/* $OpenBSD: am7930.c,v 1.6 2015/05/11 06:46:21 ratchov Exp $ */ /* $NetBSD: am7930.c,v 1.44 2001/11/13 13:14:34 lukem Exp $ */ /* * Copyright (c) 1995 Rolf Grossmann * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Rolf Grossmann. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Front-end attachment independent layer for AMD 79c30 * audio driver. No ISDN support. */ #include #include #include #include #include #include #include #include #include #include #ifdef AUDIO_DEBUG int am7930debug = 0; #define DPRINTF(x) if (am7930debug) printf x #else #define DPRINTF(x) #endif /* The following tables stolen from former (4.4Lite's) sys/sparc/bsd_audio.c */ /* * gx, gr & stg gains. this table must contain 256 elements with * the 0th being "infinity" (the magic value 9008). The remaining * elements match sun's gain curve (but with higher resolution): * -18 to 0dB in .16dB steps then 0 to 12dB in .08dB steps. */ static const uint16_t gx_coeff[256] = { 0x9008, 0x8e7c, 0x8e51, 0x8e45, 0x8d42, 0x8d3b, 0x8c36, 0x8c33, 0x8b32, 0x8b2a, 0x8b2b, 0x8b2c, 0x8b25, 0x8b23, 0x8b22, 0x8b22, 0x9122, 0x8b1a, 0x8aa3, 0x8aa3, 0x8b1c, 0x8aa6, 0x912d, 0x912b, 0x8aab, 0x8b12, 0x8aaa, 0x8ab2, 0x9132, 0x8ab4, 0x913c, 0x8abb, 0x9142, 0x9144, 0x9151, 0x8ad5, 0x8aeb, 0x8a79, 0x8a5a, 0x8a4a, 0x8b03, 0x91c2, 0x91bb, 0x8a3f, 0x8a33, 0x91b2, 0x9212, 0x9213, 0x8a2c, 0x921d, 0x8a23, 0x921a, 0x9222, 0x9223, 0x922d, 0x9231, 0x9234, 0x9242, 0x925b, 0x92dd, 0x92c1, 0x92b3, 0x92ab, 0x92a4, 0x92a2, 0x932b, 0x9341, 0x93d3, 0x93b2, 0x93a2, 0x943c, 0x94b2, 0x953a, 0x9653, 0x9782, 0x9e21, 0x9d23, 0x9cd2, 0x9c23, 0x9baa, 0x9bde, 0x9b33, 0x9b22, 0x9b1d, 0x9ab2, 0xa142, 0xa1e5, 0x9a3b, 0xa213, 0xa1a2, 0xa231, 0xa2eb, 0xa313, 0xa334, 0xa421, 0xa54b, 0xada4, 0xac23, 0xab3b, 0xaaab, 0xaa5c, 0xb1a3, 0xb2ca, 0xb3bd, 0xbe24, 0xbb2b, 0xba33, 0xc32b, 0xcb5a, 0xd2a2, 0xe31d, 0x0808, 0x72ba, 0x62c2, 0x5c32, 0x52db, 0x513e, 0x4cce, 0x43b2, 0x4243, 0x41b4, 0x3b12, 0x3bc3, 0x3df2, 0x34bd, 0x3334, 0x32c2, 0x3224, 0x31aa, 0x2a7b, 0x2aaa, 0x2b23, 0x2bba, 0x2c42, 0x2e23, 0x25bb, 0x242b, 0x240f, 0x231a, 0x22bb, 0x2241, 0x2223, 0x221f, 0x1a33, 0x1a4a, 0x1acd, 0x2132, 0x1b1b, 0x1b2c, 0x1b62, 0x1c12, 0x1c32, 0x1d1b, 0x1e71, 0x16b1, 0x1522, 0x1434, 0x1412, 0x1352, 0x1323, 0x1315, 0x12bc, 0x127a, 0x1235, 0x1226, 0x11a2, 0x1216, 0x0a2a, 0x11bc, 0x11d1, 0x1163, 0x0ac2, 0x0ab2, 0x0aab, 0x0b1b, 0x0b23, 0x0b33, 0x0c0f, 0x0bb3, 0x0c1b, 0x0c3e, 0x0cb1, 0x0d4c, 0x0ec1, 0x079a, 0x0614, 0x0521, 0x047c, 0x0422, 0x03b1, 0x03e3, 0x0333, 0x0322, 0x031c, 0x02aa, 0x02ba, 0x02f2, 0x0242, 0x0232, 0x0227, 0x0222, 0x021b, 0x01ad, 0x0212, 0x01b2, 0x01bb, 0x01cb, 0x01f6, 0x0152, 0x013a, 0x0133, 0x0131, 0x012c, 0x0123, 0x0122, 0x00a2, 0x011b, 0x011e, 0x0114, 0x00b1, 0x00aa, 0x00b3, 0x00bd, 0x00ba, 0x00c5, 0x00d3, 0x00f3, 0x0062, 0x0051, 0x0042, 0x003b, 