/* $OpenBSD: ar5211.c,v 1.10 2005/04/08 22:12:21 reyk Exp $ */ /* * Copyright (c) 2004, 2005 Reyk Floeter * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * HAL interface for the Atheros AR5001 Wireless LAN chipset * (AR5211 + AR5111). */ #include #include #include HAL_BOOL ar5k_ar5211_nic_reset(struct ath_hal *, u_int32_t); HAL_BOOL ar5k_ar5211_nic_wakeup(struct ath_hal *, u_int16_t); u_int16_t ar5k_ar5211_radio_revision(struct ath_hal *, HAL_CHIP); const void ar5k_ar5211_fill(struct ath_hal *); /* * Initial register setting for the AR5211 */ static const struct ar5k_ini ar5211_ini[] = AR5K_AR5211_INI; static const struct ar5k_ar5211_ini_mode ar5211_mode[] = AR5K_AR5211_INI_MODE; AR5K_HAL_FUNCTIONS(extern, ar5k_ar5211,); const void ar5k_ar5211_fill(hal) struct ath_hal *hal; { hal->ah_magic = AR5K_AR5211_MAGIC; /* * Init/Exit functions */ AR5K_HAL_FUNCTION(hal, ar5211, getRateTable); AR5K_HAL_FUNCTION(hal, ar5211, detach); /* * Reset functions */ AR5K_HAL_FUNCTION(hal, ar5211, reset); AR5K_HAL_FUNCTION(hal, ar5211, setPCUConfig); AR5K_HAL_FUNCTION(hal, ar5211, perCalibration); /* * TX functions */ AR5K_HAL_FUNCTION(hal, ar5211, updateTxTrigLevel); AR5K_HAL_FUNCTION(hal, ar5211, setupTxQueue); AR5K_HAL_FUNCTION(hal, ar5211, setTxQueueProps); AR5K_HAL_FUNCTION(hal, ar5211, releaseTxQueue); AR5K_HAL_FUNCTION(hal, ar5211, resetTxQueue); AR5K_HAL_FUNCTION(hal, ar5211, getTxDP); AR5K_HAL_FUNCTION(hal, ar5211, setTxDP); AR5K_HAL_FUNCTION(hal, ar5211, startTxDma); AR5K_HAL_FUNCTION(hal, ar5211, stopTxDma); AR5K_HAL_FUNCTION(hal, ar5211, setupTxDesc); AR5K_HAL_FUNCTION(hal, ar5211, setupXTxDesc); AR5K_HAL_FUNCTION(hal, ar5211, fillTxDesc); AR5K_HAL_FUNCTION(hal, ar5211, procTxDesc); AR5K_HAL_FUNCTION(hal, ar5211, hasVEOL); /* * RX functions */ AR5K_HAL_FUNCTION(hal, ar5211, getRxDP); AR5K_HAL_FUNCTION(hal, ar5211, setRxDP); AR5K_HAL_FUNCTION(hal, ar5211, enableReceive); AR5K_HAL_FUNCTION(hal, ar5211, stopDmaReceive); AR5K_HAL_FUNCTION(hal, ar5211, startPcuReceive); AR5K_HAL_FUNCTION(hal, ar5211, stopPcuReceive); AR5K_HAL_FUNCTION(hal, ar5211, setMulticastFilter); AR5K_HAL_FUNCTION(hal, ar5211, setMulticastFilterIndex); AR5K_HAL_FUNCTION(hal, ar5211, clrMulticastFilterIndex); AR5K_HAL_FUNCTION(hal, ar5211, getRxFilter); AR5K_HAL_FUNCTION(hal, ar5211, setRxFilter); AR5K_HAL_FUNCTION(hal, ar5211, setupRxDesc); AR5K_HAL_FUNCTION(hal, ar5211, procRxDesc); AR5K_HAL_FUNCTION(hal, ar5211, rxMonitor); /* * Misc functions */ AR5K_HAL_FUNCTION(hal, ar5211, dumpState); AR5K_HAL_FUNCTION(hal, ar5211, getDiagState); AR5K_HAL_FUNCTION(hal, ar5211, getMacAddress); AR5K_HAL_FUNCTION(hal, ar5211, setMacAddress); AR5K_HAL_FUNCTION(hal, ar5211, setRegulatoryDomain); AR5K_HAL_FUNCTION(hal, ar5211, setLedState); AR5K_HAL_FUNCTION(hal, ar5211, writeAssocid); AR5K_HAL_FUNCTION(hal, ar5211, gpioCfgInput); AR5K_HAL_FUNCTION(hal, ar5211, gpioCfgOutput); AR5K_HAL_FUNCTION(hal, ar5211, gpioGet); AR5K_HAL_FUNCTION(hal, ar5211, gpioSet); AR5K_HAL_FUNCTION(hal, ar5211, gpioSetIntr); AR5K_HAL_FUNCTION(hal, ar5211, getTsf32); AR5K_HAL_FUNCTION(hal, ar5211, getTsf64); AR5K_HAL_FUNCTION(hal, ar5211, resetTsf); AR5K_HAL_FUNCTION(hal, ar5211, getRegDomain); AR5K_HAL_FUNCTION(hal, ar5211, detectCardPresent); AR5K_HAL_FUNCTION(hal, ar5211, updateMibCounters); AR5K_HAL_FUNCTION(hal, ar5211, getRfGain); AR5K_HAL_FUNCTION(hal, ar5211, setSlotTime); AR5K_HAL_FUNCTION(hal, ar5211, getSlotTime); AR5K_HAL_FUNCTION(hal, ar5211, setAckTimeout); AR5K_HAL_FUNCTION(hal, ar5211, getAckTimeout); AR5K_HAL_FUNCTION(hal, ar5211, setCTSTimeout); AR5K_HAL_FUNCTION(hal, ar5211, getCTSTimeout); /* * Key table (WEP) functions */ AR5K_HAL_FUNCTION(hal, ar5211, isHwCipherSupported); AR5K_HAL_FUNCTION(hal, ar5211, getKeyCacheSize); AR5K_HAL_FUNCTION(hal, ar5211, resetKeyCacheEntry); AR5K_HAL_FUNCTION(hal, ar5211, isKeyCacheEntryValid); AR5K_HAL_FUNCTION(hal, ar5211, setKeyCacheEntry); AR5K_HAL_FUNCTION(hal, ar5211, setKeyCacheEntryMac); /* * Power management functions */ AR5K_HAL_FUNCTION(hal, ar5211, setPowerMode); AR5K_HAL_FUNCTION(hal, ar5211, getPowerMode); AR5K_HAL_FUNCTION(hal, ar5211, queryPSPollSupport); AR5K_HAL_FUNCTION(hal, ar5211, initPSPoll); AR5K_HAL_FUNCTION(hal, ar5211, enablePSPoll); AR5K_HAL_FUNCTION(hal, ar5211, disablePSPoll); /* * Beacon functions */ AR5K_HAL_FUNCTION(hal, ar5211, beaconInit); AR5K_HAL_FUNCTION(hal, ar5211, setStationBeaconTimers); AR5K_HAL_FUNCTION(hal, ar5211, resetStationBeaconTimers); AR5K_HAL_FUNCTION(hal, ar5211, waitForBeaconDone); /* * Interrupt functions */ AR5K_HAL_FUNCTION(hal, ar5211, isInterruptPending); AR5K_HAL_FUNCTION(hal, ar5211, getPendingInterrupts); AR5K_HAL_FUNCTION(hal, ar5211, getInterrupts); AR5K_HAL_FUNCTION(hal, ar5211, setInterrupts); /* * Chipset functions (ar5k-specific, non-HAL) */ AR5K_HAL_FUNCTION(hal, ar5211, get_capabilities); AR5K_HAL_FUNCTION(hal, ar5211, radar_alert); /* * EEPROM