/*	$OpenBSD: an.c,v 1.73 2018/02/19 08:59:52 mpi Exp $	*/
/*	$NetBSD: an.c,v 1.34 2005/06/20 02:49:18 atatat Exp $	*/
/*
 * Copyright (c) 1997, 1998, 1999
 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by Bill Paul.
 * 4. Neither the name of the author nor the names of any co-contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 *
 * $FreeBSD: src/sys/dev/an/if_an.c,v 1.12 2000/11/13 23:04:12 wpaul Exp $
 */
/*
 * Copyright (c) 2004, 2005 David Young.  All rights reserved.
 * Copyright (c) 2004, 2005 OJC Technologies.  All rights reserved.
 * Copyright (c) 2004, 2005 Dayton Data Center Services, LLC.  All
 *     rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the author nor the names of any co-contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY David Young AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL David Young AND CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * Aironet 4500/4800 802.11 PCMCIA/ISA/PCI driver for FreeBSD.
 *
 * Written by Bill Paul <wpaul@ctr.columbia.edu>
 * Electrical Engineering Department
 * Columbia University, New York City
 */

/*
 * Ported to NetBSD from FreeBSD by Atsushi Onoe at the San Diego
 * IETF meeting.
 */

#include "bpfilter.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/ucred.h>
#include <sys/socket.h>
#include <sys/timeout.h>
#include <sys/device.h>
#include <sys/endian.h>
#include <sys/tree.h>

#include <machine/bus.h>

#include <net/if.h>
#include <net/if_llc.h>
#include <net/if_media.h>

#include <netinet/in.h>
#include <netinet/if_ether.h>

#include <net80211/ieee80211_radiotap.h>
#include <net80211/ieee80211_var.h>

#if NBPFILTER > 0
#include <net/bpf.h>
#endif

#include <dev/ic/anreg.h>
#include <dev/ic/anvar.h>

struct cfdriver an_cd = {
	NULL, "an", DV_IFNET
};

int	an_reset(struct an_softc *);
void	an_wait(struct an_softc *);
int	an_init(struct ifnet *);
void	an_stop(struct ifnet *, int);
void	an_start(struct ifnet *);
void	an_watchdog(struct ifnet *);
int	an_ioctl(struct ifnet *, u_long, caddr_t);
int	an_media_change(struct ifnet *);
void	an_media_status(struct ifnet *, struct ifmediareq *);

int	an_set_nwkey(struct an_softc *, struct ieee80211_nwkey *);
int	an_set_nwkey_wep(struct an_softc *, struct ieee80211_nwkey *);
int	an_get_nwkey(struct an_softc *, struct ieee80211_nwkey *);
int	an_write_wepkey(struct an_softc *, int, struct an_wepkey *,
				int);

void	an_rxeof(struct an_softc *);
void	an_txeof(struct an_softc *, u_int16_t);
void	an_linkstat_intr(struct an_softc *);

int	an_cmd(struct an_softc *, int, int);
int	an_seek_bap(struct an_softc *, int, int);
int	an_read_bap(struct an_softc *, int, int, void *, int, int);
int	an_write_bap(struct an_softc *, int, int, void *, int);
int	an_mwrite_bap(struct an_softc *, int, int, struct mbuf *, int);
int	an_read_rid(struct an_softc *, int, void *, int *);
int	an_write_rid(struct an_softc *, int, void *, int);

int	an_alloc_nicmem(struct an_softc *, int, int *);

int	an_newstate(struct ieee80211com *, enum ieee80211_state, int);

#ifdef AN_DEBUG
int an_debug = 0;

#define	DPRINTF(X)	if (an_debug) printf X
#define	DPRINTF2(X)	if (an_debug > 1) printf X
#else
#define	DPRINTF(X)
#define	DPRINTF2(X)
#endif

#if BYTE_ORDER == BIG_ENDIAN
static __inline void
an_swap16(u_int16_t *p, int cnt)
{
        for (; cnt--; p++)
                *p = swap16(*p);
}
#define an_switch32(val)	(val >> 16 | (val & 0xFFFF) << 16)
#else
#define an_swap16(p, cnt)
#define an_switch32(val)	val
#endif

int
an_attach(struct an_softc *sc)
{
	struct ieee80211com *ic = &sc->sc_ic;
	struct ifnet *ifp = &ic->ic_if;
	int i;
	struct an_rid_wepkey *akey;
	int buflen, kid, rid;
	int chan, chan_min, chan_max;

	sc->sc_invalid = 0;

	/* disable interrupts */
	CSR_WRITE_2(sc, AN_INT_EN, 0);
	CSR_WRITE_2(sc, AN_EVENT_ACK, 0xffff);

//	an_wait(sc);
	if (an_reset(sc) != 0) {
		sc->sc_invalid = 1;
		return 1;
	}

	/* Load factory config */
	if (an_cmd(sc, AN_CMD_READCFG, 0) != 0) {
		printf("%s: failed to load config data\n",
		    sc->sc_dev.dv_xname);
		return (EIO);
	}

	/* Read the current configuration */
	buflen = sizeof(sc->sc_config);
	if (an_read_rid(sc, AN_RID_GENCONFIG, &sc->sc_config, &buflen) != 0) {
		printf("%s: read config failed\n", sc->sc_dev.dv_xname);
		return(EIO);
	}

	an_swap16((u_int16_t *)&sc->sc_config.an_macaddr, 3); 

	/* Read the card capabilities */
	buflen = sizeof(sc->sc_caps);
	if (an_read_rid(sc, AN_RID_CAPABILITIES, &sc->sc_caps, &buflen) != 0) {
		printf("%s: read caps failed\n", sc->sc_dev.dv_xname);
		return(EIO);
	}

	an_swap16((u_int16_t *)&sc->sc_caps.an_oemaddr, 3); 
	an_swap16((u_int16_t *)&sc->sc_caps.an_rates, 4);

	/* Read WEP settings from persistent memory */
	akey = &sc->sc_buf.sc_wepkey;
	buflen = sizeof(struct an_rid_wepkey);
	rid = AN_RID_WEP_VOLATILE;	/* first persistent key */
	while (an_read_rid(sc, rid, akey, &buflen) == 0) {
		an_swap16((u_int16_t *)&akey->an_mac_addr, 3); 
		an_swap16((u_int16_t *)&akey->an_key, 8); 
		kid = akey->an_key_index;
		DPRINTF(("an_attach: wep rid=0x%x len=%d(%d) index=0x%04x "
		    "mac[0]=%02x keylen=%d\n",
		    rid, buflen, sizeof(*akey), kid,
		    akey->an_mac_addr[0], akey->an_key_len));
		if (kid == 0xffff) {
			sc->sc_tx_perskey = akey->an_mac_addr[0];
			sc->sc_tx_key = -1;
			break;
		}
		if (kid >= IEEE80211_WEP_NKID)
			break;
		sc->sc_perskeylen[kid] = akey->an_key_len;
		sc->sc_wepkeys[kid].an_wep_keylen = -1;
		rid = AN_RID_WEP_PERSISTENT;	/* for next key */
		buflen = sizeof(struct an_rid_wepkey);
	}