0x0033, 0x0032, 0x002a, 0x002c, 0x0025, 0x0023, 0x0022, 0x001a, 0x0021, 0x001b, 0x001b, 0x001d, 0x0015, 0x0013, 0x0013, 0x0012, 0x0012, 0x000a, 0x000a, 0x0011, 0x0011, 0x000b, 0x000b, 0x000c, 0x000e, }; /* * second stage play gain. */ static const uint16_t ger_coeff[] = { 0x431f, /* 5. dB */ 0x331f, /* 5.5 dB */ 0x40dd, /* 6. dB */ 0x11dd, /* 6.5 dB */ 0x440f, /* 7. dB */ 0x411f, /* 7.5 dB */ 0x311f, /* 8. dB */ 0x5520, /* 8.5 dB */ 0x10dd, /* 9. dB */ 0x4211, /* 9.5 dB */ 0x410f, /* 10. dB */ 0x111f, /* 10.5 dB */ 0x600b, /* 11. dB */ 0x00dd, /* 11.5 dB */ 0x4210, /* 12. dB */ 0x110f, /* 13. dB */ 0x7200, /* 14. dB */ 0x2110, /* 15. dB */ 0x2200, /* 15.9 dB */ 0x000b, /* 16.9 dB */ 0x000f /* 18. dB */ #define NGER (sizeof(ger_coeff) / sizeof(ger_coeff[0])) }; /* * Reset chip and set boot-time softc defaults. */ void am7930_init(struct am7930_softc *sc, int flag) { DPRINTF(("am7930_init()\n")); /* set boot defaults */ sc->sc_rlevel = 128; sc->sc_plevel = 128; sc->sc_mlevel = 0; sc->sc_out_port = AUDIOAMD_SPEAKER_VOL; sc->sc_mic_mute = 0; /* disable sample interrupts */ AM7930_IWRITE(sc, AM7930_IREG_MUX_MCR4, 0); /* initialise voice and data, and disable interrupts */ AM7930_IWRITE(sc, AM7930_IREG_INIT, AM7930_INIT_PMS_ACTIVE | AM7930_INIT_INT_DISABLE); if (flag == AUDIOAMD_DMA_MODE) { /* configure PP for serial (SBP) mode */ AM7930_IWRITE(sc, AM7930_IREG_PP_PPCR1, AM7930_PPCR1_SBP); /* * Initialise the MUX unit - route the MAP to the PP */ AM7930_IWRITE(sc, AM7930_IREG_MUX_MCR1, (AM7930_MCRCHAN_BA << 4) | AM7930_MCRCHAN_BD); AM7930_IWRITE(sc, AM7930_IREG_MUX_MCR2, AM7930_MCRCHAN_NC); AM7930_IWRITE(sc, AM7930_IREG_MUX_MCR3, AM7930_MCRCHAN_NC); } else { /* * Initialize the MUX unit. We use MCR3 to route the MAP * through channel Bb. MCR1 and MCR2 are unused. * Setting the INT enable bit in MCR4 will generate an * interrupt on each converted audio sample. */ AM7930_IWRITE(sc, AM7930_IREG_MUX_MCR1, 0); AM7930_IWRITE(sc, AM7930_IREG_MUX_MCR2, 0); AM7930_IWRITE(sc, AM7930_IREG_MUX_MCR3, (AM7930_MCRCHAN_BB << 4) | AM7930_MCRCHAN_BA); AM7930_IWRITE(sc, AM7930_IREG_MUX_MCR4, AM7930_MCR4_INT_ENABLE); } } int am7930_open(void *addr, int flags) { struct am7930_softc *sc = addr; DPRINTF(("sa_open: unit %p\n", sc)); if (sc->sc_open) return EBUSY; sc->sc_open = 1; sc->sc_locked = 0; sc->sc_glue->onopen(sc); DPRINTF(("saopen: ok -> sc=%p\n",sc)); return 0; } void am7930_close(void *addr) { struct am7930_softc *sc = addr; DPRINTF(("sa_close: sc=%p\n", sc)); sc->sc_glue->onclose(sc); sc->sc_open = 0; DPRINTF(("sa_close: closed.