access */ AR5K_HAL_FUNCTION(hal, ar5211, eeprom_is_busy); AR5K_HAL_FUNCTION(hal, ar5211, eeprom_read); AR5K_HAL_FUNCTION(hal, ar5211, eeprom_write); } struct ath_hal * ar5k_ar5211_attach(device, sc, st, sh, status) u_int16_t device; void *sc; bus_space_tag_t st; bus_space_handle_t sh; int *status; { struct ath_hal *hal = (struct ath_hal*) sc; u_int8_t mac[IEEE80211_ADDR_LEN]; u_int32_t srev; ar5k_ar5211_fill(hal); /* Bring device out of sleep and reset it's units */ if (ar5k_ar5211_nic_wakeup(hal, AR5K_INIT_MODE) != AH_TRUE) return (NULL); /* Get MAC, PHY and RADIO revisions */ srev = AR5K_REG_READ(AR5K_AR5211_SREV) & AR5K_AR5211_SREV_M; hal->ah_mac_version = srev & AR5K_AR5211_SREV_VERSION; hal->ah_mac_revision = srev & AR5K_AR5211_SREV_REVISION; hal->ah_phy_revision = AR5K_REG_READ(AR5K_AR5211_PHY_CHIP_ID) & 0x00ffffffff; hal->ah_radio_5ghz_revision = ar5k_ar5211_radio_revision(hal, HAL_CHIP_5GHZ); /* Get the 2GHz radio revision if it's supported */ if (hal->ah_mac_version >= AR5K_SREV_VER_AR5211) hal->ah_radio_2ghz_revision = ar5k_ar5211_radio_revision(hal, HAL_CHIP_2GHZ); /* Identify the chipset (this has to be done in an early step) */ hal->ah_version = AR5K_AR5211; hal->ah_radio = AR5K_AR5111; hal->ah_phy = AR5K_AR5211_PHY(0); bcopy(etherbroadcastaddr, mac, IEEE80211_ADDR_LEN); ar5k_ar5211_writeAssocid(hal, mac, 0, 0); ar5k_ar5211_getMacAddress(hal, mac); ar5k_ar5211_setPCUConfig(hal); return (hal); } HAL_BOOL ar5k_ar5211_nic_reset(hal, val) struct ath_hal *hal; u_int32_t val; { HAL_BOOL ret = AH_FALSE; u_int32_t mask = val ? val : ~0; /* Read-and-clear */ AR5K_REG_READ(AR5K_AR5211_RXDP); /* * Reset the device and wait until success */ AR5K_REG_WRITE(AR5K_AR5211_RC, val); /* Wait at least 128 PCI clocks */ AR5K_DELAY(15); val &= AR5K_AR5211_RC_PCU | AR5K_AR5211_RC_BB; mask &= AR5K_AR5211_RC_PCU | AR5K_AR5211_RC_BB; ret = ar5k_register_timeout(hal, AR5K_AR5211_RC, mask, val, AH_FALSE); /* * Reset configuration register */ if ((val & AR5K_AR5211_RC_PCU) == 0) AR5K_REG_WRITE(AR5K_AR5211_CFG, AR5K_AR5211_INIT_CFG); return (ret); } HAL_BOOL ar5k_ar5211_nic_wakeup(hal, flags) struct ath_hal *hal; u_int16_t flags; { u_int32_t turbo, mode, clock; turbo = 0; mode = 0; clock = 0; /* * Get channel mode flags */ if (flags & IEEE80211_CHAN_2GHZ) { mode |= AR5K_AR5211_PHY_MODE_FREQ_2GHZ; clock |= AR5K_AR5211_PHY_PLL_44MHZ; } else if (flags & IEEE80211_CHAN_5GHZ) { mode |= AR5K_AR5211_PHY_MODE_FREQ_5GHZ; clock |= AR5K_AR5211_PHY_PLL_40MHZ; } else { AR5K_PRINT("invalid radio frequency mode\n"); return (AH_FALSE); } if ((flags & IEEE80211_CHAN_CCK) || (flags & IEEE80211_CHAN_DYN)) { /* Dynamic OFDM/CCK is not supported by the AR5211 */ mode |= AR5K_AR5211_PHY_MODE_MOD_CCK; } else if (flags & IEEE80211_CHAN_OFDM) { mode |= AR5K_AR5211_PHY_MODE_MOD_OFDM; } else { AR5K_PRINT("invalid radio frequency mode\n"); return (AH_FALSE); } if (flags & IEEE80211_CHAN_TURBO) { turbo = AR5K_AR5211_PHY_TURBO_MODE | AR5K_AR5211_PHY_TURBO_SHORT; } /* * Reset and wakeup the device */ /* ...reset chipset and PCI device */ if (ar5k_ar5211_nic_reset(hal, AR5K_AR5211_RC_CHIP | AR5K_AR5211_RC_PCI) == AH_FALSE) { AR5K_PRINT("failed to reset the AR5211 + PCI chipset\n"); return (AH_FALSE); } /* ...wakeup */ if (ar5k_ar5211_setPowerMode(hal, HAL_PM_AWAKE, AH_TRUE, 0) == AH_FALSE) { AR5K_PRINT("failed to resume the AR5211 (again)\n"); return (AH_FALSE); } /* ...final warm reset */ if (ar5k_ar5211_nic_reset(hal, 0) == AH_FALSE) { AR5K_PRINT("failed to warm reset the AR5211\n"); return (AH_FALSE); } /* ...set the PHY operating mode */ AR5K_REG_WRITE(AR5K_AR5211_PHY_PLL, clock); AR5K_DELAY(300); AR5K_REG_WRITE(AR5K_AR5211_PHY_MODE, mode); AR5K_REG_WRITE(AR5K_AR5211_PHY_TURBO, turbo); return (AH_TRUE); } u_int16_t ar5k_ar5211_radio_revision(hal, chip) struct ath_hal *hal; HAL_CHIP chip; { int i; u_int32_t srev; u_int16_t ret; /* * Set the radio chip access register */ switch (chip) { case HAL_CHIP_2GHZ: AR5K_REG_WRITE(AR5K_AR5211_PHY(0), AR5K_AR5211_PHY_SHIFT_2GHZ); break; case HAL_CHIP_5GHZ: AR5K_REG_WRITE(AR5K_AR5211_PHY(0), AR5K_AR5211_PHY_SHIFT_5GHZ); break; default: return (0); } AR5K_DELAY(2000); /* ...wait until PHY is ready and read the selected radio revision */ AR5K_REG_WRITE(AR5K_AR5211_PHY(0x34), 0x00001c16); for (i = 0; i < 8; i++) AR5K_REG_WRITE(AR5K_AR5211_PHY(0x20), 0x00010000); srev = (AR5K_REG_READ(AR5K_AR5211_PHY(0x100)) >> 24) & 0xff; ret = ar5k_bitswap(((srev & 0xf0) >> 4) | ((srev & 0x0f) << 4), 8); /* Reset to the 5GHz mode */ AR5K_REG_WRITE(AR5K_AR5211_PHY(0), AR5K_AR5211_PHY_SHIFT_5GHZ); return (ret); } const HAL_RATE_TABLE * ar5k_ar5211_getRateTable(hal, mode) struct ath_hal *hal; u_int mode; { switch (mode) { case HAL_MODE_11A: return (&hal->ah_rt_11a); case HAL_MODE_TURBO: return (&hal->ah_rt_turbo); case