	IEEE80211_ADDR_COPY(ic->ic_myaddr, sc->sc_caps.an_oemaddr);
	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);

	printf("%s: Firmware %x.%02x.%02x, Radio: ", ifp->if_xname,
	    sc->sc_caps.an_fwrev >> 8,
	    sc->sc_caps.an_fwrev & 0xff,
	    sc->sc_caps.an_fwsubrev);

	if (sc->sc_config.an_radiotype & AN_RADIOTYPE_80211_FH)
		printf("802.11 FH");
	else if (sc->sc_config.an_radiotype & AN_RADIOTYPE_80211_DS)
		printf("802.11 DS");
	else if (sc->sc_config.an_radiotype & AN_RADIOTYPE_LM2000_DS)
		printf("LM2000 DS");
	else
		printf("unknown (%x)", sc->sc_config.an_radiotype);

	printf(", address %s\n", ether_sprintf(ic->ic_myaddr));
	
	ifp->if_softc = sc;
	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
	ifp->if_ioctl = an_ioctl;
	ifp->if_start = an_start;
	ifp->if_watchdog = an_watchdog;

	ic->ic_phytype = IEEE80211_T_DS;
	ic->ic_opmode = IEEE80211_M_STA;
	ic->ic_caps = IEEE80211_C_WEP | IEEE80211_C_PMGT | IEEE80211_C_MONITOR;
#ifndef IEEE80211_STA_ONLY
	ic->ic_caps |= IEEE80211_C_IBSS;
#endif
	ic->ic_state = IEEE80211_S_INIT;
	IEEE80211_ADDR_COPY(ic->ic_myaddr, sc->sc_caps.an_oemaddr);

	switch (sc->sc_caps.an_regdomain) {
	default:
	case AN_REGDOMAIN_USA:
	case AN_REGDOMAIN_CANADA:
		chan_min = 1; chan_max = 11; break;
	case AN_REGDOMAIN_EUROPE:
	case AN_REGDOMAIN_AUSTRALIA:
		chan_min = 1; chan_max = 13; break;
	case AN_REGDOMAIN_JAPAN:
		chan_min = 14; chan_max = 14; break;
	case AN_REGDOMAIN_SPAIN:
		chan_min = 10; chan_max = 11; break;
	case AN_REGDOMAIN_FRANCE:
		chan_min = 10; chan_max = 13; break;
	case AN_REGDOMAIN_JAPANWIDE:
		chan_min = 1; chan_max = 14; break;
	}

	for (chan = chan_min; chan <= chan_max; chan++) {
		ic->ic_channels[chan].ic_freq =
		    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
		ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B;
	}
	ic->ic_ibss_chan = &ic->ic_channels[chan_min];

	/* Find supported rate */
	for (i = 0; i < sizeof(sc->sc_caps.an_rates); i++) {
		if (sc->sc_caps.an_rates[i] == 0)
			continue;
		ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[
		    ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates++] =
		    sc->sc_caps.an_rates[i];
	}

	/*
	 * Call MI attach routine.
	 */
	if_attach(ifp);
	ieee80211_ifattach(ifp);

	sc->sc_newstate = ic->ic_newstate;
	ic->ic_newstate = an_newstate;

	ieee80211_media_init(ifp, an_media_change, an_media_status);

#if NBPFILTER > 0
	bzero(&sc->sc_rxtapu, sizeof(sc->sc_rxtapu));
	sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
	sc->sc_rxtap.ar_ihdr.it_present = AN_RX_RADIOTAP_PRESENT;

	bzero(&sc->sc_txtapu, sizeof(sc->sc_txtapu));
	sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
	sc->sc_txtap.at_ihdr.it_present = AN_TX_RADIOTAP_PRESENT;

	bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
	    sizeof(struct ieee80211_frame) + 64);
#endif

	sc->sc_attached = 1;

	return(0);
}

void
an_rxeof(struct an_softc *sc)
{
	struct ieee80211com *ic = &sc->sc_ic;
	struct ifnet *ifp = &ic->ic_if;
	struct ieee80211_frame *wh;
	struct ieee80211_rxinfo rxi;
	struct ieee80211_node *ni;
	struct an_rxframe frmhdr;
	struct mbuf *m;
	u_int16_t status;
	int fid, gaplen, len, off;
	uint8_t *gap;

	fid = CSR_READ_2(sc, AN_RX_FID);

	/* First read in the frame header */
	if (an_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr), sizeof(frmhdr)) != 0) {
		CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
		ifp->if_ierrors++;
		DPRINTF(("an_rxeof: read fid %x failed\n", fid));
		return;
	}
	an_swap16((u_int16_t *)&frmhdr.an_whdr, sizeof(struct ieee80211_frame)/2);

	status = frmhdr.an_rx_status;
	if ((status & AN_STAT_ERRSTAT) != 0 &&
	    ic->ic_opmode != IEEE80211_M_MONITOR) {
		CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
		ifp->if_ierrors++;
		DPRINTF(("an_rxeof: fid %x status %x\n", fid, status));
		return;
	}

	/* the payload length field includes a 16-bit "mystery field" */
	len = frmhdr.an_rx_payload_len - sizeof(uint16_t);
	off = ALIGN(sizeof(struct ieee80211_frame));

	if (off + len > MCLBYTES) {
		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
			CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
			ifp->if_ierrors++;
			DPRINTF(("an_rxeof: oversized packet %d\n", len));
			return;
		}
		len = 0;
	}

	MGETHDR(m, M_DONTWAIT, MT_DATA);
	if (m == NULL) {
		CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
		ifp->if_ierrors++;
		DPRINTF(("an_rxeof: MGET failed\n"));
		return;
	}
	if (off + len + AN_GAPLEN_MAX > MHLEN) {
		MCLGET(m, M_DONTWAIT);
		if ((m->m_flags & M_EXT) == 0) {
			CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
			m_freem(m);
			ifp->if_ierrors++;
			DPRINTF(("an_rxeof: MCLGET failed\n"));
			return;
		}
	}
	m->m_data += off - sizeof(struct ieee80211_frame);

	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
		gaplen = frmhdr.an_gaplen;
		if (gaplen > AN_GAPLEN_MAX) {
			CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);
			m_freem(m);
			ifp->if_ierrors++;
			DPRINTF(("%s: gap too long\n", __func__));
			return;
		}
		/*
		 * We don't need the 16-bit mystery field (payload length?),
		 * so read it into the region reserved for the 802.11 header.
		 *
		 * When Cisco Aironet 350 cards w/ firmware version 5 or
		 * greater operate with certain Cisco 350 APs,
		 * the "gap" is filled with the SNAP header.  Read
		 * it in after the 802.11 header.
		 */
		gap = m->m_data + sizeof(struct ieee80211_frame) -
		    sizeof(uint16_t);
		an_read_bap(sc, fid, -1, gap, gaplen + sizeof(u_int16_t),
		    gaplen + sizeof(u_int16_t));
	} else
		gaplen = 0;

	an_read_bap(sc, fid, -1,
	    m->m_data + sizeof(struct ieee80211_frame) + gaplen, len, len);
	an_swap16((u_int16_t *)(m->m_data + sizeof(struct ieee80211_frame) + gaplen), (len+1)/2);
	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + gaplen +
	    len;

	memcpy(m->m_data, &frmhdr.an_whdr, sizeof(struct ieee80211_frame));
	CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX);

