/* $NetBSD: adw.c,v 1.13 2000/02/03 20:29:15 dante Exp $ */ /* * Generic driver for the Advanced Systems Inc. SCSI controllers * * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc. * All rights reserved. * * Author: Baldassare Dante Profeta * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef DDB #define Debugger() panic("should call debugger here (adw.c)") #endif /* ! DDB */ /******************************************************************************/ static void adw_enqueue __P((ADW_SOFTC *, struct scsi_xfer *, int)); static struct scsi_xfer *adw_dequeue __P((ADW_SOFTC *)); static int adw_alloc_controls __P((ADW_SOFTC *)); static int adw_alloc_carriers __P((ADW_SOFTC *)); static int adw_create_carriers __P((ADW_SOFTC *)); static int adw_init_carrier __P((ADW_SOFTC *, ADW_CARRIER *)); static int adw_create_ccbs __P((ADW_SOFTC *, ADW_CCB *, int)); static void adw_free_ccb __P((ADW_SOFTC *, ADW_CCB *)); static void adw_reset_ccb __P((ADW_CCB *)); static int adw_init_ccb __P((ADW_SOFTC *, ADW_CCB *)); static ADW_CCB *adw_get_ccb __P((ADW_SOFTC *, int)); static int adw_queue_ccb __P((ADW_SOFTC *, ADW_CCB *, int)); static int adw_scsi_cmd __P((struct scsi_xfer *)); static int adw_build_req __P((struct scsi_xfer *, ADW_CCB *)); static void adw_build_sglist __P((ADW_CCB *, ADW_SCSI_REQ_Q *, ADW_SG_BLOCK *)); static void adwminphys __P((struct buf *)); static void adw_isr_callback __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *)); static void adw_async_callback __P((ADW_SOFTC *, u_int8_t)); static int adw_poll __P((ADW_SOFTC *, struct scsi_xfer *, int)); static void adw_timeout __P((void *)); /******************************************************************************/ struct cfdriver adw_cd = { NULL, "adw", DV_DULL }; /* the below structure is so we have a default dev struct for out link struct */ struct scsi_device adw_dev = { NULL, /* Use default error handler */ NULL, /* have a queue, served by this */ NULL, /* have no async handler */ NULL, /* Use default 'done' routine */ }; #define ADW_ABORT_TIMEOUT 10000 /* time to wait for abort (mSec) */ #define ADW_WATCH_TIMEOUT 10000 /* time to wait for watchdog (mSec) */ /******************************************************************************/ /* scsi_xfer queue routines */ /******************************************************************************/ /* * Insert a scsi_xfer into the software queue. We overload xs->free_list * to avoid having to allocate additional resources (since we're used * only during resource shortages anyhow. */ static void adw_enqueue(sc, xs, infront) ADW_SOFTC *sc; struct scsi_xfer *xs; int infront; { if (infront || sc->sc_queue.lh_first == NULL) { if (sc->sc_queue.lh_first == NULL) sc->sc_queuelast = xs; LIST_INSERT_HEAD(&sc->sc_queue, xs, free_list); return; } LIST_INSERT_AFTER(sc->sc_queuelast, xs, free_list); sc->sc_queuelast = xs; } /* * Pull a scsi_xfer off the front of the software queue. */ static struct scsi_xfer * adw_dequeue(sc) ADW_SOFTC *sc; { struct scsi_xfer *xs; xs = sc->sc_queue.lh_first; LIST_REMOVE(xs, free_list); if (sc->sc_queue.lh_first == NULL) sc->sc_queuelast = NULL; return (xs); } /******************************************************************************/ /* Control Blocks routines */ /******************************************************************************/ static int adw_alloc_controls(sc) ADW_SOFTC *sc; { bus_dma_segment_t seg; int error, rseg; /* * Allocate the control structure. */ if ((error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct adw_control), NBPG, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) { printf("%s: unable to allocate control structures," " error = %d\n", sc->sc_dev.dv_xname, error); return (error); } if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, sizeof(struct adw_control), (caddr_t *) & sc->sc_control, BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) { printf("%s: unable to map control structures, error = %d\n", sc->sc_dev.dv_xname, error); return (error); } /* * Create and load the DMA map used for the control blocks. */ if ((error = bus_dmamap_create(sc->sc_dmat, sizeof(struct adw_control), 1, sizeof(struct adw_control), 0, BUS_DMA_NOWAIT, &sc->sc_dmamap_control)) != 0) { printf("%s: unable to create control DMA map, error = %d\n", sc->sc_dev.dv_xname, error); return (error); } if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap_control, sc->sc_control, sizeof(struct adw_control), NULL, BUS_DMA_NOWAIT)) != 0) { printf("%s: unable to load control DMA map, error = %d\n", sc->sc_dev.dv_xname, error); return (error); } return (0); } static int adw_alloc_carriers(sc) ADW_SOFTC *sc; { bus_dma_segment_t seg; int error, rseg; /* * Allocate the control structure. */ sc->sc_control->carriers = malloc(ADW_CARRIER_SIZE * ADW_MAX_CARRIER, M_DEVBUF, M_WAITOK); if(!sc->sc_control->carriers) { printf("%s: malloc() failed in allocating carrier structures," " error = %d\n", sc->sc_dev.dv_xname, error); return (error); } if ((error = bus_dmamem_alloc(sc->sc_dmat, ADW_CARRIER_SIZE * ADW_MAX_CARRIER, NBPG, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) { printf("%s: unable to allocate carrier structures," " error = %d\n", sc->sc_dev.dv_xname, error); return (error); } if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, ADW_CARRIER_SIZE * ADW_MAX_CARRIER, (caddr_t *) &sc->sc_control->carriers, BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) { printf("%s: unable to map carrier structures," " error = %d\n", sc->sc_dev.dv_xname, error); return (error); } /* * Create and load the DMA map used for the control blocks. */ if ((error = bus_dmamap_create(sc->sc_dmat, ADW_CARRIER_SIZE * ADW_MAX_CARRIER, 1, ADW_CARRIER_SIZE * ADW_MAX_CARRIER, 0, BUS_DMA_NOWAIT, &sc->sc_dmamap_carrier)) != 0) { printf("%s: unable to create carriers DMA map," " error = %d\n", sc->sc_dev.dv_xname, error); return (error); } if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap_carrier, sc->sc_control->carriers, ADW_CARRIER_SIZE * ADW_MAX_CARRIER, NULL, BUS_DMA_NOWAIT)) != 0) { printf("%s: unable to load carriers DMA map," " error = %d\n", sc->sc_dev.dv_xname, error); return (error); } error = bus_dmamap_create(sc->sc_dmat, ADW_CARRIER_SIZE* ADW_MAX_CARRIER, 1, ADW_CARRIER_SIZE * ADW_MAX_CARRIER, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->sc_control->dmamap_xfer); if (error) { printf("%s: unable to create Carrier DMA map, error = %d\n", sc->sc_dev.dv_xname, error); return (error); } return (0); } /* * Create a set of Carriers and add them to the free list. Called once * by adw_init(). We return the number of Carriers successfully created. */ static int adw_create_carriers(sc) ADW_SOFTC *sc; { ADW_CARRIER *carr; u_int32_t carr_next = NULL; int i, error; for(i=0; i < ADW_MAX_CARRIER; i++) { carr = (ADW_CARRIER *)(((u_int8_t *)sc->sc_control->carriers) + (ADW_CARRIER_SIZE * i)); if ((error = adw_init_carrier(sc, carr)) != 0) { printf("%s: unable to initialize carrier, error = %d\n", sc->sc_dev.dv_xname, error); return (i); } carr->next_vpa = carr_next; carr_next = carr->carr_pa; carr->id = i; } sc->carr_freelist = carr; return (i); } static int adw_init_carrier(sc, carr) ADW_SOFTC *sc; ADW_CARRIER *carr; { u_int32_t carr_pa; int /*error, */hashnum; /* * Create the DMA map for all of the Carriers. */ /* error = bus_dmamap_create(sc->sc_dmat, ADW_CARRIER_SIZE, 1, ADW_CARRIER_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &carr->dmamap_xfer); if (error) { printf("%s: unable to create Carrier DMA map, error = %d\n", sc->sc_dev.dv_xname, error); return (error); } */ /* * put in the phystokv hash table * Never gets taken out. */ carr_pa = ADW_CARRIER_ADDR(sc, carr); carr->carr_pa = carr_pa; hashnum = CARRIER_HASH(carr_pa); carr->nexthash = sc->sc_carrhash[hashnum]; sc->sc_carrhash[hashnum] = carr; return(0); } /* * Given a physical address, find the Carrier that it corresponds to. */ ADW_CARRIER * adw_carrier_phys_kv(sc, carr_phys) ADW_SOFTC *sc; u_int32_t carr_phys; { int hashnum = CARRIER_HASH(carr_phys); ADW_CARRIER *carr = sc->sc_carrhash[hashnum]; while (carr) { if (carr->carr_pa == carr_phys) break; carr = carr->nexthash; } return (carr); } /* * Create a set of ccbs and add them to the free list. Called once * by adw_init(). We return the number of CCBs successfully created. */ static int adw_create_ccbs(sc, ccbstore, count) ADW_SOFTC *sc; ADW_CCB *ccbstore; int count; { ADW_CCB *ccb; int i, error; for (i = 0; i < count; i++) { ccb = &ccbstore[i]; if ((error = adw_init_ccb(sc, ccb)) != 0) { printf("%s: unable to initialize ccb, error = %d\n", sc->sc_dev.dv_xname, error); return (i); } TAILQ_INSERT_TAIL(&sc->sc_free_ccb, ccb, chain); } return (i); } /* * A ccb is put onto the free list. */ static void adw_free_ccb(sc, ccb) ADW_SOFTC *sc; ADW_CCB *ccb; { int s; s = splbio(); adw_reset_ccb(ccb); TAILQ_INSERT_HEAD(&sc->sc_free_ccb, ccb, chain); /* * If there were none, wake anybody waiting for one to come free, * starting with queued entries. */ if (ccb->chain.tqe_next == 0) wakeup(&sc->sc_free_ccb); splx(s); } static void adw_reset_ccb(ccb) ADW_CCB *ccb; { ccb->flags = 0; } static int adw_init_ccb(sc, ccb) ADW_SOFTC *sc; ADW_CCB *ccb; { int hashnum, error; /* * Create the DMA map for this CCB. */ error = bus_dmamap_create(sc->sc_dmat, (ADW_MAX_SG_LIST - 1) * PAGE_SIZE, ADW_MAX_SG_LIST, (ADW_MAX_SG_LIST - 1) * PAGE_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ccb->dmamap_xfer); if (error) { printf("%s: unable to create CCB DMA map, error = %d\n", sc->sc_dev.dv_xname, error); return (error); } /* * put in the phystokv hash table * Never gets taken out. */ ccb->hashkey = sc->sc_dmamap_control->dm_segs[0].ds_addr + ADW_CCB_OFF(ccb); hashnum = CCB_HASH(ccb->hashkey); ccb->nexthash = sc->sc_ccbhash[hashnum]; sc->sc_ccbhash[hashnum] = ccb; adw_reset_ccb(ccb); return (0); } /* * Get a free ccb * * If there are none, see if we can allocate a new one */ static ADW_CCB * adw_get_ccb(sc, flags) ADW_SOFTC *sc; int flags; { ADW_CCB *ccb = 0; int s; s = splbio(); /* * If we can and have to, sleep waiting for one to come free * but only if we can't allocate a new one. */ for (;;) { ccb = sc->sc_free_ccb.tqh_first; if (ccb) { TAILQ_REMOVE(&sc->sc_free_ccb, ccb, chain); break; } if ((flags & SCSI_NOSLEEP) != 0) goto out; tsleep(&sc->sc_free_ccb, PRIBIO, "adwccb", 0); } ccb->flags |= CCB_ALLOC; out: splx(s); return (ccb); } /* * Given a physical address, find the ccb that it corresponds to. */ ADW_CCB * adw_ccb_phys_kv(sc, ccb_phys) ADW_SOFTC *sc; u_int32_t ccb_phys; { int hashnum = CCB_HASH(ccb_phys); ADW_CCB *ccb = sc->sc_ccbhash[hashnum]; while (ccb) { if (ccb->hashkey == ccb_phys) break; ccb = ccb->nexthash; } return (ccb); } /* * Queue a CCB to be sent to the controller, and send it if possible. */ static int adw_queue_ccb(sc, ccb, retry) ADW_SOFTC *sc; ADW_CCB *ccb; int retry; { int errcode; if(!retry) TAILQ_INSERT_TAIL(&sc->sc_waiting_ccb, ccb, chain); while ((ccb = sc->sc_waiting_ccb.tqh_first) != NULL) { errcode = AdvExeScsiQueue(sc, &ccb->scsiq); switch(errcode) { case ADW_SUCCESS: break; case ADW_BUSY: printf("ADW_BUSY\n"); return(ADW_BUSY); case ADW_ERROR: printf("ADW_ERROR\n"); TAILQ_REMOVE(&sc->sc_waiting_ccb, ccb, chain); return(ADW_ERROR); } TAILQ_REMOVE(&sc->sc_waiting_ccb, ccb, chain); if ((ccb->xs->flags & SCSI_POLL) == 0) timeout(adw_timeout, ccb, (ccb->timeout * hz) / 1000); } return(errcode); } /******************************************************************************/ /* SCSI layer interfacing routines */ /******************************************************************************/ int adw_init(sc) ADW_SOFTC *sc; { u_int16_t warn_code; sc->cfg.lib_version = (ADW_LIB_VERSION_MAJOR << 8) | ADW_LIB_VERSION_MINOR; sc->cfg.chip_version = ADW_GET_CHIP_VERSION(sc->sc_iot, sc->sc_ioh, sc->bus_type); /* * Reset the chip to start and allow register writes. */ if (ADW_FIND_SIGNATURE(sc->sc_iot, sc->sc_ioh) == 0) { panic("adw_init: adw_find_signature failed"); } else { AdvResetChip(sc->sc_iot, sc->sc_ioh); warn_code = (sc->chip_type == ADV_CHIP_ASC3550)? AdvInitFrom3550EEP(sc) : AdvInitFrom38C0800EEP(sc); if (warn_code & ASC_WARN_EEPROM_CHKSUM) printf("%s: Bad checksum found. " "Setting default values\n", sc->sc_dev.dv_xname); if (warn_code & ASC_WARN_EEPROM_TERMINATION) printf("%s: Bad bus termination setting." "Using automatic termination.