/* $OpenBSD: aic7xxx.c,v 1.17 1997/07/03 17:46:53 deraadt Exp $ */ /* $NetBSD: aic7xxx.c,v 1.17 1996/10/21 22:34:04 thorpej Exp $ */ /* * Generic driver for the aic7xxx based adaptec SCSI controllers * Product specific probe and attach routines can be found in: * i386/eisa/aic7770.c 27/284X and aic7770 motherboard controllers * pci/aic7870.c 3940, 2940, aic7880, aic7870 and aic7850 controllers * * Copyright (c) 1994, 1995, 1996 Justin T. Gibbs. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice immediately at the beginning of the file, without modification, * this list of conditions, and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from Id: aic7xxx.c,v 1.75 1996/06/23 20:02:37 gibbs Exp */ /* * TODO: * Implement Target Mode * * A few notes on how SCB paging works... * * SCB paging takes advantage of the fact that devices stay disconnected * from the bus a relatively long time and that while they're disconnected, * having the SCBs for that device down on the host adapter is of little use. * Instead we copy the SCB back up into kernel memory and reuse the SCB slot * on the card to schedule another transaction. This can be a real payoff * when doing random I/O to tagged queueing devices since there are more * transactions active at once for the device to sort for optimal seek * reduction. The algorithm goes like this... * * At the sequencer level: * 1) Disconnected SCBs are threaded onto a doubly linked list, headed by * DISCONNECTED_SCBH using the SCB_NEXT and SCB_PREV fields. The most * recently disconnected device is always at the head. * * 2) The SCB has an added field SCB_TAG that corresponds to the kernel * SCB number (ie 0-254). * * 3) When a command is queued, the hardware index of the SCB it was downloaded * into is placed into the QINFIFO for easy indexing by the sequencer. * * 4) The tag field is used as the tag for tagged-queueing, for determining * the related kernel SCB, and is the value put into the QOUTFIFO * so the kernel doesn't have to upload the SCB to determine the kernel SCB * that completed on command completes. * * 5) When a reconnect occurs, the sequencer must scan the SCB array (even * in the tag case) looking for the appropriate SCB and if it can't find * it, it interrupts the kernel so it can page the SCB in. * * 6) If the sequencer is successful in finding the SCB, it removes it from * the doubly linked list of disconnected SCBS. * * At the kernel level: * 1) There are four queues that a kernel SCB may reside on: * free_scbs - SCBs that are not in use and have a hardware slot assigned * to them. * page_scbs - SCBs that are not in use and need to have a hardware slot * assigned to them (i.e. they will most likely cause a page * out event). * waiting_scbs - SCBs that are active, don't have an assigned hardware * slot assigned to them and are waiting for either a * disconnection or a command complete to free up a slot. * assigned_scbs - SCBs that were in the waiting_scbs queue, but were * assigned a slot by ahc_free_scb. * * 2) When a new request comes in, an SCB is allocated from the free_scbs or * page_scbs queue with preference to SCBs on the free_scbs queue. * * 3) If there are no free slots (we retrieved the SCB off of the page_scbs * queue), the SCB is inserted onto the tail of the waiting_scbs list and * we attempt to run this queue down. * * 4) ahc_run_waiting_queues() looks at both the assigned_scbs and waiting_scbs * queues. In the case of the assigned_scbs, the commands are immediately * downloaded and started. For waiting_scbs, we page in all that we can * ensuring we don't create a resource deadlock (see comments in * ahc_run_waiting_queues()). * * 5) After we handle a bunch of command completes, we also try running the * queues since many SCBs may have disconnected since the last command * was started and we have at least one free slot on the card. * * 6) ahc_free_scb looks at the waiting_scbs queue for a transaction * requiring a slot and moves it to the assigned_scbs queue if it * finds one. Otherwise it puts the current SCB onto the free_scbs * queue for later use. * * 7) The driver handles page-in requests from the sequencer in response to * the NO_MATCH sequencer interrupt. For tagged commands, the appropriate * SCB is easily found since the tag is a direct index into our kernel SCB * array. For non-tagged commands, we keep a separate array of 16 pointers * that point to the single possible SCB that was paged out for that target. */ #include #include #if defined(__NetBSD__) || defined(__OpenBSD__) #include #include #include #endif /* defined(__NetBSD__) || defined(__OpenBSD__) */ #include #include #include #include #include #if defined(__NetBSD__) || defined(__OpenBSD__) #include #endif #include #if defined(__FreeBSD__) #include #endif #include #include #include #if defined(__FreeBSD__) #include #include #endif /* defined(__FreeBSD__) */ #if defined(__NetBSD__) || defined(__OpenBSD__) #include #include #define bootverbose 1 #define DEBUGTARG DEBUGTARGET #if DEBUGTARG < 0 /* Negative numbers for disabling cause warnings */ #undef DEBUGTARG #define DEBUGTARG 17 #endif #ifdef alpha /* XXX */ /* XXX XXX NEED REAL DMA MAPPING SUPPORT XXX XXX */ extern vm_offset_t alpha_XXX_dmamap(vm_offset_t); #undef vtophys #define vtophys(va) alpha_XXX_dmamap((vm_offset_t) va) #endif /* alpha */ #endif /* defined(__NetBSD__) || defined(__OpenBSD__) */ #include #define KVTOPHYS(x) vtophys(x) #define MIN(a,b) ((a < b) ? a : b) #define ALL_TARGETS -1 #if defined(__FreeBSD__) u_long ahc_unit = 0; #endif #ifdef AHC_DEBUG static int ahc_debug = AHC_DEBUG; #endif #ifdef AHC_BROKEN_CACHE int ahc_broken_cache = 1; /* * "wbinvd" cause writing back whole cache (both CPU internal & external) * to memory, so that the instruction takes a lot of time. * This makes machine slow. */ #define INVALIDATE_CACHE() __asm __volatile("wbinvd") #endif /**** bit definitions for SCSIDEF ****/ #define HSCSIID 0x07 /* our SCSI ID */ #define HWSCSIID 0x0f /* our SCSI ID if Wide Bus */ static void ahcminphys __P((struct buf *bp)); static int32_t ahc_scsi_cmd __P((struct scsi_xfer *xs)); static inline void pause_sequencer __P((struct ahc_data *ahc)); static inline void unpause_sequencer __P((struct ahc_data *ahc, int unpause_always)); static inline void restart_sequencer __P((struct ahc_data *ahc)); static struct scsi_adapter ahc_switch = { ahc_scsi_cmd, ahcminphys, 0, 0, #if defined(__FreeBSD__) 0, "ahc", { 0, 0 } #endif }; /* the below structure is so we have a default dev struct for our link struct */ static struct scsi_device ahc_dev = { NULL, /* Use default error handler */ NULL, /* have a queue, served by this */ NULL, /* have no async handler */ NULL, /* Use default 'done' routine */ #if defined(__FreeBSD__) "ahc", 0, { 0, 0 } #endif }; static inline void pause_sequencer(ahc) struct ahc_data *ahc; { AHC_OUTB(ahc, HCNTRL, ahc->pause); /* * Since the sequencer can disable pausing in a critical section, we * must loop until it actually stops. */ while ((AHC_INB(ahc, HCNTRL) & PAUSE) == 0) ; } static inline void unpause_sequencer(ahc, unpause_always) struct ahc_data *ahc; int unpause_always; { if (unpause_always ||(AHC_INB(ahc, INTSTAT) & (SCSIINT | SEQINT | BRKADRINT)) == 0) AHC_OUTB(ahc, HCNTRL, ahc->unpause); } /* * Restart the sequencer program from address zero */ static inline void restart_sequencer(ahc) struct ahc_data *ahc; { do { AHC_OUTB(ahc, SEQCTL, SEQRESET|FASTMODE); } while((AHC_INB(ahc, SEQADDR0) != 0) || (AHC_INB(ahc, SEQADDR1) != 0)); unpause_sequencer(ahc, /*unpause_always*/TRUE); } #if defined(__NetBSD__) || defined(__OpenBSD__) /* * Is device which is pointed by sc_link connected on second scsi bus ? */ #define IS_SCSIBUS_B(ahc, sc_link) \ ((sc_link)->scsibus == (ahc)->sc_link_b.scsibus) /* * convert FreeBSD's SCSI symbols to Net- & OpenBSD's */ #define SCSI_NOMASK SCSI_POLL #define opennings openings #endif static u_char ahc_abort_wscb __P((struct ahc_data *ahc, struct scb *scbp, u_char prev, u_char timedout_scb, u_int32_t xs_error)); static void ahc_add_waiting_scb __P((struct ahc_data *ahc, struct scb *scb)); static void ahc_done __P((struct ahc_data *ahc, struct scb *scbp)); static void ahc_free_scb __P((struct ahc_data *ahc, struct scb *scb, int flags)); static inline void ahc_send_scb __P((struct ahc_data *ahc, struct scb *scb)); static inline void ahc_fetch_scb __P((struct ahc_data *ahc, struct scb *scb)); static inline void ahc_page_scb __P((struct ahc_data *ahc, struct scb *out_scb, struct scb *in_scb)); static inline void ahc_run_waiting_queues __P((struct ahc_data *ahc)); static void ahc_handle_seqint __P((struct ahc_data *ahc, u_int8_t intstat)); static struct scb * ahc_get_scb __P((struct ahc_data *ahc, int flags)); static void ahc_loadseq __P((struct ahc_data *ahc)); static int ahc_match_scb __P((struct scb *scb, int target, char channel)); static int ahc_poll __P((struct ahc_data *ahc, int wait)); #ifdef AHC_DEBUG static void ahc_print_scb __P((struct scb *scb)); #endif static int ahc_reset_channel __P((struct ahc_data *ahc, char channel, u_char timedout_scb, u_int32_t xs_error, u_char initiate_reset)); static int ahc_reset_device __P((struct ahc_data *ahc, int target, char channel, u_char timedout_scb, u_int32_t xs_error)); static void ahc_reset_current_bus __P((struct ahc_data *ahc)); static void ahc_run_done_queue __P((struct ahc_data *ahc)); static void ahc_scsirate __P((struct ahc_data* ahc, u_int8_t *scsirate, u_int8_t *period, u_int8_t *offset, char channel, int target)); #if defined(__FreeBSD__) static timeout_t ahc_timeout; #elif defined(__NetBSD__) || defined(__OpenBSD__) static void ahc_timeout __P((void *)); #endif static void ahc_busy_target __P((struct ahc_data *ahc, int target, char channel)); static void ahc_unbusy_target __P((struct ahc_data *ahc, int target, char channel)); static void ahc_construct_sdtr __P((struct ahc_data *ahc, int start_byte, u_int8_t period, u_int8_t offset)); static void ahc_construct_wdtr __P((struct ahc_data *ahc, int start_byte, u_int8_t bus_width)); #if defined(__NetBSD__) || defined(__OpenBSD__) /* XXX */ static void ahc_xxx_enqueue __P((struct ahc_data *ahc, struct scsi_xfer *xs, int infront)); static struct scsi_xfer *ahc_xxx_dequeue __P((struct ahc_data *ahc)); #endif #if defined(__FreeBSD__) char *ahc_name(ahc) struct ahc_data *ahc; { static char name[10]; sprintf(name, "ahc%d", ahc->unit); return (name); } #elif defined(__NetBSD__) || defined(__OpenBSD__) struct cfdriver ahc_cd = { NULL, "ahc", DV_DULL }; #endif #ifdef AHC_DEBUG static void ahc_print_scb(scb) struct scb *scb; { printf("scb:%p control:0x%x tcl:0x%x cmdlen:%d cmdpointer:0x%lx\n" ,scb ,scb->control ,scb->tcl ,scb->cmdlen ,scb->cmdpointer ); printf(" datlen:%d data:0x%lx segs:0x%x segp:0x%lx\n" ,scb->datalen ,scb->data ,scb->SG_segment_count ,scb->SG_list_pointer); printf(" sg_addr:%lx sg_len:%ld\n" ,scb->ahc_dma[0].addr ,scb->ahc_dma[0].len); } #endif static struct { u_char errno; char *errmesg; } hard_error[] = { { ILLHADDR, "Illegal Host Access" }, { ILLSADDR, "Illegal Sequencer Address referenced" }, { ILLOPCODE, "Illegal Opcode in sequencer program" }, { PARERR, "Sequencer Ram Parity Error" } }; /* * Valid SCSIRATE values. (p. 3-17) * Provides a mapping of tranfer periods in ns to the proper value to * stick in the scsiscfr reg to use that transfer rate. */ static struct { short sxfr; /* Rates in Ultra mode have bit 8 of sxfr set */ #define ULTRA_SXFR 0x100 int period; /* in ns/4 */ char *rate; } ahc_syncrates[] = { { 0x100, 12, "20.0" }, { 0x110, 15, "16.0" }, { 0x120, 18, "13.4" }, { 0x000, 25, "10.0" }, { 0x010, 31, "8.0" }, { 0x020, 37, "6.67" }, { 0x030, 43, "5.7" }, { 0x040, 50, "5.0" }, { 0x050, 56, "4.4" }, { 0x060, 62, "4.0" }, { 0x070, 68, "3.6" } }; static int ahc_num_syncrates = sizeof(ahc_syncrates) / sizeof(ahc_syncrates[0]); /* * Allocate a controller structure for a new device and initialize it. * ahc_reset should be called before now since we assume that the card * is paused. */ #if defined(__FreeBSD__) struct ahc_data * ahc_alloc(unit, iobase, type, flags) int unit; u_long iobase; #elif defined(__NetBSD__) || defined(__OpenBSD__) void ahc_construct(ahc, iot, ioh, type, flags) struct ahc_data *ahc; bus_space_tag_t iot; bus_space_handle_t ioh; #endif ahc_type type; ahc_flag flags; { /* * find unit and check we have that many defined */ #if defined(__FreeBSD__) struct ahc_data *ahc; /* * Allocate a storage area for us */ ahc = malloc(sizeof(struct ahc_data), M_TEMP, M_NOWAIT); if (!ahc) { printf("ahc%d: cannot malloc!\n", unit); return NULL; } bzero(ahc, sizeof(struct ahc_data)); #endif STAILQ_INIT(&ahc->free_scbs); STAILQ_INIT(&ahc->page_scbs); STAILQ_INIT(&ahc->waiting_scbs); STAILQ_INIT(&ahc->assigned_scbs); #if defined(__FreeBSD__) ahc->unit = unit; #endif #if defined(__FreeBSD__) ahc->baseport = iobase; #elif defined(__NetBSD__) || defined(__OpenBSD__) ahc->sc_iot = iot; ahc->sc_ioh = ioh; #endif ahc->type = type; ahc->flags = flags; ahc->unpause = (AHC_INB(ahc, HCNTRL) & IRQMS) | INTEN; ahc->pause = ahc->unpause | PAUSE; #if defined(__FreeBSD__) return (ahc); #endif } void ahc_free(ahc) struct ahc_data *ahc; { #if defined(__FreeBSD__) free(ahc, M_DEVBUF); return; #endif } void #if defined(__FreeBSD__) ahc_reset(iobase) u_long iobase; #elif defined(__NetBSD__) || defined(__OpenBSD__) ahc_reset(devname, iot, ioh) char *devname; bus_space_tag_t iot; bus_space_handle_t ioh; #endif { u_char hcntrl; int wait; /* Retain the IRQ type accross the chip reset */ #if defined(__FreeBSD__) hcntrl = (inb(HCNTRL + iobase) & IRQMS) | INTEN; outb(HCNTRL + iobase, CHIPRST | PAUSE); #elif defined(__NetBSD__) || defined(__OpenBSD__) hcntrl = (bus_space_read_1(iot, ioh, HCNTRL) & IRQMS) | INTEN; bus_space_write_1(iot, ioh, HCNTRL, CHIPRST | PAUSE); #endif /* * Ensure that the reset has finished */ wait = 1000; #if defined(__FreeBSD__) while (--wait && !(inb(HCNTRL + iobase) & CHIPRSTACK)) #elif defined(__NetBSD__) || defined(__OpenBSD__) while (--wait && !(bus_space_read_1(iot, ioh, HCNTRL) & CHIPRSTACK)) #endif DELAY(1000); if(wait == 0) { #if defined(__FreeBSD__) printf("ahc at 0x%lx: WARNING - Failed chip reset! " "Trying to initialize anyway.\n", iobase); #elif defined(__NetBSD__) || defined(__OpenBSD__) printf("%s: WARNING - Failed chip reset! " "Trying to initialize anyway.\n", devname); #endif } #if defined(__FreeBSD__) outb(HCNTRL + iobase, hcntrl | PAUSE); #elif defined(__NetBSD__) || defined(__OpenBSD__) bus_space_write_1(iot, ioh, HCNTRL, hcntrl | PAUSE); #endif } /* * Look up the valid period to SCSIRATE conversion in our table. */ static void ahc_scsirate(ahc, scsirate, period, offset, channel, target ) struct ahc_data *ahc; u_int8_t *scsirate; u_int8_t *period; u_int8_t *offset; char channel; int target; { int i; u_int32_t ultra_enb_addr; u_int8_t sxfrctl0; u_int8_t ultra_enb; i = ahc_num_syncrates; /* Default to async */ if (*period >= ahc_syncrates[0].period && *offset != 0) { for (i = 0; i < ahc_num_syncrates; i++) { if (*period <= ahc_syncrates[i].period) { /* * Watch out for Ultra speeds when ultra is not * enabled and vice-versa. */ if(!(ahc->type & AHC_ULTRA) && (ahc_syncrates[i].sxfr & ULTRA_SXFR)) { /* * This should only happen if the * drive is the first to negotiate * and chooses a high rate. We'll * just move down the table util * we hit a non ultra speed. */ continue; } *scsirate = (ahc_syncrates[i].sxfr & 0xF0) | (*offset & 0x0f); *period = ahc_syncrates[i].period; if(bootverbose) { printf("%s: target %d synchronous at %sMHz," " offset = 0x%x\n", ahc_name(ahc), target, ahc_syncrates[i].rate, *offset ); } break; } } } if (i >= ahc_num_syncrates) { /* Use asynchronous transfers. */ *scsirate = 0; *period = 0; *offset = 0; if (bootverbose) printf("%s: target %d using asynchronous transfers\n", ahc_name(ahc), target ); } /* * Ensure Ultra mode is set properly for * this target. */ ultra_enb_addr = ULTRA_ENB; if(channel == 'B' || target > 7) ultra_enb_addr++; ultra_enb = AHC_INB(ahc, ultra_enb_addr); sxfrctl0 = AHC_INB(ahc, SXFRCTL0); if (*scsirate != 0 && ahc_syncrates[i].sxfr & ULTRA_SXFR) { ultra_enb |= 0x01 << (target & 0x07); sxfrctl0 |= ULTRAEN; } else { ultra_enb &= ~(0x01 << (target & 0x07)); sxfrctl0 &= ~ULTRAEN; } AHC_OUTB(ahc, ultra_enb_addr, ultra_enb); AHC_OUTB(ahc, SXFRCTL0, sxfrctl0); } /* * Attach all the sub-devices we can find */ int ahc_attach(ahc) struct ahc_data *ahc; { #if defined(__FreeBSD__) struct scsibus_data *scbus; #endif #if defined(__NetBSD__) || defined(__OpenBSD__) /* XXX */ /* * Initialize the software queue. */ LIST_INIT(&ahc->sc_xxxq); #endif #ifdef AHC_BROKEN_CACHE if (cpu_class == CPUCLASS_386) /* doesn't have "wbinvd" instruction */ ahc_broken_cache = 0; #endif /* * fill in the prototype scsi_links. */ #if defined(__FreeBSD__) ahc->sc_link.adapter_unit = ahc->unit; ahc->sc_link.adapter_targ = ahc->our_id; ahc->sc_link.fordriver = 0; #elif defined(__NetBSD__) || defined(__OpenBSD__) ahc->sc_link.adapter_target = ahc->our_id; #ifdef __OpenBSD__ if(ahc->type & AHC_WIDE) ahc->sc_link.adapter_buswidth = 16; #endif #ifndef __OpenBSD__ ahc->sc_link.channel = 0; #endif #endif ahc->sc_link.adapter_softc = ahc; ahc->sc_link.adapter = &ahc_switch; ahc->sc_link.opennings = 2; ahc->sc_link.device = &ahc_dev; #ifdef __OpenBSD__ ahc->sc_link.flags = SCSIDEBUG_LEVEL; #else ahc->sc_link.flags = DEBUGLEVEL; #endif if(ahc->type & AHC_TWIN) { /* Configure the second scsi bus */ ahc->sc_link_b = ahc->sc_link; #if defined(__FreeBSD__) ahc->sc_link_b.adapter_targ = ahc->our_id_b; ahc->sc_link_b.adapter_bus = 1; ahc->sc_link_b.fordriver = (void *)SELBUSB; #elif defined(__NetBSD__) || defined(__OpenBSD__) ahc->sc_link_b.adapter_target = ahc->our_id_b; #ifdef __OpenBSD__ if(ahc->type & AHC_WIDE) ahc->sc_link.adapter_buswidth = 16; #endif #ifndef __OpenBSD__ ahc->sc_link_b.channel = 1; #endif #endif } #if defined(__FreeBSD__) /* * Prepare the scsibus_data area for the upperlevel * scsi code. */ scbus = scsi_alloc_bus(); if(!scbus) return 0; scbus->adapter_link = (ahc->flags & AHC_CHANNEL_B_PRIMARY) ? &ahc->sc_link_b : &ahc->sc_link; if(ahc->type & AHC_WIDE) scbus->maxtarg = 15; /* * ask the adapter what subunits are present */ if(bootverbose) printf("ahc%d: Probing channel %c\n", ahc->unit, (ahc->flags & AHC_CHANNEL_B_PRIMARY) ? 'B' : 'A'); scsi_attachdevs(scbus); scbus = NULL; /* Upper-level SCSI code owns this now */ if(ahc->type & AHC_TWIN) { scbus = scsi_alloc_bus(); if(!scbus) return 0; scbus->adapter_link = (ahc->flags & AHC_CHANNEL_B_PRIMARY) ? &ahc->sc_link : &ahc->sc_link_b; if(ahc->type & AHC_WIDE) scbus->maxtarg = 15; if(bootverbose) printf("ahc%d: Probing Channel %c\n", ahc->unit, (ahc->flags & AHC_CHANNEL_B_PRIMARY) ? 'A': 'B'); scsi_attachdevs(scbus); scbus = NULL; /* Upper-level SCSI code owns this now */ } #elif defined(__NetBSD__) || defined (__OpenBSD__) /* * ask the adapter what subunits are present */ if ((ahc->flags & AHC_CHANNEL_B_PRIMARY) == 0) { /* make IS_SCSIBUS_B() == false, while probing channel A */ ahc->sc_link_b.scsibus = 0xff; config_found((void *)ahc, &ahc->sc_link, scsiprint); if (ahc->type & AHC_TWIN) config_found((void *)ahc, &ahc->sc_link_b, scsiprint); } else { /* * if implementation of IS_SCSIBUS_B() is changed to use * ahc->sc_link.scsibus, then "ahc->sc_link.scsibus = 0xff;" * is needed, here. */ /* assert(ahc->type & AHC_TWIN); */ config_found((void *)ahc, &ahc->sc_link_b, scsiprint); config_found((void *)ahc, &ahc->sc_link, scsiprint); } #endif return 1; } /* * Send an SCB down to the card via PIO. * We assume that the proper SCB is already selected in SCBPTR. */ static inline void ahc_send_scb(ahc, scb) struct ahc_data *ahc; struct scb *scb; { AHC_OUTB(ahc, SCBCNT, SCBAUTO); if( ahc->type == AHC_284 ) /* Can only do 8bit PIO */ AHC_OUTSB(ahc, SCBARRAY, scb, SCB_PIO_TRANSFER_SIZE); else AHC_OUTSL(ahc, SCBARRAY, scb, (SCB_PIO_TRANSFER_SIZE + 3) / 4); AHC_OUTB(ahc, SCBCNT, 0); } /* * Retrieve an SCB from the card via PIO. * We assume that the proper SCB is already selected in SCBPTR. */ static inline void ahc_fetch_scb(ahc, scb) struct ahc_data *ahc; struct scb *scb; { AHC_OUTB(ahc, SCBCNT, 0x80); /* SCBAUTO */ /* Can only do 8bit PIO for reads */ AHC_INSB(ahc, SCBARRAY, scb, SCB_PIO_TRANSFER_SIZE); AHC_OUTB(ahc, SCBCNT, 0); } /* * Swap in_scbp for out_scbp down in the cards SCB array. * We assume that the SCB for out_scbp is already selected in SCBPTR. */ static inline void ahc_page_scb(ahc, out_scbp, in_scbp) struct ahc_data *ahc; struct scb *out_scbp; struct scb *in_scbp; { /* Page-out */ ahc_fetch_scb(ahc, out_scbp); out_scbp->flags |= SCB_PAGED_OUT; if(!