#if NBPFILTER > 0
	if (sc->sc_drvbpf) {
		struct mbuf mb;
		struct an_rx_radiotap_header *tap = &sc->sc_rxtap;

		tap->ar_rate = frmhdr.an_rx_rate;
		tap->ar_antsignal = frmhdr.an_rx_signal_strength;
		tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
		tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;


		mb.m_data = (caddr_t)tap;
		mb.m_len = sizeof(sc->sc_rxtapu);
		mb.m_next = m;
		mb.m_nextpkt = NULL;
		mb.m_type = 0;
		mb.m_flags = 0;
		bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
	}
#endif /* NBPFILTER > 0 */

	wh = mtod(m, struct ieee80211_frame *);
	rxi.rxi_flags = 0;
	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
		/*
		 * WEP is decrypted by hardware. Clear WEP bit
		 * header for ieee80211_input().
		 */
		wh->i_fc[1] &= ~IEEE80211_FC1_WEP;

		rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
	}

	ni = ieee80211_find_rxnode(ic, wh);
	rxi.rxi_rssi = frmhdr.an_rx_signal_strength;
	rxi.rxi_tstamp = an_switch32(frmhdr.an_rx_time);
	ieee80211_input(ifp, m, ni, &rxi);
	ieee80211_release_node(ic, ni);
}

void
an_txeof(struct an_softc *sc, u_int16_t status)
{
	struct ifnet *ifp = &sc->sc_ic.ic_if;
	int cur, id;

	sc->sc_tx_timer = 0;
	ifq_clr_oactive(&ifp->if_snd);

	id = CSR_READ_2(sc, AN_TX_CMP_FID);
	CSR_WRITE_2(sc, AN_EVENT_ACK, status & (AN_EV_TX | AN_EV_TX_EXC));

	if (status & AN_EV_TX_EXC)
		ifp->if_oerrors++;

	cur = sc->sc_txcur;
	if (sc->sc_txd[cur].d_fid == id) {
		sc->sc_txd[cur].d_inuse = 0;
		DPRINTF2(("an_txeof: sent %x/%d\n", id, cur));
		AN_INC(cur, AN_TX_RING_CNT);
		sc->sc_txcur = cur;
	} else {
		for (cur = 0; cur < AN_TX_RING_CNT; cur++) {
			if (id == sc->sc_txd[cur].d_fid) {
				sc->sc_txd[cur].d_inuse = 0;
				break;
			}
		}
		if (ifp->if_flags & IFF_DEBUG)
			printf("%s: tx mismatch: "
			    "expected %x(%d), actual %x(%d)\n",
			    sc->sc_dev.dv_xname,
			    sc->sc_txd[sc->sc_txcur].d_fid, sc->sc_txcur,
			    id, cur);
	}
}

int
an_intr(void *arg)
{
	struct an_softc *sc = arg;
	struct ifnet *ifp = &sc->sc_ic.ic_if;
	int i;
	u_int16_t status;

	if (!sc->sc_enabled || sc->sc_invalid ||
	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 ||
	    (ifp->if_flags & IFF_RUNNING) == 0)
		return 0;

	if ((ifp->if_flags & IFF_UP) == 0) {
		CSR_WRITE_2(sc, AN_INT_EN, 0);
		CSR_WRITE_2(sc, AN_EVENT_ACK, ~0);
		return 1;
	}

	/* maximum 10 loops per interrupt */
	for (i = 0; i < 10; i++) {
		if (!sc->sc_enabled || sc->sc_invalid)
			return 1;
		if (CSR_READ_2(sc, AN_SW0) != AN_MAGIC) {
			DPRINTF(("an_intr: magic number changed: %x\n",
			    CSR_READ_2(sc, AN_SW0)));
			sc->sc_invalid = 1;
			return 1;
		}
		status = CSR_READ_2(sc, AN_EVENT_STAT);
		CSR_WRITE_2(sc, AN_EVENT_ACK, status & ~(AN_INTRS));
		if ((status & AN_INTRS) == 0)
			break;

		if (status & AN_EV_RX)
			an_rxeof(sc);

		if (status & (AN_EV_TX | AN_EV_TX_EXC))
			an_txeof(sc, status);

		if (status & AN_EV_LINKSTAT)
			an_linkstat_intr(sc);

		if (ifq_is_oactive(&ifp->if_snd) == 0 &&
		    sc->sc_ic.ic_state == IEEE80211_S_RUN &&
		    !IFQ_IS_EMPTY(&ifp->if_snd))
			an_start(ifp);
	}

	return 1;
}

/* Must be called at proper protection level! */
int
an_cmd(struct an_softc *sc, int cmd, int val)
{
	int i, stat;

	/* make sure previous command completed */
	if (CSR_READ_2(sc, AN_COMMAND) & AN_CMD_BUSY) {
		if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG)
			printf("%s: command 0x%x busy\n", sc->sc_dev.dv_xname,
			    CSR_READ_2(sc, AN_COMMAND));
		CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CLR_STUCK_BUSY);
	}

	CSR_WRITE_2(sc, AN_PARAM0, val);
	CSR_WRITE_2(sc, AN_PARAM1, 0);
	CSR_WRITE_2(sc, AN_PARAM2, 0);
	CSR_WRITE_2(sc, AN_COMMAND, cmd);

	if (cmd == AN_CMD_FW_RESTART) {
		/* XXX: should sleep here */
		DELAY(100*1000);
	}

	for (i = 0; i < AN_TIMEOUT; i++) {
		if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_CMD)
			break;
		DELAY(10);
	}

	stat = CSR_READ_2(sc, AN_STATUS);

	/* clear stuck command busy if necessary */
	if (CSR_READ_2(sc, AN_COMMAND) & AN_CMD_BUSY)
		CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CLR_STUCK_BUSY);

	/* Ack the command */
	CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CMD);

	if (i == AN_TIMEOUT) {
		if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG)
			printf("%s: command 0x%x param 0x%x timeout\n",
			    sc->sc_dev.dv_xname, cmd, val);
		return ETIMEDOUT;
	}
	if (stat & AN_STAT_CMD_RESULT) {
		if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG)
			printf("%s: command 0x%x param 0x%x status 0x%x "
			    "resp 0x%x 0x%x 0x%x\n",
			    sc->sc_dev.dv_xname, cmd, val, stat,
			    CSR_READ_2(sc, AN_RESP0), CSR_READ_2(sc, AN_RESP1),
			    CSR_READ_2(sc, AN_RESP2));
		return EIO;
	}

	return 0;
}

int
an_reset(struct an_softc *sc)
{

	DPRINTF(("an_reset\n"));

	if (!sc->sc_enabled)
		return ENXIO;

	an_cmd(sc, AN_CMD_ENABLE, 0);
	an_cmd(sc, AN_CMD_FW_RESTART, 0);
	an_cmd(sc, AN_CMD_NOOP2, 0);

	if (an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0) == ETIMEDOUT) {
		printf("%s: reset failed\n", sc->sc_dev.dv_xname);
		return ETIMEDOUT;
	}

	an_cmd(sc, AN_CMD_DISABLE, 0);
	return 0;
}

void
an_linkstat_intr(struct an_softc *sc)
{
	struct ieee80211com *ic = &sc->sc_ic;
	u_int16_t status;

	status = CSR_READ_2(sc, AN_LINKSTAT);
	CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_LINKSTAT);
	DPRINTF(("an_linkstat_intr: status 0x%x\n", status));

	if (status == AN_LINKSTAT_ASSOCIATED) {
		if (ic->ic_state != IEEE80211_S_RUN
#ifndef IEEE80211_STA_ONLY
		    || ic->ic_opmode == IEEE80211_M_IBSS
#endif
		    )
			ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
	} else {
		if (ic->ic_opmode == IEEE80211_M_STA)
			ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
	}
}