\n")); } int am7930_set_params(void *addr, int setmode, int usemode, struct audio_params *play, struct audio_params *rec) { struct am7930_softc *sc = addr; struct audio_params *p; int mode; for (mode = AUMODE_RECORD; mode != -1; mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { if ((setmode & mode) == 0) continue; p = mode == AUMODE_PLAY ? play : rec; if (p == NULL) continue; p->encoding = AUDIO_ENCODING_ULAW; p->precision = sc->sc_glue->precision; p->bps = AUDIO_BPS(p->precision); p->msb = 0; p->channels = 1; /* no other rates supported by amd chip */ p->sample_rate = 8000; } return 0; } int am7930_query_encoding(void *addr, struct audio_encoding *fp) { struct am7930_softc *sc = addr; switch (fp->index) { case 0: strlcpy(fp->name, AudioEmulaw, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ULAW; fp->precision = sc->sc_glue->precision; fp->bps = AUDIO_BPS(fp->precision); fp->msb = 0; fp->flags = 0; break; default: return EINVAL; /*NOTREACHED*/ } return 0; } int am7930_round_blocksize(void *addr, int blk) { return blk; } int am7930_commit_settings(void *addr) { struct am7930_softc *sc = addr; uint16_t ger, gr, gx, stgr; uint8_t mmr2, mmr3; int level; DPRINTF(("sa_commit.\n")); gx = gx_coeff[sc->sc_rlevel]; stgr = gx_coeff[sc->sc_mlevel]; level = (sc->sc_plevel * (256 + NGER)) >> 8; if (level >= 256) { ger = ger_coeff[level - 256]; gr = gx_coeff[255]; } else { ger = ger_coeff[0]; gr = gx_coeff[level]; } /* XXX: this is called before DMA is setup, useful ? */ mtx_enter(&audio_lock); mmr2 = AM7930_IREAD(sc, AM7930_IREG_MAP_MMR2); if (sc->sc_out_port == AUDIOAMD_SPEAKER_VOL) mmr2 |= AM7930_MMR2_LS; else mmr2 &= ~AM7930_MMR2_LS; AM7930_IWRITE(sc, AM7930_IREG_MAP_MMR2, mmr2); mmr3 = AM7930_IREAD(sc, AM7930_IREG_MAP_MMR3); if (sc->sc_mic_mute) mmr3 |= AM7930_MMR3_MUTE; else mmr3 &= ~AM7930_MMR3_MUTE; AM7930_IWRITE(sc, AM7930_IREG_MAP_MMR3, mmr3); AM7930_IWRITE(sc, AM7930_IREG_MAP_MMR1, AM7930_MMR1_GX | AM7930_MMR1_GER | AM7930_MMR1_GR | AM7930_MMR1_STG); AM7930_IWRITE16(sc, AM7930_IREG_MAP_GX, gx); AM7930_IWRITE16(sc, AM7930_IREG_MAP_STG, stgr); AM7930_IWRITE16(sc, AM7930_IREG_MAP_GR, gr); AM7930_IWRITE16(sc, AM7930_IREG_MAP_GER, ger); mtx_leave(&audio_lock); return 0; } int am7930_halt_output(void *addr) { struct am7930_softc *sc = addr; /* XXX only halt, if input is also halted ?? */ AM7930_IWRITE(sc, AM7930_IREG_INIT, AM7930_INIT_PMS_ACTIVE | AM7930_INIT_INT_DISABLE); sc->sc_locked = 0; return 0; } int am7930_halt_input(void *addr) { struct am7930_softc *sc = addr; /* XXX only halt, if output is also halted ?? */ AM7930_IWRITE(sc, AM7930_IREG_INIT, AM7930_INIT_PMS_ACTIVE | AM7930_INIT_INT_DISABLE); sc->sc_locked = 0; return 0; } /* * XXX chip is full-duplex, but really attach-dependent. * For now we know of no half-duplex attachments. */ int am7930_get_props(void *addr) { return AUDIO_PROP_FULLDUPLEX; } /* * Attach-dependent channel set/query */ int am7930_set_port(void *addr, mixer_ctrl_t *cp) { struct am7930_softc *sc = addr; DPRINTF(("am7930_set_port: port=%d", cp->dev)); if (cp->dev == AUDIOAMD_RECORD_SOURCE || cp->dev == AUDIOAMD_MONITOR_OUTPUT || cp->dev == AUDIOAMD_MIC_MUTE) { if (cp->type != AUDIO_MIXER_ENUM) return EINVAL; } else if (cp->type != AUDIO_MIXER_VALUE || cp->un.value.num_channels != 1) { return EINVAL; } switch(cp->dev) { case AUDIOAMD_MIC_VOL: sc->sc_rlevel = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]; break; case AUDIOAMD_SPEAKER_VOL: case AUDIOAMD_HEADPHONES_VOL: sc->sc_plevel = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]; break; case AUDIOAMD_MONITOR_VOL: sc->sc_mlevel = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]; break; case AUDIOAMD_RECORD_SOURCE: if (cp->un.ord != AUDIOAMD_MIC_VOL) return EINVAL; break; case AUDIOAMD_MIC_MUTE: sc->sc_mic_mute = cp->un.ord; break; case AUDIOAMD_MONITOR_OUTPUT: if (cp->un.ord != AUDIOAMD_SPEAKER_VOL && cp->un.ord != AUDIOAMD_HEADPHONES_VOL) return EINVAL; sc->sc_out_port = cp->un.ord; break; default: return EINVAL; /* NOTREACHED */ } return 0; } int am7930_get_port(void *addr, mixer_ctrl_t *cp) { struct am7930_softc *sc = addr; DPRINTF(("am7930_get_port: port=%d\n", cp->dev)); if (cp->dev == AUDIOAMD_RECORD_SOURCE || cp->dev == AUDIOAMD_MONITOR_OUTPUT || cp->dev == AUDIOAMD_MIC_MUTE) { if (cp->type != AUDIO_MIXER_ENUM) return EINVAL; } else if (cp->type != AUDIO_MIXER_VALUE || cp->un.value.num_channels != 1) { return EINVAL; } switch(cp->dev) { case AUDIOAMD_MIC_VOL: cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_rlevel; break; case AUDIOAMD_SPEAKER_VOL: case AUDIOAMD_HEADPHONES_VOL: cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_plevel; break; case AUDIOAMD_MONITOR_VOL: cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_mlevel; break; case AUDIOAMD_RECORD_SOURCE: cp->un.ord = AUDIOAMD_MIC_VOL; break; case AUDIOAMD_MIC_MUTE: cp->un.ord = sc->sc_mic_mute; break; case AUDIOAMD_MONITOR_OUTPUT: cp->un.ord = sc->sc_out_port; break; default: return EINVAL; /* NOTREACHED */ } return 0; } /* * Define mixer control facilities. */ int am7930_query_devinfo(void *addr, mixer_devinfo_t *dip) { DPRINTF(("am7930_query_devinfo()\n")); switch(dip->index) { case AUDIOAMD_MIC_VOL: dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = AUDIOAMD_INPUT_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = AUDIOAMD_MIC_MUTE; strlcpy(dip->label.name, AudioNmicrophone, sizeof dip->label.name); dip->un.v.num_channels = 1; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); break; case AUDIOAMD_SPEAKER_VOL: dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = AUDIOAMD_OUTPUT_CLASS; dip->prev = dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNspeaker, sizeof dip->label.name); dip->un.v.num_channels = 1; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); break; case AUDIOAMD_HEADPHONES_VOL: dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = AUDIOAMD_OUTPUT_CLASS; dip->prev = dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNheadphone, sizeof dip->label.name); dip->un.v.num_channels = 1; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); break; case AUDIOAMD_MONITOR_VOL: dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = AUDIOAMD_MONITOR_CLASS; dip->prev = dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNmonitor, sizeof dip->label.name); dip->un.v.num_channels = 1; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); break; case AUDIOAMD_RECORD_SOURCE: dip->type = AUDIO_MIXER_ENUM; dip->mixer_class = AUDIOAMD_RECORD_CLASS; dip->prev = dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNsource, sizeof dip->label.name); dip->un.e.num_mem = 1; strlcpy(dip->un.e.member[0].label.name, AudioNmicrophone, sizeof dip->un.e.member[0].label.name); dip->un.e.member[0].ord = AUDIOAMD_MIC_VOL; break; case AUDIOAMD_MONITOR_OUTPUT: dip->type = AUDIO_MIXER_ENUM; dip->mixer_class = AUDIOAMD_MONITOR_CLASS; dip->prev = dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNoutput, sizeof dip->label.name); dip->un.e.num_mem = 2; strlcpy(dip->un.e.member[0].label.name, AudioNspeaker, sizeof dip->un.e.member[0].label.name); dip->un.e.member[0].ord = AUDIOAMD_SPEAKER_VOL; strlcpy(dip->un.e.member[1].label.name, AudioNheadphone, sizeof dip->un.e.member[1].label.name); dip->un.e.member[1].ord = AUDIOAMD_HEADPHONES_VOL; break; case AUDIOAMD_MIC_MUTE: dip->type = AUDIO_MIXER_ENUM; dip->mixer_class = AUDIOAMD_INPUT_CLASS; dip->prev = AUDIOAMD_MIC_VOL; dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNmute, sizeof dip->label.name); dip->un.e.num_mem = 2; strlcpy(dip->un.e.member[0].label.name, AudioNoff, sizeof dip->un.e.member[0].label.name); dip->un.e.member[0].ord = 0; strlcpy(dip->un.e.member[1].label.name, AudioNon, sizeof dip->un.e.member[1].label.name); dip->un.e.member[1].ord = 1; break; case AUDIOAMD_INPUT_CLASS: dip->type = AUDIO_MIXER_CLASS; dip->mixer_class = AUDIOAMD_INPUT_CLASS; dip->prev = dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioCinputs, sizeof dip->label.name); break; case AUDIOAMD_OUTPUT_CLASS: dip->type = AUDIO_MIXER_CLASS; dip->mixer_class = AUDIOAMD_OUTPUT_CLASS; dip->prev = dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioCoutputs, sizeof dip->label.name); break; case AUDIOAMD_RECORD_CLASS: dip->type = AUDIO_MIXER_CLASS; dip->mixer_class = AUDIOAMD_RECORD_CLASS; dip->prev = dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioCrecord, sizeof dip->label.name); break; case AUDIOAMD_MONITOR_CLASS: dip->type = AUDIO_MIXER_CLASS; dip->mixer_class = AUDIOAMD_MONITOR_CLASS; dip->prev = dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioCmonitor, sizeof dip->label.name); break; default: return ENXIO; /*NOTREACHED*/ } DPRINTF(("AUDIO_MIXER_DEVINFO: name=%s\n", dip->label.name)); return 0; }