(out_scbp->control & TAG_ENB)) { /* Stick in non-tagged array */ int index = (out_scbp->tcl >> 4) | (out_scbp->tcl & SELBUSB); ahc->pagedout_ntscbs[index] = out_scbp; } /* Page-in */ in_scbp->position = out_scbp->position; out_scbp->position = SCB_LIST_NULL; ahc_send_scb(ahc, in_scbp); in_scbp->flags &= ~SCB_PAGED_OUT; } static inline void ahc_run_waiting_queues(ahc) struct ahc_data *ahc; { struct scb* scb; u_char cur_scb; if(!(ahc->assigned_scbs.stqh_first || ahc->waiting_scbs.stqh_first)) return; pause_sequencer(ahc); cur_scb = AHC_INB(ahc, SCBPTR); /* * First handle SCBs that are waiting but have been * assigned a slot. */ while((scb = ahc->assigned_scbs.stqh_first) != NULL) { STAILQ_REMOVE_HEAD(&ahc->assigned_scbs, links); AHC_OUTB(ahc, SCBPTR, scb->position); ahc_send_scb(ahc, scb); /* Mark this as an active command */ scb->flags ^= SCB_ASSIGNEDQ|SCB_ACTIVE; AHC_OUTB(ahc, QINFIFO, scb->position); if (!(scb->xs->flags & SCSI_NOMASK)) { timeout(ahc_timeout, (caddr_t)scb, (scb->xs->timeout * hz) / 1000); } SC_DEBUG(scb->xs->sc_link, SDEV_DB3, ("cmd_sent\n")); } /* Now deal with SCBs that require paging */ if((scb = ahc->waiting_scbs.stqh_first) != NULL) { u_char disc_scb = AHC_INB(ahc, DISCONNECTED_SCBH); u_char active = AHC_INB(ahc, FLAGS) & (SELECTED|IDENTIFY_SEEN); int count = 0; do { u_char next_scb; /* Attempt to page this SCB in */ if(disc_scb == SCB_LIST_NULL) break; /* * Check the next SCB on in the list. */ AHC_OUTB(ahc, SCBPTR, disc_scb); next_scb = AHC_INB(ahc, SCB_NEXT); /* * We have to be careful about when we allow * an SCB to be paged out. There must always * be at least one slot available for a * reconnecting target in case it references * an SCB that has been paged out. Our * heuristic is that either the disconnected * list has at least two entries in it or * there is one entry and the sequencer is * actively working on an SCB which implies that * it will either complete or disconnect before * another reconnection can occur. */ if((next_scb != SCB_LIST_NULL) || active) { u_char out_scbi; struct scb* out_scbp; STAILQ_REMOVE_HEAD(&ahc->waiting_scbs, links); /* * Find the in-core SCB for the one * we're paging out. */ out_scbi = AHC_INB(ahc, SCB_TAG); out_scbp = ahc->scbarray[out_scbi]; /* Do the page out */ ahc_page_scb(ahc, out_scbp, scb); /* Mark this as an active command */ scb->flags ^= SCB_WAITINGQ|SCB_ACTIVE; /* Queue the command */ AHC_OUTB(ahc, QINFIFO, scb->position); if (!(scb->xs->flags & SCSI_NOMASK)) { timeout(ahc_timeout, (caddr_t)scb, (scb->xs->timeout * hz) / 1000); } SC_DEBUG(scb->xs->sc_link, SDEV_DB3, ("cmd_paged-in\n")); count++; /* Advance to the next disconnected SCB */ disc_scb = next_scb; } else break; } while((scb = ahc->waiting_scbs.stqh_first) != NULL); if(count) { /* * Update the head of the disconnected list. */ AHC_OUTB(ahc, DISCONNECTED_SCBH, disc_scb); if(disc_scb != SCB_LIST_NULL) { AHC_OUTB(ahc, SCBPTR, disc_scb); AHC_OUTB(ahc, SCB_PREV, SCB_LIST_NULL); } } } /* Restore old position */ AHC_OUTB(ahc, SCBPTR, cur_scb); unpause_sequencer(ahc, /*unpause_always*/FALSE); } /* * Add this SCB to the head of the "waiting for selection" list. */ static void ahc_add_waiting_scb(ahc, scb) struct ahc_data *ahc; struct scb *scb; { u_char next; u_char curscb; curscb = AHC_INB(ahc, SCBPTR); next = AHC_INB(ahc, WAITING_SCBH); AHC_OUTB(ahc, SCBPTR, scb->position); AHC_OUTB(ahc, SCB_NEXT, next); AHC_OUTB(ahc, WAITING_SCBH, scb->position); AHC_OUTB(ahc, SCBPTR, curscb); } /* * Catch an interrupt from the adapter */ #if defined(__FreeBSD__) void #elif defined (__NetBSD__) || defined (__OpenBSD__) int #endif ahc_intr(arg) void *arg; { int intstat; u_char status; struct scb *scb; struct scsi_xfer *xs; struct ahc_data *ahc = (struct ahc_data *)arg; intstat = AHC_INB(ahc, INTSTAT); /* * Is this interrupt for me? or for * someone who is sharing my interrupt? */ if (!(intstat & INT_PEND)) #if defined(__FreeBSD__) return; #elif defined(__NetBSD__) || defined(__OpenBSD__) return 0; #endif if (intstat & BRKADRINT) { /* We upset the sequencer :-( */ /* Lookup the error message */ int i, error = AHC_INB(ahc, ERROR); int num_errors = sizeof(hard_error)/sizeof(hard_error[0]); for(i = 0; error != 1 && i < num_errors; i++) error >>= 1; panic("%s: brkadrint, %s at seqaddr = 0x%x\n", ahc_name(ahc), hard_error[i].errmesg, (AHC_INB(ahc, SEQADDR1) << 8) | AHC_INB(ahc, SEQADDR0)); } if (intstat & SEQINT) ahc_handle_seqint(ahc, intstat); if (intstat & SCSIINT) { int scb_index = AHC_INB(ahc, SCB_TAG); status = AHC_INB(ahc, SSTAT1); scb = ahc->scbarray[scb_index]; if (status & SCSIRSTI) { char channel; channel = AHC_INB(ahc, SBLKCTL); channel = channel & SELBUSB ? 'B' : 'A'; printf("%s: Someone reset channel %c\n", ahc_name(ahc), channel); ahc_reset_channel(ahc, channel, SCB_LIST_NULL, XS_BUSY, /* Initiate Reset */FALSE); scb = NULL; } else if (!(scb && (scb->flags & SCB_ACTIVE))){ printf("%s: ahc_intr - referenced scb not " "valid during scsiint 0x%x scb(%d)\n", ahc_name(ahc), status, scb_index); AHC_OUTB(ahc, CLRSINT1, status); unpause_sequencer(ahc, /*unpause_always*/TRUE); AHC_OUTB(ahc, CLRINT, CLRSCSIINT); scb = NULL; } else if (status & SCSIPERR) { /* * Determine the bus phase and * queue an appropriate message */ char *phase; u_char mesg_out = MSG_NOOP; u_char lastphase = AHC_INB(ahc, LASTPHASE); xs = scb->xs; sc_print_addr(xs->sc_link); switch(lastphase) { case P_DATAOUT: phase = "Data-Out"; break; case P_DATAIN: phase = "Data-In"; mesg_out = MSG_INITIATOR_DET_ERR; break; case P_COMMAND: phase = "Command"; break; case P_MESGOUT: phase = "Message-Out"; break; case P_STATUS: phase = "Status"; mesg_out = MSG_INITIATOR_DET_ERR; break; case P_MESGIN: phase = "Message-In"; mesg_out = MSG_PARITY_ERROR; break; default: phase = "unknown"; break; } printf("parity error during %s phase.\n", phase); /* * We've set the hardware to assert ATN if we * get a parity error on "in" phases, so all we * need to do is stuff the message buffer with * the appropriate message. "In" phases have set * mesg_out to something other than MSG_NOP. */ if(mesg_out != MSG_NOOP) { AHC_OUTB(ahc, MSG0, mesg_out); AHC_OUTB(ahc, MSG_LEN, 1); } else /* * Should we allow the target to make * this decision for us? */ xs->error = XS_DRIVER_STUFFUP; } else if (status & SELTO) { u_char waiting; u_char flags; xs = scb->xs; xs->error = XS_SELTIMEOUT; /* * Clear any pending messages for the timed out * target, and mark the target as free */ flags = AHC_INB(ahc, FLAGS); AHC_OUTB(ahc, MSG_LEN, 0); ahc_unbusy_target(ahc, xs->sc_link->target, #if defined(__FreeBSD__) ((long)xs->sc_link->fordriver & SELBUSB) #elif defined(__NetBSD__) || defined(__OpenBSD__) IS_SCSIBUS_B(ahc, xs->sc_link) #endif ? 'B' : 'A'); /* Stop the selection */ AHC_OUTB(ahc, SCSISEQ, 0); AHC_OUTB(ahc, SCB_CONTROL, 0); AHC_OUTB(ahc, CLRSINT1, CLRSELTIMEO); AHC_OUTB(ahc, CLRINT, CLRSCSIINT); /* Shift the waiting for selection queue forward */ waiting = AHC_INB(ahc, WAITING_SCBH); AHC_OUTB(ahc, SCBPTR, waiting); waiting = AHC_INB(ahc, SCB_NEXT); AHC_OUTB(ahc, WAITING_SCBH, waiting); restart_sequencer(ahc); } else if (!(status & BUSFREE)) { sc_print_addr(scb->xs->sc_link); printf("Unknown SCSIINT. Status = 0x%x\n", status); AHC_OUTB(ahc, CLRSINT1, status); unpause_sequencer(ahc, /*unpause_always*/TRUE); AHC_OUTB(ahc, CLRINT, CLRSCSIINT); scb = NULL; } if(scb != NULL) { /* We want to process the command */ untimeout(ahc_timeout, (caddr_t)scb); ahc_done(ahc, scb); } } if (intstat & CMDCMPLT) { int scb_index; do { scb_index = AHC_INB(ahc, QOUTFIFO); scb = ahc->scbarray[scb_index]; if (!scb || !(scb->flags & SCB_ACTIVE)) { printf("%s: WARNING " "no command for scb %d (cmdcmplt)\n" "QOUTCNT == %d\n", ahc_name(ahc), scb_index, AHC_INB(ahc, QOUTCNT)); AHC_OUTB(ahc, CLRINT, CLRCMDINT); continue; } AHC_OUTB(ahc, CLRINT, CLRCMDINT); untimeout(ahc_timeout, (caddr_t)scb); ahc_done(ahc, scb); } while (AHC_INB(ahc, QOUTCNT) & ahc->qcntmask); ahc_run_waiting_queues(ahc); } #if defined(__NetBSD__) || defined(__OpenBSD__) return 1; #endif } static void ahc_handle_seqint(ahc, intstat) struct ahc_data *ahc; u_int8_t intstat; { struct scb *scb; u_short targ_mask; u_char target = (AHC_INB(ahc, SCSIID) >> 4) & 0x0f; u_char scratch_offset = target; char channel = AHC_INB(ahc, SBLKCTL) & SELBUSB ? 'B': 'A'; if (channel == 'B') scratch_offset += 8; targ_mask = (0x01 << scratch_offset); switch (intstat & SEQINT_MASK) { case NO_MATCH: if (ahc->flags & AHC_PAGESCBS) { /* SCB Page-in request */ u_char tag; u_char next; u_char disc_scb; struct scb *outscb; u_char arg_1 = AHC_INB(ahc, ARG_1); /* * We should succeed, so set this now. * If we don't, and one of the methods * we use to aquire an SCB calls ahc_done, * we may wind up in our start routine * and unpause the adapter without giving * it the correct return value, which will * cause a hang. */ AHC_OUTB(ahc, RETURN_1, SCB_PAGEDIN); if (arg_1 == SCB_LIST_NULL) { /* Non-tagged command */ int index; index = target|(channel == 'B' ? SELBUSB : 0); scb = ahc->pagedout_ntscbs[index]; } else scb = ahc->scbarray[arg_1]; if (!(scb->flags & SCB_PAGED_OUT)) panic("%s: Request to page in a non paged out " "SCB.", ahc_name(ahc)); /* * Now to pick the SCB to page out. * Either take a free SCB, an assigned SCB, * an SCB that just completed, the first * one on the disconnected SCB list, or * as a last resort a queued SCB. */ if (ahc->free_scbs.stqh_first) { outscb = ahc->free_scbs.stqh_first; STAILQ_REMOVE_HEAD(&ahc->free_scbs, links); scb->position = outscb->position; outscb->position = SCB_LIST_NULL; STAILQ_INSERT_HEAD(&ahc->page_scbs, outscb, links); AHC_OUTB(ahc, SCBPTR, scb->position); ahc_send_scb(ahc, scb); scb->flags &= ~SCB_PAGED_OUT; goto pagein_done; } if (intstat & CMDCMPLT) { int scb_index; AHC_OUTB(ahc, CLRINT, CLRCMDINT); scb_index = AHC_INB(ahc, QOUTFIFO); if (!(AHC_INB(ahc, QOUTCNT) & ahc->qcntmask)) intstat &= ~CMDCMPLT; outscb = ahc->scbarray[scb_index]; if (!outscb || !