/*
 * Wait for firmware come up after power enabled.
 */
void
an_wait(struct an_softc *sc)
{
	int i;

	CSR_WRITE_2(sc, AN_COMMAND, AN_CMD_NOOP2);
	for (i = 0; i < 3*hz; i++) {
		if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_CMD)
			break;
		(void)tsleep(sc, PWAIT, "anatch", 1);
	}
	CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CMD);
}

int
an_read_bap(struct an_softc *sc, int id, int off, void *buf, int len, int blen)
{
	int error, cnt, cnt2;

	if (len == 0 || blen == 0)
		return 0;
	if (off == -1)
		off = sc->sc_bap_off;
	if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
		if ((error = an_seek_bap(sc, id, off)) != 0)
			return EIO;
	}

	cnt = (blen + 1) / 2;
	CSR_READ_MULTI_STREAM_2(sc, AN_DATA0, (u_int16_t *)buf, cnt);
	for (cnt2 = (len + 1) / 2; cnt < cnt2; cnt++)
		(void) CSR_READ_2(sc, AN_DATA0);
	sc->sc_bap_off += cnt * 2;

	return 0;
}

int
an_write_bap(struct an_softc *sc, int id, int off, void *buf, int buflen)
{
	int error, cnt;

	if (buflen == 0)
		return 0;
	if (off == -1)
		off = sc->sc_bap_off;
	if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
		if ((error = an_seek_bap(sc, id, off)) != 0)
			return EIO;
	}

	cnt = (buflen + 1) / 2;
	CSR_WRITE_MULTI_STREAM_2(sc, AN_DATA0, (u_int16_t *)buf, cnt);
	sc->sc_bap_off += cnt * 2;
	return 0;
}

int
an_seek_bap(struct an_softc *sc, int id, int off)
{
	int i, status;

	CSR_WRITE_2(sc, AN_SEL0, id);
	CSR_WRITE_2(sc, AN_OFF0, off);

	for (i = 0; ; i++) {
		status = CSR_READ_2(sc, AN_OFF0);
		if ((status & AN_OFF_BUSY) == 0)
			break;
		if (i == AN_TIMEOUT) {
			printf("%s: timeout in an_seek_bap to 0x%x/0x%x\n",
			    sc->sc_dev.dv_xname, id, off);
			sc->sc_bap_off = AN_OFF_ERR;	/* invalidate */
			return ETIMEDOUT;
		}
		DELAY(10);
	}
	if (status & AN_OFF_ERR) {
		printf("%s: failed in an_seek_bap to 0x%x/0x%x\n",
		    sc->sc_dev.dv_xname, id, off);
		sc->sc_bap_off = AN_OFF_ERR;	/* invalidate */
		return EIO;
	}
	sc->sc_bap_id = id;
	sc->sc_bap_off = off;
	return 0;
}

int
an_mwrite_bap(struct an_softc *sc, int id, int off, struct mbuf *m, int totlen)
{
	int error, len, cnt;

	if (off == -1)
		off = sc->sc_bap_off;
	if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
		if ((error = an_seek_bap(sc, id, off)) != 0)
			return EIO;
	}

	for (len = 0; m != NULL; m = m->m_next) {
		if (m->m_len == 0)
			continue;
		len = min(m->m_len, totlen);

		if ((mtod(m, u_long) & 0x1) || (len & 0x1)) {
			m_copydata(m, 0, totlen, (caddr_t)&sc->sc_buf.sc_txbuf);
			cnt = (totlen + 1) / 2;
			an_swap16((u_int16_t *)&sc->sc_buf.sc_txbuf, cnt); 
			CSR_WRITE_MULTI_STREAM_2(sc, AN_DATA0,
			    sc->sc_buf.sc_val, cnt);
			off += cnt * 2;
			break;
		}
		cnt = len / 2;
		an_swap16((u_int16_t *)mtod(m, u_int16_t *), cnt); 
		CSR_WRITE_MULTI_STREAM_2(sc, AN_DATA0, mtod(m, u_int16_t *),
		    cnt);
		off += len;
		totlen -= len;
	}
	sc->sc_bap_off = off;
	return 0;
}

int
an_alloc_nicmem(struct an_softc *sc, int len, int *idp)
{
	int i;

	if (an_cmd(sc, AN_CMD_ALLOC_MEM, len)) {
		printf("%s: failed to allocate %d bytes on NIC\n",
		    sc->sc_dev.dv_xname, len);
		return(ENOMEM);
	}

	for (i = 0; i < AN_TIMEOUT; i++) {
		if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_ALLOC)
			break;
		if (i == AN_TIMEOUT) {
			printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname);
			return ETIMEDOUT;
		}
		DELAY(10);
	}

	*idp = CSR_READ_2(sc, AN_ALLOC_FID);
	CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_ALLOC);
	return 0;
}

int
an_read_rid(struct an_softc *sc, int rid, void *buf, int *buflenp)
{
	int error;
	u_int16_t len;

	/* Tell the NIC to enter record read mode. */
	error = an_cmd(sc, AN_CMD_ACCESS | AN_ACCESS_READ, rid);
	if (error)
		return error;

	/* length in byte, including length itself */
	error = an_read_bap(sc, rid, 0, &len, sizeof(len), sizeof(len));
	if (error)
		return error;

	len -= 2;
	return an_read_bap(sc, rid, sizeof(len), buf, len, *buflenp);
}

int
an_write_rid(struct an_softc *sc, int rid, void *buf, int buflen)
{
	int error;
	u_int16_t len;

	/* length in byte, including length itself */
	len = buflen + 2;

	error = an_write_bap(sc, rid, 0, &len, sizeof(len));
	if (error)
		return error;
	error = an_write_bap(sc, rid, sizeof(len), buf, buflen);
	if (error)
		return error;

	return an_cmd(sc, AN_CMD_ACCESS | AN_ACCESS_WRITE, rid);
}

int
an_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
	struct an_softc *sc = ifp->if_softc;
	int s, error = 0;

	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
		return ENXIO;

	s = splnet();

	switch(command) {
	case SIOCSIFADDR:
		ifp->if_flags |= IFF_UP;
		error = an_init(ifp);
		break;
	case SIOCSIFFLAGS:
		if (ifp->if_flags & IFF_UP) {
			if (sc->sc_enabled) {
				/*
				 * To avoid rescanning another access point,
				 * do not call an_init() here.  Instead, only
				 * reflect promisc mode settings.
				 */
				error = an_cmd(sc, AN_CMD_SET_MODE,
				    (ifp->if_flags & IFF_PROMISC) ? 0xffff : 0);
			} else
				error = an_init(ifp);
		} else if (sc->sc_enabled)
			an_stop(ifp, 1);
		break;
	case SIOCADDMULTI:
	case SIOCDELMULTI:
		/* The Aironet has no multicast filter. */
		error = 0;
		break;
	case SIOCS80211NWKEY:
		error = an_set_nwkey(sc, (struct ieee80211_nwkey *)data);
			break;
	case SIOCG80211NWKEY:
		error = an_get_nwkey(sc, (struct ieee80211_nwkey *)data);
		break;
	default:
		error = ieee80211_ioctl(ifp, command, data);
		break;
	}
	if (error == ENETRESET) {
		if (sc->sc_enabled)
			error = an_init(ifp);
		else
			error = 0;
	}
	splx(s);
	return(error);
}

int
an_init(struct ifnet *ifp)
{
	struct an_softc *sc = ifp->if_softc;
	struct ieee80211com *ic = &sc->sc_ic;
	int i, error, fid;

