/* $OpenBSD: an.c,v 1.34 2003/10/21 18:58:48 jmc Exp $ */ /* * Copyright (c) 1997, 1998, 1999 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/dev/an/if_an.c,v 1.21 2001/09/10 02:05:09 brooks Exp $ */ /* * Aironet 4500/4800 802.11 PCMCIA/ISA/PCI driver for FreeBSD. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The Aironet 4500/4800 series cards some in PCMCIA, ISA and PCI form. * This driver supports all three device types (PCI devices are supported * through an extra PCI shim: /sys/pci/if_an_p.c). ISA devices can be * supported either using hard-coded IO port/IRQ settings or via Plug * and Play. The 4500 series devices support 1Mbps and 2Mbps data rates. * The 4800 devices support 1, 2, 5.5 and 11Mbps rates. * * Like the WaveLAN/IEEE cards, the Aironet NICs are all essentially * PCMCIA devices. The ISA and PCI cards are a combination of a PCMCIA * device and a PCMCIA to ISA or PCMCIA to PCI adapter card. There are * a couple of important differences though: * * - Lucent doesn't currently offer a PCI card, however Aironet does * - Lucent ISA card looks to the host like a PCMCIA controller with * a PCMCIA WaveLAN card inserted. This means that even desktop * machines need to be configured with PCMCIA support in order to * use WaveLAN/IEEE ISA cards. The Aironet cards on the other hand * actually look like normal ISA and PCI devices to the host, so * no PCMCIA controller support is needed * * The latter point results in a small gotcha. The Aironet PCMCIA * cards can be configured for one of two operating modes depending * on how the Vpp1 and Vpp2 programming voltages are set when the * card is activated. In order to put the card in proper PCMCIA * operation (where the CIS table is visible and the interface is * programmed for PCMCIA operation), both Vpp1 and Vpp2 have to be * set to 5 volts. FreeBSD by default doesn't set the Vpp voltages, * which leaves the card in ISA/PCI mode, which prevents it from * being activated as an PCMCIA device. Consequently, /sys/pccard/pccard.c * has to be patched slightly in order to enable the Vpp voltages in * order to make the Aironet PCMCIA cards work. * * Note that some PCMCIA controller software packages for Windows NT * fail to set the voltages as well. * * The Aironet devices can operate in both station mode and access point * mode. Typically, when programmed for station mode, the card can be set * to automatically perform encapsulation/decapsulation of Ethernet II * and 802.3 frames within 802.11 frames so that the host doesn't have * to do it itself. This driver doesn't program the card that way: the * driver handles all of the encapsulation/decapsulation itself. */ #ifdef INET #define ANCACHE /* enable signal strength cache */ #endif #include #include #include #include #include #include #include #include #include #include #ifdef ANCACHE #include #include #endif #include #include #include #include #ifdef INET #include #include #include #include #include #endif #include "bpfilter.h" #if NBPFILTER > 0 #include #endif #include #include #include #define TIMEOUT(handle,func,sc,time) timeout_add(&(handle), (time)) #define UNTIMEOUT(func,sc,handle) timeout_del(&(handle)) #define BPF_MTAP(if,mbuf) bpf_mtap((if)->if_bpf, (mbuf)) #define BPFATTACH(if_bpf,if,dlt,sz) struct cfdriver an_cd = { NULL, "an", DV_IFNET }; void an_reset(struct an_softc *); int an_ioctl(struct ifnet *, u_long, caddr_t); int an_init_tx_ring(struct an_softc *); void an_start(struct ifnet *); void an_watchdog(struct ifnet *); void an_rxeof(struct an_softc *); void an_txeof(struct an_softc *, int); void an_promisc(struct an_softc *, int); int an_cmd(struct an_softc *, int, int); int an_read_record(struct an_softc *, struct an_ltv_gen *); int an_write_record(struct an_softc *, struct an_ltv_gen *); int an_read_data(struct an_softc *, int, int, caddr_t, int); int an_write_data(struct an_softc *, int, int, caddr_t, int); int an_seek(struct an_softc *, int, int, int); int an_alloc_nicmem(struct an_softc *, int, int *); void an_stats_update(void *); void an_setdef(struct an_softc *, struct an_req *); #ifdef ANCACHE void an_cache_store(struct an_softc *, struct ether_header *, struct mbuf *, unsigned short); #endif int an_media_change(struct ifnet *); void an_media_status(struct ifnet *, struct ifmediareq *); static __inline void an_swap16(u_int16_t *p, int cnt) { for (; cnt--; p++) *p = swap16(*p); } int an_attach(sc) struct an_softc *sc; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; sc->an_gone = 