(outscb->flags & SCB_ACTIVE)) { printf("%s: WARNING no command for " "scb %d (cmdcmplt)\n", ahc_name(ahc), scb_index); /* * Fall through in hopes of finding * another SCB */ } else { scb->position = outscb->position; outscb->position = SCB_LIST_NULL; AHC_OUTB(ahc, SCBPTR, scb->position); ahc_send_scb(ahc, scb); scb->flags &= ~SCB_PAGED_OUT; untimeout(ahc_timeout, (caddr_t)outscb); ahc_done(ahc, outscb); goto pagein_done; } } disc_scb = AHC_INB(ahc, DISCONNECTED_SCBH); if (disc_scb != SCB_LIST_NULL) { AHC_OUTB(ahc, SCBPTR, disc_scb); tag = AHC_INB(ahc, SCB_TAG); outscb = ahc->scbarray[tag]; next = AHC_INB(ahc, SCB_NEXT); if (next != SCB_LIST_NULL) { AHC_OUTB(ahc, SCBPTR, next); AHC_OUTB(ahc, SCB_PREV, SCB_LIST_NULL); AHC_OUTB(ahc, SCBPTR, disc_scb); } AHC_OUTB(ahc, DISCONNECTED_SCBH, next); ahc_page_scb(ahc, outscb, scb); } else if (AHC_INB(ahc, QINCNT) & ahc->qcntmask) { /* * Pull one of our queued commands * as a last resort */ disc_scb = AHC_INB(ahc, QINFIFO); AHC_OUTB(ahc, SCBPTR, disc_scb); tag = AHC_INB(ahc, SCB_TAG); outscb = ahc->scbarray[tag]; if ((outscb->control & 0x23) != TAG_ENB) { /* * This is not a simple tagged command * so its position in the queue * matters. Take the command at the * end of the queue instead. */ int i; u_char saved_queue[AHC_SCB_MAX]; u_char queued = AHC_INB(ahc, QINCNT) & ahc->qcntmask; /* * Count the command we removed * already */ saved_queue[0] = disc_scb; queued++; /* Empty the input queue */ for (i = 1; i < queued; i++) saved_queue[i] = AHC_INB(ahc, QINFIFO); /* * Put everyone back but the * last entry */ queued--; for (i = 0; i < queued; i++) AHC_OUTB(ahc, QINFIFO, saved_queue[i]); AHC_OUTB(ahc, SCBPTR, saved_queue[queued]); tag = AHC_INB(ahc, SCB_TAG); outscb = ahc->scbarray[tag]; } untimeout(ahc_timeout, (caddr_t)outscb); scb->position = outscb->position; outscb->position = SCB_LIST_NULL; STAILQ_INSERT_HEAD(&ahc->waiting_scbs, outscb, links); outscb->flags |= SCB_WAITINGQ; ahc_send_scb(ahc, scb); scb->flags &= ~SCB_PAGED_OUT; } else { panic("Page-in request with no candidates"); AHC_OUTB(ahc, RETURN_1, 0); } pagein_done: } else { printf("%s:%c:%d: no active SCB for reconnecting " "target - issuing ABORT\n", ahc_name(ahc), channel, target); printf("SAVED_TCL == 0x%x\n", AHC_INB(ahc, SAVED_TCL)); ahc_unbusy_target(ahc, target, channel); AHC_OUTB(ahc, SCB_CONTROL, 0); AHC_OUTB(ahc, CLRSINT1, CLRSELTIMEO); AHC_OUTB(ahc, RETURN_1, 0); } break; case SEND_REJECT: { u_char rejbyte = AHC_INB(ahc, REJBYTE); printf("%s:%c:%d: Warning - unknown message received from " "target (0x%x). Rejecting\n", ahc_name(ahc), channel, target, rejbyte); break; } case NO_IDENT: panic("%s:%c:%d: Target did not send an IDENTIFY message. " "SAVED_TCL == 0x%x\n", ahc_name(ahc), channel, target, AHC_INB(ahc, SAVED_TCL)); break; case BAD_PHASE: printf("%s:%c:%d: unknown scsi bus phase. Attempting to " "continue\n", ahc_name(ahc), channel, target); break; case EXTENDED_MSG: { u_int8_t message_length; u_int8_t message_code; message_length = AHC_INB(ahc, MSGIN_EXT_LEN); message_code = AHC_INB(ahc, MSGIN_EXT_OPCODE); switch(message_code) { case MSG_EXT_SDTR: { u_int8_t period; u_int8_t offset; u_int8_t saved_offset; u_int8_t targ_scratch; u_int8_t maxoffset; u_int8_t rate; if (message_length != MSG_EXT_SDTR_LEN) { AHC_OUTB(ahc, RETURN_1, SEND_REJ); ahc->sdtrpending &= ~targ_mask; break; } period = AHC_INB(ahc, MSGIN_EXT_BYTE0); saved_offset = AHC_INB(ahc, MSGIN_EXT_BYTE1); targ_scratch = AHC_INB(ahc, TARG_SCRATCH + scratch_offset); if (targ_scratch & WIDEXFER) maxoffset = MAX_OFFSET_16BIT; else maxoffset = MAX_OFFSET_8BIT; offset = MIN(saved_offset, maxoffset); ahc_scsirate(ahc, &rate, &period, &offset, channel, target); /* Preserve the WideXfer flag */ targ_scratch = rate | (targ_scratch & WIDEXFER); /* * Update both the target scratch area and the * current SCSIRATE. */ AHC_OUTB(ahc, TARG_SCRATCH + scratch_offset, targ_scratch); AHC_OUTB(ahc, SCSIRATE, targ_scratch); /* * See if we initiated Sync Negotiation * and didn't have to fall down to async * transfers. */ if ((ahc->sdtrpending & targ_mask) != 0 && (saved_offset == offset)) { /* * Don't send an SDTR back to * the target */ AHC_OUTB(ahc, RETURN_1, 0); ahc->needsdtr &= ~targ_mask; ahc->sdtrpending &= ~targ_mask; } else { /* * Send our own SDTR in reply */ #ifdef AHC_DEBUG if(ahc_debug & AHC_SHOWMISC) printf("Sending SDTR!!\n"); #endif ahc_construct_sdtr(ahc, /*start_byte*/0, period, offset); AHC_OUTB(ahc, RETURN_1, SEND_MSG); /* * If we aren't starting a re-negotiation * because we had to go async in response * to a "too low" response from the target * clear the needsdtr flag for this target. */ if ((ahc->sdtrpending & targ_mask) == 0) ahc->needsdtr &= ~targ_mask; else ahc->sdtrpending |= targ_mask; } break; } case MSG_EXT_WDTR: { u_int8_t scratch, bus_width; if (message_length != MSG_EXT_WDTR_LEN) { AHC_OUTB(ahc, RETURN_1, SEND_REJ); ahc->wdtrpending &= ~targ_mask; break; } bus_width = AHC_INB(ahc, MSGIN_EXT_BYTE0); scratch = AHC_INB(ahc, TARG_SCRATCH + scratch_offset); if (ahc->wdtrpending & targ_mask) { /* * Don't send a WDTR back to the * target, since we asked first. */ AHC_OUTB(ahc, RETURN_1, 0); switch(bus_width){ case BUS_8_BIT: scratch &= 0x7f; break; case BUS_16_BIT: if(bootverbose) printf("%s: target %d using " "16Bit transfers\n", ahc_name(ahc), target); scratch |= WIDEXFER; break; case BUS_32_BIT: /* * How can we do 32bit transfers * on a 16bit bus? */ AHC_OUTB(ahc, RETURN_1, SEND_REJ); printf("%s: target %d requested 32Bit " "transfers. Rejecting...\n", ahc_name(ahc), target); break; default: break; } } else { /* * Send our own WDTR in reply */ switch(bus_width) { case BUS_8_BIT: scratch &= 0x7f; break; case BUS_32_BIT: case BUS_16_BIT: if(ahc->type & AHC_WIDE) { /* Negotiate 16_BITS */ bus_width = BUS_16_BIT; if(bootverbose) printf("%s: target %d " "using 16Bit " "transfers\n", ahc_name(ahc), target); scratch |= WIDEXFER; } else bus_width = BUS_8_BIT; break; default: break; } ahc_construct_wdtr(ahc, /*start_byte*/0, bus_width); AHC_OUTB(ahc, RETURN_1, SEND_MSG); } ahc->needwdtr &= ~targ_mask; ahc->wdtrpending &= ~targ_mask; AHC_OUTB(ahc, TARG_SCRATCH + scratch_offset, scratch); AHC_OUTB(ahc, SCSIRATE, scratch); break; } default: /* Unknown extended message. Reject it. */ AHC_OUTB(ahc, RETURN_1, SEND_REJ); } } case REJECT_MSG: { /* * What we care about here is if we had an * outstanding SDTR or WDTR message for this * target. If we did, this is a signal that * the target is refusing negotiation. */ u_char targ_scratch; targ_scratch = AHC_INB(ahc, TARG_SCRATCH + scratch_offset); if (ahc->wdtrpending & targ_mask){ /* note 8bit xfers and clear flag */ targ_scratch &= 0x7f; ahc->needwdtr &= ~targ_mask; ahc->wdtrpending &= ~targ_mask; #if !(defined(__NetBSD__) || defined(__OpenBSD__)) || defined(DEBUG) printf("%s:%c:%d: refuses WIDE negotiation. Using " "8bit transfers\n", ahc_name(ahc), channel, target); #endif } else if(ahc->sdtrpending & targ_mask){ /* note asynch xfers and clear flag */ targ_scratch &= 0xf0; ahc->needsdtr &= ~targ_mask; ahc->sdtrpending &= ~targ_mask; #if !(defined(__NetBSD__) || defined(__OpenBSD__)) || defined(DEBUG) printf("%s:%c:%d: refuses synchronous negotiation. " "Using asynchronous transfers\n", ahc_name(ahc), channel, target); #endif } else { /* * Otherwise, we ignore it. */ #ifdef AHC_DEBUG if(ahc_debug & AHC_SHOWMISC) printf("%s:%c:%d: Message reject -- ignored\n", ahc_name(ahc), channel, target); #endif break; } AHC_OUTB(ahc, TARG_SCRATCH + scratch_offset, targ_scratch); AHC_OUTB(ahc, SCSIRATE, targ_scratch); break; } case BAD_STATUS: { int scb_index; struct scsi_xfer *xs; /* The sequencer will notify us when a command * has an error that would be of interest to * the kernel. This allows us to leave the sequencer * running in the common case of command completes * without error. */ scb_index = AHC_INB(ahc, SCB_TAG); scb = ahc->scbarray[scb_index]; /* * Set the default return value to 0 (don't * send sense). The sense code will change * this if needed and this reduces code * duplication. */ AHC_OUTB(ahc, RETURN_1, 0); if (!(scb && (scb->flags & SCB_ACTIVE))) { printf("%s:%c:%d: ahc_intr - referenced scb " "not valid during seqint 0x%x scb(%d)\n", ahc_name(ahc), channel, target, intstat, scb_index); goto clear; } xs = scb->xs; scb->status = AHC_INB(ahc, SCB_TARGET_STATUS); #ifdef AHC_DEBUG if((ahc_debug & AHC_SHOWSCBS) && xs->sc_link->target == DEBUGTARGET) ahc_print_scb(scb); #endif xs->status = scb->status; switch(scb->status){ case SCSI_OK: printf("%s: Interrupted for staus of" " 0???\n", ahc_name(ahc)); break; case SCSI_CHECK: #ifdef AHC_DEBUG if(ahc_debug & AHC_SHOWSENSE) { sc_print_addr(xs->sc_link); printf("requests Check Status\n"); } #endif if ((xs->error == XS_NOERROR) && !(scb->flags & SCB_SENSE)) { struct ahc_dma_seg *sg = scb->ahc_dma; struct scsi_sense *sc = &(scb->sense_cmd); #ifdef AHC_DEBUG if (ahc_debug & AHC_SHOWSENSE) { sc_print_addr(xs->sc_link); printf("Sending Sense\n"); } #endif #if defined(__FreeBSD__) sc->op_code = REQUEST_SENSE; #elif defined(__NetBSD__) || defined(__OpenBSD__) sc->opcode = REQUEST_SENSE; #endif sc->byte2 = xs->sc_link->lun << 5; sc->length = sizeof(struct scsi_sense_data); sc->control = 0; sg->addr = KVTOPHYS(&xs->sense); sg->len = sizeof(struct scsi_sense_data); scb->control &= DISCENB; scb->status = 0; scb->SG_segment_count = 1; scb->SG_list_pointer = KVTOPHYS(sg); scb->data = sg->addr; scb->datalen = sg->len; #ifdef AHC_BROKEN_CACHE if (ahc_broken_cache) INVALIDATE_CACHE(); #endif scb->cmdpointer = KVTOPHYS(sc); scb->cmdlen = sizeof(*sc); scb->flags |= SCB_SENSE; ahc_send_scb(ahc, scb); /* * Ensure that the target is "BUSY" * so we don't get overlapping * commands if we happen to be doing * tagged I/O. */ ahc_busy_target(ahc, target, channel); /* * Make us the next command to run */ ahc_add_waiting_scb(ahc, scb); AHC_OUTB(ahc, RETURN_1, SEND_SENSE); break; } /* * Clear the SCB_SENSE Flag and have * the sequencer do a normal command * complete with either a "DRIVER_STUFFUP" * error or whatever other error condition * we already had. */ scb->flags &= ~SCB_SENSE; if (xs->error == XS_NOERROR) xs->error = XS_DRIVER_STUFFUP; break; case SCSI_BUSY: xs->error = XS_BUSY; sc_print_addr(xs->sc_link); printf("Target Busy\n"); break; case SCSI_QUEUE_FULL: /* * The upper level SCSI code will someday * handle this properly. */ sc_print_addr(xs->sc_link); printf("Queue Full\n"); scb->flags |= SCB_ASSIGNEDQ; STAILQ_INSERT_TAIL(&ahc->assigned_scbs,scb, links); AHC_OUTB(ahc, RETURN_1, SEND_SENSE); break; default: sc_print_addr(xs->sc_link); printf("unexpected targ_status: %x\n", scb->status); xs->error = XS_DRIVER_STUFFUP; break; } break; } case RESIDUAL: { int scb_index; struct scsi_xfer *xs; scb_index = AHC_INB(ahc, SCB_TAG); scb = ahc->scbarray[scb_index]; xs = scb->xs; /* * Don't clobber valid resid info with * a resid coming from a check sense * operation. */ if (!