\n", sc->sc_dev.dv_xname); } sc->isr_callback = (ADW_CALLBACK) adw_isr_callback; sc->async_callback = (ADW_CALLBACK) adw_async_callback; return (0); } void adw_attach(sc) ADW_SOFTC *sc; { int i, error; TAILQ_INIT(&sc->sc_free_ccb); TAILQ_INIT(&sc->sc_waiting_ccb); LIST_INIT(&sc->sc_queue); /* * Allocate the Control Blocks. */ error = adw_alloc_controls(sc); if (error) return; /* (error) */ ; bzero(sc->sc_control, sizeof(struct adw_control)); /* * Create and initialize the Control Blocks. */ i = adw_create_ccbs(sc, sc->sc_control->ccbs, ADW_MAX_CCB); if (i == 0) { printf("%s: unable to create Control Blocks\n", sc->sc_dev.dv_xname); return; /* (ENOMEM) */ ; } else if (i != ADW_MAX_CCB) { printf("%s: WARNING: only %d of %d Control Blocks" " created\n", sc->sc_dev.dv_xname, i, ADW_MAX_CCB); } /* * Create and initialize the Carriers. */ error = adw_alloc_carriers(sc); if (error) return; /* (error) */ ; bzero(sc->sc_control->carriers, ADW_CARRIER_SIZE * ADW_MAX_CARRIER); i = adw_create_carriers(sc); if (i == 0) { printf("%s: unable to create Carriers\n", sc->sc_dev.dv_xname); return; /* (ENOMEM) */ ; } else if (i != ADW_MAX_CARRIER) { printf("%s: WARNING: only %d of %d Carriers created\n", sc->sc_dev.dv_xname, i, ADW_MAX_CARRIER); } /* * Initialize the ASC3550. */ error = (sc->chip_type == ADV_CHIP_ASC3550)? AdvInitAsc3550Driver(sc) : AdvInitAsc38C0800Driver(sc); switch (error) { case ASC_IERR_MCODE_CHKSUM: panic("%s: Microcode checksum error", sc->sc_dev.dv_xname); break; case ASC_IERR_ILLEGAL_CONNECTION: panic("%s: All three connectors are in use", sc->sc_dev.dv_xname); break; case ASC_IERR_REVERSED_CABLE: panic("%s: Cable is reversed", sc->sc_dev.dv_xname); break; case ASC_IERR_SINGLE_END_DEVICE: panic("%s: single-ended device is attached to" " one of the connectors", sc->sc_dev.dv_xname); break; case ASC_IERR_NO_CARRIER: panic("%s: no carrier", sc->sc_dev.dv_xname); break; case ASC_WARN_BUSRESET_ERROR: printf("%s: WARNING: Bus Reset Error\n", sc->sc_dev.dv_xname); break; } /* * Fill in the adapter. */ sc->sc_adapter.scsi_cmd = adw_scsi_cmd; sc->sc_adapter.scsi_minphys = adwminphys; /* * fill in the prototype scsi_link. */ sc->sc_link.adapter_softc = sc; sc->sc_link.adapter_target = sc->chip_scsi_id; sc->sc_link.adapter = &sc->sc_adapter; sc->sc_link.device = &adw_dev; sc->sc_link.openings = 4; sc->sc_link.adapter_buswidth = ADW_MAX_TID+1; config_found(&sc->sc_dev, &sc->sc_link, scsiprint); } static void adwminphys(bp) struct buf *bp; { if (bp->b_bcount > ((ADW_MAX_SG_LIST - 1) * PAGE_SIZE)) bp->b_bcount = ((ADW_MAX_SG_LIST - 1) * PAGE_SIZE); minphys(bp); } /* * start a scsi operation given the command and the data address. * Also needs the unit, target and lu. */ static int adw_scsi_cmd(xs) struct scsi_xfer *xs; { struct scsi_link *sc_link = xs->sc_link; ADW_SOFTC *sc = sc_link->adapter_softc; ADW_CCB *ccb; int s, fromqueue = 1, dontqueue = 0, retry = 0; s = splbio(); /* protect the queue */ /* * If we're running the queue from adw_done(), we've been * called with the first queue entry as our argument. */ if (xs == sc->sc_queue.lh_first) { xs = adw_dequeue(sc); fromqueue = 1; } else { /* Polled requests can't be queued for later. */ dontqueue = xs->flags & SCSI_POLL; /* * If there are jobs in the queue, run them first. */ if (sc->sc_queue.lh_first != NULL) { /* * If we can't queue, we have to abort, since * we have to preserve order. */ if (dontqueue) { splx(s); xs->error = XS_DRIVER_STUFFUP; return (TRY_AGAIN_LATER); } /* * Swap with the first queue entry. */ adw_enqueue(sc, xs, 0); xs = adw_dequeue(sc); fromqueue = 1; } } /* * get a ccb to use. If the transfer * is from a buf (possibly from interrupt time) * then we can't allow it to sleep */ if ((ccb = adw_get_ccb(sc, xs->flags)) == NULL) { /* * If we can't queue, we lose. */ if (dontqueue) { splx(s); xs->error = XS_DRIVER_STUFFUP; return (TRY_AGAIN_LATER); } /* * Stuff ourselves into the queue, in front * if we came off in the first place. */ adw_enqueue(sc, xs, fromqueue); splx(s); return (SUCCESSFULLY_QUEUED); } splx(s); /* done playing with the queue */ ccb->xs = xs; ccb->timeout = xs->timeout; if (adw_build_req(xs, ccb)) { retryagain: s = splbio(); retry = adw_queue_ccb(sc, ccb, retry); splx(s); switch(retry) { case ADW_BUSY: goto retryagain; case ADW_ERROR: xs->error = XS_DRIVER_STUFFUP; return (COMPLETE); } /* * Usually return SUCCESSFULLY QUEUED */ if ((xs->flags & SCSI_POLL) == 0) return (SUCCESSFULLY_QUEUED); /* * If we can't use interrupts, poll on completion */ if (adw_poll(sc, xs, ccb->timeout)) { adw_timeout(ccb); if (adw_poll(sc, xs, ccb->timeout)) adw_timeout(ccb); } } return (COMPLETE); } /* * Build a request structure for the Wide Boards. */ static int adw_build_req(xs, ccb) struct scsi_xfer *xs; ADW_CCB *ccb; { struct scsi_link *sc_link = xs->sc_link; ADW_SOFTC *sc = sc_link->adapter_softc; bus_dma_tag_t dmat = sc->sc_dmat; ADW_SCSI_REQ_Q *scsiqp; int error; scsiqp = &ccb->scsiq; bzero(scsiqp, sizeof(ADW_SCSI_REQ_Q)); /* * Set the ADW_SCSI_REQ_Q 'ccb_ptr' to point to the * physical CCB structure. */ scsiqp->ccb_ptr = ccb->hashkey; /* * Build the ADW_SCSI_REQ_Q request. */ /* * Set CDB length and copy it to the request structure. */ bcopy(xs->cmd, &scsiqp->cdb, scsiqp->cdb_len = xs->cmdlen); scsiqp->target_id = sc_link->target; scsiqp->target_lun = sc_link->lun; scsiqp->vsense_addr = & ccb->scsi_sense; scsiqp->sense_addr = sc->sc_dmamap_control->dm_segs[0].ds_addr + ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsi_sense); /* scsiqp->sense_addr = ccb->hashkey + offsetof(struct adw_ccb, scsi_sense); */ scsiqp->sense_len = sizeof(struct scsi_sense_data); /* * Build ADW_SCSI_REQ_Q for a scatter-gather buffer command. */ if (xs->datalen) { /* * Map the DMA transfer. */ #ifdef TFS if (xs->flags & SCSI_DATA_UIO) { error = bus_dmamap_load_uio(dmat, ccb->dmamap_xfer, (struct uio *) xs->data, (xs->flags & SCSI_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK); } else #endif /* TFS */ { error = bus_dmamap_load(dmat, ccb->dmamap_xfer, xs->data, xs->datalen, NULL, (xs->flags & SCSI_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK); } if (error) { if (error == EFBIG) { printf("%s: adw_scsi_cmd, more than %d dma" " segments\n", sc->sc_dev.dv_xname, ADW_MAX_SG_LIST); } else { printf("%s: adw_scsi_cmd, error %d loading" " dma map\n", sc->sc_dev.dv_xname, error); } xs->error = XS_DRIVER_STUFFUP; adw_free_ccb(sc, ccb); return (0); } bus_dmamap_sync(dmat, ccb->dmamap_xfer, (xs->flags & SCSI_DATA_IN) ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE); /* * Build