0; sc->an_associated = 0; /* disable interrupts */ CSR_WRITE_2(sc, AN_INT_EN, 0); CSR_WRITE_2(sc, AN_EVENT_ACK, 0xffff); /* Reset the NIC. */ an_reset(sc); /* Load factory config */ if (an_cmd(sc, AN_CMD_READCFG, 0)) { printf("%s: failed to load config data\n", ifp->if_xname); return(EIO); } /* Read the current configuration */ sc->an_config.an_type = AN_RID_GENCONFIG; sc->an_config.an_len = sizeof(struct an_ltv_genconfig); if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_config)) { printf("%s: read record failed\n", ifp->if_xname); return(EIO); } /* Read the card capabilities */ sc->an_caps.an_type = AN_RID_CAPABILITIES; sc->an_caps.an_len = sizeof(struct an_ltv_caps); if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_caps)) { printf("%s: read record failed\n", ifp->if_xname); return(EIO); } /* Read ssid list */ sc->an_ssidlist.an_type = AN_RID_SSIDLIST; sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist); if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) { printf("%s: read record failed\n", ifp->if_xname); return(EIO); } /* Read AP list */ sc->an_aplist.an_type = AN_RID_APLIST; sc->an_aplist.an_len = sizeof(struct an_ltv_aplist); if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) { printf("%s: read record failed\n", ifp->if_xname); return(EIO); } bcopy((char *)&sc->an_caps.an_oemaddr, (char *)&sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN); printf(": address %6s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr)); bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); ifp->if_softc = sc; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = an_ioctl; ifp->if_start = an_start; ifp->if_watchdog = an_watchdog; ifp->if_baudrate = 10000000; IFQ_SET_READY(&ifp->if_snd); bzero(sc->an_config.an_nodename, sizeof(sc->an_config.an_nodename)); strlcpy(sc->an_config.an_nodename, AN_DEFAULT_NODENAME, sizeof(sc->an_config.an_nodename)); bzero(sc->an_ssidlist.an_ssid1, sizeof(sc->an_ssidlist.an_ssid1)); strlcpy(sc->an_ssidlist.an_ssid1, AN_DEFAULT_NETNAME, sizeof(sc->an_ssidlist.an_ssid1)); sc->an_ssidlist.an_ssid1_len = strlen(sc->an_ssidlist.an_ssid1); sc->an_config.an_opmode = AN_OPMODE_INFRASTRUCTURE_STATION; sc->an_tx_rate = 0; bzero((char *)&sc->an_stats, sizeof(sc->an_stats)); #ifdef ANCACHE sc->an_sigitems = sc->an_nextitem = 0; #endif ifmedia_init(&sc->an_ifmedia, 0, an_media_change, an_media_status); #define ADD(m, c) ifmedia_add(&sc->an_ifmedia, (m), (c), NULL) ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, IFM_IEEE80211_ADHOC, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, IFM_IEEE80211_ADHOC, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0); if (sc->an_caps.an_rates[2] == AN_RATE_5_5MBPS) { ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, IFM_IEEE80211_ADHOC, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0); } if (sc->an_caps.an_rates[3] == AN_RATE_11MBPS) { ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, IFM_IEEE80211_ADHOC, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0); } ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_ADHOC, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0); #undef ADD ifmedia_set(&sc->an_ifmedia, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0)); /* * Call MI attach routines. */ if_attach(ifp); ether_ifattach(ifp); timeout_set(&sc->an_stat_ch, an_stats_update, sc); #if NBPFILTER > 0 BPFATTACH(&sc->sc_arpcom.ac_if.if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header)); #endif shutdownhook_establish(an_shutdown, sc); an_reset(sc); an_init(sc); return(0); } void an_rxeof(sc) struct an_softc *sc; { struct ifnet *ifp; struct ether_header *eh; #ifdef ANCACHE struct an_rxframe rx_frame; #endif struct an_rxframe_802_3 rx_frame_802_3; struct mbuf *m; int id, error = 0; ifp = &sc->sc_arpcom.ac_if; id = CSR_READ_2(sc, AN_RX_FID); MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { ifp->if_ierrors++; return; } MCLGET(m, M_DONTWAIT); if (!