(scb->flags & SCB_SENSE)) { int resid_sgs; /* * Remainder of the SG where the transfer * stopped. */ xs->resid = (AHC_INB(ahc, SCB_RESID_DCNT2)<<16) | (AHC_INB(ahc, SCB_RESID_DCNT1)<<8) | AHC_INB(ahc, SCB_RESID_DCNT0); /* * Add up the contents of all residual * SG segments that are after the SG where * the transfer stopped. */ resid_sgs = AHC_INB(ahc, SCB_RESID_SGCNT) - 1; while (resid_sgs > 0) { int sg; sg = scb->SG_segment_count - resid_sgs; xs->resid += scb->ahc_dma[sg].len; resid_sgs--; } #if defined(__FreeBSD__) xs->flags |= SCSI_RESID_VALID; #elif defined(__NetBSD__) || defined(__OpenBSD__) /* XXX - Update to do this right */ #endif #ifdef AHC_DEBUG if (ahc_debug & AHC_SHOWMISC) { sc_print_addr(xs->sc_link); printf("Handled Residual of %ld bytes\n" ,xs->resid); } #endif } break; } case ABORT_TAG: { int scb_index; struct scsi_xfer *xs; scb_index = AHC_INB(ahc, SCB_TAG); scb = ahc->scbarray[scb_index]; xs = scb->xs; /* * We didn't recieve a valid tag back from * the target on a reconnect. */ sc_print_addr(xs->sc_link); printf("invalid tag received -- sending ABORT_TAG\n"); xs->error = XS_DRIVER_STUFFUP; untimeout(ahc_timeout, (caddr_t)scb); ahc_done(ahc, scb); break; } case AWAITING_MSG: { int scb_index; scb_index = AHC_INB(ahc, SCB_TAG); scb = ahc->scbarray[scb_index]; /* * This SCB had a zero length command, informing * the sequencer that we wanted to send a special * message to this target. We only do this for * BUS_DEVICE_RESET messages currently. */ if (scb->flags & SCB_DEVICE_RESET) { AHC_OUTB(ahc, MSG0, MSG_BUS_DEV_RESET); AHC_OUTB(ahc, MSG_LEN, 1); printf("Bus Device Reset Message Sent\n"); } else if (scb->flags & SCB_MSGOUT_WDTR) { ahc_construct_wdtr(ahc, AHC_INB(ahc, MSG_LEN), BUS_16_BIT); } else if (scb->flags & SCB_MSGOUT_SDTR) { u_int8_t target_scratch; u_int8_t ultraenable; int sxfr; int i; /* Pull the user defined setting */ target_scratch = AHC_INB(ahc, TARG_SCRATCH + scratch_offset); sxfr = target_scratch & SXFR; if (scratch_offset < 8) ultraenable = AHC_INB(ahc, ULTRA_ENB); else ultraenable = AHC_INB(ahc, ULTRA_ENB + 1); if (ultraenable & targ_mask) /* Want an ultra speed in the table */ sxfr |= 0x100; for (i = 0; i < ahc_num_syncrates; i++) if (sxfr == ahc_syncrates[i].sxfr) break; ahc_construct_sdtr(ahc, AHC_INB(ahc, MSG_LEN), ahc_syncrates[i].period, target_scratch & WIDEXFER ? MAX_OFFSET_16BIT : MAX_OFFSET_8BIT); } else panic("ahc_intr: AWAITING_MSG for an SCB that " "does not have a waiting message"); break; } case IMMEDDONE: { /* * Take care of device reset messages */ u_char scbindex = AHC_INB(ahc, SCB_TAG); scb = ahc->scbarray[scbindex]; if (scb->flags & SCB_DEVICE_RESET) { u_char targ_scratch; int found; /* * Go back to async/narrow transfers and * renegotiate. */ ahc_unbusy_target(ahc, target, channel); ahc->needsdtr |= ahc->needsdtr_orig & targ_mask; ahc->needwdtr |= ahc->needwdtr_orig & targ_mask; ahc->sdtrpending &= ~targ_mask; ahc->wdtrpending &= ~targ_mask; targ_scratch = AHC_INB(ahc, TARG_SCRATCH + scratch_offset); targ_scratch &= SXFR; AHC_OUTB(ahc, TARG_SCRATCH + scratch_offset, targ_scratch); found = ahc_reset_device(ahc, target, channel, SCB_LIST_NULL, XS_NOERROR); sc_print_addr(scb->xs->sc_link); printf("Bus Device Reset delivered. " "%d SCBs aborted\n", found); ahc->in_timeout = FALSE; ahc_run_done_queue(ahc); } else panic("ahc_intr: Immediate complete for " "unknown operation."); break; } case DATA_OVERRUN: { /* * When the sequencer detects an overrun, it * sets STCNT to 0x00ffffff and allows the * target to complete its transfer in * BITBUCKET mode. */ u_char scbindex = AHC_INB(ahc, SCB_TAG); u_int32_t overrun; scb = ahc->scbarray[scbindex]; overrun = AHC_INB(ahc, STCNT0) | (AHC_INB(ahc, STCNT1) << 8) | (AHC_INB(ahc, STCNT2) << 16); overrun = 0x00ffffff - overrun; sc_print_addr(scb->xs->sc_link); printf("data overrun of %d bytes detected." " Forcing a retry.\n", overrun); /* * Set this and it will take affect when the * target does a command complete. */ scb->xs->error = XS_DRIVER_STUFFUP; break; } #if NOT_YET /* XXX Fill these in later */ case MESG_BUFFER_BUSY: break; case MSGIN_PHASEMIS: break; #endif default: printf("ahc_intr: seqint, " "intstat == 0x%x, scsisigi = 0x%x\n", intstat, AHC_INB(ahc, SCSISIGI)); break; } clear: /* * Clear the upper byte that holds SEQINT status * codes and clear the SEQINT bit. */ AHC_OUTB(ahc, CLRINT, CLRSEQINT); /* * The sequencer is paused immediately on * a SEQINT, so we should restart it when * we're done. */ unpause_sequencer(ahc, /*unpause_always*/TRUE); } /* * We have a scb which has been processed by the * adaptor, now we look to see how the operation * went. */ static void ahc_done(ahc, scb) struct ahc_data *ahc; struct scb *scb; { struct scsi_xfer *xs = scb->xs; SC_DEBUG(xs->sc_link, SDEV_DB2, ("ahc_done\n")); /* * Put the results of the operation * into the xfer and call whoever started it */ #if defined(__NetBSD__) || defined(__OpenBSD__) if (xs->error != XS_NOERROR) { /* Don't override the error value. */ } else if (scb->flags & SCB_ABORTED) { xs->error = XS_DRIVER_STUFFUP; } else #endif if(scb->flags & SCB_SENSE) xs->error = XS_SENSE; if(scb->flags & SCB_SENTORDEREDTAG) ahc->in_timeout = FALSE; #if defined(__FreeBSD__) if ((xs->flags & SCSI_ERR_OK) && !(xs->error == XS_SENSE)) { /* All went correctly OR errors expected */ xs->error = XS_NOERROR; } #elif defined(__NetBSD__) || defined(__OpenBSD__) /* * Since NetBSD nor OpenBSD doesn't have error ignoring operation mode * (SCSI_ERR_OK in FreeBSD), we don't have to care this case. */ #endif xs->flags |= ITSDONE; #ifdef AHC_TAGENABLE if(xs->cmd->opcode == INQUIRY && xs->error == XS_NOERROR) { struct scsi_inquiry_data *inq_data; u_short mask = 0x01 << (xs->sc_link->target | (scb->tcl & 0x08)); /* * Sneak a look at the results of the SCSI Inquiry * command and see if we can do Tagged queing. This * should really be done by the higher level drivers. */ inq_data = (struct scsi_inquiry_data *)xs->data; if((inq_data->flags & SID_CmdQue) && !(ahc->tagenable & mask)) { printf("%s: target %d Tagged Queuing Device\n", ahc_name(ahc), xs->sc_link->target); ahc->tagenable |= mask; if(ahc->maxhscbs >= 16 || (ahc->flags & AHC_PAGESCBS)) { /* Default to 8 tags */ xs->sc_link->opennings += 6; } else { /* * Default to 4 tags on whimpy * cards that don't have much SCB * space and can't page. This prevents * a single device from hogging all * slots. We should really have a better * way of providing fairness. */ xs->sc_link->opennings += 2; } } } #endif ahc_free_scb(ahc, scb, xs->flags); scsi_done(xs); #if defined(__NetBSD__) || defined(__OpenBSD__) /* XXX */ /* * If there are entries in the software queue, try to * run the first one. We should be more or less guaranteed * to succeed, since we just freed an SCB. * * NOTE: ahc_scsi_cmd() relies on our calling it with * the first entry in the queue. */ if (ahc->sc_xxxq.lh_first != NULL) (void) ahc_scsi_cmd(ahc->sc_xxxq.lh_first); #endif /* __NetBSD__ || __OpenBSD__ */ } /* * Start the board, ready for normal operation */ int ahc_init(ahc) struct ahc_data *ahc; { u_int8_t scsi_conf, sblkctl, i; u_int16_t ultraenable = 0; int max_targ = 15; /* * Assume we have a board at this stage and it has been reset. */ /* Handle the SCBPAGING option */ #ifndef AHC_SCBPAGING_ENABLE ahc->flags &= ~AHC_PAGESCBS; #endif /* Determine channel configuration and who we are on the scsi bus. */ switch ( (sblkctl = AHC_INB(ahc, SBLKCTL) & 0x0a) ) { case 0: ahc->our_id = (AHC_INB(ahc, SCSICONF) & HSCSIID); ahc->flags &= ~AHC_CHANNEL_B_PRIMARY; if(ahc->type == AHC_394) printf("Channel %c, SCSI Id=%d, ", ahc->flags & AHC_CHNLB ? 'B' : 'A', ahc->our_id); else printf("Single Channel, SCSI Id=%d, ", ahc->our_id); AHC_OUTB(ahc, FLAGS, SINGLE_BUS | (ahc->flags & AHC_PAGESCBS)); break; case 2: ahc->our_id = (AHC_INB(ahc, SCSICONF + 1) & HWSCSIID); ahc->flags &= ~AHC_CHANNEL_B_PRIMARY; if(ahc->type == AHC_394) printf("Wide Channel %c, SCSI Id=%d, ", ahc->flags & AHC_CHNLB ? 'B' : 'A', ahc->our_id); else printf("Wide Channel, SCSI Id=%d, ", ahc->our_id); ahc->type |= AHC_WIDE; AHC_OUTB(ahc, FLAGS, WIDE_BUS | (ahc->flags & AHC_PAGESCBS)); break; case 8: ahc->our_id = (AHC_INB(ahc, SCSICONF) & HSCSIID); ahc->our_id_b = (AHC_INB(ahc, SCSICONF + 1) & HSCSIID); printf("Twin Channel, A SCSI Id=%d, B SCSI Id=%d, ", ahc->our_id, ahc->our_id_b); ahc->type |= AHC_TWIN; AHC_OUTB(ahc, FLAGS, TWIN_BUS | (ahc->flags & AHC_PAGESCBS)); break; default: printf(" Unsupported adapter type. Ignoring\n"); return(-1); } /* Determine the number of SCBs */ { AHC_OUTB(ahc, SCBPTR, 0); AHC_OUTB(ahc, SCB_CONTROL, 0); for(i = 1; i < AHC_SCB_MAX; i++) { AHC_OUTB(ahc, SCBPTR, i); AHC_OUTB(ahc, SCB_CONTROL, i); if(AHC_INB(ahc, SCB_CONTROL) != i) break; AHC_OUTB(ahc, SCBPTR, 0); if(AHC_INB(ahc, SCB_CONTROL) != 0) break; /* Clear the control byte. */ AHC_OUTB(ahc, SCBPTR, i); AHC_OUTB(ahc, SCB_CONTROL, 0); ahc->qcntmask |= i; /* Update the count mask. */ } /* Ensure we clear the 0 SCB's control byte. */ AHC_OUTB(ahc, SCBPTR, 0); AHC_OUTB(ahc, SCB_CONTROL, 0); ahc->qcntmask |= i; ahc->maxhscbs = i; } if((ahc->maxhscbs < AHC_SCB_MAX) && (ahc->flags & AHC_PAGESCBS)) ahc->maxscbs = AHC_SCB_MAX; else { ahc->maxscbs = ahc->maxhscbs; ahc->flags &= ~AHC_PAGESCBS; } printf("%d SCBs\n", ahc->maxhscbs); #ifdef AHC_DEBUG if(ahc_debug & AHC_SHOWMISC) { struct scb test; printf("%s: hardware scb %ld bytes; kernel scb; " "ahc_dma %d bytes\n", ahc_name(ahc), (u_long)&(test.next) - (u_long)(&test), sizeof(test), sizeof(struct ahc_dma_seg)); } #endif /* AHC_DEBUG */ /* Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1, for both channels*/ if(ahc->type & AHC_TWIN) { /* * The device is gated to channel B after a chip reset, * so set those values first */ AHC_OUTB(ahc, SCSIID, ahc->our_id_b); scsi_conf = AHC_INB(ahc, SCSICONF + 1); AHC_OUTB(ahc, SXFRCTL1, (scsi_conf & (ENSPCHK|STIMESEL)) | ENSTIMER|ACTNEGEN|STPWEN); AHC_OUTB(ahc, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR); if(ahc->type & AHC_ULTRA) AHC_OUTB(ahc, SXFRCTL0, DFON|SPIOEN|ULTRAEN); else AHC_OUTB(ahc, SXFRCTL0, DFON|SPIOEN); if(scsi_conf & RESET_SCSI) { /* Reset the bus */ #if (!defined(__NetBSD__) && !defined(__OpenBSD__)) || defined(DEBUG) if(bootverbose) printf("%s: Resetting Channel B\n", ahc_name(ahc)); #endif AHC_OUTB(ahc, SCSISEQ, SCSIRSTO); DELAY(1000); AHC_OUTB(ahc, SCSISEQ, 0); /* Ensure we don't get a RSTI interrupt from this */ AHC_OUTB(ahc, CLRSINT1, CLRSCSIRSTI); AHC_OUTB(ahc, CLRINT, CLRSCSIINT); } /* Select Channel A */ AHC_OUTB(ahc, SBLKCTL, 0); } AHC_OUTB(ahc, SCSIID, ahc->our_id); scsi_conf = AHC_INB(ahc, SCSICONF); AHC_OUTB(ahc, SXFRCTL1, (scsi_conf & (ENSPCHK|STIMESEL)) | ENSTIMER|ACTNEGEN|STPWEN); AHC_OUTB(ahc, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR); if(ahc->type & AHC_ULTRA) AHC_OUTB(ahc, SXFRCTL0, DFON|SPIOEN|ULTRAEN); else AHC_OUTB(ahc, SXFRCTL0, DFON|SPIOEN); if(scsi_conf & RESET_SCSI) { /* Reset the bus */ #if (!defined(__NetBSD__) && !defined(__OpenBSD__)) || defined(DEBUG) if(bootverbose) printf("%s: Resetting Channel A\n", ahc_name(ahc)); #endif AHC_OUTB(ahc, SCSISEQ, SCSIRSTO); DELAY(1000); AHC_OUTB(ahc, SCSISEQ, 0); /* Ensure we don't get a RSTI interrupt from this */ AHC_OUTB(ahc, CLRSINT1, CLRSCSIRSTI); AHC_OUTB(ahc, CLRINT, CLRSCSIINT); } /* * Look at the information that board initialization or * the board bios has left us. In the lower four bits of each * target's scratch space any value other than 0 indicates * that we should initiate synchronous transfers. If it's zero, * the user or the BIOS has decided to disable synchronous * negotiation to that target so we don't activate the needsdtr * flag. */ ahc->needsdtr_orig = 0; ahc->needwdtr_orig = 0; /* Grab the disconnection disable table and invert it for our needs */ if(ahc->flags & AHC_USEDEFAULTS) { printf("%s: Host Adapter Bios disabled. Using default SCSI " "device parameters\n", ahc_name(ahc)); ahc->discenable = 0xff; } else ahc->discenable = ~((AHC_INB(ahc, DISC_DSB + 1) << 8) | AHC_INB(ahc, DISC_DSB)); if(!(ahc->type & (AHC_WIDE|AHC_TWIN))) max_targ = 7; for(i = 0; i <= max_targ; i++){ u_char target_settings; if (ahc->flags & AHC_USEDEFAULTS) { target_settings = 0; /* 10MHz */ ahc->needsdtr_orig |= (0x01 << i); ahc->needwdtr_orig |= (0x01 << i); } else { /* Take the settings leftover in scratch RAM. */ target_settings = AHC_INB(ahc, TARG_SCRATCH + i); if(target_settings & 0x0f){ ahc->needsdtr_orig |= (0x01 << i); /*Default to asynchronous transfers(0 offset)*/ target_settings &= 0xf0; } if(target_settings & 0x80){ ahc->needwdtr_orig |= (0x01 << i); /* * We'll set the Wide flag when we * are successful with Wide negotiation. * Turn it off for now so we aren't * confused. */ target_settings &= 0x7f; } if(ahc->type & AHC_ULTRA) { /* * Enable Ultra for any target that * has a valid ultra syncrate setting. */ u_char rate = target_settings & 0x70; if(rate == 0x00 || rate == 0x10 || rate == 0x20 || rate == 0x40) { if(rate == 0x40) { /* Treat 10MHz specially */ target_settings &= ~0x70; } else ultraenable |= (0x01 << i); } } } AHC_OUTB(ahc, TARG_SCRATCH+i,target_settings); } /* * If we are not a WIDE device, forget WDTR. This * makes the driver work on some cards that don't * leave these fields cleared when the BIOS is not * installed. */ if(!(ahc->type & AHC_WIDE)) ahc->needwdtr_orig = 0; ahc->needsdtr = ahc->needsdtr_orig; ahc->needwdtr = ahc->needwdtr_orig; ahc->sdtrpending = 0; ahc->wdtrpending = 0; ahc->tagenable = 0; ahc->orderedtag = 0; AHC_OUTB(ahc, ULTRA_ENB, ultraenable & 0xff); AHC_OUTB(ahc, ULTRA_ENB + 1, (ultraenable >> 8) & 0xff); #ifdef AHC_DEBUG /* How did we do? */ if(ahc_debug & AHC_SHOWMISC) printf("NEEDSDTR == 0x%x\nNEEDWDTR == 0x%x\n" "DISCENABLE == 0x%x\n", ahc->needsdtr, ahc->needwdtr, ahc->discenable); #endif /* * Set the number of available SCBs */ AHC_OUTB(ahc, SCBCOUNT, ahc->maxhscbs); /* * 2's compliment of maximum tag value */ i = ahc->maxscbs; AHC_OUTB(ahc, COMP_SCBCOUNT, -i & 0xff); /* * QCount mask to deal with broken aic7850s that * sporadically get garbage in the upper bits of * their QCount registers. */ AHC_OUTB(ahc, QCNTMASK, ahc->qcntmask); /* We don't have any busy targets right now */ AHC_OUTB(ahc, ACTIVE_A, 0); AHC_OUTB(ahc, ACTIVE_B, 0); /* We don't have any waiting selections */ AHC_OUTB(ahc, WAITING_SCBH, SCB_LIST_NULL); /* Our disconnection list is empty too */ AHC_OUTB(ahc, DISCONNECTED_SCBH, SCB_LIST_NULL); /* Message out buffer starts empty */ AHC_OUTB(ahc, MSG_LEN, 0x00); /* * Load the Sequencer program and Enable the adapter * in "fast" mode. */ #if (!defined(__NetBSD__) && !defined(__OpenBSD__)) || defined(DEBUG) if(bootverbose) printf("%s: Downloading Sequencer Program...", ahc_name(ahc)); #endif ahc_loadseq(ahc); #if (!defined(__NetBSD__) && !defined(__OpenBSD__)) || defined(DEBUG) if(bootverbose) printf("Done\n"); #endif AHC_OUTB(ahc, SEQCTL, FASTMODE); unpause_sequencer(ahc, /*unpause_always*/TRUE); /* * Note that we are going and return (to probe) */ ahc->flags |= AHC_INIT; return (0); } static void ahcminphys(bp) struct buf *bp; { /* * Even though the card can transfer up to 16megs per command * we are limited by the number of segments in the dma segment * list that we can hold. The worst case is that all pages are * discontinuous physically, hense the "page per segment" limit * enforced here. */ if (bp->b_bcount > ((AHC_NSEG - 1) * PAGE_SIZE)) { bp->b_bcount = ((AHC_NSEG - 1) * PAGE_SIZE); } #if defined(__NetBSD__) || defined(__OpenBSD__) minphys(bp); #endif } #if defined(__NetBSD__) || defined(__OpenBSD__) /* XXX */ /* * Insert a scsi_xfer into the software queue. We overload xs->free_list * to to ensure we don't run into a queue resource shortage, and keep * a pointer to the last entry around to make insertion O(C). */ static void ahc_xxx_enqueue(ahc, xs, infront) struct ahc_data *ahc; struct scsi_xfer *xs; int infront; { if (infront || ahc->sc_xxxq.lh_first == NULL) { if (ahc->sc_xxxq.lh_first == NULL) ahc->sc_xxxqlast = xs; LIST_INSERT_HEAD(&ahc->sc_xxxq, xs, free_list); return; } LIST_INSERT_AFTER(ahc->sc_xxxqlast, xs, free_list); ahc->sc_xxxqlast = xs; } /* * Pull a scsi_xfer off the front of the software queue. When we * pull the last one off, we need to clear the pointer to the last * entry. */ static struct scsi_xfer * ahc_xxx_dequeue(ahc) struct ahc_data *ahc; { struct scsi_xfer *xs; xs = ahc->sc_xxxq.lh_first; LIST_REMOVE(xs, free_list); if (ahc->sc_xxxq.lh_first == NULL) ahc->sc_xxxqlast = NULL; return (xs); } #endif /* * start a scsi operation given the command and * the data address, target, and lun all of which * are stored in the scsi_xfer struct */ static int32_t ahc_scsi_cmd(xs) struct scsi_xfer *xs; { struct scb *scb; struct ahc_dma_seg *sg; int seg; /* scatter gather seg being worked on */ unsigned long thiskv, nextkv; physaddr thisphys, nextphys; int bytes_this_seg, bytes_this_page, datalen, flags; struct ahc_data *ahc; u_short mask; int s; #if defined(__NetBSD__) || defined(__OpenBSD__) /* XXX */ int dontqueue = 0, fromqueue = 0; #endif ahc = (struct ahc_data *)xs->sc_link->adapter_softc; mask = (0x01 << (xs->sc_link->target #if defined(__FreeBSD__) | ((u_long)xs->sc_link->fordriver & 0x08))); #elif defined(__NetBSD__) || defined(__OpenBSD__) | (IS_SCSIBUS_B(ahc, xs->sc_link) ? SELBUSB : 0) )); #endif SC_DEBUG(xs->sc_link, SDEV_DB2, ("ahc_scsi_cmd\n")); #if defined(__NetBSD__) || (__OpenBSD__) /* XXX */ /* must protect the queue */ s = splbio(); /* * If we're running the queue from ahc_done(), we're called * with the first entry in the queue as our argument. * Pull it off; if we can't run the job, it will get placed * back at the front. */ if (xs == ahc->sc_xxxq.lh_first) { xs = ahc_xxx_dequeue(ahc); fromqueue = 1; goto get_scb; } /* determine safety of software queueing */ dontqueue = xs->flags & SCSI_POLL; /* * Handle situations where there's already entries in the * queue. */ if (ahc->sc_xxxq.lh_first != NULL) { /* * If we can't queue, we have to abort, since * we have to preserve order. */ if (dontqueue) { splx(s); xs->error = XS_DRIVER_STUFFUP; return (TRY_AGAIN_LATER); } /* * Swap with the first queue entry. */ ahc_xxx_enqueue(ahc, xs, 0); xs = ahc_xxx_dequeue(ahc); fromqueue = 1; } get_scb: #endif /* __NetBSD__ || __OpenBSD__ */ /* * get an scb to use. If the transfer * is from a buf (possibly from interrupt time) * then we can't allow it to sleep */ flags = xs->flags; if (flags & ITSDONE) { printf("%s: Already done?", ahc_name(ahc)); xs->flags &= ~ITSDONE; } if (!(flags & INUSE)) { printf("%s: Not in use?", ahc_name(ahc)); xs->flags |= INUSE; } if (!(scb = ahc_get_scb(ahc, flags))) { #if defined(__NetBSD__) || defined(__OpenBSD__) /* XXX */ /* * If we can't queue, we lose. */ if (dontqueue) { splx(s); xs->error = XS_DRIVER_STUFFUP; return (TRY_AGAIN_LATER); } /* * If we were pulled off the queue, put ourselves * back in the front, otherwise tack ourselves onto * the end. */ ahc_xxx_enqueue(ahc, xs, fromqueue); splx(s); return (SUCCESSFULLY_QUEUED); #else xs->error = XS_DRIVER_STUFFUP; return (TRY_AGAIN_LATER); #endif /* __NetBSD__ || __OpenBSD__ */ } #if defined(__NetBSD__) || defined(__OpenBSD__) /* we're done playing with the queue */ splx(s); #endif SC_DEBUG(xs->sc_link, SDEV_DB3, ("start scb(%p)\n", scb)); scb->xs = xs; if (flags & SCSI_RESET) { scb->flags |= SCB_DEVICE_RESET|SCB_IMMED; scb->control |= MK_MESSAGE; } /* * Put all the arguments for the xfer in the scb */ if(ahc->tagenable & mask) { scb->control |= TAG_ENB; if(ahc->orderedtag & mask) { printf("Ordered Tag sent\n"); scb->control |= 0x02; ahc->orderedtag &= ~mask; } } if(ahc->discenable & mask) scb->control |= DISCENB; if((ahc->needwdtr & mask) && !(ahc->wdtrpending & mask)) { scb->control |= MK_MESSAGE; scb->flags |= SCB_MSGOUT_WDTR; ahc->wdtrpending |= mask; } else if((ahc->needsdtr & mask) && !