET)); } AscWriteLramByte(iot, ioh, halt_q_addr + ASC_SCSIQ_B_CNTL, q_cntl); tag_code = AscReadLramByte(iot, ioh, halt_q_addr + ASC_SCSIQ_B_TAG_CODE); tag_code &= 0xDC; if ((sc->pci_fix_asyn_xfer & target_id) && !(sc->pci_fix_asyn_xfer_always & target_id)) { tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX); } AscWriteLramByte(iot, ioh, halt_q_addr + ASC_SCSIQ_B_TAG_CODE, tag_code); q_status = AscReadLramByte(iot, ioh, halt_q_addr + ASC_SCSIQ_B_STATUS); q_status |= ASC_QS_READY | ASC_QS_BUSY; AscWriteLramByte(iot, ioh, halt_q_addr + ASC_SCSIQ_B_STATUS, q_status); scsi_busy = AscReadLramByte(iot, ioh, ASCV_SCSIBUSY_B); scsi_busy &= ~target_id; AscWriteLramByte(iot, ioh, ASCV_SCSIBUSY_B, scsi_busy); AscWriteLramWord(iot, ioh, ASCV_HALTCODE_W, 0); } else if (int_halt_code == ASC_HALT_SDTR_REJECTED) { AscMemWordCopyFromLram(iot, ioh, ASCV_MSGOUT_BEG, (u_int16_t *) & out_msg, sizeof(EXT_MSG) >> 1); if ((out_msg.msg_type == MS_EXTEND) && (out_msg.msg_len == MS_SDTR_LEN) && (out_msg.msg_req == MS_SDTR_CODE)) { sc->init_sdtr &= ~target_id; sc->sdtr_done &= ~target_id; AscSetChipSDTR(iot, ioh, asyn_sdtr, tid_no); sc->sdtr_data[tid_no] = asyn_sdtr; } q_cntl &= ~ASC_QC_MSG_OUT; AscWriteLramByte(iot, ioh, halt_q_addr + ASC_SCSIQ_B_CNTL, q_cntl); AscWriteLramWord(iot, ioh, ASCV_HALTCODE_W, 0); } else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) { scsi_status = AscReadLramByte(iot, ioh, halt_q_addr + ASC_SCSIQ_SCSI_STATUS); cur_dvc_qng = AscReadLramByte(iot, ioh, target_ix + ASC_QADR_BEG); if ((cur_dvc_qng > 0) && (sc->cur_dvc_qng[tid_no] > 0)) { scsi_busy = AscReadLramByte(iot, ioh, ASCV_SCSIBUSY_B); scsi_busy |= target_id; AscWriteLramByte(iot, ioh, ASCV_SCSIBUSY_B, scsi_busy); sc->queue_full_or_busy |= target_id; if (scsi_status == SS_QUEUE_FULL) { if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) { cur_dvc_qng -= 1; sc->max_dvc_qng[tid_no] = cur_dvc_qng; AscWriteLramByte(iot, ioh, tid_no + ASCV_MAX_DVC_QNG_BEG, cur_dvc_qng); #if ASC_QUEUE_FLOW_CONTROL if ((sc->device[tid_no] != NULL) && (sc->device[tid_no]->queue_curr_depth > cur_dvc_qng)) { sc->device[tid_no]->queue_curr_depth = cur_dvc_qng; } #endif /* ASC_QUEUE_FLOW_CONTROL */ } } } AscWriteLramWord(iot, ioh, ASCV_HALTCODE_W, 0); } return; } static int AscWaitTixISRDone(sc, target_ix) ASC_SOFTC *sc; u_int8_t target_ix; { u_int8_t cur_req; u_int8_t tid_no; int i = 0; tid_no = ASC_TIX_TO_TID(target_ix); while (i++ < 10) { if ((cur_req = sc->cur_dvc_qng[tid_no]) == 0) break; DvcSleepMilliSecond(1000L); if (sc->cur_dvc_qng[tid_no] == cur_req) break; } return (1); } static int AscWaitISRDone(sc) ASC_SOFTC *sc; { int tid; for (tid = 0; tid <= ASC_MAX_TID; tid++) AscWaitTixISRDone(sc, ASC_TID_TO_TIX(tid)); return (1); } static u_int8_t _AscCopyLramScsiDoneQ(iot, ioh, q_addr, scsiq, max_dma_count) bus_space_tag_t iot; bus_space_handle_t ioh; u_int16_t q_addr; ASC_QDONE_INFO *scsiq; u_int32_t max_dma_count; { u_int16_t _val; u_int8_t sg_queue_cnt; AscGetQDoneInfo(iot, ioh, q_addr + ASC_SCSIQ_DONE_INFO_BEG, scsiq); _val = AscReadLramWord(iot, ioh, q_addr + ASC_SCSIQ_B_STATUS); scsiq->q_status = LO_BYTE(_val); scsiq->q_no = HI_BYTE(_val); _val = AscReadLramWord(iot, ioh, q_addr + ASC_SCSIQ_B_CNTL); scsiq->cntl = LO_BYTE(_val); sg_queue_cnt = HI_BYTE(_val); _val = AscReadLramWord(iot, ioh, q_addr + ASC_SCSIQ_B_SENSE_LEN); scsiq->sense_len = LO_BYTE(_val); scsiq->extra_bytes = HI_BYTE(_val); scsiq->remain_bytes = AscReadLramWord(iot, ioh, q_addr + ASC_SCSIQ_DW_REMAIN_XFER_CNT); scsiq->remain_bytes &= max_dma_count; return (sg_queue_cnt); } static void AscGetQDoneInfo(iot, ioh, addr, scsiq) bus_space_tag_t iot; bus_space_handle_t ioh; u_int16_t addr; ASC_QDONE_INFO *scsiq; { u_int16_t val; ASC_SET_CHIP_LRAM_ADDR(iot, ioh, addr); val = ASC_GET_CHIP_LRAM_DATA(iot, ioh); scsiq->d2.ccb_ptr = MAKELONG(val, ASC_GET_CHIP_LRAM_DATA(iot, ioh)); val = ASC_GET_CHIP_LRAM_DATA(iot, ioh); scsiq->d2.target_ix = LO_BYTE(val); scsiq->d2.flag = HI_BYTE(val); val = ASC_GET_CHIP_LRAM_DATA(iot, ioh); scsiq->d2.cdb_len = LO_BYTE(val); scsiq->d2.tag_code = HI_BYTE(val); scsiq->d2.vm_id = ASC_GET_CHIP_LRAM_DATA(iot, ioh); val = ASC_GET_CHIP_LRAM_DATA(iot, ioh); scsiq->d3.done_stat = LO_BYTE(val); scsiq->d3.host_stat = HI_BYTE(val); val = ASC_GET_CHIP_LRAM_DATA(iot, ioh); scsiq->d3.scsi_stat = LO_BYTE(val); scsiq->d3.scsi_msg = HI_BYTE(val); } static void AscToggleIRQAct(iot, ioh) bus_space_tag_t iot; bus_space_handle_t ioh; { ASC_SET_CHIP_STATUS(iot, ioh, ASC_CIW_IRQ_ACT); ASC_SET_CHIP_STATUS(iot, ioh, 0); } static void AscDisableInterrupt(iot, ioh) bus_space_tag_t iot; bus_space_handle_t ioh; { u_int16_t cfg; cfg = ASC_GET_CHIP_CFG_LSW(iot, ioh); ASC_SET_CHIP_CFG_LSW(iot, ioh, cfg & (~ASC_CFG0_HOST_INT_ON)); } static void AscEnableInterrupt(iot, ioh) bus_space_tag_t iot; bus_space_handle_t ioh; { u_int16_t cfg; cfg = ASC_GET_CHIP_CFG_LSW(iot, ioh); ASC_SET_CHIP_CFG_LSW(iot, ioh, cfg | ASC_CFG0_HOST_INT_ON); } static u_int8_t AscGetChipIRQ(iot, ioh, bus_type) bus_space_tag_t iot; bus_space_handle_t ioh; u_int16_t bus_type; { u_int16_t cfg_lsw; u_int8_t chip_irq; if (bus_type & ASC_IS_EISA) { /* * cfg_lsw = AscGetEisaChipCfg(iot, ioh); chip_irq = * ((cfg_lsw >> 8) & 0x07) + 10; if((chip_irq == 13) || * (chip_irq > 15)) return (0); return(chip_irq); */ } if ((bus_type & ASC_IS_VL) != 0) { cfg_lsw = ASC_GET_CHIP_CFG_LSW(iot, ioh); chip_irq = (cfg_lsw >> 2) & 0x07; if ((chip_irq == 0) || (chip_irq == 4) || (chip_irq == 7)) { return (0); } return (chip_irq + (ASC_MIN_IRQ_NO - 1)); } cfg_lsw = ASC_GET_CHIP_CFG_LSW(iot, ioh); chip_irq = (cfg_lsw >> 2) & 0x03; if (chip_irq == 3) chip_irq += 2; return (chip_irq + ASC_MIN_IRQ_NO); } static u_int8_t AscSetChipIRQ(iot, ioh, irq_no, bus_type) bus_space_tag_t iot; bus_space_handle_t ioh; u_int8_t irq_no; u_int16_t bus_type; { u_int16_t cfg_lsw; if (bus_type & ASC_IS_VL) { if (irq_no) { if ((irq_no < ASC_MIN_IRQ_NO) || (irq_no > ASC_MAX_IRQ_NO)) irq_no = 0; else irq_no -= ASC_MIN_IRQ_NO - 1; } cfg_lsw = ASC_GET_CHIP_CFG_LSW(iot, ioh) & 0xFFE3; cfg_lsw |= 0x0010; ASC_SET_CHIP_CFG_LSW(iot, ioh, cfg_lsw); AscToggleIRQAct(iot, ioh); cfg_lsw = ASC_GET_CHIP_CFG_LSW(iot, ioh) & 0xFFE0; cfg_lsw |= (irq_no & 0x07) << 2; ASC_SET_CHIP_CFG_LSW(iot, ioh, cfg_lsw); AscToggleIRQAct(iot, ioh); return (AscGetChipIRQ(iot, ioh, bus_type)); } if (bus_type & ASC_IS_ISA) { if (irq_no == 15) irq_no -= 2; irq_no -= ASC_MIN_IRQ_NO; cfg_lsw = ASC_GET_CHIP_CFG_LSW(iot, ioh) & 0xFFF3; cfg_lsw |= (irq_no & 0x03) << 2; ASC_SET_CHIP_CFG_LSW(iot, ioh, cfg_lsw); return (AscGetChipIRQ(iot, ioh, bus_type)); } return (0); } static void AscAckInterrupt(iot, ioh) bus_space_tag_t iot; bus_space_handle_t ioh; { u_int8_t host_flag; u_int8_t risc_flag; u_int16_t loop; loop = 0; do { risc_flag = AscReadLramByte(iot, ioh, ASCV_RISC_FLAG_B); if (loop++ > 0x7FFF) break; } while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0); host_flag = AscReadLramByte(iot, ioh, ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT); AscWriteLramByte(iot, ioh, ASCV_HOST_FLAG_B, host_flag | ASC_HOST_FLAG_ACK_INT); ASC_SET_CHIP_STATUS(iot, ioh, ASC_CIW_INT_ACK); loop = 0; while (ASC_GET_CHIP_STATUS(iot, ioh) & ASC_CSW_INT_PENDING) { ASC_SET_CHIP_STATUS(iot, ioh, ASC_CIW_INT_ACK); if (loop++ > 3) break; } AscWriteLramByte(iot, ioh, ASCV_HOST_FLAG_B, host_flag); } static u_int32_t AscGetMaxDmaCount(bus_type) u_int16_t bus_type; { if (bus_type & ASC_IS_ISA) return (ASC_MAX_ISA_DMA_COUNT); else if (bus_type & (ASC_IS_EISA | ASC_IS_VL)) return (ASC_MAX_VL_DMA_COUNT); return (ASC_MAX_PCI_DMA_COUNT); } static u_int16_t AscGetIsaDmaChannel(iot, ioh) bus_space_tag_t iot; bus_space_handle_t ioh; { u_int16_t channel; channel = ASC_GET_CHIP_CFG_LSW(iot, ioh) & 0x0003; if (channel == 0x03) return (0); else if (channel == 0x00) return (7); return (channel + 4); } static u_int16_t AscSetIsaDmaChannel(iot, ioh, dma_channel) bus_space_tag_t iot; bus_space_handle_t ioh; u_int16_t dma_channel; { u_int16_t cfg_lsw; u_int8_t value; if ((dma_channel >= 5) && (dma_channel <= 7)) { if (dma_channel == 7) value = 0x00; else value = dma_channel - 4; cfg_lsw = ASC_GET_CHIP_CFG_LSW(iot, ioh) & 0xFFFC; cfg_lsw |= value; ASC_SET_CHIP_CFG_LSW(iot, ioh, cfg_lsw); return (AscGetIsaDmaChannel(iot, ioh)); } return (0); } static u_int8_t AscGetIsaDmaSpeed(iot, ioh) bus_space_tag_t iot; bus_space_handle_t ioh; { u_int8_t speed_value; AscSetBank(iot, ioh, 1); speed_value = ASC_READ_CHIP_DMA_SPEED(iot, ioh); speed_value &= 0x07; AscSetBank(iot, ioh, 0); return (speed_value); } static u_int8_t AscSetIsaDmaSpeed(iot, ioh, speed_value) bus_space_tag_t iot; bus_space_handle_t ioh; u_int8_t speed_value; { speed_value &= 0x07; AscSetBank(iot, ioh, 1); ASC_WRITE_CHIP_DMA_SPEED(iot, ioh, speed_value); AscSetBank(iot, ioh, 0); return (AscGetIsaDmaSpeed(iot, ioh)); } /******************************************************************************/ /* Messages routines */ /******************************************************************************/ static void AscHandleExtMsgIn(sc, halt_q_addr, q_cntl, target_id, tid_no, asyn_sdtr) ASC_SOFTC *sc; u_int16_t halt_q_addr; u_int8_t q_cntl; ASC_SCSI_BIT_ID_TYPE target_id; int tid_no; u_int8_t asyn_sdtr; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; EXT_MSG ext_msg; u_int8_t sdtr_data; int