(m->m_flags & M_EXT)) { m_freem(m); ifp->if_ierrors++; return; } m->m_pkthdr.rcvif = ifp; eh = mtod(m, struct ether_header *); #ifdef ANCACHE /* Read NIC frame header */ if (an_read_data(sc, id, 0, (caddr_t)&rx_frame, sizeof(rx_frame))) { ifp->if_ierrors++; return; } #endif /* Read in the 802_3 frame header */ if (an_read_data(sc, id, 0x34, (caddr_t)&rx_frame_802_3, sizeof(rx_frame_802_3))) { ifp->if_ierrors++; return; } if (rx_frame_802_3.an_rx_802_3_status != 0) { ifp->if_ierrors++; return; } /* Check for insane frame length */ if (letoh16(rx_frame_802_3.an_rx_802_3_payload_len) > MCLBYTES) { ifp->if_ierrors++; return; } m->m_pkthdr.len = m->m_len = letoh16(rx_frame_802_3.an_rx_802_3_payload_len) + 12; bcopy((char *)&rx_frame_802_3.an_rx_dst_addr, (char *)&eh->ether_dhost, ETHER_ADDR_LEN); bcopy((char *)&rx_frame_802_3.an_rx_src_addr, (char *)&eh->ether_shost, ETHER_ADDR_LEN); /* in mbuf header type is just before payload */ error = an_read_data(sc, id, 0x44, (caddr_t)&(eh->ether_type), letoh16(rx_frame_802_3.an_rx_802_3_payload_len)); if (error) { m_freem(m); ifp->if_ierrors++; return; } ifp->if_ipackets++; #if NBPFILTER > 0 /* Handle BPF listeners. */ if (ifp->if_bpf) BPF_MTAP(ifp, m); #endif /* Receive packet. */ #ifdef ANCACHE an_cache_store(sc, eh, m, rx_frame.an_rx_signal_strength); #endif ether_input_mbuf(ifp, m); } void an_txeof(sc, status) struct an_softc *sc; int status; { struct ifnet *ifp; int id; ifp = &sc->sc_arpcom.ac_if; ifp->if_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; id = CSR_READ_2(sc, AN_TX_CMP_FID); if (status & AN_EV_TX_EXC) ifp->if_oerrors++; else ifp->if_opackets++; if (id != sc->an_rdata.an_tx_ring[sc->an_rdata.an_tx_cons]) printf("%s: id mismatch: expected %x, got %x\n", ifp->if_xname, sc->an_rdata.an_tx_ring[sc->an_rdata.an_tx_cons], id); sc->an_rdata.an_tx_ring[sc->an_rdata.an_tx_cons] = 0; AN_INC(sc->an_rdata.an_tx_cons, AN_TX_RING_CNT); } /* * We abuse the stats updater to check the current NIC status. This * is important because we don't want to allow transmissions until * the NIC has synchronized to the current cell (either as the master * in an ad-hoc group, or as a station connected to an access point). */ void an_stats_update(xsc) void *xsc; { struct an_softc *sc; struct ifnet *ifp; int s; s = splimp(); sc = xsc; ifp = &sc->sc_arpcom.ac_if; sc->an_status.an_type = AN_RID_STATUS; sc->an_status.an_len = sizeof(struct an_ltv_status); an_read_record(sc, (struct an_ltv_gen *)&sc->an_status); if (sc->an_status.an_opmode & AN_STATUS_OPMODE_IN_SYNC) sc->an_associated = 1; else sc->an_associated = 0; /* Don't do this while we're transmitting */ if (!(ifp->if_flags & IFF_OACTIVE)) { sc->an_stats.an_len = sizeof(struct an_ltv_stats); sc->an_stats.an_type = AN_RID_32BITS_CUM; an_read_record(sc, (struct an_ltv_gen *)&sc->an_stats.an_len); } splx(s); TIMEOUT(sc->an_stat_ch, an_stats_update, sc, hz); } int an_intr(xsc) void *xsc; { struct an_softc *sc; struct ifnet *ifp; u_int16_t status; sc = (struct an_softc*)xsc; if (sc->an_gone) return 0; ifp = &sc->sc_arpcom.ac_if; if (!(ifp->if_flags & IFF_UP)) { CSR_WRITE_2(sc, AN_EVENT_ACK, 0xFFFF); CSR_WRITE_2(sc, AN_INT_EN, 0); return 0; } /* Disable interrupts. */ CSR_WRITE_2(sc, AN_INT_EN, 0); status = CSR_READ_2(sc, AN_EVENT_STAT); CSR_WRITE_2(sc, AN_EVENT_ACK, ~AN_INTRS); if (status & AN_EV_AWAKE) { CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_AWAKE); } if (status & AN_EV_LINKSTAT) { if (CSR_READ_2(sc, AN_LINKSTAT) == AN_LINKSTAT_ASSOCIATED) sc->an_associated = 1; else sc->an_associated = 0; CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_LINKSTAT); } if (status & AN_EV_RX) { an_rxeof(sc); CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX); } if (status & AN_EV_TX) { an_txeof(sc, status); CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_TX); } if (status & AN_EV_TX_EXC) { an_txeof(sc, status); CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_TX_EXC); } if (status & AN_EV_ALLOC) CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_ALLOC); /* Re-enable interrupts. */ CSR_WRITE_2(sc, AN_INT_EN, AN_INTRS); if (!IFQ_IS_EMPTY(&ifp->if_snd)) an_start(ifp); return 1; } int an_cmd(sc, cmd, val) struct an_softc *sc; int cmd; int val; { int i, stat; /* make sure previous command completed */ if (CSR_READ_2(sc, AN_COMMAND) & AN_CMD_BUSY) { printf("%s: command busy\n", sc->sc_dev.dv_xname); CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CLR_STUCK_BUSY); } CSR_WRITE_2(sc, AN_PARAM0, val); CSR_WRITE_2(sc, AN_PARAM1, 0); CSR_WRITE_2(sc, AN_PARAM2, 0); DELAY(10); CSR_WRITE_2(sc, AN_COMMAND, cmd); DELAY(10); for (i = AN_TIMEOUT; i--; DELAY(10)) { if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_CMD) break; else { if (CSR_READ_2(sc, AN_COMMAND) == cmd) { DELAY(10); CSR_WRITE_2(sc, AN_COMMAND, cmd); } } } stat = CSR_READ_2(sc, AN_STATUS); /* clear stuck command busy if needed */ if (CSR_READ_2(sc, AN_COMMAND) & AN_CMD_BUSY) { CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CLR_STUCK_BUSY); } /* Ack the command */ CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CMD); if (i <= 0) return(ETIMEDOUT); if (stat & AN_STAT_CMD_RESULT) return(EIO); return(0); } /* * This reset sequence may look a little strange, but this is the * most reliable method I've found to really kick the NIC in the * head and force it to reboot correctly. */ void an_reset(sc) struct an_softc *sc; { if (sc->an_gone) return; /*printf("ena ");*/ an_cmd(sc, AN_CMD_ENABLE, 0); /* printf("rst ");*/ an_cmd(sc, AN_CMD_FW_RESTART, 0); /*printf("nop ");*/ an_cmd(sc, AN_CMD_NOOP2, 0); if (an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0) == ETIMEDOUT) printf("%s: reset failed\n", sc->sc_dev.dv_xname); an_cmd(sc, AN_CMD_DISABLE, 0); } /* * Read an LTV record from the NIC. */ int an_read_record(sc, ltv) struct an_softc *sc; struct an_ltv_gen *ltv; { u_int16_t *ptr, len, rlen, ltv_data_length; volatile u_int16_t v; int i; if (ltv->an_len < 4 || ltv->an_type == 0) return(EINVAL); /* Tell the NIC to enter record read mode. */ if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type)) { printf("%s: RID 0x%04x access failed\n", sc->sc_dev.dv_xname, ltv->an_type); return(EIO); } /* Seek to the record. */ if (an_seek(sc, ltv->an_type, 0, AN_BAP1)) { printf("%s: RID 0x%04x seek to record failed\n", sc->sc_dev.dv_xname, ltv->an_type); return(EIO); } /* * Read the length to make sure it * matches what we expect (this verifies that we have enough * room to hold all of the returned data). */ rlen = len = CSR_READ_2(sc, AN_DATA1); /* * Work out record's data length, which is struct length - type word * as we have just read the length. */ ltv_data_length = ltv->an_len - sizeof(u_int16_t); if (rlen > ltv_data_length) rlen = ltv_data_length; /* Now read the data. */ len -= 2; rlen -= 2; /* skip the type */ ptr = ltv->an_val; for (i = 0; (rlen - i) > 1; i += 2) *ptr++ = CSR_READ_2(sc, AN_DATA1); if (rlen - i == 1) *(u_int8_t *)ptr = CSR_READ_1(sc, AN_DATA1); for (; i < len; i++) v = CSR_READ_1(sc, AN_DATA1); #if BYTE_ORDER == BIG_ENDIAN switch (ltv->an_type) { case AN_RID_GENCONFIG: case AN_RID_ACTUALCFG: an_swap16(<v->an_val[4], 7); /* an_macaddr, an_rates */ an_swap16(<v->an_val[63], 8); /* an_nodename */ break; case AN_RID_SSIDLIST: an_swap16(<v->an_val[1], 16); /* an_ssid1 */ an_swap16(<v->an_val[18], 16); /* an_ssid2 */ an_swap16(<v->an_val[35], 16); /* an_ssid3 */ break; case AN_RID_APLIST: an_swap16(ltv->an_val, 12); break; case AN_RID_DRVNAME: an_swap16(ltv->an_val, 8); break; case AN_RID_CAPABILITIES: an_swap16(ltv->an_val, 2); /* an_oui */ an_swap16(<v->an_val[3], 34); /* an_manufname .. an_aironetaddr */ an_swap16(<v->an_val[39], 8); /* an_callid .. an_tx_diversity */ break; case AN_RID_STATUS: an_swap16(<v->an_val[0], 3); /* an_macaddr */ an_swap16(<v->an_val[7], 36); /* an_ssid .. an_prev_bssid3 */ an_swap16(<v->an_val[0x74/2], 2); /* an_ap_ip_addr */ break; case AN_RID_WEP_VOLATILE: case AN_RID_WEP_PERMANENT: an_swap16(<v->an_val[1], 3); /* an_mac_addr */ an_swap16(<v->an_val[5], 6); break; case AN_RID_32BITS_CUM: for (i = 0x60; i--; ) { u_int16_t t = ltv->an_val[i * 2] ^ ltv->an_val[i * 2 + 1]; ltv->an_val[i * 2] ^= t; ltv->an_val[i * 2 + 1] ^= t; } break; } #endif return(0); } /* * Same as read, except we inject data instead of reading it. */ int an_write_record(sc, ltv) struct an_softc *sc; struct an_ltv_gen *ltv; { u_int16_t *ptr; int i; if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type)) return(EIO); if (an_seek(sc, ltv->an_type, 0, AN_BAP1)) return(EIO); #if BYTE_ORDER == BIG_ENDIAN switch (ltv->an_type) { case AN_RID_GENCONFIG: case AN_RID_ACTUALCFG: an_swap16(<v->an_val[4], 7); /* an_macaddr, an_rates */ an_swap16(<v->an_val[63], 8); /* an_nodename */ break; case AN_RID_SSIDLIST: an_swap16(<v->an_val[1], 16); /* an_ssid1 */ an_swap16(<v->an_val[18], 16); /* an_ssid2 */ an_swap16(<v->an_val[35], 16); /* an_ssid3 */ break; case AN_RID_APLIST: an_swap16(ltv->an_val, 12); break; case AN_RID_DRVNAME: an_swap16(ltv->an_val, 8); break; case AN_RID_CAPABILITIES: an_swap16(ltv->an_val, 2); /* an_oui */ an_swap16(<v->an_val[3], 34); /* an_manufname .. an_aironetaddr */ an_swap16(<v->an_val[39], 8); /* an_callid .. an_tx_diversity */ break; case AN_RID_STATUS: an_swap16(<v->an_val[0], 3); /* an_macaddr */ an_swap16(<v->an_val[7], 36); /* an_ssid .. an_prev_bssid3 */ an_swap16(<v->an_val[0x74/2], 2); /* an_ap_ip_addr */ break; case AN_RID_WEP_VOLATILE: case AN_RID_WEP_PERMANENT: an_swap16(<v->an_val[1], 3); /* an_mac_addr */ an_swap16(<v->an_val[5], 6); break; } #endif CSR_WRITE_2(sc, AN_DATA1, ltv->an_len); ptr = ltv->an_val; for (i = 0; i < (ltv->an_len - 1) >> 1; i++) CSR_WRITE_2(sc, AN_DATA1, ptr[i]); if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_WRITE, ltv->an_type)) return(EIO); return(0); } int an_seek(sc, id, off, chan) struct an_softc *sc; int id, off, chan; { int i; int selreg, offreg; switch (chan) { case AN_BAP0: selreg = AN_SEL0; offreg = AN_OFF0; break; case AN_BAP1: selreg = AN_SEL1; offreg = AN_OFF1; break; default: printf("%s: invalid data path: %x\n", sc->sc_dev.dv_xname, chan); return (EIO); } CSR_WRITE_2(sc, selreg, id); CSR_WRITE_2(sc, offreg, off); for (i = AN_TIMEOUT; i--; DELAY(10)) { if (!