(ahc->sdtrpending & mask)) { scb->control |= MK_MESSAGE; scb->flags |= SCB_MSGOUT_SDTR; ahc->sdtrpending |= mask; } scb->tcl = ((xs->sc_link->target << 4) & 0xF0) | #if defined(__FreeBSD__) ((u_long)xs->sc_link->fordriver & 0x08) | #elif defined(__NetBSD__) || defined(__OpenBSD__) (IS_SCSIBUS_B(ahc,xs->sc_link)? SELBUSB : 0)| #endif (xs->sc_link->lun & 0x07); scb->cmdlen = xs->cmdlen; scb->cmdpointer = KVTOPHYS(xs->cmd); xs->resid = 0; xs->status = 0; if (xs->datalen) { /* should use S/G only if not zero length */ scb->SG_list_pointer = KVTOPHYS(scb->ahc_dma); sg = scb->ahc_dma; seg = 0; /* * Set up the scatter gather block */ SC_DEBUG(xs->sc_link, SDEV_DB4, ("%ld @%p:- ", xs->datalen, xs->data)); datalen = xs->datalen; thiskv = (unsigned long) xs->data; thisphys = KVTOPHYS(thiskv); while ((datalen) && (seg < AHC_NSEG)) { bytes_this_seg = 0; /* put in the base address */ sg->addr = thisphys; SC_DEBUGN(xs->sc_link, SDEV_DB4, ("0x%lx", thisphys)); /* do it at least once */ nextphys = thisphys; while ((datalen) && (thisphys == nextphys)) { /* * This page is contiguous (physically) * with the the last, just extend the * length */ /* how far to the end of the page */ nextphys = (thisphys & (~(PAGE_SIZE- 1))) + PAGE_SIZE; bytes_this_page = nextphys - thisphys; /**** or the data ****/ bytes_this_page = min(bytes_this_page, datalen); bytes_this_seg += bytes_this_page; datalen -= bytes_this_page; /* get more ready for the next page */ nextkv = thiskv; nextkv &= ~((unsigned long) PAGE_SIZE - 1); nextkv += PAGE_SIZE; if (datalen) thisphys = KVTOPHYS(nextkv); thiskv = nextkv; } /* * next page isn't contiguous, finish the seg */ SC_DEBUGN(xs->sc_link, SDEV_DB4, ("(0x%x)", bytes_this_seg)); sg->len = bytes_this_seg; sg++; seg++; } scb->SG_segment_count = seg; /* Copy the first SG into the data pointer area */ scb->data = scb->ahc_dma->addr; scb->datalen = scb->ahc_dma->len; SC_DEBUGN(xs->sc_link, SDEV_DB4, ("\n")); if (datalen) { /* there's still data, must have run out of segs! */ printf("%s: ahc_scsi_cmd: more than %d DMA segs\n", ahc_name(ahc), AHC_NSEG); xs->error = XS_DRIVER_STUFFUP; ahc_free_scb(ahc, scb, flags); return (COMPLETE); } #ifdef AHC_BROKEN_CACHE if (ahc_broken_cache) INVALIDATE_CACHE(); #endif } else { /* * No data xfer, use non S/G values */ scb->SG_segment_count = 0; scb->SG_list_pointer = 0; scb->data = 0; scb->datalen = 0; } #ifdef AHC_DEBUG if((ahc_debug & AHC_SHOWSCBS) && (xs->sc_link->target == DEBUGTARG)) ahc_print_scb(scb); #endif s = splbio(); if( scb->position != SCB_LIST_NULL ) { /* We already have a valid slot */ u_char curscb; pause_sequencer(ahc); curscb = AHC_INB(ahc, SCBPTR); AHC_OUTB(ahc, SCBPTR, scb->position); ahc_send_scb(ahc, scb); AHC_OUTB(ahc, SCBPTR, curscb); AHC_OUTB(ahc, QINFIFO, scb->position); unpause_sequencer(ahc, /*unpause_always*/FALSE); scb->flags |= SCB_ACTIVE; if (!(flags & SCSI_NOMASK)) { timeout(ahc_timeout, (caddr_t)scb, (xs->timeout * hz) / 1000); } SC_DEBUG(xs->sc_link, SDEV_DB3, ("cmd_sent\n")); } else { scb->flags |= SCB_WAITINGQ; STAILQ_INSERT_TAIL(&ahc->waiting_scbs, scb, links); ahc_run_waiting_queues(ahc); } if (!(flags & SCSI_NOMASK)) { splx(s); return (SUCCESSFULLY_QUEUED); } /* * If we can't use interrupts, poll for completion */ SC_DEBUG(xs->sc_link, SDEV_DB3, ("cmd_poll\n")); do { if (ahc_poll(ahc, xs->timeout)) { if (!(xs->flags & SCSI_SILENT)) printf("cmd fail\n"); ahc_timeout(scb); break; } } while (!(xs->flags & ITSDONE)); /* a non command complete intr */ splx(s); return (COMPLETE); } /* * A scb (and hence an scb entry on the board) is put onto the * free list. */ static void ahc_free_scb(ahc, scb, flags) struct ahc_data *ahc; int flags; struct scb *scb; { struct scb *wscb; unsigned int opri; opri = splbio(); /* Clean up for the next user */ scb->flags = SCB_FREE; scb->control = 0; scb->status = 0; if(scb->position == SCB_LIST_NULL) { STAILQ_INSERT_HEAD(&ahc->page_scbs, scb, links); if(!scb->links.stqe_next && !ahc->free_scbs.stqh_first) /* * If there were no SCBs available, wake anybody waiting * for one to come free. */ wakeup((caddr_t)&ahc->free_scbs); } /* * If there are any SCBS on the waiting queue, * assign the slot of this "freed" SCB to the first * one. We'll run the waiting queues after all command * completes for a particular interrupt are completed * or when we start another command. */ else if((wscb = ahc->waiting_scbs.stqh_first) != NULL) { STAILQ_REMOVE_HEAD(&ahc->waiting_scbs, links); wscb->position = scb->position; STAILQ_INSERT_TAIL(&ahc->assigned_scbs, wscb, links); wscb->flags ^= SCB_WAITINGQ|SCB_ASSIGNEDQ; /* * The "freed" SCB will need to be assigned a slot * before being used, so put it in the page_scbs * queue. */ scb->position = SCB_LIST_NULL; STAILQ_INSERT_HEAD(&ahc->page_scbs, scb, links); if(!scb->links.stqe_next && !ahc->free_scbs.stqh_first) /* * If there were no SCBs available, wake anybody waiting * for one to come free. */ wakeup((caddr_t)&ahc->free_scbs); } else { STAILQ_INSERT_HEAD(&ahc->free_scbs, scb, links); if(!scb->links.stqe_next && !ahc->page_scbs.stqh_first) /* * If there were no SCBs available, wake anybody waiting * for one to come free. */ wakeup((caddr_t)&ahc->free_scbs); } #ifdef AHC_DEBUG ahc->activescbs--; #endif splx(opri); } /* * Get a free scb, either one already assigned to a hardware slot * on the adapter or one that will require an SCB to be paged out before * use. If there are none, see if we can allocate a new SCB. Otherwise * either return an error or sleep. */ static struct scb * ahc_get_scb(ahc, flags) struct ahc_data *ahc; int flags; { unsigned opri; struct scb *scbp; opri = splbio(); /* * If we can and have to, sleep waiting for one to come free * but only if we can't allocate a new one. */ while (1) { if((scbp = ahc->free_scbs.stqh_first)) { STAILQ_REMOVE_HEAD(&ahc->free_scbs, links); } else if((scbp = ahc->page_scbs.stqh_first)) { STAILQ_REMOVE_HEAD(&ahc->page_scbs, links); } else if(ahc->numscbs < ahc->maxscbs) { scbp = (struct scb *) malloc(sizeof(struct scb), M_TEMP, M_NOWAIT); if (scbp) { bzero(scbp, sizeof(struct scb)); scbp->tag = ahc->numscbs; if( ahc->numscbs < ahc->maxhscbs ) scbp->position = ahc->numscbs; else scbp->position = SCB_LIST_NULL; ahc->numscbs++; /* * Place in the scbarray * Never is removed. */ ahc->scbarray[scbp->tag] = scbp; } else { printf("%s: Can't malloc SCB\n", ahc_name(ahc)); } } else { if (!(flags & SCSI_NOSLEEP)) { tsleep((caddr_t)&ahc->free_scbs, PRIBIO, "ahcscb", 0); continue; } } break; } #ifdef AHC_DEBUG if (scbp) { ahc->activescbs++; if((ahc_debug & AHC_SHOWSCBCNT) && (ahc->activescbs == ahc->maxhscbs)) printf("%s: Max SCBs active\n", ahc_name(ahc)); } #endif splx(opri); return (scbp); } static void ahc_loadseq(ahc) struct ahc_data *ahc; { static u_char seqprog[] = { #if defined(__FreeBSD__) # include "aic7xxx_seq.h" #endif #if defined(__NetBSD__) || defined(__OpenBSD__) # include #endif }; AHC_OUTB(ahc, SEQCTL, PERRORDIS|SEQRESET|LOADRAM); AHC_OUTSB(ahc, SEQRAM, seqprog, sizeof(seqprog)); do { AHC_OUTB(ahc, SEQCTL, SEQRESET|FASTMODE); } while((AHC_INB(ahc, SEQADDR0) != 0) || (AHC_INB(ahc, SEQADDR1) != 0)); } /* * Function to poll for command completion when * interrupts are disabled (crash dumps) */ static int ahc_poll(ahc, wait) struct ahc_data *ahc; int wait; /* in msec */ { while (--wait) { DELAY(1000); if (AHC_INB(ahc, INTSTAT) & INT_PEND) break; } if (wait == 0) { printf("%s: board is not responding\n", ahc_name(ahc)); return (EIO); } ahc_intr((void *)ahc); return (0); } static void ahc_timeout(arg) void *arg; { struct scb *scb = (struct scb *)arg; struct ahc_data *ahc; int s, found; u_char bus_state; char channel; s = splbio(); if (!(scb->flags & SCB_ACTIVE)) { /* Previous timeout took care of me already */ splx(s); return; } ahc = (struct ahc_data *)scb->xs->sc_link->adapter_softc; if (ahc->in_timeout) { /* * Some other SCB has started a recovery operation * and is still working on cleaning things up. */ if (scb->flags & SCB_TIMEDOUT) { /* * This SCB has been here before and is not the * recovery SCB. Cut our losses and panic. Its * better to do this than trash a filesystem. */ panic("%s: Timed-out command times out " "again\n", ahc_name(ahc)); } else if (!(scb->flags & SCB_ABORTED)) { /* * This is not the SCB that started this timeout * processing. Give this scb another lifetime so * that it can continue once we deal with the * timeout. */ scb->flags |= SCB_TIMEDOUT; timeout(ahc_timeout, (caddr_t)scb, (scb->xs->timeout * hz) / 1000); splx(s); return; } } ahc->in_timeout = TRUE; /* * Ensure that the card doesn't do anything * behind our back. */ pause_sequencer(ahc); sc_print_addr(scb->xs->sc_link); printf("timed out "); /* * Take a snapshot of the bus state and print out * some information so we can track down driver bugs. */ bus_state = AHC_INB(ahc, LASTPHASE); switch(bus_state & PHASE_MASK) { case P_DATAOUT: printf("in dataout phase"); break; case P_DATAIN: printf("in datain phase"); break; case P_COMMAND: printf("in command phase"); break; case P_MESGOUT: printf("in message out phase"); break; case P_STATUS: printf("in status phase"); break; case P_MESGIN: printf("in message in phase"); break; default: printf("while idle, LASTPHASE == 0x%x", bus_state); /* * We aren't in a valid phase, so assume we're * idle. */ bus_state = 0; break; } printf(", SCSISIGI == 0x%x\n", AHC_INB(ahc, SCSISIGI)); /* Decide our course of action */ if(scb->flags & SCB_ABORTED) { /* * Been down this road before. * Do a full bus reset. */ char channel = (scb->tcl & SELBUSB) ? 'B': 'A'; found = ahc_reset_channel(ahc, channel, scb->tag, XS_TIMEOUT, /*Initiate Reset*/TRUE); printf("%s: Issued Channel %c Bus Reset #1. " "%d SCBs aborted\n", ahc_name(ahc), channel, found); ahc->in_timeout = FALSE; } else if(scb->control & TAG_ENB) { /* * We could be starving this command * try sending an ordered tag command * to the target we come from. */ scb->flags |= SCB_ABORTED|SCB_SENTORDEREDTAG; ahc->orderedtag |= 0xFF; timeout(ahc_timeout, (caddr_t)scb, (5 * hz)); unpause_sequencer(ahc, /*unpause_always*/FALSE); printf("Ordered Tag queued\n"); goto done; } else { /* * Send a Bus Device Reset Message: * The target that is holding up the bus may not * be the same as the one that triggered this timeout * (different commands have different timeout lengths). * It is also impossible to get a message to a target * if we are in a "frozen" data transfer phase. Our * strategy here is to queue a bus device reset message * to the timed out target if it is disconnected. * Otherwise, if we have an active target we stuff the * message buffer with a bus device reset message and * assert ATN in the hopes that the target will let go * of the bus and finally disconnect. If this fails, * we'll get another timeout 2 seconds later which will * cause a bus reset. * * XXX If the SCB is paged out, we simply reset the * bus. We should probably queue a new command * instead. */ /* Test to see if scb is disconnected */ if( !