	DPRINTF(("an_init: enabled %d\n", sc->sc_enabled));
	if (!sc->sc_enabled) {
		if (sc->sc_enable)
			(*sc->sc_enable)(sc);
		an_wait(sc);
		sc->sc_enabled = 1;
	} else {
		an_stop(ifp, 0);
		if ((error = an_reset(sc)) != 0) {
			printf("%s: failed to reset\n", ifp->if_xname);
			an_stop(ifp, 1);
			return error;
		}
	}
	CSR_WRITE_2(sc, AN_SW0, AN_MAGIC);

	/* Allocate the TX buffers */
	for (i = 0; i < AN_TX_RING_CNT; i++) {
		if ((error = an_alloc_nicmem(sc, AN_TX_MAX_LEN, &fid)) != 0) {
			printf("%s: failed to allocate nic memory\n",
			    ifp->if_xname);
			an_stop(ifp, 1);
			return error;
		}
		DPRINTF2(("an_init: txbuf %d allocated %x\n", i, fid));
		sc->sc_txd[i].d_fid = fid;
		sc->sc_txd[i].d_inuse = 0;
	}
	sc->sc_txcur = sc->sc_txnext = 0;

	IEEE80211_ADDR_COPY(sc->sc_config.an_macaddr, ic->ic_myaddr);
	an_swap16((u_int16_t *)&sc->sc_config.an_macaddr, 3); 
	sc->sc_config.an_scanmode = AN_SCANMODE_ACTIVE;
	sc->sc_config.an_authtype = AN_AUTHTYPE_OPEN;	/*XXX*/
	if (ic->ic_flags & IEEE80211_F_WEPON) {
		sc->sc_config.an_authtype |=
		    AN_AUTHTYPE_PRIVACY_IN_USE;
	}
	sc->sc_config.an_listen_interval = ic->ic_lintval;
	sc->sc_config.an_beacon_period = ic->ic_lintval;
	if (ic->ic_flags & IEEE80211_F_PMGTON)
		sc->sc_config.an_psave_mode = AN_PSAVE_PSP;
	else
		sc->sc_config.an_psave_mode = AN_PSAVE_CAM;
	sc->sc_config.an_ds_channel =
	    ieee80211_chan2ieee(ic, ic->ic_ibss_chan);

	switch (ic->ic_opmode) {
	case IEEE80211_M_STA:
		sc->sc_config.an_opmode =
		    AN_OPMODE_INFRASTRUCTURE_STATION;
		sc->sc_config.an_rxmode = AN_RXMODE_BC_MC_ADDR;
		break;
#ifndef IEEE80211_STA_ONLY
	case IEEE80211_M_IBSS:
		sc->sc_config.an_opmode = AN_OPMODE_IBSS_ADHOC;
		sc->sc_config.an_rxmode = AN_RXMODE_BC_MC_ADDR;
		break;
#endif
	case IEEE80211_M_MONITOR:
		sc->sc_config.an_opmode =
		    AN_OPMODE_INFRASTRUCTURE_STATION;
		sc->sc_config.an_rxmode =
		    AN_RXMODE_80211_MONITOR_ANYBSS;
		sc->sc_config.an_authtype = AN_AUTHTYPE_NONE;
		if (ic->ic_flags & IEEE80211_F_WEPON)
			sc->sc_config.an_authtype |=
			    AN_AUTHTYPE_PRIVACY_IN_USE |
		            AN_AUTHTYPE_ALLOW_UNENCRYPTED;
		break;
	default:
		printf("%s: bad opmode %d\n", ifp->if_xname, ic->ic_opmode);
		an_stop(ifp, 1);
		return EIO;
	}
	sc->sc_config.an_rxmode |= AN_RXMODE_NO_8023_HEADER;

	/* Set the ssid list */
	memset(&sc->sc_buf, 0, sizeof(sc->sc_buf.sc_ssidlist));
	sc->sc_buf.sc_ssidlist.an_entry[0].an_ssid_len =
	    ic->ic_des_esslen;
	if (ic->ic_des_esslen)
		memcpy(sc->sc_buf.sc_ssidlist.an_entry[0].an_ssid,
		    ic->ic_des_essid, ic->ic_des_esslen);
	an_swap16((u_int16_t *)&sc->sc_buf.sc_ssidlist.an_entry[0].an_ssid, 16); 
	if ((error = an_write_rid(sc, AN_RID_SSIDLIST, &sc->sc_buf,
	    sizeof(sc->sc_buf.sc_ssidlist)))) {
		printf("%s: failed to write ssid list\n", ifp->if_xname);
		an_stop(ifp, 1);
		return error;
	}

	/* Set the AP list */
	memset(&sc->sc_buf, 0, sizeof(sc->sc_buf.sc_aplist));
	(void)an_write_rid(sc, AN_RID_APLIST, &sc->sc_buf,
	    sizeof(sc->sc_buf.sc_aplist));

	/* Set the encapsulation */
	for (i = 0; i < AN_ENCAP_NENTS; i++) {
		sc->sc_buf.sc_encap.an_entry[i].an_ethertype = 0;
		sc->sc_buf.sc_encap.an_entry[i].an_action =
		    AN_RXENCAP_RFC1024 | AN_TXENCAP_RFC1024;
	}
	(void)an_write_rid(sc, AN_RID_ENCAP, &sc->sc_buf,
	    sizeof(sc->sc_buf.sc_encap));

	/* Set the WEP Keys */
	if (ic->ic_flags & IEEE80211_F_WEPON)
		an_write_wepkey(sc, AN_RID_WEP_VOLATILE, sc->sc_wepkeys,
		    sc->sc_tx_key);

	/* Set the configuration */
	if ((error = an_write_rid(sc, AN_RID_GENCONFIG, &sc->sc_config,
	    sizeof(sc->sc_config)))) {
		printf("%s: failed to write config\n", ifp->if_xname);
		an_stop(ifp, 1);
		return error;
	}

	/* Enable the MAC */
	if (an_cmd(sc, AN_CMD_ENABLE, 0)) {
		printf("%s: failed to enable MAC\n", sc->sc_dev.dv_xname);
		an_stop(ifp, 1);
		return ENXIO;
	}
	if (ifp->if_flags & IFF_PROMISC)
		an_cmd(sc, AN_CMD_SET_MODE, 0xffff);

	ifp->if_flags |= IFF_RUNNING;
	ifq_clr_oactive(&ifp->if_snd);
	ic->ic_state = IEEE80211_S_INIT;
	if (ic->ic_opmode == IEEE80211_M_MONITOR)
		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);