sdtr_accept; AscMemWordCopyFromLram(iot, ioh, ASCV_MSGIN_BEG, (u_int16_t *) & ext_msg, sizeof(EXT_MSG) >> 1); if (ext_msg.msg_type == MS_EXTEND && ext_msg.msg_req == MS_SDTR_CODE && ext_msg.msg_len == MS_SDTR_LEN) { sdtr_accept = TRUE; if (ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET) { sdtr_accept = FALSE; ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET; } if ((ext_msg.xfer_period < sc->sdtr_period_tbl[sc->host_init_sdtr_index]) || (ext_msg.xfer_period > sc->sdtr_period_tbl[sc->max_sdtr_index])) { sdtr_accept = FALSE; ext_msg.xfer_period = sc->sdtr_period_tbl[sc->host_init_sdtr_index]; } if (sdtr_accept) { sdtr_data = AscCalSDTRData(sc, ext_msg.xfer_period, ext_msg.req_ack_offset); if (sdtr_data == 0xFF) { q_cntl |= ASC_QC_MSG_OUT; sc->init_sdtr &= ~target_id; sc->sdtr_done &= ~target_id; AscSetChipSDTR(iot, ioh, asyn_sdtr, tid_no); sc->sdtr_data[tid_no] = asyn_sdtr; } } if (ext_msg.req_ack_offset == 0) { q_cntl &= ~ASC_QC_MSG_OUT; sc->init_sdtr &= ~target_id; sc->sdtr_done &= ~target_id; AscSetChipSDTR(iot, ioh, asyn_sdtr, tid_no); } else { if (sdtr_accept && (q_cntl & ASC_QC_MSG_OUT)) { q_cntl &= ~ASC_QC_MSG_OUT; sc->sdtr_done |= target_id; sc->init_sdtr |= target_id; sc->pci_fix_asyn_xfer &= ~target_id; sdtr_data = AscCalSDTRData(sc, ext_msg.xfer_period, ext_msg.req_ack_offset); AscSetChipSDTR(iot, ioh, sdtr_data, tid_no); sc->sdtr_data[tid_no] = sdtr_data; } else { q_cntl |= ASC_QC_MSG_OUT; AscMsgOutSDTR(sc, ext_msg.xfer_period, ext_msg.req_ack_offset); sc->pci_fix_asyn_xfer &= ~target_id; sdtr_data = AscCalSDTRData(sc, ext_msg.xfer_period, ext_msg.req_ack_offset); AscSetChipSDTR(iot, ioh, sdtr_data, tid_no); sc->sdtr_data[tid_no] = sdtr_data; sc->sdtr_done |= target_id; sc->init_sdtr |= target_id; } } } else if (ext_msg.msg_type == MS_EXTEND && ext_msg.msg_req == MS_WDTR_CODE && ext_msg.msg_len == MS_WDTR_LEN) { ext_msg.wdtr_width = 0; AscMemWordCopyToLram(iot, ioh, ASCV_MSGOUT_BEG, (u_int16_t *) & ext_msg, sizeof(EXT_MSG) >> 1); q_cntl |= ASC_QC_MSG_OUT; } else { ext_msg.msg_type = M1_MSG_REJECT; AscMemWordCopyToLram(iot, ioh, ASCV_MSGOUT_BEG, (u_int16_t *) & ext_msg, sizeof(EXT_MSG) >> 1); q_cntl |= ASC_QC_MSG_OUT; } AscWriteLramByte(iot, ioh, halt_q_addr + ASC_SCSIQ_B_CNTL, q_cntl); } static u_int8_t AscMsgOutSDTR(sc, sdtr_period, sdtr_offset) ASC_SOFTC *sc; u_int8_t sdtr_period; u_int8_t sdtr_offset; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; EXT_MSG sdtr_buf; u_int8_t sdtr_period_index; sdtr_buf.msg_type = MS_EXTEND; sdtr_buf.msg_len = MS_SDTR_LEN; sdtr_buf.msg_req = MS_SDTR_CODE; sdtr_buf.xfer_period = sdtr_period; sdtr_offset &= ASC_SYN_MAX_OFFSET; sdtr_buf.req_ack_offset = sdtr_offset; if ((sdtr_period_index = AscGetSynPeriodIndex(sc, sdtr_period)) <= sc->max_sdtr_index) { AscMemWordCopyToLram(iot, ioh, ASCV_MSGOUT_BEG, (u_int16_t *) & sdtr_buf, sizeof(EXT_MSG) >> 1); return ((sdtr_period_index << 4) | sdtr_offset); } else { sdtr_buf.req_ack_offset = 0; AscMemWordCopyToLram(iot, ioh, ASCV_MSGOUT_BEG, (u_int16_t *) & sdtr_buf, sizeof(EXT_MSG) >> 1); return (0); } } /******************************************************************************/ /* SDTR routines */ /******************************************************************************/ static void AscSetChipSDTR(iot, ioh, sdtr_data, tid_no) bus_space_tag_t iot; bus_space_handle_t ioh; u_int8_t sdtr_data; u_int8_t tid_no; { AscSetChipSynRegAtID(iot, ioh, tid_no, sdtr_data); AscWriteLramByte(iot, ioh, tid_no + ASCV_SDTR_DONE_BEG, sdtr_data); } static u_int8_t AscCalSDTRData(sc, sdtr_period, syn_offset) ASC_SOFTC *sc; u_int8_t sdtr_period; u_int8_t syn_offset; { u_int8_t byte; u_int8_t sdtr_period_ix; sdtr_period_ix = AscGetSynPeriodIndex(sc, sdtr_period); if (sdtr_period_ix > sc->max_sdtr_index) return (0xFF); byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET); return (byte); } static u_int8_t AscGetSynPeriodIndex(sc, syn_time) ASC_SOFTC *sc; u_int8_t syn_time; { u_int8_t *period_table; int max_index; int min_index; int i; period_table = sc->sdtr_period_tbl; max_index = sc->max_sdtr_index; min_index = sc->host_init_sdtr_index; if ((syn_time <= period_table[max_index])) { for (i = min_index; i < (max_index - 1); i++) { if (syn_time <= period_table[i]) return (i); } return (max_index); } else return (max_index + 1); } /******************************************************************************/ /* Queue routines */ /******************************************************************************/ /* * Send a command to the board */ int AscExeScsiQueue(sc, scsiq) ASC_SOFTC *sc; ASC_SCSI_Q *scsiq; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; ASC_SG_HEAD *sg_head = scsiq->sg_head; int retval; int n_q_required; int disable_syn_offset_one_fix; int i; u_int32_t addr; u_int16_t sg_entry_cnt = 0; u_int16_t sg_entry_cnt_minus_one = 0; u_int8_t target_ix; u_int8_t tid_no; u_int8_t sdtr_data; u_int8_t extra_bytes; u_int8_t scsi_cmd; u_int32_t data_cnt; scsiq->q1.q_no = 0; if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) scsiq->q1.extra_bytes = 0; retval = ASC_BUSY; target_ix = scsiq->q2.target_ix; tid_no = ASC_TIX_TO_TID(target_ix); n_q_required = 1; if (scsiq->cdbptr[0] == SCSICMD_RequestSense) if ((sc->init_sdtr & scsiq->q1.target_id) != 0) { sc->sdtr_done &= ~scsiq->q1.target_id; sdtr_data = ASC_GET_MCODE_INIT_SDTR_AT_ID(iot, ioh, tid_no); AscMsgOutSDTR(sc, sc->sdtr_period_tbl[(sdtr_data >> 4) & (sc->max_sdtr_index - 1)], sdtr_data & ASC_SYN_MAX_OFFSET); scsiq->q1.cntl |= (ASC_QC_MSG_OUT | ASC_QC_URGENT); } /* * if there is just one segment into S/G list then * map it as it was a single request, filling * data_addr and data_cnt of ASC_SCSIQ structure. */ if ((scsiq->q1.cntl & ASC_QC_SG_HEAD) != 0) { sg_entry_cnt = sg_head->entry_cnt; if (sg_entry_cnt < 1) panic("AscExeScsiQueue: Queue with QC_SG_HEAD set but %d segs.", sg_entry_cnt); if (sg_entry_cnt > ASC_MAX_SG_LIST) panic("AscExeScsiQueue: Queue with too many segs."); if (sg_entry_cnt == 1) { scsiq->q1.data_addr = sg_head->sg_list[0].addr; scsiq->q1.data_cnt = sg_head->sg_list[0].bytes; scsiq->q1.cntl &= ~(ASC_QC_SG_HEAD | ASC_QC_SG_SWAP_QUEUE); } sg_entry_cnt_minus_one = sg_entry_cnt - 1; } scsi_cmd = scsiq->cdbptr[0]; disable_syn_offset_one_fix = FALSE; if ((sc->pci_fix_asyn_xfer & scsiq->q1.target_id) && !(sc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) { if (scsiq->q1.cntl & ASC_QC_SG_HEAD) { data_cnt = 0; for (i = 0; i < sg_entry_cnt; i++) data_cnt += sg_head->sg_list[i].bytes; } else { data_cnt = scsiq->q1.data_cnt; } if (data_cnt != 0ul) { if (data_cnt < 512ul) { disable_syn_offset_one_fix = TRUE; } else { if (scsi_cmd == SCSICMD_Inquiry || scsi_cmd == SCSICMD_RequestSense || scsi_cmd == SCSICMD_ReadCapacity || scsi_cmd == SCSICMD_ReadTOC || scsi_cmd == SCSICMD_ModeSelect6 || scsi_cmd == SCSICMD_ModeSense6 || scsi_cmd == SCSICMD_ModeSelect10 || scsi_cmd == SCSICMD_ModeSense10) { disable_syn_offset_one_fix = TRUE; } } } } if (disable_syn_offset_one_fix) { scsiq->q2.tag_code &= ~M2_QTAG_MSG_SIMPLE; scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX | ASC_TAG_FLAG_DISABLE_DISCONNECT); } else { scsiq->q2.tag_code &= 0x23; } if ((scsiq->q1.cntl & ASC_QC_SG_HEAD) != 0) { if (sc->bug_fix_cntl) { if (sc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) { if ((scsi_cmd == SCSICMD_Read6) || (scsi_cmd == SCSICMD_Read10)) { addr = sg_head->sg_list[sg_entry_cnt_minus_one].addr + sg_head->sg_list[sg_entry_cnt_minus_one].bytes; extra_bytes = addr & 0x0003; if ((extra_bytes != 0) && ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0)) { scsiq->q2.tag_code |= ASC_TAG_FLAG_EXTRA_BYTES; scsiq->q1.extra_bytes = extra_bytes; sg_head->sg_list[sg_entry_cnt_minus_one].bytes -= extra_bytes; } } } } sg_head->entry_to_copy = sg_head->entry_cnt; n_q_required = AscSgListToQueue(sg_entry_cnt); if ((AscGetNumOfFreeQueue(sc, target_ix, n_q_required) >= n_q_required) || ((scsiq->q1.cntl & ASC_QC_URGENT) != 0)) { retval = AscSendScsiQueue(sc, scsiq, n_q_required); } } else { if (sc->bug_fix_cntl) { if (sc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) { if ((scsi_cmd == SCSICMD_Read6) || (scsi_cmd == SCSICMD_Read10)) { addr = scsiq->q1.data_addr + scsiq->q1.data_cnt; extra_bytes = addr & 0x0003; if ((extra_bytes != 0) && ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0)) { if ((scsiq->q1.data_cnt & 0x01FF) == 0) { scsiq->q2.tag_code |= ASC_TAG_FLAG_EXTRA_BYTES; scsiq->q1.data_cnt -= extra_bytes; scsiq->q1.extra_bytes = extra_bytes; } } } } } n_q_required = 1; if ((AscGetNumOfFreeQueue(sc, target_ix, 1) >= 1) || ((scsiq->q1.cntl & ASC_QC_URGENT) != 0)) { retval = AscSendScsiQueue(sc, scsiq, n_q_required); } } return (retval); } static int AscSendScsiQueue(sc, scsiq, n_q_required) ASC_SOFTC *sc; ASC_SCSI_Q *scsiq; u_int8_t n_q_required; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; u_int8_t free_q_head; u_int8_t next_qp; u_int8_t tid_no; u_int8_t target_ix; int retval; target_ix = scsiq->q2.target_ix; tid_no = ASC_TIX_TO_TID(target_ix); retval = ASC_BUSY; free_q_head = ASC_GET_VAR_FREE_QHEAD(iot, ioh); if ((next_qp = AscAllocMultipleFreeQueue(iot, ioh, free_q_head, n_q_required)) != ASC_QLINK_END) { if (n_q_required > 1) { sc->last_q_shortage = 0; scsiq->sg_head->queue_cnt = n_q_required - 1; } scsiq->q1.q_no = free_q_head; if ((retval = AscPutReadySgListQueue(sc, scsiq, free_q_head)) == ASC_NOERROR) { ASC_PUT_VAR_FREE_QHEAD(iot, ioh, next_qp); sc->cur_total_qng += n_q_required; sc->cur_dvc_qng[tid_no]++; } } return (retval); } static int AscPutReadySgListQueue(sc, scsiq, q_no) ASC_SOFTC *sc; ASC_SCSI_Q *scsiq; u_int8_t q_no; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; int retval; int i; ASC_SG_HEAD *sg_head; ASC_SG_LIST_Q scsi_sg_q; u_int32_t saved_data_addr; u_int32_t saved_data_cnt; u_int16_t sg_list_dwords; u_int16_t sg_index; u_int16_t sg_entry_cnt; u_int16_t q_addr; u_int8_t next_qp; saved_data_addr = scsiq->q1.data_addr; saved_data_cnt = scsiq->q1.data_cnt; if ((sg_head = scsiq->sg_head) != 0) { scsiq->q1.data_addr = sg_head->sg_list[0].addr; scsiq->q1.data_cnt = sg_head->sg_list[0].bytes; sg_entry_cnt = sg_head->entry_cnt - 1; if (sg_entry_cnt != 0) { q_addr = ASC_QNO_TO_QADDR(q_no); sg_index = 1; scsiq->q1.sg_queue_cnt = sg_head->queue_cnt; scsi_sg_q.sg_head_qp = q_no; scsi_sg_q.cntl = ASC_QCSG_SG_XFER_LIST; for (i = 0; i < sg_head->queue_cnt; i++) { scsi_sg_q.seq_no = i + 1; if (sg_entry_cnt > ASC_SG_LIST_PER_Q) { sg_list_dwords = ASC_SG_LIST_PER_Q * 2; sg_entry_cnt -= ASC_SG_LIST_PER_Q; if (i == 0) { scsi_sg_q.sg_list_cnt = ASC_SG_LIST_PER_Q; scsi_sg_q.sg_cur_list_cnt = ASC_SG_LIST_PER_Q; } else { scsi_sg_q.sg_list_cnt = ASC_SG_LIST_PER_Q - 1; scsi_sg_q.sg_cur_list_cnt = ASC_SG_LIST_PER_Q - 1; } } else { scsi_sg_q.cntl |= ASC_QCSG_SG_XFER_END; sg_list_dwords = sg_entry_cnt << 1; if (i == 0) { scsi_sg_q.sg_list_cnt = sg_entry_cnt; scsi_sg_q.sg_cur_list_cnt = sg_entry_cnt; } else { scsi_sg_q.sg_list_cnt = sg_entry_cnt - 1; scsi_sg_q.sg_cur_list_cnt = sg_entry_cnt - 1; } sg_entry_cnt = 0; } next_qp = AscReadLramByte(iot, ioh, q_addr + ASC_SCSIQ_B_FWD); scsi_sg_q.q_no = next_qp; q_addr = ASC_QNO_TO_QADDR(next_qp); /* * Tell the board how many entries are in the S/G list */ AscMemWordCopyToLram(iot, ioh, q_addr + ASC_SCSIQ_SGHD_CPY_BEG, (u_int16_t *) & scsi_sg_q, sizeof(ASC_SG_LIST_Q) >> 1); /* * Tell the board the addresses of the S/G list segments */ AscMemDWordCopyToLram(iot, ioh, q_addr + ASC_SGQ_LIST_BEG, (u_int32_t *) & sg_head->sg_list[sg_index], sg_list_dwords); sg_index += ASC_SG_LIST_PER_Q; } } } retval = AscPutReadyQueue(sc, scsiq, q_no); scsiq->q1.data_addr = saved_data_addr; scsiq->q1.data_cnt = saved_data_cnt; return (retval); } static int AscPutReadyQueue(sc, scsiq, q_no) ASC_SOFTC *sc; ASC_SCSI_Q *scsiq; u_int8_t q_no; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; u_int16_t q_addr; u_int8_t tid_no; u_int8_t sdtr_data; u_int8_t syn_period_ix; u_int8_t syn_offset; if (((sc->init_sdtr & scsiq->q1.target_id) != 0) && ((sc->sdtr_done & scsiq->q1.target_id) == 0)) { tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix); sdtr_data = ASC_GET_MCODE_INIT_SDTR_AT_ID(iot, ioh, tid_no); syn_period_ix = (sdtr_data >> 4) & (sc->max_sdtr_index - 1); syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET; AscMsgOutSDTR(sc, sc->sdtr_period_tbl[syn_period_ix], syn_offset); scsiq->q1.cntl |= ASC_QC_MSG_OUT; } q_addr = ASC_QNO_TO_QADDR(q_no); if ((scsiq->q1.target_id & sc->use_tagged_qng) == 0) { scsiq->q2.tag_code &= ~M2_QTAG_MSG_SIMPLE; } scsiq->q1.status = ASC_QS_FREE; AscMemWordCopyToLram(iot, ioh, q_addr + ASC_SCSIQ_CDB_BEG, (u_int16_t *) scsiq->cdbptr, scsiq->q2.cdb_len >> 1); AscPutSCSIQ(iot, ioh, q_addr + ASC_SCSIQ_CPY_BEG, scsiq); /* * Let's start the command */ AscWriteLramWord(iot, ioh, q_addr + ASC_SCSIQ_B_STATUS, (scsiq->q1.q_no << 8) | ASC_QS_READY); return (ASC_NOERROR); } static void AscPutSCSIQ(iot, ioh, addr, scsiq) bus_space_tag_t iot; bus_space_handle_t ioh; u_int16_t addr; ASC_SCSI_Q *scsiq; { u_int16_t val; ASC_SET_CHIP_LRAM_ADDR(iot, ioh, addr); /* ASC_SCSIQ_1 */ val = MAKEWORD(scsiq->q1.cntl, scsiq->q1.sg_queue_cnt); ASC_SET_CHIP_LRAM_DATA(iot, ioh, val); val = MAKEWORD(scsiq->q1.target_id, scsiq->q1.target_lun); ASC_SET_CHIP_LRAM_DATA(iot, ioh, val); val = LO_WORD(scsiq->q1.data_addr); ASC_SET_CHIP_LRAM_DATA(iot, ioh, val); val = HI_WORD(scsiq->q1.data_addr); ASC_SET_CHIP_LRAM_DATA(iot, ioh, val); val = LO_WORD(scsiq->q1.data_cnt); ASC_SET_CHIP_LRAM_DATA(iot, ioh, val); val = HI_WORD(scsiq->q1.data_cnt); ASC_SET_CHIP_LRAM_DATA(iot, ioh, val); val = LO_WORD(scsiq->q1.sense_addr); ASC_SET_CHIP_LRAM_DATA(iot, ioh, val); val = HI_WORD(scsiq->q1.sense_addr); ASC_SET_CHIP_LRAM_DATA(iot, ioh, val); val = MAKEWORD(scsiq->q1.sense_len, scsiq->q1.extra_bytes); ASC_SET_CHIP_LRAM_DATA(iot, ioh, val); /* ASC_SCSIQ_2 */ val = LO_WORD(scsiq->q2.ccb_ptr); ASC_SET_CHIP_LRAM_DATA(iot, ioh, val); val = HI_WORD(scsiq->q2.ccb_ptr); ASC_SET_CHIP_LRAM_DATA(iot, ioh, val); val = MAKEWORD(scsiq->q2.target_ix, scsiq->q2.flag); ASC_SET_CHIP_LRAM_DATA(iot, ioh, val); val = MAKEWORD(scsiq->q2.cdb_len, scsiq->q2.tag_code); ASC_SET_CHIP_LRAM_DATA(iot, ioh, val); ASC_SET_CHIP_LRAM_DATA(iot, ioh, scsiq->q2.vm_id); } static int AscSgListToQueue(sg_list) int sg_list; { int n_sg_list_qs; n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q); if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0) n_sg_list_qs++; return (n_sg_list_qs + 1); } static u_int AscGetNumOfFreeQueue(sc, target_ix, n_qs) ASC_SOFTC *sc; u_int8_t target_ix; u_int8_t n_qs; { u_int cur_used_qs; u_int cur_free_qs; if (n_qs == 1) { cur_used_qs = sc->cur_total_qng + sc->last_q_shortage + ASC_MIN_FREE_Q; } else { cur_used_qs = sc->cur_total_qng + ASC_MIN_FREE_Q; } if ((cur_used_qs + n_qs) <= sc->max_total_qng) { cur_free_qs = sc->max_total_qng - cur_used_qs; return (cur_free_qs); } if (n_qs > 1) if ((n_qs > sc->last_q_shortage) && (n_qs <= (sc->max_total_qng - ASC_MIN_FREE_Q))) { sc->last_q_shortage = n_qs; } return (0); } static u_int8_t AscAllocFreeQueue(iot, ioh, free_q_head) bus_space_tag_t iot; bus_space_handle_t ioh; u_int8_t free_q_head; { u_int16_t q_addr; u_int8_t next_qp; u_int8_t q_status; q_addr = ASC_QNO_TO_QADDR(free_q_head); q_status = AscReadLramByte(iot, ioh, q_addr + ASC_SCSIQ_B_STATUS); next_qp = AscReadLramByte(iot, ioh, q_addr + ASC_SCSIQ_B_FWD); if (((q_status & ASC_QS_READY) == 0) && (next_qp != ASC_QLINK_END)) return (next_qp); return (ASC_QLINK_END); } static u_int8_t AscAllocMultipleFreeQueue(iot, ioh, free_q_head, n_free_q) bus_space_tag_t iot; bus_space_handle_t ioh; u_int8_t free_q_head; u_int8_t n_free_q; { u_int8_t i; for (i = 0; i < n_free_q; i++) { free_q_head = AscAllocFreeQueue(iot, ioh, free_q_head); if (free_q_head == ASC_QLINK_END) break; } return (free_q_head); } static int AscStopQueueExe(iot, ioh) bus_space_tag_t iot; bus_space_handle_t ioh; { int count = 0; if (AscReadLramByte(iot, ioh, ASCV_STOP_CODE_B) == 0) { AscWriteLramByte(iot, ioh, ASCV_STOP_CODE_B, ASC_STOP_REQ_RISC_STOP); do { if (AscReadLramByte(iot, ioh, ASCV_STOP_CODE_B) & ASC_STOP_ACK_RISC_STOP) return (1); DvcSleepMilliSecond(100); } while (count++ < 20); } return (0); } static void AscStartQueueExe(iot, ioh) bus_space_tag_t iot; bus_space_handle_t ioh; { if (AscReadLramByte(iot, ioh, ASCV_STOP_CODE_B) != 0) AscWriteLramByte(iot, ioh, ASCV_STOP_CODE_B, 0); } static void AscCleanUpBusyQueue(iot, ioh) bus_space_tag_t iot; bus_space_handle_t ioh; { int count = 0; u_int8_t stop_code; if (AscReadLramByte(iot, ioh, ASCV_STOP_CODE_B) != 0) { AscWriteLramByte(iot, ioh, ASCV_STOP_CODE_B, ASC_STOP_CLEAN_UP_BUSY_Q); do { stop_code = AscReadLramByte(iot, ioh, ASCV_STOP_CODE_B); if ((stop_code & ASC_STOP_CLEAN_UP_BUSY_Q) == 0) break; DvcSleepMilliSecond(100); } while (count++ < 20); } } static int _AscWaitQDone(iot, ioh, scsiq) bus_space_tag_t iot; bus_space_handle_t ioh; ASC_SCSI_Q *scsiq; { u_int16_t q_addr; u_int8_t q_status; int count = 0; while (scsiq->q1.q_no == 0); q_addr = ASC_QNO_TO_QADDR(scsiq->q1.q_no); do { q_status = AscReadLramByte(iot, ioh, q_addr + ASC_SCSIQ_B_STATUS); DvcSleepMilliSecond(100L); if (count++ > 30) return (0); } while ((q_status & ASC_QS_READY) != 0); return (1); } static int AscCleanUpDiscQueue(iot, ioh) bus_space_tag_t iot; bus_space_handle_t ioh; { int count; u_int8_t stop_code; count = 0; if (AscReadLramByte(iot, ioh, ASCV_STOP_CODE_B) != 0) { AscWriteLramByte(iot, ioh, ASCV_STOP_CODE_B, ASC_STOP_CLEAN_UP_DISC_Q); do { stop_code = AscReadLramByte(iot, ioh, ASCV_STOP_CODE_B); if ((stop_code & ASC_STOP_CLEAN_UP_DISC_Q) == 0) break; DvcSleepMilliSecond(100); } while (count++ < 20); } return (1); } /******************************************************************************/ /* Abort and Reset CCB routines */ /******************************************************************************/ int AscAbortCCB(sc, ccb) ASC_SOFTC *sc; u_int32_t ccb; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; int retval; ASC_SCSI_BIT_ID_TYPE saved_unit_not_ready; retval = -1; saved_unit_not_ready = sc->unit_not_ready; sc->unit_not_ready = 0xFF; AscWaitISRDone(sc); if (AscStopQueueExe(iot, ioh) == 1) { if (AscRiscHaltedAbortCCB(sc, ccb) == 1) { retval = 1; AscCleanUpBusyQueue(iot, ioh); AscStartQueueExe(iot, ioh); } else { retval = 0; AscStartQueueExe(iot, ioh); } } sc->unit_not_ready = saved_unit_not_ready; return (retval); } static int AscRiscHaltedAbortCCB(sc, ccb) ASC_SOFTC *sc; u_int32_t ccb; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; u_int16_t q_addr; u_int8_t q_no; ASC_QDONE_INFO scsiq_buf; ASC_QDONE_INFO *scsiq; ASC_ISR_CALLBACK asc_isr_callback; int