(scb->flags & SCB_PAGED_OUT ) ){ u_char active_scb; struct scb *active_scbp; active_scb = AHC_INB(ahc, SCBPTR); active_scbp = ahc->scbarray[AHC_INB(ahc, SCB_TAG)]; AHC_OUTB(ahc, SCBPTR, scb->position); if(AHC_INB(ahc, SCB_CONTROL) & DISCONNECTED) { if(ahc->flags & AHC_PAGESCBS) { /* * Pull this SCB out of the * disconnected list. */ u_char prev = AHC_INB(ahc, SCB_PREV); u_char next = AHC_INB(ahc, SCB_NEXT); if(prev == SCB_LIST_NULL) { /* At the head */ AHC_OUTB(ahc, DISCONNECTED_SCBH, next ); } else { AHC_OUTB(ahc, SCBPTR, prev); AHC_OUTB(ahc, SCB_NEXT, next); if(next != SCB_LIST_NULL) { AHC_OUTB(ahc, SCBPTR, next); AHC_OUTB(ahc, SCB_PREV, prev); } AHC_OUTB(ahc, SCBPTR, scb->position); } } scb->flags |= SCB_DEVICE_RESET|SCB_ABORTED; scb->control &= DISCENB; scb->control |= MK_MESSAGE; scb->cmdlen = 0; scb->SG_segment_count = 0; scb->SG_list_pointer = 0; scb->data = 0; scb->datalen = 0; ahc_send_scb(ahc, scb); ahc_add_waiting_scb(ahc, scb); timeout(ahc_timeout, (caddr_t)scb, (2 * hz)); sc_print_addr(scb->xs->sc_link); printf("BUS DEVICE RESET message queued.\n"); AHC_OUTB(ahc, SCBPTR, active_scb); unpause_sequencer(ahc, /*unpause_always*/FALSE); goto done; } /* Is the active SCB really active? */ else if((active_scbp->flags & SCB_ACTIVE) && bus_state){ AHC_OUTB(ahc, MSG_LEN, 1); AHC_OUTB(ahc, MSG0, MSG_BUS_DEV_RESET); AHC_OUTB(ahc, SCSISIGO, bus_state|ATNO); sc_print_addr(active_scbp->xs->sc_link); printf("asserted ATN - device reset in " "message buffer\n"); active_scbp->flags |= SCB_DEVICE_RESET | SCB_ABORTED; if(active_scbp != scb) { untimeout(ahc_timeout, (caddr_t)active_scbp); /* Give scb a new lease on life */ timeout(ahc_timeout, (caddr_t)scb, (scb->xs->timeout * hz) / 1000); } timeout(ahc_timeout, (caddr_t)active_scbp, (2 * hz)); AHC_OUTB(ahc, SCBPTR, active_scb); unpause_sequencer(ahc, /*unpause_always*/FALSE); goto done; } } /* * No active target or a paged out SCB. * Try resetting the bus. */ channel = (scb->tcl & SELBUSB) ? 'B': 'A'; found = ahc_reset_channel(ahc, channel, scb->tag, XS_TIMEOUT, /*Initiate Reset*/TRUE); printf("%s: Issued Channel %c Bus Reset #2. " "%d SCBs aborted\n", ahc_name(ahc), channel, found); ahc->in_timeout = FALSE; } done: splx(s); } /* * The device at the given target/channel has been reset. Abort * all active and queued scbs for that target/channel. */ static int ahc_reset_device(ahc, target, channel, timedout_scb, xs_error) struct ahc_data *ahc; int target; char channel; u_char timedout_scb; u_int32_t xs_error; { struct scb *scbp; u_char active_scb; int i = 0; int found = 0; /* restore this when we're done */ active_scb = AHC_INB(ahc, SCBPTR); /* * Search the QINFIFO. */ { u_char saved_queue[AHC_SCB_MAX]; u_char queued = AHC_INB(ahc, QINCNT) & ahc->qcntmask; for (i = 0; i < (queued - found); i++) { saved_queue[i] = AHC_INB(ahc, QINFIFO); AHC_OUTB(ahc, SCBPTR, saved_queue[i]); scbp = ahc->scbarray[AHC_INB(ahc, SCB_TAG)]; if (ahc_match_scb (scbp, target, channel)){ /* * We found an scb that needs to be aborted. */ scbp->flags = SCB_ABORTED|SCB_QUEUED_FOR_DONE; scbp->xs->error |= xs_error; if(scbp->position != timedout_scb) untimeout(ahc_timeout, (caddr_t)scbp); AHC_OUTB(ahc, SCB_CONTROL, 0); i--; found++; } } /* Now put the saved scbs back. */ for (queued = 0; queued < i; queued++) { AHC_OUTB(ahc, QINFIFO, saved_queue[queued]); } } /* * Search waiting for selection list. */ { u_char next, prev; next = AHC_INB(ahc, WAITING_SCBH); /* Start at head of list. */ prev = SCB_LIST_NULL; while (next != SCB_LIST_NULL) { AHC_OUTB(ahc, SCBPTR, next); scbp = ahc->scbarray[AHC_INB(ahc, SCB_TAG)]; /* * Select the SCB. */ if (ahc_match_scb(scbp, target, channel)) { next = ahc_abort_wscb(ahc, scbp, prev, timedout_scb, xs_error); found++; } else { prev = next; next = AHC_INB(ahc, SCB_NEXT); } } } /* * Go through the entire SCB array now and look for * commands for this target that are active. These * are other (most likely tagged) commands that * were disconnected when the reset occured. */ for(i = 0; i < ahc->numscbs; i++) { scbp = ahc->scbarray[i]; if((scbp->flags & SCB_ACTIVE) && ahc_match_scb(scbp, target, channel)) { /* Ensure the target is "free" */ ahc_unbusy_target(ahc, target, channel); if( !(scbp->flags & SCB_PAGED_OUT) ) { AHC_OUTB(ahc, SCBPTR, scbp->position); AHC_OUTB(ahc, SCB_CONTROL, 0); } scbp->flags = SCB_ABORTED|SCB_QUEUED_FOR_DONE; scbp->xs->error |= xs_error; if(scbp->tag != timedout_scb) untimeout(ahc_timeout, (caddr_t)scbp); found++; } } AHC_OUTB(ahc, SCBPTR, active_scb); return found; } /* * Manipulate the waiting for selection list and return the * scb that follows the one that we remove. */ static u_char ahc_abort_wscb (ahc, scbp, prev, timedout_scb, xs_error) struct ahc_data *ahc; struct scb *scbp; u_char prev; u_char timedout_scb; u_int32_t xs_error; { u_char curscbp, next; int target = ((scbp->tcl >> 4) & 0x0f); char channel = (scbp->tcl & SELBUSB) ? 'B' : 'A'; /* * Select the SCB we want to abort and * pull the next pointer out of it. */ curscbp = AHC_INB(ahc, SCBPTR); AHC_OUTB(ahc, SCBPTR, scbp->position); next = AHC_INB(ahc, SCB_NEXT); /* Clear the necessary fields */ AHC_OUTB(ahc, SCB_CONTROL, 0); AHC_OUTB(ahc, SCB_NEXT, SCB_LIST_NULL); ahc_unbusy_target(ahc, target, channel); /* update the waiting list */ if( prev == SCB_LIST_NULL ) /* First in the list */ AHC_OUTB(ahc, WAITING_SCBH, next); else { /* * Select the scb that pointed to us * and update its next pointer. */ AHC_OUTB(ahc, SCBPTR, prev); AHC_OUTB(ahc, SCB_NEXT, next); } /* * Point us back at the original scb position * and inform the SCSI system that the command * has been aborted. */ AHC_OUTB(ahc, SCBPTR, curscbp); scbp->flags = SCB_ABORTED|SCB_QUEUED_FOR_DONE; scbp->xs->error |= xs_error; if(scbp->tag != timedout_scb) untimeout(ahc_timeout, (caddr_t)scbp); return next; } static void ahc_busy_target(ahc, target, channel) struct ahc_data *ahc; u_char target; char channel; { u_char active; u_long active_port = ACTIVE_A; if(target > 0x07 || channel == 'B') { /* * targets on the Second channel or * above id 7 store info in byte two * of HA_ACTIVE */ active_port++; } active = AHC_INB(ahc, active_port); active |= (0x01 << (target & 0x07)); AHC_OUTB(ahc, active_port, active); } static void ahc_unbusy_target(ahc, target, channel) struct ahc_data *ahc; u_char target; char channel; { u_char active; u_long active_port = ACTIVE_A; if(target > 0x07 || channel == 'B') { /* * targets on the Second channel or * above id 7 store info in byte two * of HA_ACTIVE */ active_port++; } active = AHC_INB(ahc, active_port); active &= ~(0x01 << (target & 0x07)); AHC_OUTB(ahc, active_port, active); } static void ahc_reset_current_bus(ahc) struct ahc_data *ahc; { AHC_OUTB(ahc, SCSISEQ, SCSIRSTO); DELAY(1000); AHC_OUTB(ahc, SCSISEQ, 0); } static int ahc_reset_channel(ahc, channel, timedout_scb, xs_error, initiate_reset) struct ahc_data *ahc; char channel; u_char timedout_scb; u_int32_t xs_error; u_char initiate_reset; { u_char sblkctl; char cur_channel; u_long offset, offset_max; int found; /* * Clean up all the state information for the * pending transactions on this bus. */ found = ahc_reset_device(ahc, ALL_TARGETS, channel, timedout_scb, xs_error); if(channel == 'B'){ ahc->needsdtr |= (ahc->needsdtr_orig & 0xff00); ahc->sdtrpending &= 0x00ff; AHC_OUTB(ahc, ACTIVE_B, 0); offset = TARG_SCRATCH + 8; offset_max = TARG_SCRATCH + 16; } else if (ahc->type & AHC_WIDE){ ahc->needsdtr = ahc->needsdtr_orig; ahc->needwdtr = ahc->needwdtr_orig; ahc->sdtrpending = 0; ahc->wdtrpending = 0; AHC_OUTB(ahc, ACTIVE_A, 0); AHC_OUTB(ahc, ACTIVE_B, 0); offset = TARG_SCRATCH; offset_max = TARG_SCRATCH + 16; } else{ ahc->needsdtr |= (ahc->needsdtr_orig & 0x00ff); ahc->sdtrpending &= 0xff00; AHC_OUTB(ahc, ACTIVE_A, 0); offset = TARG_SCRATCH; offset_max = TARG_SCRATCH + 8; } for(;offset < offset_max;offset++) { /* * Revert to async/narrow transfers * until we renegotiate. */ u_char targ_scratch; targ_scratch = AHC_INB(ahc, offset); targ_scratch &= SXFR; AHC_OUTB(ahc, offset, targ_scratch); } /* * Reset the bus if we are initiating this reset and * restart/unpause the sequencer */ /* Case 1: Command for another bus is active */ sblkctl = AHC_INB(ahc, SBLKCTL); cur_channel = (sblkctl & SELBUSB) ? 'B' : 'A'; if(cur_channel != channel) { /* * Stealthily reset the other bus * without upsetting the current bus */ AHC_OUTB(ahc, SBLKCTL, sblkctl ^ SELBUSB); if( initiate_reset ) { ahc_reset_current_bus(ahc); } AHC_OUTB(ahc, CLRSINT1, CLRSCSIRSTI|CLRSELTIMEO); AHC_OUTB(ahc, CLRINT, CLRSCSIINT); AHC_OUTB(ahc, SBLKCTL, sblkctl); unpause_sequencer(ahc, /*unpause_always*/TRUE); } /* Case 2: A command from this bus is active or we're idle */ else { if( initiate_reset ) { ahc_reset_current_bus(ahc); } AHC_OUTB(ahc, CLRSINT1, CLRSCSIRSTI|CLRSELTIMEO); AHC_OUTB(ahc, CLRINT, CLRSCSIINT); restart_sequencer(ahc); } ahc_run_done_queue(ahc); return found; } void ahc_run_done_queue(ahc) struct ahc_data *ahc; { int i; struct scb *scbp; for(i = 0; i < ahc->numscbs; i++) { scbp = ahc->scbarray[i]; if(scbp->flags & SCB_QUEUED_FOR_DONE) ahc_done(ahc, scbp); } } static int ahc_match_scb (scb, target, channel) struct scb *scb; int target; char channel; { int targ = (scb->tcl >> 4) & 0x0f; char chan = (scb->tcl & SELBUSB) ? 'B' : 'A'; if (target == ALL_TARGETS) return (chan == channel); else return ((chan == channel) && (targ == target)); } static void ahc_construct_sdtr(ahc, start_byte, period, offset) struct ahc_data *ahc; int start_byte; u_int8_t period; u_int8_t offset; { AHC_OUTB(ahc, MSG0 + start_byte, MSG_EXTENDED); AHC_OUTB(ahc, MSG1 + start_byte, MSG_EXT_SDTR_LEN); AHC_OUTB(ahc, MSG2 + start_byte, MSG_EXT_SDTR); AHC_OUTB(ahc, MSG3 + start_byte, period); AHC_OUTB(ahc, MSG4 + start_byte, offset); AHC_OUTB(ahc, MSG_LEN, start_byte + 5); } static void ahc_construct_wdtr(ahc, start_byte, bus_width) struct ahc_data *ahc; int start_byte; u_int8_t bus_width; { AHC_OUTB(ahc, MSG0 + start_byte, MSG_EXTENDED); AHC_OUTB(ahc, MSG1 + start_byte, MSG_EXT_WDTR_LEN); AHC_OUTB(ahc, MSG2 + start_byte, MSG_EXT_WDTR); AHC_OUTB(ahc, MSG3 + start_byte, bus_width); AHC_OUTB(ahc, MSG_LEN, start_byte + 4); }