	/* enable interrupts */
	CSR_WRITE_2(sc, AN_INT_EN, AN_INTRS);
	return 0;
}

void
an_start(struct ifnet *ifp)
{
	struct an_softc *sc = (struct an_softc *)ifp->if_softc;
	struct ieee80211com *ic = &sc->sc_ic;
	struct ieee80211_node *ni;
	struct ieee80211_frame *wh;
	struct an_txframe frmhdr;
	struct mbuf *m;
	u_int16_t len;
	int cur, fid;

	if (!sc->sc_enabled || sc->sc_invalid) {
		DPRINTF(("an_start: noop: enabled %d invalid %d\n",
		    sc->sc_enabled, sc->sc_invalid));
		return;
	}

	memset(&frmhdr, 0, sizeof(frmhdr));
	cur = sc->sc_txnext;
	for (;;) {
		if (ic->ic_state != IEEE80211_S_RUN) {
			DPRINTF(("an_start: not running %d\n", ic->ic_state));
			break;
		}
		m = ifq_deq_begin(&ifp->if_snd);
		if (m == NULL) {
			DPRINTF2(("an_start: no pending mbuf\n"));
			break;
		}
		if (sc->sc_txd[cur].d_inuse) {
			ifq_deq_rollback(&ifp->if_snd, m);
			DPRINTF2(("an_start: %x/%d busy\n",
			    sc->sc_txd[cur].d_fid, cur));
			ifq_set_oactive(&ifp->if_snd);
			break;
		}
		ifq_deq_commit(&ifp->if_snd, m);
#if NBPFILTER > 0
		if (ifp->if_bpf)
			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
#endif
		if ((m = ieee80211_encap(ifp, m, &ni)) == NULL) {
			ifp->if_oerrors++;
			continue;
		}
		if (ni != NULL)
			ieee80211_release_node(ic, ni);
#if NBPFILTER > 0
		if (ic->ic_rawbpf)
			bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
#endif

		wh = mtod(m, struct ieee80211_frame *);
		if (ic->ic_flags & IEEE80211_F_WEPON)
			wh->i_fc[1] |= IEEE80211_FC1_WEP;
		m_copydata(m, 0, sizeof(struct ieee80211_frame),
		    (caddr_t)&frmhdr.an_whdr);
		an_swap16((u_int16_t *)&frmhdr.an_whdr, sizeof(struct ieee80211_frame)/2);

		/* insert payload length in front of llc/snap */
		len = htons(m->m_pkthdr.len - sizeof(struct ieee80211_frame));
		m_adj(m, sizeof(struct ieee80211_frame) - sizeof(len));
		if (mtod(m, u_long) & 0x01)
			memcpy(mtod(m, caddr_t), &len, sizeof(len));
		else
			*mtod(m, u_int16_t *) = len;

		/*
		 * XXX Aironet firmware apparently convert the packet
		 * with longer than 1500 bytes in length into LLC/SNAP.
		 * If we have 1500 bytes in ethernet payload, it is
		 * 1508 bytes including LLC/SNAP and will be inserted
		 * additional LLC/SNAP header with 1501-1508 in its
		 * ethertype !!
		 * So we skip LLC/SNAP header and force firmware to
		 * convert it to LLC/SNAP again.
		 */
		m_adj(m, sizeof(struct llc));

		frmhdr.an_tx_ctl = AN_TXCTL_80211;
		frmhdr.an_tx_payload_len = m->m_pkthdr.len;
		frmhdr.an_gaplen = AN_TXGAP_802_11;

		if (ic->ic_fixed_rate != -1)
			frmhdr.an_tx_rate =
			    ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[
			    ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
		else
			frmhdr.an_tx_rate = 0;

		if (sizeof(frmhdr) + AN_TXGAP_802_11 + sizeof(len) +
		    m->m_pkthdr.len > AN_TX_MAX_LEN) {
			ifp->if_oerrors++;
			m_freem(m);
			continue;
		}

#if NBPFILTER > 0
		if (sc->sc_drvbpf) {
			struct mbuf mb;
			struct an_tx_radiotap_header *tap = &sc->sc_txtap;

			tap->at_rate = 
			    ic->ic_bss->ni_rates.rs_rates[ic->ic_bss->ni_txrate];
			tap->at_chan_freq =
			    ic->ic_bss->ni_chan->ic_freq;
			tap->at_chan_flags =
			    ic->ic_bss->ni_chan->ic_flags;

			mb.m_data = (caddr_t)tap;
			mb.m_len = sizeof(sc->sc_txtapu);
			mb.m_next = m;
			mb.m_nextpkt = NULL;
			mb.m_type = 0;
			mb.m_flags = 0;
			bpf_mtap(sc->sc_drvbpf, m, BPF_DIRECTION_OUT);
		}
#endif

		fid = sc->sc_txd[cur].d_fid;
		if (an_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) {
			ifp->if_oerrors++;
			m_freem(m);
			continue;
		}
		/* dummy write to avoid seek. */
		an_write_bap(sc, fid, -1, &frmhdr, AN_TXGAP_802_11);
		an_mwrite_bap(sc, fid, -1, m, m->m_pkthdr.len);
		m_freem(m);

		DPRINTF2(("an_start: send %d byte via %x/%d\n",
		    ntohs(len) + sizeof(struct ieee80211_frame),
		    fid, cur));
		sc->sc_txd[cur].d_inuse = 1;
		if (an_cmd(sc, AN_CMD_TX, fid)) {
			printf("%s: xmit failed\n", ifp->if_xname);
			sc->sc_txd[cur].d_inuse = 0;
			continue;
		}
		sc->sc_tx_timer = 5;
		ifp->if_timer = 1;
		AN_INC(cur, AN_TX_RING_CNT);
		sc->sc_txnext = cur;
	}
}

void
an_stop(struct ifnet *ifp, int disable)
{
	struct an_softc *sc = ifp->if_softc;
	int i, s;

	if (!sc->sc_enabled)
		return;

	DPRINTF(("an_stop: disable %d\n", disable));

	s = splnet();
	ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
	if (!sc->sc_invalid) {
		an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0);
		CSR_WRITE_2(sc, AN_INT_EN, 0);
		an_cmd(sc, AN_CMD_DISABLE, 0);

		for (i = 0; i < AN_TX_RING_CNT; i++)
			an_cmd(sc, AN_CMD_DEALLOC_MEM, sc->sc_txd[i].d_fid);
	}

	sc->sc_tx_timer = 0;
	ifp->if_timer = 0;
	ifp->if_flags &= ~IFF_RUNNING;
	ifq_clr_oactive(&ifp->if_snd);

	if (disable) {
		if (sc->sc_disable)
			(*sc->sc_disable)(sc);
		sc->sc_enabled = 0;
	}
	splx(s);
}

void
an_watchdog(struct ifnet *ifp)
{
	struct an_softc *sc = ifp->if_softc;

	if (!sc->sc_enabled)
		return;

	if (sc->sc_tx_timer) {
		if (--sc->sc_tx_timer == 0) {
			printf("%s: device timeout\n", ifp->if_xname);
			ifp->if_oerrors++;
			an_init(ifp);
			return;
		}
		ifp->if_timer = 1;
	}
	ieee80211_watchdog(ifp);
}