scatter-gather list. */ scsiqp->data_cnt = xs->datalen; scsiqp->vdata_addr = xs->data; scsiqp->data_addr = ccb->dmamap_xfer->dm_segs[0].ds_addr; bzero(ccb->sg_block, sizeof(ADW_SG_BLOCK) * ADW_NUM_SG_BLOCK); adw_build_sglist(ccb, scsiqp, ccb->sg_block); } else { /* * No data xfer, use non S/G values. */ scsiqp->data_cnt = 0; scsiqp->vdata_addr = 0; scsiqp->data_addr = 0; } return (1); } /* * Build scatter-gather list for Wide Boards. */ static void adw_build_sglist(ccb, scsiqp, sg_block) ADW_CCB *ccb; ADW_SCSI_REQ_Q *scsiqp; ADW_SG_BLOCK *sg_block; { u_long sg_block_next_addr; /* block and its next */ u_int32_t sg_block_physical_addr; int i; /* how many SG entries */ bus_dma_segment_t *sg_list = &ccb->dmamap_xfer->dm_segs[0]; int sg_elem_cnt = ccb->dmamap_xfer->dm_nsegs; sg_block_next_addr = (u_long) sg_block; /* allow math operation */ sg_block_physical_addr = ccb->hashkey + offsetof(struct adw_ccb, sg_block[0]); scsiqp->sg_real_addr = sg_block_physical_addr; /* * If there are more than NO_OF_SG_PER_BLOCK dma segments (hw sg-list) * then split the request into multiple sg-list blocks. */ do { for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) { sg_block->sg_list[i].sg_addr = sg_list->ds_addr; sg_block->sg_list[i].sg_count = sg_list->ds_len; if (--sg_elem_cnt == 0) { /* last entry, get out */ sg_block->sg_cnt = i + i; sg_block->sg_ptr = NULL; /* next link = NULL */ return; } sg_list++; } sg_block_next_addr += sizeof(ADW_SG_BLOCK); sg_block_physical_addr += sizeof(ADW_SG_BLOCK); sg_block->sg_cnt = NO_OF_SG_PER_BLOCK; sg_block->sg_ptr = sg_block_physical_addr; sg_block = (ADW_SG_BLOCK *) sg_block_next_addr; /* virt. addr */ } while (1); } int adw_intr(arg) void *arg; { ADW_SOFTC *sc = arg; struct scsi_xfer *xs; if(AdvISR(sc) != ADW_FALSE) { /* * If there are queue entries in the software queue, try to * run the first one. We should be more or less guaranteed * to succeed, since we just freed a CCB. * * NOTE: adw_scsi_cmd() relies on our calling it with * the first entry in the queue. */ if ((xs = sc->sc_queue.lh_first) != NULL) (void) adw_scsi_cmd(xs); } return (1); } /* * Poll a particular unit, looking for a particular xs */ static int adw_poll(sc, xs, count) ADW_SOFTC *sc; struct scsi_xfer *xs; int count; { /* timeouts are in msec, so we loop in 1000 usec cycles */ while (count) { adw_intr(sc); if (xs->flags & ITSDONE) return (0); delay(1000); /* only happens in boot so ok */ count--; } return (1); } static void adw_timeout(arg) void *arg; { ADW_CCB *ccb = arg; struct scsi_xfer *xs = ccb->xs; struct scsi_link *sc_link = xs->sc_link; ADW_SOFTC *sc = sc_link->adapter_softc; int s; sc_print_addr(sc_link); printf("timed out"); s = splbio(); /* * If it has been through before, then a previous abort has failed, * don't try abort again, reset the bus instead. */ if (ccb->flags & CCB_ABORTED) { /* * Abort Timed Out * Lets try resetting the bus! */ printf(" AGAIN. Resetting SCSI Bus\n"); ccb->flags &= ~CCB_ABORTED; /* AdvResetSCSIBus() will call sbreset_callback() */ AdvResetSCSIBus(sc); } else { /* * Abort the operation that has timed out */ printf("\n"); xs->error = XS_TIMEOUT; ccb->flags |= CCB_ABORTING; /* ADW_ABORT_CCB() will implicitly call isr_callback() */ ADW_ABORT_CCB(sc, ccb); } splx(s); } /******************************************************************************/ /* WIDE boards Interrupt callbacks */ /******************************************************************************/ /* * adw__isr_callback() - Second Level Interrupt Handler called by AdvISR() * * Interrupt callback function for the Wide SCSI Adv Library. */ static void adw_isr_callback(sc, scsiq) ADW_SOFTC *sc; ADW_SCSI_REQ_Q *scsiq; { bus_dma_tag_t dmat = sc->sc_dmat; ADW_CCB *ccb; struct scsi_xfer *xs; struct scsi_sense_data *s1, *s2; // int s; ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr); untimeout(adw_timeout, ccb); /* if(ccb->flags & CCB_ABORTING) { printf("Retrying request\n"); ccb->flags &= ~CCB_ABORTING; ccb->flags |= CCB_ABORTED; s = splbio(); adw_queue_ccb(sc, ccb); splx(s); return; } */ xs = ccb->xs; /* * If we were a data transfer, unload the map that described * the data buffer. */ if (xs->datalen) { bus_dmamap_sync(dmat, ccb->dmamap_xfer, (xs->flags & SCSI_DATA_IN) ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(dmat, ccb->dmamap_xfer); } if ((ccb->flags & CCB_ALLOC) == 0) { printf("%s: exiting ccb not allocated!\n", sc->sc_dev.dv_xname); Debugger(); return; } /* * Check for an underrun condition. */ /* * if (xs->request_bufflen != 0 && scsiqp->data_cnt != 0) { * ASC_DBG1(1, "adw_isr_callback: underrun condition %lu bytes\n", * scsiqp->data_cnt); underrun = ASC_TRUE; } */ /* * 'done_status' contains the command's ending status. */ switch (scsiq->done_status) { case QD_NO_ERROR: switch (scsiq->host_status) { case QHSTA_NO_ERROR: xs->error = XS_NOERROR; xs->resid = 0; break; default: /* QHSTA error occurred. */ xs->error = XS_DRIVER_STUFFUP; break; } break; case QD_WITH_ERROR: switch (scsiq->host_status) { case QHSTA_NO_ERROR: switch(scsiq->scsi_status) { case SS_CHK_CONDITION: case SS_CMD_TERMINATED: s1 = &ccb->scsi_sense; s2 = &xs->sense; *s2 = *s1; xs->error = XS_SENSE; break; case SS_TARGET_BUSY: case SS_RSERV_CONFLICT: case SS_QUEUE_FULL: xs->error = XS_DRIVER_STUFFUP; break; case SS_CONDITION_MET: case SS_INTERMID: case SS_INTERMID_COND_MET: xs->error = XS_DRIVER_STUFFUP; break; case SS_GOOD: break; } break; case QHSTA_M_SEL_TIMEOUT: xs->error = XS_DRIVER_STUFFUP; break; default: /* Some other QHSTA error occurred. */ xs->error = XS_DRIVER_STUFFUP; break; } break; case QD_ABORTED_BY_HOST: xs->error = XS_DRIVER_STUFFUP; break; default: xs->error = XS_DRIVER_STUFFUP; break; } adw_free_ccb(sc, ccb); xs->flags |= ITSDONE; scsi_done(xs); } /* * adv_async_callback() - Adv Library asynchronous event callback function. */ static void adw_async_callback(sc, code) ADW_SOFTC *sc; u_int8_t code; { switch (code) { case ADV_ASYNC_SCSI_BUS_RESET_DET: /* * The firmware detected a SCSI Bus reset. */ break; case ADV_ASYNC_RDMA_FAILURE: /* * Handle RDMA failure by resetting the SCSI Bus and * possibly the chip if it is unresponsive. Log the error * with a unique code. */ AdvResetSCSIBus(sc); break; case ADV_HOST_SCSI_BUS_RESET: /* * Host generated SCSI bus reset occurred. */ break; default: break; } }