HAL_MODE_11B: return (&hal->ah_rt_11b); case HAL_MODE_11G: case HAL_MODE_PUREG: return (&hal->ah_rt_11g); default: return (NULL); } return (NULL); } void ar5k_ar5211_detach(hal) struct ath_hal *hal; { if (hal->ah_rf_banks != NULL) free(hal->ah_rf_banks, M_DEVBUF); /* * Free HAL structure, assume interrupts are down */ free(hal, M_DEVBUF); } HAL_BOOL ar5k_ar5211_reset(hal, op_mode, channel, change_channel, status) struct ath_hal *hal; HAL_OPMODE op_mode; HAL_CHANNEL *channel; HAL_BOOL change_channel; HAL_STATUS *status; { struct ar5k_eeprom_info *ee = &hal->ah_capabilities.cap_eeprom; u_int8_t mac[IEEE80211_ADDR_LEN]; u_int32_t data, s_seq, s_ant, s_led[3]; u_int i, mode, freq, ee_mode, ant[2]; /* * Save some registers before a reset */ if (change_channel == AH_TRUE) { s_seq = AR5K_REG_READ(AR5K_AR5211_DCU_SEQNUM(0)); s_ant = AR5K_REG_READ(AR5K_AR5211_DEFAULT_ANTENNA); } else { s_seq = 0; s_ant = 1; } s_led[0] = AR5K_REG_READ(AR5K_AR5211_PCICFG) & AR5K_AR5211_PCICFG_LEDSTATE; s_led[1] = AR5K_REG_READ(AR5K_AR5211_GPIOCR); s_led[2] = AR5K_REG_READ(AR5K_AR5211_GPIODO); if (ar5k_ar5211_nic_wakeup(hal, channel->c_channel_flags) == AH_FALSE) return (AH_FALSE); /* * Initialize operating mode */ hal->ah_op_mode = op_mode; if (channel->c_channel_flags & IEEE80211_CHAN_A) { mode = AR5K_INI_VAL_11A; freq = AR5K_INI_RFGAIN_5GHZ; ee_mode = AR5K_EEPROM_MODE_11A; } else if (channel->c_channel_flags & IEEE80211_CHAN_T) { mode = AR5K_INI_VAL_11A_TURBO; freq = AR5K_INI_RFGAIN_5GHZ; ee_mode = AR5K_EEPROM_MODE_11A; } else if (channel->c_channel_flags & IEEE80211_CHAN_B) { mode = AR5K_INI_VAL_11B; freq = AR5K_INI_RFGAIN_2GHZ; ee_mode = AR5K_EEPROM_MODE_11B; } else if (channel->c_channel_flags & IEEE80211_CHAN_G) { mode = AR5K_INI_VAL_11G; freq = AR5K_INI_RFGAIN_2GHZ; ee_mode = AR5K_EEPROM_MODE_11G; } else { AR5K_PRINTF("invalid channel: %d\n", channel->c_channel); return (AH_FALSE); } /* PHY access enable */ AR5K_REG_WRITE(AR5K_AR5211_PHY(0), AR5K_AR5211_PHY_SHIFT_5GHZ); /* * Write initial mode settings */ for (i = 0; i < AR5K_ELEMENTS(ar5211_mode); i++) { AR5K_REG_WAIT(i); AR5K_REG_WRITE((u_int32_t)ar5211_mode[i].mode_register, ar5211_mode[i].mode_value[mode]); } /* * Write initial register settings */ for (i = 0; i < AR5K_ELEMENTS(ar5211_ini); i++) { if (change_channel == AH_TRUE && ar5211_ini[i].ini_register >= AR5K_AR5211_PCU_MIN && ar5211_ini[i].ini_register <= AR5K_AR5211_PCU_MAX) continue; AR5K_REG_WAIT(i); AR5K_REG_WRITE((u_int32_t)ar5211_ini[i].ini_register, ar5211_ini[i].ini_value); } /* * Write initial RF gain settings */ if (ar5k_rfgain(hal, AR5K_INI_PHY_5111, freq) == AH_FALSE) return (AH_FALSE); AR5K_DELAY(1000); /* * Configure additional registers */ /* Set antenna mode */ AR5K_REG_MASKED_BITS(AR5K_AR5211_PHY(0x44), hal->ah_antenna[ee_mode][0], 0xfffffc06); ant[0] = HAL_ANT_FIXED_A; ant[1] = HAL_ANT_FIXED_B; if (hal->ah_ant_diversity == AH_FALSE) { if (freq == AR5K_INI_RFGAIN_2GHZ) ant[0] = HAL_ANT_FIXED_B; else if (freq == AR5K_INI_RFGAIN_5GHZ) ant[1] = HAL_ANT_FIXED_A; } AR5K_REG_WRITE(AR5K_AR5211_PHY_ANT_SWITCH_TABLE_0, hal->ah_antenna[ee_mode][ant[0]]); AR5K_REG_WRITE(AR5K_AR5211_PHY_ANT_SWITCH_TABLE_1, hal->ah_antenna[ee_mode][ant[1]]); /* Commit values from EEPROM */ AR5K_REG_WRITE_BITS(AR5K_AR5211_PHY_FC, AR5K_AR5211_PHY_FC_TX_CLIP, ee->ee_tx_clip); AR5K_REG_WRITE(AR5K_AR5211_PHY(0x5a), AR5K_AR5211_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode])); AR5K_REG_MASKED_BITS(AR5K_AR5211_PHY(0x11), (ee->ee_switch_settling[ee_mode] << 7) & 0x3f80, 0xffffc07f); AR5K_REG_MASKED_BITS(AR5K_AR5211_PHY(0x12), (ee->ee_ant_tx_rx[ee_mode] << 12) & 0x3f000, 0xfffc0fff); AR5K_REG_MASKED_BITS(AR5K_AR5211_PHY(0x14), (ee->ee_adc_desired_size[ee_mode] & 0x00ff) | ((ee->ee_pga_desired_size[ee_mode] << 8) & 0xff00), 0xffff0000); AR5K_REG_WRITE(AR5K_AR5211_PHY(0x0d), (ee->ee_tx_end2xpa_disable[ee_mode] << 24) | (ee->ee_tx_end2xpa_disable[ee_mode] << 16) | (ee->ee_tx_frm2xpa_enable[ee_mode] << 8) | (ee->ee_tx_frm2xpa_enable[ee_mode])); AR5K_REG_MASKED_BITS(AR5K_AR5211_PHY(0x0a), ee->ee_tx_end2xlna_enable[ee_mode] << 8, 0xffff00ff); AR5K_REG_MASKED_BITS(AR5K_AR5211_PHY(0x19), (ee->ee_thr_62[ee_mode] << 12) & 0x7f000, 0xfff80fff); AR5K_REG_MASKED_BITS(AR5K_AR5211_PHY(0x49), 4, 0xffffff01); AR5K_REG_ENABLE_BITS(AR5K_AR5211_PHY_IQ, AR5K_AR5211_PHY_IQ_CORR_ENABLE | (ee->ee_i_cal[ee_mode] << AR5K_AR5211_PHY_IQ_CORR_Q_I_COFF_S) | ee->ee_q_cal[ee_mode]); /* * Restore saved values */ AR5K_REG_WRITE(AR5K_AR5211_DCU_SEQNUM(0), s_seq); AR5K_REG_WRITE(AR5K_AR5211_DEFAULT_ANTENNA, s_ant); AR5K_REG_ENABLE_BITS(AR5K_AR5211_PCICFG, s_led[0]); AR5K_REG_WRITE(AR5K_AR5211_GPIOCR, s_led[1]); AR5K_REG_WRITE(AR5K_AR5211_GPIODO, s_led[2]); /* * Misc */ bcopy(etherbroadcastaddr, mac, IEEE80211_ADDR_LEN); ar5k_ar5211_writeAssocid(hal, mac, 0, 0); ar5k_ar5211_setPCUConfig(hal); AR5K_REG_WRITE(AR5K_AR5211_PISR, 