(CSR_READ_2(sc, offreg) & (AN_OFF_BUSY|AN_OFF_ERR))) break; } if (i <= 0) return(ETIMEDOUT); return (0); } int an_read_data(sc, id, off, buf, len) struct an_softc *sc; int id, off; caddr_t buf; int len; { if (off != -1 && an_seek(sc, id, off, AN_BAP1)) return(EIO); bus_space_read_raw_multi_2(sc->an_btag, sc->an_bhandle, AN_DATA1, buf, len & ~1); if (len & 1) ((u_int8_t *)buf)[len - 1] = CSR_READ_1(sc, AN_DATA1); return (0); } int an_write_data(sc, id, off, buf, len) struct an_softc *sc; int id, off; caddr_t buf; int len; { if (off != -1 && an_seek(sc, id, off, AN_BAP0)) return(EIO); bus_space_write_raw_multi_2(sc->an_btag, sc->an_bhandle, AN_DATA0, buf, len & ~1); if (len & 1) CSR_WRITE_1(sc, AN_DATA0, ((u_int8_t *)buf)[len - 1]); return (0); } /* * Allocate a region of memory inside the NIC and zero * it out. */ int an_alloc_nicmem(sc, len, id) struct an_softc *sc; int len; int *id; { int i; if (an_cmd(sc, AN_CMD_ALLOC_MEM, len)) { printf("%s: failed to allocate %d bytes on NIC\n", sc->sc_dev.dv_xname, len); return(ENOMEM); } for (i = AN_TIMEOUT; i--; DELAY(10)) { if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_ALLOC) break; } if (i <= 0) return(ETIMEDOUT); CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_ALLOC); *id = CSR_READ_2(sc, AN_ALLOC_FID); if (an_seek(sc, *id, 0, AN_BAP0)) return(EIO); bus_space_set_multi_2(sc->an_btag, sc->an_bhandle, AN_DATA0, 0, len / 2); CSR_WRITE_1(sc, AN_DATA0, 0); return(0); } void an_setdef(sc, areq) struct an_softc *sc; struct an_req *areq; { struct ifnet *ifp; struct an_ltv_genconfig *cfg; struct an_ltv_ssidlist *ssid; struct an_ltv_aplist *ap; struct an_ltv_gen *sp; ifp = &sc->sc_arpcom.ac_if; switch (areq->an_type) { case AN_RID_GENCONFIG: cfg = (struct an_ltv_genconfig *)areq; bcopy((char *)&cfg->an_macaddr, (char *)&sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN); bcopy((char *)&cfg->an_macaddr, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN); bcopy((char *)cfg, (char *)&sc->an_config, sizeof(struct an_ltv_genconfig)); break; case AN_RID_SSIDLIST: ssid = (struct an_ltv_ssidlist *)areq; bcopy((char *)ssid, (char *)&sc->an_ssidlist, sizeof(struct an_ltv_ssidlist)); break; case AN_RID_APLIST: ap = (struct an_ltv_aplist *)areq; bcopy((char *)ap, (char *)&sc->an_aplist, sizeof(struct an_ltv_aplist)); break; case AN_RID_TX_SPEED: sp = (struct an_ltv_gen *)areq; sc->an_tx_rate = sp->an_val[0]; break; case AN_RID_WEP_VOLATILE: /* Disable the MAC */ an_cmd(sc, AN_CMD_DISABLE, 0); /* Just write the key, we dont' want to save it */ an_write_record(sc, (struct an_ltv_gen *)areq); /* Turn the MAC back on */ an_cmd(sc, AN_CMD_ENABLE, 0); break; case AN_RID_WEP_PERMANENT: /* Disable the MAC */ an_cmd(sc, AN_CMD_DISABLE, 0); /* Just write the key, the card will save it in this mode */ an_write_record(sc, (struct an_ltv_gen *)areq); /* Turn the MAC back on */ an_cmd(sc, AN_CMD_ENABLE, 0); break; default: printf("%s: unknown RID: %x\n", sc->sc_dev.dv_xname, areq->an_type); return; } /* Reinitialize the card. */ if (ifp->if_flags & IFF_UP) an_init(sc); } /* * We can't change the NIC configuration while the MAC is enabled, * so in order to turn on RX monitor mode, we have to turn the MAC * off first. */ void an_promisc(sc, promisc) struct an_softc *sc; int promisc; { struct an_ltv_genconfig genconf; /* Disable the MAC. */ an_cmd(sc, AN_CMD_DISABLE, 0); /* Set RX mode. */ if (promisc && !