last_int_level; asc_isr_callback = (ASC_ISR_CALLBACK) sc->isr_callback; last_int_level = DvcEnterCritical(); scsiq = (ASC_QDONE_INFO *) & scsiq_buf; for (q_no = ASC_MIN_ACTIVE_QNO; q_no <= sc->max_total_qng; q_no++) { q_addr = ASC_QNO_TO_QADDR(q_no); scsiq->d2.ccb_ptr = AscReadLramDWord(iot, ioh, q_addr + ASC_SCSIQ_D_CCBPTR); if (scsiq->d2.ccb_ptr == ccb) { _AscCopyLramScsiDoneQ(iot, ioh, q_addr, scsiq, sc->max_dma_count); if (((scsiq->q_status & ASC_QS_READY) != 0) && ((scsiq->q_status & ASC_QS_ABORTED) == 0) && ((scsiq->cntl & ASC_QCSG_SG_XFER_LIST) == 0)) { scsiq->q_status |= ASC_QS_ABORTED; scsiq->d3.done_stat = ASC_QD_ABORTED_BY_HOST; AscWriteLramDWord(iot, ioh, q_addr + ASC_SCSIQ_D_CCBPTR, 0L); AscWriteLramByte(iot, ioh, q_addr + ASC_SCSIQ_B_STATUS, scsiq->q_status); (*asc_isr_callback) (sc, scsiq); DvcLeaveCritical(last_int_level); return (1); } } } DvcLeaveCritical(last_int_level); return (0); } static int AscRiscHaltedAbortTIX(sc, target_ix) ASC_SOFTC *sc; u_int8_t target_ix; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; u_int16_t q_addr; u_int8_t q_no; ASC_QDONE_INFO scsiq_buf; ASC_QDONE_INFO *scsiq; ASC_ISR_CALLBACK asc_isr_callback; int last_int_level; asc_isr_callback = (ASC_ISR_CALLBACK) sc->isr_callback; last_int_level = DvcEnterCritical(); scsiq = (ASC_QDONE_INFO *) & scsiq_buf; for (q_no = ASC_MIN_ACTIVE_QNO; q_no <= sc->max_total_qng; q_no++) { q_addr = ASC_QNO_TO_QADDR(q_no); _AscCopyLramScsiDoneQ(iot, ioh, q_addr, scsiq, sc->max_dma_count); if (((scsiq->q_status & ASC_QS_READY) != 0) && ((scsiq->q_status & ASC_QS_ABORTED) == 0) && ((scsiq->cntl & ASC_QCSG_SG_XFER_LIST) == 0)) { if (scsiq->d2.target_ix == target_ix) { scsiq->q_status |= ASC_QS_ABORTED; scsiq->d3.done_stat = ASC_QD_ABORTED_BY_HOST; AscWriteLramDWord(iot, ioh, q_addr + ASC_SCSIQ_D_CCBPTR, 0L); AscWriteLramByte(iot, ioh, q_addr + ASC_SCSIQ_B_STATUS, scsiq->q_status); (*asc_isr_callback) (sc, scsiq); } } } DvcLeaveCritical(last_int_level); return (1); } /* * AscResetDevice calls _AscWaitQDone which requires interrupt enabled, * so we cannot use this function with the actual NetBSD SCSI layer * because at boot time interrupts are disabled. */ int AscResetDevice(sc, target_ix) ASC_SOFTC *sc; u_char target_ix; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; int retval; u_int8_t tid_no; ASC_SCSI_BIT_ID_TYPE target_id; int i; ASC_SCSI_REQ_Q scsiq_buf; ASC_SCSI_REQ_Q *scsiq; u_int8_t *buf; ASC_SCSI_BIT_ID_TYPE saved_unit_not_ready; tid_no = ASC_TIX_TO_TID(target_ix); target_id = ASC_TID_TO_TARGET_ID(tid_no); saved_unit_not_ready = sc->unit_not_ready; sc->unit_not_ready = target_id; retval = ASC_ERROR; AscWaitTixISRDone(sc, target_ix); if (AscStopQueueExe(iot, ioh) == 1) { if (AscRiscHaltedAbortTIX(sc, target_ix) == 1) { AscCleanUpBusyQueue(iot, ioh); AscStartQueueExe(iot, ioh); AscWaitTixISRDone(sc, target_ix); retval = ASC_NOERROR; scsiq = (ASC_SCSI_REQ_Q *) & scsiq_buf; buf = (u_char *) & scsiq_buf; for (i = 0; i < sizeof(ASC_SCSI_REQ_Q); i++) *buf++ = 0x00; scsiq->q1.status = (u_char) ASC_QS_READY; scsiq->q2.cdb_len = 6; scsiq->q2.tag_code = M2_QTAG_MSG_SIMPLE; scsiq->q1.target_id = target_id; scsiq->q2.target_ix = ASC_TIDLUN_TO_IX(tid_no, 0); scsiq->cdbptr = (u_int8_t *) scsiq->cdb; scsiq->q1.cntl = ASC_QC_NO_CALLBACK | ASC_QC_MSG_OUT | ASC_QC_URGENT; AscWriteLramByte(iot, ioh, ASCV_MSGOUT_BEG, M1_BUS_DVC_RESET); sc->unit_not_ready &= ~target_id; sc->sdtr_done |= target_id; if (AscExeScsiQueue(sc, (ASC_SCSI_Q *) scsiq) == ASC_NOERROR) { sc->unit_not_ready = target_id; DvcSleepMilliSecond(1000); _AscWaitQDone(iot, ioh, (ASC_SCSI_Q *) scsiq); if (AscStopQueueExe(iot, ioh) == ASC_NOERROR) { AscCleanUpDiscQueue(iot, ioh); AscStartQueueExe(iot, ioh); if (sc->pci_fix_asyn_xfer & target_id) AscSetRunChipSynRegAtID(iot, ioh, tid_no, ASYN_SDTR_DATA_FIX_PCI_REV_AB); AscWaitTixISRDone(sc, target_ix); } } else retval = ASC_BUSY; sc->sdtr_done &= ~target_id; } else { retval = ASC_ERROR; AscStartQueueExe(iot, ioh); } } sc->unit_not_ready = saved_unit_not_ready; return (retval); } int AscResetBus(sc) ASC_SOFTC *sc; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; int retval; int i; sc->unit_not_ready = 0xFF; retval = ASC_NOERROR; AscWaitISRDone(sc); AscStopQueueExe(iot, ioh); sc->sdtr_done = 0; AscResetChipAndScsiBus(iot, ioh); DvcSleepMilliSecond((u_long) ((u_int16_t) sc->scsi_reset_wait * 1000)); AscReInitLram(sc); for (i = 0; i <= ASC_MAX_TID; i++) { sc->cur_dvc_qng[i] = 0; if (sc->pci_fix_asyn_xfer & (ASC_SCSI_BIT_ID_TYPE) (0x01 << i)) AscSetChipSynRegAtID(iot, ioh, i, ASYN_SDTR_DATA_FIX_PCI_REV_AB); } ASC_SET_PC_ADDR(iot, ioh, ASC_MCODE_START_ADDR); if (ASC_GET_PC_ADDR(iot, ioh) != ASC_MCODE_START_ADDR) retval = ASC_ERROR; if (AscStartChip(iot, ioh) == 0) retval = ASC_ERROR; AscStartQueueExe(iot, ioh); sc->unit_not_ready = 0; sc->queue_full_or_busy = 0; return (retval); } /******************************************************************************/ /* Error Handling routines */ /******************************************************************************/ static int AscSetLibErrorCode(sc, err_code) ASC_SOFTC *sc; u_int16_t err_code; { /* * if(sc->err_code == 0) { sc->err_code = err_code; */ AscWriteLramWord(sc->sc_iot, sc->sc_ioh, ASCV_ASCDVC_ERR_CODE_W, err_code); /* * } */ return (err_code); } /******************************************************************************/ /* Handle bugged borads routines */ /******************************************************************************/ void AscInquiryHandling(sc, tid_no, inq) ASC_SOFTC *sc; u_int8_t tid_no; ASC_SCSI_INQUIRY *inq; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; ASC_SCSI_BIT_ID_TYPE tid_bit = ASC_TIX_TO_TARGET_ID(tid_no); ASC_SCSI_BIT_ID_TYPE orig_init_sdtr, orig_use_tagged_qng; orig_init_sdtr = sc->init_sdtr; orig_use_tagged_qng = sc->use_tagged_qng; sc->init_sdtr &= ~tid_bit; sc->can_tagged_qng &= ~tid_bit; sc->use_tagged_qng &= ~tid_bit; if (inq->byte3.rsp_data_fmt >= 2 || inq->byte2.ansi_apr_ver >= 2) { if ((sc->sdtr_enable & tid_bit) && inq->byte7.Sync) sc->init_sdtr |= tid_bit; if ((sc->cmd_qng_enabled & tid_bit) && inq->byte7.CmdQue) if (AscTagQueuingSafe(inq)) { sc->use_tagged_qng |= tid_bit; sc->can_tagged_qng |= tid_bit; } } if (orig_use_tagged_qng != sc->use_tagged_qng) { AscWriteLramByte(iot, ioh, ASCV_DISC_ENABLE_B, sc->disc_enable); AscWriteLramByte(iot, ioh, ASCV_USE_TAGGED_QNG_B, sc->use_tagged_qng); AscWriteLramByte(iot, ioh, ASCV_CAN_TAGGED_QNG_B, sc->can_tagged_qng); sc->max_dvc_qng[tid_no] = sc->max_tag_qng[tid_no]; AscWriteLramByte(iot, ioh, ASCV_MAX_DVC_QNG_BEG + tid_no, sc->max_dvc_qng[tid_no]); } if (orig_init_sdtr != sc->init_sdtr) AscAsyncFix(sc, tid_no, inq); } static int AscTagQueuingSafe(inq) ASC_SCSI_INQUIRY *inq; { if ((inq->add_len >= 32) && (AscCompareString(inq->vendor_id, "QUANTUM XP34301", 15) == 0) && (AscCompareString(inq->product_rev_level, "1071", 4) == 0)) { return 0; } return 1; } static void AscAsyncFix(sc, tid_no, inq) ASC_SOFTC *sc; u_int8_t tid_no; ASC_SCSI_INQUIRY *inq; { u_int8_t dvc_type; ASC_SCSI_BIT_ID_TYPE tid_bits; dvc_type = inq->byte0.peri_dvc_type; tid_bits = ASC_TIX_TO_TARGET_ID(tid_no); if (sc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN) { if (!(sc->init_sdtr & tid_bits)) { if ((dvc_type == SCSI_TYPE_CDROM) && (AscCompareString(inq->vendor_id, "HP ", 3) == 0)) { sc->pci_fix_asyn_xfer_always |= tid_bits; } sc->pci_fix_asyn_xfer |= tid_bits; if ((dvc_type == SCSI_TYPE_PROC) || (dvc_type == SCSI_TYPE_SCANNER)) { sc->pci_fix_asyn_xfer &= ~tid_bits; } if ((dvc_type == SCSI_TYPE_SASD) && (AscCompareString(inq->vendor_id, "TANDBERG", 8) == 0) && (AscCompareString(inq->product_id, " TDC 36", 7) == 0)) { sc->pci_fix_asyn_xfer &= ~tid_bits; } if ((dvc_type == SCSI_TYPE_SASD) && (AscCompareString(inq->vendor_id, "WANGTEK ", 8) == 0)) { sc->pci_fix_asyn_xfer &= ~tid_bits; } if ((dvc_type == SCSI_TYPE_CDROM) && (AscCompareString(inq->vendor_id, "NEC ", 8) == 0) && (AscCompareString(inq->product_id, "CD-ROM DRIVE ", 16) == 0)) { sc->pci_fix_asyn_xfer &= ~tid_bits; } if ((dvc_type == SCSI_TYPE_CDROM) && (AscCompareString(inq->vendor_id, "YAMAHA", 6) == 0) && (AscCompareString(inq->product_id, "CDR400", 6) == 0)) { sc->pci_fix_asyn_xfer &= ~tid_bits; } if (sc->pci_fix_asyn_xfer & tid_bits) { AscSetRunChipSynRegAtID(sc->sc_iot, sc->sc_ioh, tid_no, ASYN_SDTR_DATA_FIX_PCI_REV_AB); } } } } /******************************************************************************/ /* Miscellaneous routines */ /******************************************************************************/ static int AscCompareString(str1, str2, len) u_char *str1; u_char *str2; int len; { int i; int diff; for (i = 0; i < len; i++) { diff = (int) (str1[i] - str2[i]); if (diff != 0) return (diff); } return (0); } /******************************************************************************/ /* Device oriented routines */ /******************************************************************************/ static int DvcEnterCritical(void) { int s; s = splbio(); return (s); } static void DvcLeaveCritical(s) int s; { splx(s); } static void DvcSleepMilliSecond(n) u_int32_t n; { DELAY(n * 1000); } #ifdef UNUSED static void DvcDelayMicroSecond(n) u_int32_t n; { DELAY(n); } #endif static void DvcDelayNanoSecond(n) u_int32_t n; { DELAY((n + 999) / 1000); }