0xffffffff); AR5K_REG_WRITE(AR5K_AR5211_RSSI_THR, AR5K_TUNE_RSSI_THRES); /* * Set channel and calibrate the PHY */ if (ar5k_channel(hal, channel) == AH_FALSE) return (AH_FALSE); /* * Enable the PHY and wait until completion */ AR5K_REG_WRITE(AR5K_AR5211_PHY_ACTIVE, AR5K_AR5211_PHY_ENABLE); data = AR5K_REG_READ(AR5K_AR5211_PHY_RX_DELAY) & AR5K_AR5211_PHY_RX_DELAY_M; data = (channel->c_channel_flags & IEEE80211_CHAN_CCK) ? ((data << 2) / 22) : (data / 10); AR5K_DELAY(100 + data); /* * Start calibration */ AR5K_REG_ENABLE_BITS(AR5K_AR5211_PHY_AGCCTL, AR5K_AR5211_PHY_AGCCTL_NF | AR5K_AR5211_PHY_AGCCTL_CAL); if (channel->c_channel_flags & IEEE80211_CHAN_B) { hal->ah_calibration = AH_FALSE; } else { hal->ah_calibration = AH_TRUE; AR5K_REG_WRITE_BITS(AR5K_AR5211_PHY_IQ, AR5K_AR5211_PHY_IQ_CAL_NUM_LOG_MAX, 15); AR5K_REG_ENABLE_BITS(AR5K_AR5211_PHY_IQ, AR5K_AR5211_PHY_IQ_RUN); } /* * Reset queues and start beacon timers at the end of the reset routine */ for (i = 0; i < hal->ah_capabilities.cap_queues.q_tx_num; i++) { AR5K_REG_WRITE_Q(AR5K_AR5211_DCU_QCUMASK(i), i); if (ar5k_ar5211_resetTxQueue(hal, i) == AH_FALSE) { AR5K_PRINTF("failed to reset TX queue #%d\n", i); return (AH_FALSE); } } /* Pre-enable interrupts */ ar5k_ar5211_setInterrupts(hal, HAL_INT_RX | HAL_INT_TX | HAL_INT_FATAL); /* * Set RF kill flags if supported by the device (read from the EEPROM) */ if (AR5K_EEPROM_HDR_RFKILL(hal->ah_capabilities.cap_eeprom.ee_header)) { ar5k_ar5211_gpioCfgInput(hal, 0); if ((hal->ah_gpio[0] = ar5k_ar5211_gpioGet(hal, 0)) == 0) ar5k_ar5211_gpioSetIntr(hal, 0, 1); else ar5k_ar5211_gpioSetIntr(hal, 0, 0); } /* * Disable beacons and reset the register */ AR5K_REG_DISABLE_BITS(AR5K_AR5211_BEACON, AR5K_AR5211_BEACON_ENABLE | AR5K_AR5211_BEACON_RESET_TSF); return (AH_TRUE); } void ar5k_ar5211_setPCUConfig(hal) struct ath_hal *hal; { u_int32_t pcu_reg, low_id, high_id; pcu_reg = 0; switch (hal->ah_op_mode) { case IEEE80211_M_IBSS: pcu_reg |= AR5K_AR5211_STA_ID1_ADHOC | AR5K_AR5211_STA_ID1_DESC_ANTENNA; break; case IEEE80211_M_HOSTAP: pcu_reg |= AR5K_AR5211_STA_ID1_AP | AR5K_AR5211_STA_ID1_RTS_DEFAULT_ANTENNA; break; case IEEE80211_M_STA: case IEEE80211_M_MONITOR: pcu_reg |= AR5K_AR5211_STA_ID1_DEFAULT_ANTENNA; break; default: return; } /* * Set PCU registers */ bcopy(&(hal->ah_sta_id[0]), &low_id, 4); bcopy(&(hal->ah_sta_id[4]), &high_id, 2); AR5K_REG_WRITE(AR5K_AR5211_STA_ID0, low_id); AR5K_REG_WRITE(AR5K_AR5211_STA_ID1, pcu_reg | high_id); return; } HAL_BOOL ar5k_ar5211_perCalibration(hal, channel) struct ath_hal *hal; HAL_CHANNEL *channel; { u_int32_t i_pwr, q_pwr; int32_t iq_corr, i_coff, i_coffd, q_coff, q_coffd; if (hal->ah_calibration == AH_FALSE || AR5K_REG_READ(AR5K_AR5211_PHY_IQ) & AR5K_AR5211_PHY_IQ_RUN) goto done; hal->ah_calibration = AH_FALSE; iq_corr = AR5K_REG_READ(AR5K_AR5211_PHY_IQRES_CAL_CORR); i_pwr = AR5K_REG_READ(AR5K_AR5211_PHY_IQRES_CAL_PWR_I); q_pwr = AR5K_REG_READ(AR5K_AR5211_PHY_IQRES_CAL_PWR_Q); i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7; q_coffd = q_pwr >> 6; if (i_coffd == 0 || q_coffd == 0) goto done; i_coff = ((-iq_corr) / i_coffd) & 0x3f; q_coff = (((int32_t)i_pwr / q_coffd) - 64) & 0x1f; /* Commit new IQ value */ AR5K_REG_ENABLE_BITS(AR5K_AR5211_PHY_IQ, AR5K_AR5211_PHY_IQ_CORR_ENABLE | ((u_int32_t)q_coff) | ((u_int32_t)i_coff << AR5K_AR5211_PHY_IQ_CORR_Q_I_COFF_S)); done: /* Start noise floor calibration */ AR5K_REG_ENABLE_BITS(AR5K_AR5211_PHY_AGCCTL, AR5K_AR5211_PHY_AGCCTL_NF); return (AH_TRUE); } /* * Transmit functions */ HAL_BOOL ar5k_ar5211_updateTxTrigLevel(hal, increase) struct ath_hal *hal; HAL_BOOL increase; { u_int32_t trigger_level, imr; HAL_BOOL status = AH_FALSE; /* * Disable interrupts by setting the mask */ imr = ar5k_ar5211_setInterrupts(hal, hal->ah_imr & ~HAL_INT_GLOBAL); trigger_level = AR5K_REG_MS(AR5K_REG_READ(AR5K_AR5211_TXCFG), AR5K_AR5211_TXCFG_TXFULL); if (increase == AH_FALSE) { if (--trigger_level < AR5K_TUNE_MIN_TX_FIFO_THRES) goto done; } else trigger_level += ((AR5K_TUNE_MAX_TX_FIFO_THRES - trigger_level) / 2); /* * Update trigger level on success */ AR5K_REG_WRITE_BITS(AR5K_AR5211_TXCFG, AR5K_AR5211_TXCFG_TXFULL, trigger_level); status = AH_TRUE; done: /* * Restore interrupt mask */ ar5k_ar5211_setInterrupts(hal, imr); return (status); } int ar5k_ar5211_setupTxQueue(hal, queue_type, queue_info) struct ath_hal *hal; HAL_TX_QUEUE queue_type; const HAL_TXQ_INFO *queue_info; { u_int queue; /* * Get queue by type */ if (queue_type == HAL_TX_QUEUE_DATA) { for (queue = HAL_TX_QUEUE_ID_DATA_MIN; hal->ah_txq[queue].tqi_type != HAL_TX_QUEUE_INACTIVE; queue++) if (queue > HAL_TX_QUEUE_ID_DATA_MAX) return (-1); } else if (queue_type == HAL_TX_QUEUE_PSPOLL) { queue = HAL_TX_QUEUE_ID_PSPOLL; } else if (queue_type == HAL_TX_QUEUE_BEACON) { queue = HAL_TX_QUEUE_ID_BEACON; } else