/* TBD factor with ieee80211_media_change */
int
an_media_change(struct ifnet *ifp)
{
	struct an_softc *sc = ifp->if_softc;
	struct ieee80211com *ic = &sc->sc_ic;
	struct ifmedia_entry *ime;
	enum ieee80211_opmode newmode;
	int i, rate, error = 0;

	ime = ic->ic_media.ifm_cur;
	if (IFM_SUBTYPE(ime->ifm_media) == IFM_AUTO) {
		i = -1;
	} else {
		struct ieee80211_rateset *rs =
		    &ic->ic_sup_rates[IEEE80211_MODE_11B];
		rate = ieee80211_media2rate(ime->ifm_media);
		if (rate == 0)
			return EINVAL;
		for (i = 0; i < rs->rs_nrates; i++) {
			if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == rate)
				break;
		}
		if (i == rs->rs_nrates)
			return EINVAL;
	}
	if (ic->ic_fixed_rate != i) {
		ic->ic_fixed_rate = i;
		error = ENETRESET;
	}

#ifndef IEEE80211_STA_ONLY
	if (ime->ifm_media & IFM_IEEE80211_ADHOC)
		newmode = IEEE80211_M_IBSS;
	else if (ime->ifm_media & IFM_IEEE80211_HOSTAP)
		newmode = IEEE80211_M_HOSTAP;
	else
#endif
	if (ime->ifm_media & IFM_IEEE80211_MONITOR)
		newmode = IEEE80211_M_MONITOR;
	else
		newmode = IEEE80211_M_STA;
	if (ic->ic_opmode != newmode) {
		ic->ic_opmode = newmode;
		error = ENETRESET;
	}
	if (error == ENETRESET) {
		if (sc->sc_enabled)
			error = an_init(ifp);
		else
			error = 0;
	}
	ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media);

	return error;
}

void
an_media_status(struct ifnet *ifp, struct ifmediareq *imr)
{
	struct an_softc *sc = ifp->if_softc;
	struct ieee80211com *ic = &sc->sc_ic;
	int rate, buflen;

	if (sc->sc_enabled == 0) {
		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
		imr->ifm_status = 0;
		return;
	}

	imr->ifm_status = IFM_AVALID;
	imr->ifm_active = IFM_IEEE80211;
	if (ic->ic_state == IEEE80211_S_RUN)
		imr->ifm_status |= IFM_ACTIVE;
	buflen = sizeof(sc->sc_buf);
	if (ic->ic_fixed_rate != -1)
		rate = ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[
		    ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
	else if (an_read_rid(sc, AN_RID_STATUS, &sc->sc_buf, &buflen) != 0)
		rate = 0;
	else
		rate = sc->sc_buf.sc_status.an_current_tx_rate;
	imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
	switch (ic->ic_opmode) {
	case IEEE80211_M_STA:
		break;
#ifndef IEEE80211_STA_ONLY
	case IEEE80211_M_IBSS:
		imr->ifm_active |= IFM_IEEE80211_ADHOC;
		break;
	case IEEE80211_M_HOSTAP:
		imr->ifm_active |= IFM_IEEE80211_HOSTAP;
		break;
#endif
	case IEEE80211_M_MONITOR:
		imr->ifm_active |= IFM_IEEE80211_MONITOR;
		break;
	default:
		break;
	}
}

int
an_set_nwkey(struct an_softc *sc, struct ieee80211_nwkey *nwkey)
{
	int error;
	struct ieee80211com *ic = &sc->sc_ic;
	u_int16_t prevauth;

	error = 0;
	prevauth = sc->sc_config.an_authtype;

	switch (nwkey->i_wepon) {
	case IEEE80211_NWKEY_OPEN:
		sc->sc_config.an_authtype = AN_AUTHTYPE_OPEN;
		ic->ic_flags &= ~IEEE80211_F_WEPON;
		break;

	case IEEE80211_NWKEY_WEP:
	case IEEE80211_NWKEY_WEP | IEEE80211_NWKEY_PERSIST:
		error = an_set_nwkey_wep(sc, nwkey);
		if (error == 0 || error == ENETRESET) {
			sc->sc_config.an_authtype =
			    AN_AUTHTYPE_OPEN | AN_AUTHTYPE_PRIVACY_IN_USE;
			ic->ic_flags |= IEEE80211_F_WEPON;
		}
		break;

	default:
		error = EINVAL;
		break;
	}
	if (error == 0 && prevauth != sc->sc_config.an_authtype)
		error = ENETRESET;
	return error;
}

int
an_set_nwkey_wep(struct an_softc *sc, struct ieee80211_nwkey *nwkey)
{
	int i, txkey, anysetkey, needreset, error;
	struct an_wepkey keys[IEEE80211_WEP_NKID];

	error = 0;
	memset(keys, 0, sizeof(keys));
	anysetkey = needreset = 0;

	/* load argument and sanity check */
	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
		keys[i].an_wep_keylen = nwkey->i_key[i].i_keylen;
		if (keys[i].an_wep_keylen < 0)
			continue;
		if (keys[i].an_wep_keylen != 0 &&
		    keys[i].an_wep_keylen < IEEE80211_WEP_KEYLEN)
			return EINVAL;
		if (keys[i].an_wep_keylen > sizeof(keys[i].an_wep_key))
			return EINVAL;
		if ((error = copyin(nwkey->i_key[i].i_keydat,
		    keys[i].an_wep_key, keys[i].an_wep_keylen)) != 0)
			return error;
		anysetkey++;
	}
	txkey = nwkey->i_defkid - 1;
	if (txkey >= 0) {
		if (txkey >= IEEE80211_WEP_NKID)
			return EINVAL;
		/* default key must have a valid value */
		if (keys[txkey].an_wep_keylen == 0 ||
		    (keys[txkey].an_wep_keylen < 0 &&
		    sc->sc_perskeylen[txkey] == 0))
			return EINVAL;
		anysetkey++;
	}
	DPRINTF(("an_set_nwkey_wep: %s: %sold(%d:%d,%d,%d,%d) "
	    "pers(%d:%d,%d,%d,%d) new(%d:%d,%d,%d,%d)\n",
	    sc->sc_dev.dv_xname,
	    ((nwkey->i_wepon & IEEE80211_NWKEY_PERSIST) ? "persist: " : ""),
	    sc->sc_tx_key,
	    sc->sc_wepkeys[0].an_wep_keylen, sc->sc_wepkeys[1].an_wep_keylen,
	    sc->sc_wepkeys[2].an_wep_keylen, sc->sc_wepkeys[3].an_wep_keylen,
	    sc->sc_tx_perskey,
	    sc->sc_perskeylen[0], sc->sc_perskeylen[1],
	    sc->sc_perskeylen[2], sc->sc_perskeylen[3],
	    txkey,
	    keys[0].an_wep_keylen, keys[1].an_wep_keylen,
	    keys[2].an_wep_keylen, keys[3].an_wep_keylen));
	if (!(nwkey->i_wepon & IEEE80211_NWKEY_PERSIST)) {
		/* set temporary keys */
		sc->sc_tx_key = txkey;
		for (i = 0; i < IEEE80211_WEP_NKID; i++) {
			if (keys[i].an_wep_keylen < 0)
				continue;
			memcpy(&sc->sc_wepkeys[i], &keys[i], sizeof(keys[i]));
		}
	} else {
		/* set persist keys */
		if (anysetkey) {
			/* prepare to write nvram */
			if (!sc->sc_enabled) {
				if (sc->sc_enable)
					(*sc->sc_enable)(sc);
				an_wait(sc);
				sc->sc_enabled = 1;
				error = an_write_wepkey(sc,
				    AN_RID_WEP_PERSISTENT, keys, txkey);
				if (sc->sc_disable)
					(*sc->sc_disable)(sc);
				sc->sc_enabled = 0;
			} else {
				an_cmd(sc, AN_CMD_DISABLE, 0);
				error = an_write_wepkey(sc,
				    AN_RID_WEP_PERSISTENT, keys, txkey);
				an_cmd(sc, AN_CMD_ENABLE, 0);
			}
			if (error)
				return error;
		}
		if (txkey >= 0)
			sc->sc_tx_perskey = txkey;
		if (sc->sc_tx_key >= 0) {
			sc->sc_tx_key = -1;
			needreset++;
		}
		for (i = 0; i < IEEE80211_WEP_NKID; i++) {
			if (sc->sc_wepkeys[i].an_wep_keylen >= 0) {
				memset(&sc->sc_wepkeys[i].an_wep_key, 0,
				    sizeof(sc->sc_wepkeys[i].an_wep_key));
				sc->sc_wepkeys[i].an_wep_keylen = -1;
				needreset++;
			}
			if (keys[i].an_wep_keylen >= 0)
				sc->sc_perskeylen[i] = keys[i].an_wep_keylen;
		}
	}
	if (needreset) {
		/* firmware restart to reload persistent key */
		an_reset(sc);
	}
	if (anysetkey || needreset)
		error = ENETRESET;
	return error;
}