(sc->an_config.an_rxmode & AN_RXMODE_LAN_MONITOR_CURBSS) ) { sc->an_rxmode = sc->an_config.an_rxmode; sc->an_config.an_rxmode |= AN_RXMODE_LAN_MONITOR_CURBSS; } else { sc->an_config.an_rxmode = sc->an_rxmode; } /* Transfer the configuration to the NIC */ genconf = sc->an_config; genconf.an_len = sizeof(struct an_ltv_genconfig); genconf.an_type = AN_RID_GENCONFIG; if (an_write_record(sc, (struct an_ltv_gen *)&genconf)) { printf("%s: failed to set configuration\n", sc->sc_dev.dv_xname); return; } /* Turn the MAC back on. */ an_cmd(sc, AN_CMD_ENABLE, 0); } int an_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { int s, error = 0; struct an_softc *sc; struct an_req areq; struct ifreq *ifr; struct proc *p = curproc; struct ifaddr *ifa = (struct ifaddr *)data; s = splimp(); sc = ifp->if_softc; ifr = (struct ifreq *)data; if (sc->an_gone) { splx(s); return(ENODEV); } if ((error = ether_ioctl(ifp, &sc->sc_arpcom, command, data)) > 0) { splx(s); return error; } switch(command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: an_init(sc); arp_ifinit(&sc->sc_arpcom, ifa); break; #endif default: an_init(sc); break; } break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->an_if_flags & IFF_PROMISC)) { an_promisc(sc, 1); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->an_if_flags & IFF_PROMISC) { an_promisc(sc, 0); an_reset(sc); } an_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) an_stop(sc); } sc->an_if_flags = ifp->if_flags; error = 0; break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->an_ifmedia, command); break; case SIOCADDMULTI: case SIOCDELMULTI: /* The Aironet has no multicast filter. */ error = 0; break; case SIOCGAIRONET: error = copyin(ifr->ifr_data, &areq, sizeof(areq)); if (error) break; #ifdef ANCACHE if (areq.an_type == AN_RID_ZERO_CACHE) { error = suser(p, 0); if (error) break; sc->an_sigitems = sc->an_nextitem = 0; break; } else if (areq.an_type == AN_RID_READ_CACHE) { char *pt = (char *)&areq.an_val; bcopy((char *)&sc->an_sigitems, (char *)pt, sizeof(int)); pt += sizeof(int); areq.an_len = sizeof(int) / 2; bcopy((char *)&sc->an_sigcache, (char *)pt, sizeof(struct an_sigcache) * sc->an_sigitems); areq.an_len += ((sizeof(struct an_sigcache) * sc->an_sigitems) / 2) + 1; } else #endif if (an_read_record(sc, (struct an_ltv_gen *)&areq)) { error = EINVAL; break; } error = copyout(&areq, ifr->ifr_data, sizeof(areq)); break; case SIOCSAIRONET: error = suser(p, 0); if (error) break; error = copyin(ifr->ifr_data, &areq, sizeof(areq)); if (error) break; an_setdef(sc, &areq); break; default: error = EINVAL; break; } splx(s); return(error); } int an_init_tx_ring(sc) struct an_softc *sc; { int i; int id; if (sc->an_gone) return (0); for (i = 0; i < AN_TX_RING_CNT; i++) { if (an_alloc_nicmem(sc, 1518 + 0x44, &id)) return(ENOMEM); sc->an_rdata.an_tx_fids[i] = id; sc->an_rdata.an_tx_ring[i] = 0; } sc->an_rdata.an_tx_prod = 0; sc->an_rdata.an_tx_cons = 0; return(0); } void an_init(sc) struct an_softc *sc; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct an_ltv_ssidlist ssid; struct an_ltv_aplist aplist; struct an_ltv_genconfig genconf; int s; if (sc->an_gone) return; s = splimp(); if (ifp->if_flags & IFF_RUNNING) an_stop(sc); sc->an_associated = 0; /* Allocate the TX buffers */ if (an_init_tx_ring(sc)) { printf("%s: tx buffer allocation failed\n", sc->sc_dev.dv_xname); splx(s); return; } /* Set our MAC address. */ bcopy((char *)&sc->sc_arpcom.ac_enaddr, (char *)&sc->an_config.an_macaddr, ETHER_ADDR_LEN); if (ifp->if_flags & IFF_BROADCAST) sc->an_config.an_rxmode = AN_RXMODE_BC_ADDR; else sc->an_config.an_rxmode = AN_RXMODE_ADDR; if (ifp->if_flags & IFF_MULTICAST) sc->an_config.an_rxmode = AN_RXMODE_BC_MC_ADDR; /* Initialize promisc mode. */ if (ifp->if_flags & IFF_PROMISC) sc->an_config.an_rxmode |= AN_RXMODE_LAN_MONITOR_CURBSS; sc->an_rxmode = sc->an_config.an_rxmode; /* Set the ssid list */ ssid = sc->an_ssidlist; ssid.an_type = AN_RID_SSIDLIST; ssid.an_len = sizeof(struct an_ltv_ssidlist); if (an_write_record(sc, (struct an_ltv_gen *)&ssid)) { printf("%s: failed to set ssid list\n", sc->sc_dev.dv_xname); splx(s); return; } /* Set the AP list */ aplist = sc->an_aplist; aplist.an_type = AN_RID_APLIST; aplist.an_len = sizeof(struct an_ltv_aplist); if (an_write_record(sc, (struct an_ltv_gen *)&aplist)) { printf("%s: failed to set AP list\n", sc->sc_dev.dv_xname); splx(s); return; } /* Set the configuration in the NIC */ genconf = sc->an_config; genconf.an_len = sizeof(struct an_ltv_genconfig); genconf.an_type = AN_RID_GENCONFIG; if (an_write_record(sc, (struct an_ltv_gen *)&genconf)) { printf("%s: failed to set configuration\n", sc->sc_dev.dv_xname); splx(s); return; } /* Enable the MAC */ if (an_cmd(sc, AN_CMD_ENABLE, 0)) { printf("%s: failed to enable MAC\n", sc->sc_dev.dv_xname); splx(s); return; } /* enable interrupts */ CSR_WRITE_2(sc, AN_INT_EN, AN_INTRS); splx(s); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; TIMEOUT(sc->an_stat_ch, an_stats_update, sc, hz); } void an_start(ifp) struct ifnet *ifp; { struct an_softc *sc; struct mbuf *m0 = NULL; struct an_txframe_802_3 tx_frame_802_3; struct ether_header *eh; u_int16_t len; int id; int idx; unsigned char txcontrol; int pkts = 0; sc = ifp->if_softc; if (sc->an_gone) return; if (ifp->if_flags & IFF_OACTIVE) return; if (!sc->an_associated) return; idx = sc->an_rdata.an_tx_prod; bzero((char *)&tx_frame_802_3, sizeof(tx_frame_802_3)); while(sc->an_rdata.an_tx_ring[idx] == 0) { IFQ_DEQUEUE(&ifp->if_snd, m0); if (m0 == NULL) break; pkts++; id = sc->an_rdata.an_tx_fids[idx]; eh = mtod(m0, struct ether_header *); bcopy((char *)&eh->ether_dhost, (char *)&tx_frame_802_3.an_tx_dst_addr, ETHER_ADDR_LEN); bcopy((char *)&eh->ether_shost, (char *)&tx_frame_802_3.an_tx_src_addr, ETHER_ADDR_LEN); len = m0->m_pkthdr.len - 12; /* minus src/dest mac & type */ tx_frame_802_3.an_tx_802_3_payload_len = htole16(len); m_copydata(m0, sizeof(struct ether_header) - 2, len, (caddr_t)&sc->an_txbuf); txcontrol=AN_TXCTL_8023; /* write the txcontrol only */ an_write_data(sc, id, 0x08, (caddr_t)&txcontrol, sizeof(txcontrol)); /* 802_3 header */ an_write_data(sc, id, 0x34, (caddr_t)&tx_frame_802_3, sizeof(struct an_txframe_802_3)); /* in mbuf header type is just before payload */ an_write_data(sc, id, 0x44, (caddr_t)&sc->an_txbuf, len); /* * If there's a BPF listener, bounce a copy of * this frame to him. */ #if NBPFILTER > 0 if (ifp->if_bpf) BPF_MTAP(ifp, m0); #endif m_freem(m0); m0 = NULL; sc->an_rdata.an_tx_ring[idx] = id; if (an_cmd(sc, AN_CMD_TX, id)) printf("%s: xmit failed\n", sc->sc_dev.dv_xname); AN_INC(idx, AN_TX_RING_CNT); } if (pkts == 0) return; if (m0 != NULL) ifp->if_flags |= IFF_OACTIVE; sc->an_rdata.an_tx_prod = idx; /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } void an_stop(sc) struct an_softc *sc; { struct ifnet *ifp; int i; if (sc->an_gone) return; ifp = &sc->sc_arpcom.ac_if; an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0); CSR_WRITE_2(sc, AN_INT_EN, 0); an_cmd(sc, AN_CMD_DISABLE, 0); for (i = 0; i < AN_TX_RING_CNT; i++) an_cmd(sc, AN_CMD_DEALLOC_MEM, sc->an_rdata.an_tx_fids[i]); UNTIMEOUT(an_stats_update, sc, sc->an_stat_ch); ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE); } void an_watchdog(ifp) struct ifnet *ifp; { struct an_softc *sc; sc = ifp->if_softc; if (sc->an_gone) return; printf("%s: device timeout\n", sc->sc_dev.dv_xname); an_reset(sc); an_init(sc); ifp->if_oerrors++; } void an_shutdown(self) void *self; { an_stop(self); } #ifdef ANCACHE /* Aironet signal strength cache code. * store signal/noise/quality on per MAC src basis in * a small fixed cache. The cache wraps if > MAX slots * used. The cache may be zeroed out to start over. * Two simple filters exist to reduce computation: * 1. ip only (literally 0x800) which may be used * to ignore some packets. It defaults to ip only. * it could be used to focus on broadcast, non-IP 802.11 beacons. * 2. multicast/broadcast only. This may be used to * ignore unicast packets and only cache signal strength * for multicast/broadcast packets (beacons); e.g., Mobile-IP * beacons and not unicast traffic. * * The cache stores (MAC src(index), IP src (major clue), signal, * quality, noise) * * No apologies for storing IP src here. It's easy and saves much * trouble elsewhere. The cache is assumed to be INET dependent, * although it need not be. * * Note: the Aironet only has a single byte of signal strength value * in the rx frame header, and it's not scaled to anything sensible. * This is kind of lame, but it's all we've got. */ #ifdef documentation int an_sigitems; /* number of cached entries */ struct an_sigcache an_sigcache[MAXANCACHE]; /* array of cache entries */ int an_nextitem; /* index/# of entries */ #endif /* control variables for cache filtering. Basic idea is * to reduce cost (e.g., to only Mobile-IP agent beacons * which are broadcast or multicast). Still you might * want to measure signal strength anth unicast ping packets * on a pt. to pt. ant. setup. */ /* set true if you want to limit cache items to broadcast/mcast * only packets (not unicast). Useful for mobile-ip beacons which * are broadcast/multicast at network layer. Default is all packets * so ping/unicast anll work say anth pt. to pt. antennae setup. */ #if 0 static int an_cache_mcastonly = 0; SYSCTL_INT(_machdep, OID_AUTO, an_cache_mcastonly, CTLFLAG_RW, &an_cache_mcastonly, 0, ""); /* set true if you want to limit cache items to IP packets only */ static int