int
an_get_nwkey(struct an_softc *sc, struct ieee80211_nwkey *nwkey)
{
	int i, error;

	error = 0;
	if (sc->sc_config.an_authtype & AN_AUTHTYPE_LEAP)
		nwkey->i_wepon = IEEE80211_NWKEY_EAP;
	else if (sc->sc_config.an_authtype & AN_AUTHTYPE_PRIVACY_IN_USE)
		nwkey->i_wepon = IEEE80211_NWKEY_WEP;
	else
		nwkey->i_wepon = IEEE80211_NWKEY_OPEN;
	if (sc->sc_tx_key == -1)
		nwkey->i_defkid = sc->sc_tx_perskey + 1;
	else
		nwkey->i_defkid = sc->sc_tx_key + 1;
	if (nwkey->i_key[0].i_keydat == NULL)
		return 0;
	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
		if (nwkey->i_key[i].i_keydat == NULL)
			continue;
		/* do not show any keys to non-root user */
		if ((error = suser(curproc)) != 0)
			break;
		nwkey->i_key[i].i_keylen = sc->sc_wepkeys[i].an_wep_keylen;
		if (nwkey->i_key[i].i_keylen < 0) {
			if (sc->sc_perskeylen[i] == 0)
				nwkey->i_key[i].i_keylen = 0;
			continue;
		}
		if ((error = copyout(sc->sc_wepkeys[i].an_wep_key,
		    nwkey->i_key[i].i_keydat,
		    sc->sc_wepkeys[i].an_wep_keylen)) != 0)
			break;
	}
	return error;
}

int
an_write_wepkey(struct an_softc *sc, int type, struct an_wepkey *keys, int kid)
{
	int i, error;
	struct an_rid_wepkey *akey;

	error = 0;
	akey = &sc->sc_buf.sc_wepkey;
	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
		memset(akey, 0, sizeof(struct an_rid_wepkey));
		if (keys[i].an_wep_keylen < 0 ||
		    keys[i].an_wep_keylen > sizeof(akey->an_key))
			continue;
		akey->an_key_len = keys[i].an_wep_keylen;
		akey->an_key_index = i;
		akey->an_mac_addr[0] = 1;	/* default mac */
		an_swap16((u_int16_t *)&akey->an_mac_addr, 3); 
		memcpy(akey->an_key, keys[i].an_wep_key, keys[i].an_wep_keylen);
		an_swap16((u_int16_t *)&akey->an_key, 8); 
		if ((error = an_write_rid(sc, type, akey, sizeof(*akey))) != 0)
			return error;
	}
	if (kid >= 0) {
		memset(akey, 0, sizeof(struct an_rid_wepkey));
		akey->an_key_index = 0xffff;
		akey->an_mac_addr[0] = kid;
		an_swap16((u_int16_t *)&akey->an_mac_addr, 3); 
		akey->an_key_len = 0;
		memset(akey->an_key, 0, sizeof(akey->an_key));
		error = an_write_rid(sc, type, akey, sizeof(*akey));
	}
	return error;
}

int
an_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
	struct an_softc *sc = ic->ic_softc;
	struct ieee80211_node *ni = ic->ic_bss;
	enum ieee80211_state ostate;
	int buflen;

	ostate = ic->ic_state;
	DPRINTF(("an_newstate: %s -> %s\n", ieee80211_state_name[ostate],
	    ieee80211_state_name[nstate]));

	switch (nstate) {
	case IEEE80211_S_INIT:
		ic->ic_flags &= ~IEEE80211_F_IBSSON;
		return (*sc->sc_newstate)(ic, nstate, arg);

	case IEEE80211_S_RUN:
		buflen = sizeof(sc->sc_buf);
		an_read_rid(sc, AN_RID_STATUS, &sc->sc_buf, &buflen);
		an_swap16((u_int16_t *)&sc->sc_buf.sc_status.an_cur_bssid, 3); 
		an_swap16((u_int16_t *)&sc->sc_buf.sc_status.an_ssid, 16); 
		IEEE80211_ADDR_COPY(ni->ni_bssid,
		    sc->sc_buf.sc_status.an_cur_bssid);
		IEEE80211_ADDR_COPY(ni->ni_macaddr, ni->ni_bssid);
		ni->ni_chan = &ic->ic_channels[
		    sc->sc_buf.sc_status.an_cur_channel];
		ni->ni_esslen = sc->sc_buf.sc_status.an_ssidlen;
		if (ni->ni_esslen > IEEE80211_NWID_LEN)
			ni->ni_esslen = IEEE80211_NWID_LEN;	/*XXX*/
		memcpy(ni->ni_essid, sc->sc_buf.sc_status.an_ssid,
		    ni->ni_esslen);
		ni->ni_rates = ic->ic_sup_rates[IEEE80211_MODE_11B];	/*XXX*/
		if (ic->ic_if.if_flags & IFF_DEBUG) {
			printf("%s: ", sc->sc_dev.dv_xname);
			if (ic->ic_opmode == IEEE80211_M_STA)
				printf("associated ");
			else
				printf("synchronized ");
			printf("with %s ssid ", ether_sprintf(ni->ni_bssid));
			ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
			printf(" channel %u start %uMb\n",
			    sc->sc_buf.sc_status.an_cur_channel,
			    sc->sc_buf.sc_status.an_current_tx_rate/2);
		}
		break;

	default:
		break;
	}
	ic->ic_state = nstate;
	/* skip standard ieee80211 handling */
	return 0;
}

int
an_detach(struct an_softc *sc)
{
	struct ifnet *ifp = &sc->sc_ic.ic_if;
	int s;

	if (!sc->sc_attached)
		return 0;

	s = splnet();
	sc->sc_invalid = 1;
	an_stop(ifp, 1);
	ifmedia_delete_instance(&sc->sc_ic.ic_media, IFM_INST_ANY);
	ieee80211_ifdetach(ifp);
	if_detach(ifp);
	splx(s);
	return 0;
}