an_cache_iponly = 1; SYSCTL_INT(_machdep, OID_AUTO, an_cache_iponly, CTLFLAG_RW, &an_cache_iponly, 0, ""); #endif /* * an_cache_store, per rx packet store signal * strength in MAC (src) indexed cache. */ void an_cache_store (sc, eh, m, rx_quality) struct an_softc *sc; struct ether_header *eh; struct mbuf *m; unsigned short rx_quality; { struct ip *ip = 0; int i; static int cache_slot = 0; /* use this cache entry */ static int wrapindex = 0; /* next "free" cache entry */ int saanp=0; /* filters: * 1. ip only * 2. configurable filter to throw out unicast packets, * keep multicast only. */ if ((ntohs(eh->ether_type) == 0x800)) saanp = 1; /* filter for ip packets only */ if (sc->an_cache_iponly && !saanp) return; /* filter for broadcast/multicast only */ if (sc->an_cache_mcastonly && ((eh->ether_dhost[0] & 1) == 0)) return; #ifdef SIGDEBUG printf("an: q value %x (MSB=0x%x, LSB=0x%x) \n", rx_quality & 0xffff, rx_quality >> 8, rx_quality & 0xff); #endif /* find the ip header. we want to store the ip_src address */ if (saanp) ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header)); /* do a linear search for a matching MAC address * in the cache table * . MAC address is 6 bytes, * . var w_nextitem holds total number of entries already cached */ for(i = 0; i < sc->an_nextitem; i++) if (!bcmp(eh->ether_shost , sc->an_sigcache[i].macsrc, 6)) /* Match!, * so we already have this entry, update the data */ break; /* did we find a matching mac address? * if yes, then overwrite a previously existing cache entry */ if (i < sc->an_nextitem ) cache_slot = i; /* else, have a new address entry,so * add this new entry, * if table full, then we need to replace LRU entry */ else { /* check for space in cache table * note: an_nextitem also holds number of entries * added in the cache table */ if ( sc->an_nextitem < MAXANCACHE ) { cache_slot = sc->an_nextitem; sc->an_nextitem++; sc->an_sigitems = sc->an_nextitem; } /* no space found, so simply wrap anth wrap index * and "zap" the next entry */ else { if (wrapindex == MAXANCACHE) wrapindex = 0; cache_slot = wrapindex++; } } /* invariant: cache_slot now points at some slot * in cache. */ if (cache_slot < 0 || cache_slot >= MAXANCACHE) { log(LOG_ERR, "an_cache_store, bad index: %d of " "[0..%d], gross cache error\n", cache_slot, MAXANCACHE); return; } /* store items in cache * .ip source address * .mac src * .signal, etc. */ if (saanp) sc->an_sigcache[cache_slot].ipsrc = ip->ip_src.s_addr; bcopy( eh->ether_shost, sc->an_sigcache[cache_slot].macsrc, 6); sc->an_sigcache[cache_slot].signal = rx_quality; } #endif int an_media_change(ifp) struct ifnet *ifp; { struct an_softc *sc = ifp->if_softc; int otype = sc->an_config.an_opmode; int orate = sc->an_tx_rate; if ((sc->an_ifmedia.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0) sc->an_config.an_opmode = AN_OPMODE_IBSS_ADHOC; else sc->an_config.an_opmode = AN_OPMODE_INFRASTRUCTURE_STATION; switch (IFM_SUBTYPE(sc->an_ifmedia.ifm_cur->ifm_media)) { case IFM_IEEE80211_DS1: sc->an_tx_rate = AN_RATE_1MBPS; break; case IFM_IEEE80211_DS2: sc->an_tx_rate = AN_RATE_2MBPS; break; case IFM_IEEE80211_DS5: sc->an_tx_rate = AN_RATE_5_5MBPS; break; case IFM_IEEE80211_DS11: sc->an_tx_rate = AN_RATE_11MBPS; break; case IFM_AUTO: sc->an_tx_rate = 0; break; } if (otype != sc->an_config.an_opmode || orate != sc->an_tx_rate) an_init(sc); return(0); } void an_media_status(ifp, imr) struct ifnet *ifp; struct ifmediareq *imr; { struct an_ltv_status status; struct an_softc *sc = ifp->if_softc; status.an_len = sizeof(status); status.an_type = AN_RID_STATUS; if (an_read_record(sc, (struct an_ltv_gen *)&status)) { /* If the status read fails, just lie. */ imr->ifm_active = sc->an_ifmedia.ifm_cur->ifm_media; imr->ifm_status = IFM_AVALID|IFM_ACTIVE; } if (sc->an_tx_rate == 0) { imr->ifm_active = IFM_IEEE80211|IFM_AUTO; if (sc->an_config.an_opmode == AN_OPMODE_IBSS_ADHOC) imr->ifm_active |= IFM_IEEE80211_ADHOC; switch (status.an_current_tx_rate) { case AN_RATE_1MBPS: imr->ifm_active |= IFM_IEEE80211_DS1; break; case AN_RATE_2MBPS: imr->ifm_active |= IFM_IEEE80211_DS2; break; case AN_RATE_5_5MBPS: imr->ifm_active |= IFM_IEEE80211_DS5; break; case AN_RATE_11MBPS: imr->ifm_active |= IFM_IEEE80211_DS11; break; } } else { imr->ifm_active = sc->an_ifmedia.ifm_cur->ifm_media; } imr->ifm_status = IFM_AVALID; if (sc->an_config.an_opmode == AN_OPMODE_IBSS_ADHOC) imr->ifm_status |= IFM_ACTIVE; else if (status.an_opmode & AN_STATUS_OPMODE_ASSOCIATED) imr->ifm_status |= IFM_ACTIVE; }