if (queue_type == HAL_TX_QUEUE_CAB) { queue = HAL_TX_QUEUE_ID_CAB; } else return (-1); /* * Setup internal queue structure */ bzero(&hal->ah_txq[queue], sizeof(HAL_TXQ_INFO)); hal->ah_txq[queue].tqi_type = queue_type; if (queue_info != NULL) { if (ar5k_ar5211_setTxQueueProps(hal, queue, queue_info) != AH_TRUE) return (-1); } AR5K_Q_ENABLE_BITS(hal->ah_txq_interrupts, queue); return (queue); } HAL_BOOL ar5k_ar5211_setTxQueueProps(hal, queue, queue_info) struct ath_hal *hal; int queue; const HAL_TXQ_INFO *queue_info; { AR5K_ASSERT_ENTRY(queue, hal->ah_capabilities.cap_queues.q_tx_num); if (hal->ah_txq[queue].tqi_type == HAL_TX_QUEUE_INACTIVE) return (AH_FALSE); bcopy(queue_info, &hal->ah_txq[queue], sizeof(HAL_TXQ_INFO)); if (queue_info->tqi_type == HAL_TX_QUEUE_DATA && (queue_info->tqi_subtype >= HAL_WME_AC_VI) && (queue_info->tqi_subtype <= HAL_WME_UPSD)) hal->ah_txq[queue].tqi_flags |= AR5K_TXQ_FLAG_POST_FR_BKOFF_DIS; return (AH_TRUE); } HAL_BOOL ar5k_ar5211_releaseTxQueue(hal, queue) struct ath_hal *hal; u_int queue; { AR5K_ASSERT_ENTRY(queue, hal->ah_capabilities.cap_queues.q_tx_num); /* This queue will be skipped in further operations */ hal->ah_txq[queue].tqi_type = HAL_TX_QUEUE_INACTIVE; AR5K_Q_DISABLE_BITS(hal->ah_txq_interrupts, queue); return (AH_FALSE); } HAL_BOOL ar5k_ar5211_resetTxQueue(hal, queue) struct ath_hal *hal; u_int queue; { u_int32_t cw_min, cw_max, retry_lg, retry_sh; struct ieee80211_channel *channel = (struct ieee80211_channel*) &hal->ah_current_channel; HAL_TXQ_INFO *tq; AR5K_ASSERT_ENTRY(queue, hal->ah_capabilities.cap_queues.q_tx_num); tq = &hal->ah_txq[queue]; if (tq->tqi_type == HAL_TX_QUEUE_INACTIVE) return (AH_TRUE); /* * Set registers by channel mode */ if (IEEE80211_IS_CHAN_B(channel)) { hal->ah_cw_min = AR5K_TUNE_CWMIN_11B; cw_max = hal->ah_cw_max = AR5K_TUNE_CWMAX_11B; hal->ah_aifs = AR5K_TUNE_AIFS_11B; } else { hal->ah_cw_min = AR5K_TUNE_CWMIN; cw_max = hal->ah_cw_max = AR5K_TUNE_CWMAX; hal->ah_aifs = AR5K_TUNE_AIFS; } /* * Set retry limits */ if (hal->ah_software_retry == AH_TRUE) { /* XXX Need to test this */ retry_lg = hal->ah_limit_tx_retries; retry_sh = retry_lg = retry_lg > AR5K_AR5211_DCU_RETRY_LMT_SH_RETRY ? AR5K_AR5211_DCU_RETRY_LMT_SH_RETRY : retry_lg; } else { retry_lg = AR5K_INIT_LG_RETRY; retry_sh = AR5K_INIT_SH_RETRY; } AR5K_REG_WRITE(AR5K_AR5211_DCU_RETRY_LMT(queue), AR5K_REG_SM(AR5K_INIT_SLG_RETRY, AR5K_AR5211_DCU_RETRY_LMT_SLG_RETRY) | AR5K_REG_SM(AR5K_INIT_SSH_RETRY, AR5K_AR5211_DCU_RETRY_LMT_SSH_RETRY) | AR5K_REG_SM(retry_lg, AR5K_AR5211_DCU_RETRY_LMT_LG_RETRY) | AR5K_REG_SM(retry_sh, AR5K_AR5211_DCU_RETRY_LMT_SH_RETRY)); /* * Set initial content window (cw_min/cw_max) */ cw_min = 1; while (cw_min < hal->ah_cw_min) cw_min = (cw_min << 1) | 1; cw_min = tq->tqi_cw_min < 0 ? (cw_min >> (-tq->tqi_cw_min)) : ((cw_min << tq->tqi_cw_min) + (1 << tq->tqi_cw_min) - 1); cw_max = tq->tqi_cw_max < 0 ? (cw_max >> (-tq->tqi_cw_max)) : ((cw_max << tq->tqi_cw_max) + (1 << tq->tqi_cw_max) - 1); AR5K_REG_WRITE(AR5K_AR5211_DCU_LCL_IFS(queue), AR5K_REG_SM(cw_min, AR5K_AR5211_DCU_LCL_IFS_CW_MIN) | AR5K_REG_SM(cw_max, AR5K_AR5211_DCU_LCL_IFS_CW_MAX) | AR5K_REG_SM(hal->ah_aifs + tq->tqi_aifs, AR5K_AR5211_DCU_LCL_IFS_AIFS)); /* * Set misc registers */ AR5K_REG_WRITE(AR5K_AR5211_QCU_MISC(queue), AR5K_AR5211_QCU_MISC_DCU_EARLY); if (tq->tqi_cbr_period) { AR5K_REG_WRITE(AR5K_AR5211_QCU_CBRCFG(queue), AR5K_REG_SM(tq->tqi_cbr_period, AR5K_AR5211_QCU_CBRCFG_INTVAL) | AR5K_REG_SM(tq->tqi_cbr_overflow_limit, AR5K_AR5211_QCU_CBRCFG_ORN_THRES)); AR5K_REG_ENABLE_BITS(AR5K_AR5211_QCU_MISC(queue), AR5K_AR5211_QCU_MISC_FRSHED_CBR); if (tq->tqi_cbr_overflow_limit) AR5K_REG_ENABLE_BITS(AR5K_AR5211_QCU_MISC(queue), AR5K_AR5211_QCU_MISC_CBR_THRES_ENABLE); } if (tq->tqi_ready_time) { AR5K_REG_WRITE(AR5K_AR5211_QCU_RDYTIMECFG(queue), AR5K_REG_SM(tq->tqi_ready_time, AR5K_AR5211_QCU_RDYTIMECFG_INTVAL) | AR5K_AR5211_QCU_RDYTIMECFG_ENABLE); } if (tq->tqi_burst_time) { AR5K_REG_WRITE(AR5K_AR5211_DCU_CHAN_TIME(queue), AR5K_REG_SM(tq->tqi_burst_time, AR5K_AR5211_DCU_CHAN_TIME_DUR) | AR5K_AR5211_DCU_CHAN_TIME_ENABLE); if (tq->tqi_flags & AR5K_TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE) { AR5K_REG_ENABLE_BITS(AR5K_AR5211_QCU_MISC(queue), AR5K_AR5211_QCU_MISC_TXE); } } if (tq->tqi_flags & AR5K_TXQ_FLAG_BACKOFF_DISABLE) { AR5K_REG_WRITE(AR5K_AR5211_DCU_MISC(queue), AR5K_AR5211_DCU_MISC_POST_FR_BKOFF_DIS); } if (tq->tqi_flags & AR5K_TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE) { AR5K_REG_WRITE(AR5K_AR5211_DCU_MISC(queue), AR5K_AR5211_DCU_MISC_BACKOFF_FRAG); } /* * Set registers by queue type */ switch (tq->tqi_type) { case HAL_TX_QUEUE_BEACON: AR5K_REG_ENABLE_BITS(AR5K_AR5211_QCU_MISC(queue), AR5K_AR5211_QCU_MISC_FRSHED_DBA_GT | AR5K_AR5211_QCU_MISC_CBREXP_BCN | AR5K_AR5211_QCU_MISC_BCN_ENABLE); AR5K_REG_ENABLE_BITS(AR5K_AR5211_DCU_MISC(queue), (AR5K_AR5211_DCU_MISC_ARBLOCK_CTL_GLOBAL << AR5K_AR5211_DCU_MISC_ARBLOCK_CTL_GLOBAL) | AR5K_AR5211_DCU_MISC_POST_FR_BKOFF_DIS | AR5K_AR5211_DCU_MISC_BCN_ENABLE); AR5K_REG_WRITE(AR5K_AR5211_QCU_RDYTIMECFG(queue), ((AR5K_TUNE_BEACON_INTERVAL - (AR5K_TUNE_SW_BEACON_RESP - AR5K_TUNE_DMA_BEACON_RESP) - AR5K_TUNE_ADDITIONAL_SWBA_BACKOFF) * 1024) | AR5K_AR5211_QCU_RDYTIMECFG_ENABLE); break; case HAL_TX_QUEUE_CAB: AR5K_REG_ENABLE_BITS(AR5K_AR5211_QCU_MISC(queue), AR5K_AR5211_QCU_MISC_FRSHED_DBA_GT | AR5K_AR5211_QCU_MISC_CBREXP | AR5K_AR5211_QCU_MISC_CBREXP_BCN); AR5K_REG_ENABLE_BITS(AR5K_AR5211_DCU_MISC(queue), (AR5K_AR5211_DCU_MISC_ARBLOCK_CTL_GLOBAL << AR5K_AR5211_DCU_MISC_ARBLOCK_CTL_GLOBAL)); break; case HAL_TX_QUEUE_PSPOLL: AR5K_REG_ENABLE_BITS(AR5K_AR5211_QCU_MISC(queue), AR5K_AR5211_QCU_MISC_CBREXP); break; case HAL_TX_QUEUE_DATA: default: break; } /* * Enable tx queue in the secondary interrupt mask registers */ AR5K_REG_WRITE(AR5K_AR5211_SIMR0, AR5K_REG_SM(hal->ah_txq_interrupts, AR5K_AR5211_SIMR0_QCU_TXOK) | AR5K_REG_SM(hal->ah_txq_interrupts, AR5K_AR5211_SIMR0_QCU_TXDESC)); AR5K_REG_WRITE(AR5K_AR5211_SIMR1, AR5K_REG_SM(hal->ah_txq_interrupts, AR5K_AR5211_SIMR1_QCU_TXERR)); AR5K_REG_WRITE(AR5K_AR5211_SIMR2, AR5K_REG_SM(hal->ah_txq_interrupts, AR5K_AR5211_SIMR2_QCU_TXURN)); return (AH_TRUE); } u_int32_t ar5k_ar5211_getTxDP(hal, queue) struct ath_hal *hal; u_int queue; { AR5K_ASSERT_ENTRY(queue, hal->ah_capabilities.cap_queues.q_tx_num); /* * Get the transmit queue descriptor pointer from the selected queue */ return (AR5K_REG_READ(AR5K_AR5211_QCU_TXDP(queue))); } HAL_BOOL ar5k_ar5211_setTxDP(hal, queue, phys_addr) struct ath_hal *hal; u_int queue; u_int32_t phys_addr; { AR5K_ASSERT_ENTRY(queue, hal->ah_capabilities.cap_queues.q_tx_num); /* * Set the transmit queue descriptor pointer for the selected queue * (this won't work if the queue is still active) */ if (AR5K_REG_READ_Q(AR5K_AR5211_QCU_TXE, queue)) return (AH_FALSE); AR5K_REG_WRITE(AR5K_AR5211_QCU_TXDP(queue), phys_addr); return (AH_TRUE); } HAL_BOOL ar5k_ar5211_startTxDma(hal, queue) struct ath_hal *hal; u_int queue; { AR5K_ASSERT_ENTRY(queue, hal->ah_capabilities.cap_queues.q_tx_num); /* Return if queue is disabled */ if (AR5K_REG_READ_Q(AR5K_AR5211_QCU_TXD, queue)) return (AH_FALSE); /* Start queue */ AR5K_REG_WRITE_Q(AR5K_AR5211_QCU_TXE, queue); return (AH_TRUE); } HAL_BOOL ar5k_ar5211_stopTxDma(hal, queue) struct ath_hal *hal; u_int queue; { HAL_BOOL ret; AR5K_ASSERT_ENTRY(queue, hal->ah_capabilities.cap_queues.q_tx_num); /* * Schedule TX disable and wait until queue is empty */ AR5K_REG_WRITE_Q(AR5K_AR5211_QCU_TXD, queue); ret = ar5k_register_timeout(hal, AR5K_AR5211_QCU_STS(queue), AR5K_AR5211_QCU_STS_FRMPENDCNT, 0, AH_FALSE); if (AR5K_REG_READ_Q(AR5K_AR5211_QCU_TXE, queue)) return (AH_FALSE); /* Clear register */ AR5K_REG_WRITE(AR5K_AR5211_QCU_TXD, 0); return (AH_TRUE); } HAL_BOOL ar5k_ar5211_setupTxDesc(hal, desc, packet_length, header_length, type, tx_power, tx_rate0, tx_tries0, key_index, antenna_mode, flags, rtscts_rate, rtscts_duration) struct ath_hal *hal; struct ath_desc *desc; u_int packet_length; u_int header_length; HAL_PKT_TYPE type; u_int tx_power; u_int tx_rate0; u_int tx_tries0; u_int key_index; u_int antenna_mode; u_int flags; u_int rtscts_rate; u_int rtscts_duration; { struct ar5k_ar5211_tx_desc *tx_desc; tx_desc = (struct ar5k_ar5211_tx_desc*)&desc->ds_ctl0; /* * Validate input */ if (tx_tries0 == 0) return (AH_FALSE); if ((tx_desc->tx_control_0 = (packet_length & AR5K_AR5211_DESC_TX_CTL0_FRAME_LEN)) != packet_length) return (AH_FALSE); tx_desc->tx_control_0 |= AR5K_REG_SM(tx_rate0, AR5K_AR5211_DESC_TX_CTL0_XMIT_RATE) | AR5K_REG_SM(antenna_mode, AR5K_AR5211_DESC_TX_CTL0_ANT_MODE_XMIT); tx_desc->tx_control_1 = AR5K_REG_SM(type, AR5K_AR5211_DESC_TX_CTL1_FRAME_TYPE); #define _TX_FLAGS(_c, _flag) \ if (flags & HAL_TXDESC_##_flag) \ tx_desc->tx_control_##_c |= \ AR5K_AR5211_DESC_TX_CTL##_c##_##_flag _TX_FLAGS(0, CLRDMASK); _TX_FLAGS(0, VEOL); _TX_FLAGS(0, INTREQ); _TX_FLAGS(0, RTSENA); _TX_FLAGS(1, NOACK); #undef _TX_FLAGS /* * WEP crap */ if (key_index != HAL_TXKEYIX_INVALID) { tx_desc->tx_control_0 |= AR5K_AR5211_DESC_TX_CTL0_ENCRYPT_KEY_VALID; tx_desc->tx_control_1 |= AR5K_REG_SM(key_index, AR5K_AR5211_DESC_TX_CTL1_ENCRYPT_KEY_INDEX); } return (AH_TRUE); } HAL_BOOL ar5k_ar5211_fillTxDesc(hal, desc, segment_length, first_segment, last_segment) struct ath_hal *hal; struct ath_desc *desc; u_int segment_length; HAL_BOOL first_segment; HAL_BOOL last_segment; { struct ar5k_ar5211_tx_desc *tx_desc; tx_desc = (struct ar5k_ar5211_tx_desc*)&desc->ds_ctl0; /* Clear status descriptor */ bzero(desc->ds_hw, sizeof(desc->ds_hw)); /* Validate segment length and initialize the descriptor */ if ((tx_desc->tx_control_1 = (segment_length & AR5K_AR5211_DESC_TX_CTL1_BUF_LEN)) != segment_length) return (AH_FALSE); if (first_segment != AH_TRUE) tx_desc->tx_control_0 &= ~AR5K_AR5211_DESC_TX_CTL0_FRAME_LEN; if (last_segment != AH_TRUE) tx_desc->tx_control_1 |= AR5K_AR5211_DESC_TX_CTL1_MORE; return (AH_TRUE); } HAL_BOOL ar5k_ar5211_setupXTxDesc(hal, desc, tx_rate1, tx_tries1, tx_rate2, tx_tries2, tx_rate3, tx_tries3) struct ath_hal *hal; struct ath_desc *desc; u_int tx_rate1; u_int tx_tries1; u_int tx_rate2; u_int tx_tries2; u_int tx_rate3; u_int tx_tries3; { return (AH_FALSE); } HAL_STATUS ar5k_ar5211_procTxDesc(hal, desc) struct ath_hal *hal; struct ath_desc *desc; { struct ar5k_ar5211_tx_status *tx_status; struct ar5k_ar5211_tx_desc *tx_desc; tx_desc = (struct ar5k_ar5211_tx_desc*)&desc->ds_ctl0; tx_status = (struct ar5k_ar5211_tx_status*)&desc->ds_hw[0]; /* No frame has been send or error */ if ((tx_status->tx_status_1 & AR5K_AR5211_DESC_TX_STATUS1_DONE) == 0) return (HAL_EINPROGRESS); /* * Get descriptor status */ desc->ds_us.tx.ts_tstamp = AR5K_REG_MS(tx_status->tx_status_0, AR5K_AR5211_DESC_TX_STATUS0_SEND_TIMESTAMP); desc->ds_us.tx.ts_shortretry = AR5K_REG_MS(tx_status->tx_status_0, AR5K_AR5211_DESC_TX_STATUS0_RTS_FAIL_COUNT); desc->ds_us.tx.ts_longretry = AR5K_REG_MS(tx_status->tx_status_0, AR5K_AR5211_DESC_TX_STATUS0_DATA_FAIL_COUNT); desc->ds_us.tx.ts_seqnum = AR5K_REG_MS(tx_status->tx_status_1, AR5K_AR5211_DESC_TX_STATUS1_SEQ_NUM); desc->ds_us.tx.ts_rssi = AR5K_REG_MS(tx_status->tx_status_1, AR5K_AR5211_DESC_TX_STATUS1_ACK_SIG_STRENGTH); desc->ds_us.tx.ts_antenna = 1; desc->ds_us.tx.ts_status = 0; desc->ds_us.tx.ts_tstamp = AR5K_REG_MS(tx_desc->tx_control_0, AR5K_AR5211_DESC_TX_CTL0_XMIT_RATE); if ((tx_status->tx_status_0 & AR5K_AR5211_DESC_TX_STATUS0_FRAME_XMIT_OK) == 0) { if (tx_status->tx_status_0 & AR5K_AR5211_DESC_TX_STATUS0_EXCESSIVE_RETRIES) desc->ds_us.tx.ts_status |= HAL_TXERR_XRETRY; if (tx_status->tx_status_0 & AR5K_AR5211_DESC_TX_STATUS0_FIFO_UNDERRUN) desc->ds_us.tx.ts_status |= HAL_TXERR_FIFO; if (tx_status->tx_status_0 & AR5K_AR5211_DESC_TX_STATUS0_FILTERED) desc->ds_us.tx.ts_status |= HAL_TXERR_FILT; } return (HAL_OK); } HAL_BOOL ar5k_ar5211_hasVEOL(hal) struct ath_hal *hal; { return (AH_TRUE); } /* * Receive functions */ u_int32_t ar5k_ar5211_getRxDP(hal) struct ath_hal *hal; { return (AR5K_REG_READ(AR5K_AR5211_RXDP)); } void ar5k_ar5211_setRxDP(hal, phys_addr) struct ath_hal *hal; u_int32_t phys_addr; { AR5K_REG_WRITE(AR5K_AR5211_RXDP, phys_addr); } void ar5k_ar5211_enableReceive(hal) struct ath_hal *hal; { AR5K_REG_WRITE(AR5K_AR5211_CR, AR5K_AR5211_CR_RXE); } HAL_BOOL ar5k_ar5211_stopDmaReceive(hal) struct ath_hal *hal; { int i; AR5K_REG_WRITE(AR5K_AR5211_CR, AR5K_AR5211_CR_RXD); /* * It may take some time to disable the DMA receive unit */ for (i = 2000; i > 0 && (AR5K_REG_READ(AR5K_AR5211_CR) & AR5K_AR5211_CR_RXE) != 0; i--) AR5K_DELAY(10); return (i > 0 ? AH_TRUE : AH_FALSE); } void ar5k_ar5211_startPcuReceive(hal) struct ath_hal *hal; { AR5K_REG_DISABLE_BITS(AR5K_AR5211_DIAG_SW, AR5K_AR5211_DIAG_SW_DIS_RX); } void ar5k_ar5211_stopPcuReceive(hal) struct ath_hal *hal; { AR5K_REG_ENABLE_BITS(AR5K_AR5211_DIAG_SW, AR5K_AR5211_DIAG_SW_DIS_RX); } void ar5k_ar5211_setMulticastFilter(hal, filter0, filter1) struct ath_hal *hal; u_int32_t filter0; u_int32_t filter1; { /* Set the multicat filter */ AR5K_REG_WRITE(AR5K_AR5211_MCAST_FIL0, filter0); AR5K_REG_WRITE(AR5K_AR5211_MCAST_FIL1, filter1); } HAL_BOOL ar5k_ar5211_setMulticastFilterIndex(hal, index) struct ath_hal *hal; u_int32_t index; { if (index >= 64) { return (AH_FALSE); } else if (index >= 32) { AR5K_REG_ENABLE_BITS(AR5K_AR5211_MCAST_FIL1, (1 << (index - 32))); } else { AR5K_REG_ENABLE_BITS(AR5K_AR5211_MCAST_FIL0, (1 << index)); } return (AH_TRUE); } HAL_BOOL ar5k_ar5211_clrMulticastFilterIndex(hal, index) struct ath_hal *hal; u_int32_t index; { if (index >= 64) { return (AH_FALSE); } else if (index >= 32) { AR5K_REG_DISABLE_BITS(AR5K_AR5211_MCAST_FIL1, (1 << (index - 32))); } else { AR5K_REG_DISABLE_BITS(AR5K_AR5211_MCAST_FIL0, (1 << index)); } return (AH_TRUE); } u_int32_t ar5k_ar5211_getRxFilter(hal) struct ath_hal *hal; { return (AR5K_REG_READ(AR5K_AR5211_RX_FILTER)); } void ar5k_ar5211_setRxFilter(hal, filter) struct ath_hal *hal; u_int32_t filter; { AR5K_REG_WRITE(AR5K_AR5211_RX_FILTER, filter); } HAL_BOOL ar5k_ar5211_setupRxDesc(hal, desc, size, flags) struct ath_hal *hal; struct ath_desc *desc; u_int32_t size; u_int flags; { struct ar5k_ar5211_rx_desc *rx_desc; rx_desc = (struct ar5k_ar5211_rx_desc*)&desc->ds_ctl0; if ((rx_desc->rx_control_1 = (size & AR5K_AR5211_DESC_RX_CTL1_BUF_LEN)) != size) return (AH_FALSE); if (flags & HAL_RXDESC_INTREQ) rx_desc->rx_control_1 |= AR5K_AR5211_DESC_RX_CTL1_INTREQ; return (AH_TRUE); } HAL_STATUS ar5k_ar5211_procRxDesc(hal, desc, phys_addr, next) struct ath_hal *hal; struct ath_desc *desc; u_int32_t phys_addr; struct ath_desc *next; { struct ar5k_ar5211_rx_status *rx_status; rx_status = (struct ar5k_ar5211_rx_status*)&desc->ds_hw[0]; /* No frame received / not ready */ if ((rx_status->rx_status_1 & AR5K_AR5211_DESC_RX_STATUS1_DONE) == 0) return (HAL_EINPROGRESS); /* * Frame receive status */ desc->ds_us.rx.rs_datalen = rx_status->rx_status_0 & AR5K_AR5211_DESC_RX_STATUS0_DATA_LEN; desc->ds_us.rx.rs_rssi = AR5K_REG_MS(rx_status->rx_status_0, AR5K_AR5211_DESC_RX_STATUS0_RECEIVE_SIGNAL); desc->ds_us.rx.rs_rate = AR5K_REG_MS(rx_status->rx_status_0, AR5K_AR5211_DESC_RX_STATUS0_RECEIVE_RATE); desc->ds_us.rx.rs_antenna = rx_status->rx_status_0 & AR5K_AR5211_DESC_RX_STATUS0_RECEIVE_ANTENNA; desc->ds_us.rx.rs_more = rx_status->rx_status_0 & AR5K_AR5211_DESC_RX_STATUS0_MORE; desc->ds_us.rx.rs_tstamp = AR5K_REG_MS(rx_status->rx_status_1, AR5K_AR5211_DESC_RX_STATUS1_RECEIVE_TIMESTAMP); desc->ds_us.rx.rs_status = 0; /* * Key table status */ if (rx_status->rx_status_1 & AR5K_AR5211_DESC_RX_STATUS1_KEY_INDEX_VALID) { desc->ds_us.rx.rs_keyix = AR5K_REG_MS(rx_status->rx_status_1, AR5K_AR5211_DESC_RX_STATUS1_KEY_INDEX); } else { desc->ds_us.rx.rs_keyix = HAL_RXKEYIX_INVALID; } /* * Receive/descriptor errors */ if ((rx_status->rx_status_1 & AR5K_AR5211_DESC_RX_STATUS1_FRAME_RECEIVE_OK) == 0) { if (rx_status->rx_status_1 & AR5K_AR5211_DESC_RX_STATUS1_CRC_ERROR) desc->ds_us.rx.rs_status |= HAL_RXERR_CRC; if (rx_status->rx_status_1 & AR5K_AR5211_DESC_RX_STATUS1_PHY_ERROR) { desc->ds_us.rx.rs_status |= HAL_RXERR_PHY; desc->ds_us.rx.rs_phyerr = AR5K_REG_MS(rx_status->rx_status_1, AR5K_AR5211_DESC_RX_STATUS1_PHY_ERROR); } if (rx_status->rx_status_1 & AR5K_AR5211_DESC_RX_STATUS1_DECRYPT_CRC_ERROR) desc->ds_us.rx.rs_status |= HAL_RXERR_DECRYPT; } return (HAL_OK); } void ar5k_ar5211_rxMonitor(hal) struct ath_hal *hal; { AR5K_REG_ENABLE_BITS(AR5K_AR5211_RX_FILTER, AR5K_AR5211_RX_FILTER_PROMISC); } /* * Misc functions */ void ar5k_ar5211_dumpState(hal) struct ath_hal *hal; { #ifdef AR5K_DEBUG #define AR5K_PRINT_REGISTER(_x) \ printf("(%s: %08x) ", #_x, AR5K_REG_READ(AR5K_AR5211_##_x)); printf("MAC registers:\n"); AR5K_PRINT_REGISTER(CR); AR5K_PRINT_REGISTER(CFG); AR5K_PRINT_REGISTER(IER); AR5K_PRINT_REGISTER(RTSD0); AR5K_PRINT_REGISTER(TXCFG); AR5K_PRINT_REGISTER(RXCFG); AR5K_PRINT_REGISTER(RXJLA); AR5K_PRINT_REGISTER(MIBC); AR5K_PRINT_REGISTER(TOPS); AR5K_PRINT_REGISTER(RXNOFRM); AR5K_PRINT_REGISTER(RPGTO); AR5K_PRINT_REGISTER(RFCNT); AR5K_PRINT_REGISTER(MISC); AR5K_PRINT_REGISTER(PISR); AR5K_PRINT_REGISTER(SISR0); AR5K_PRINT_REGISTER(SISR1); AR5K_PRINT_REGISTER(SISR3); AR5K_PRINT_REGISTER(SISR4); AR5K_PRINT_REGISTER(QCU_TXE); AR5K_PRINT_REGISTER(QCU_TXD); AR5K_PRINT_REGISTER(DCU_GBL_IFS_SIFS); AR5K_PRINT_REGISTER(DCU_GBL_IFS_SLOT); AR5K_PRINT_REGISTER(DCU_FP); AR5K_PRINT_REGISTER(DCU_TXP); AR5K_PRINT_REGISTER(DCU_TX_FILTER); AR5K_PRINT_REGISTER(RC); AR5K_PRINT_REGISTER(SCR); AR5K_PRINT_REGISTER(INTPEND); AR5K_PRINT_REGISTER(PCICFG); AR5K_PRINT_REGISTER(GPIOCR); AR5K_PRINT_REGISTER(GPIODO); AR5K_PRINT_REGISTER(SREV); AR5K_PRINT_REGISTER(EEPROM_BASE); AR5K_PRINT_REGISTER(EEPROM_DATA); AR5K_PRINT_REGISTER(EEPROM_CMD); AR5K_PRINT_REGISTER(EEPROM_CFG); AR5K_PRINT_REGISTER(PCU_MIN); AR5K_PRINT_REGISTER(STA_ID0); AR5K_PRINT_REGISTER(STA_ID1); AR5K_PRINT_REGISTER(BSS_ID0); AR5K_PRINT_REGISTER(SLOT_TIME); AR5K_PRINT_REGISTER(TIME_OUT); AR5K_PRINT_REGISTER(RSSI_THR); AR5K_PRINT_REGISTER(BEACON); AR5K_PRINT_REGISTER(CFP_PERIOD); AR5K_PRINT_REGISTER(TIMER0); AR5K_PRINT_REGISTER(TIMER2); AR5K_PRINT_REGISTER(TIMER3); AR5K_PRINT_REGISTER(CFP_DUR); AR5K_PRINT_REGISTER(MCAST_FIL0); AR5K_PRINT_REGISTER(MCAST_FIL1); AR5K_PRINT_REGISTER(DIAG_SW); AR5K_PRINT_REGISTER(TSF_U32); AR5K_PRINT_REGISTER(ADDAC_TEST); AR5K_PRINT_REGISTER(DEFAULT_ANTENNA); AR5K_PRINT_REGISTER(LAST_TSTP); AR5K_PRINT_REGISTER(NAV); AR5K_PRINT_REGISTER(RTS_OK); AR5K_PRINT_REGISTER(ACK_FAIL); AR5K_PRINT_REGISTER(FCS_FAIL); AR5K_PRINT_REGISTER(BEACON_CNT); AR5K_PRINT_REGISTER(KEYTABLE_0); printf("\n"); printf("PHY registers:\n"); AR5K_PRINT_REGISTER(PHY_TURBO); AR5K_PRINT_REGISTER(PHY_AGC); AR5K_PRINT_REGISTER(PHY_CHIP_ID); AR5K_PRINT_REGISTER(PHY_AGCCTL); AR5K_PRINT_REGISTER(PHY_NF); AR5K_PRINT_REGISTER(PHY_RX_DELAY); AR5K_PRINT_REGISTER(PHY_IQ); AR5K_PRINT_REGISTER(PHY_PAPD_PROBE); AR5K_PRINT_REGISTER(PHY_FC); AR5K_PRINT_REGISTER(PHY_RADAR); AR5K_PRINT_REGISTER(PHY_ANT_SWITCH_TABLE_0); AR5K_PRINT_REGISTER(PHY_ANT_SWITCH_TABLE_1); printf("\n"); #endif } HAL_BOOL ar5k_ar5211_getDiagState(hal, id, device, size) struct ath_hal *hal; int id; void **device; u_int *size; { /* * We'll ignore this right now. This seems to be some kind of an obscure * debugging interface for the binary-only HAL. */ return (AH_FALSE); } void ar5k_ar5211_getMacAddress(hal, mac) struct ath_hal *hal; u_int8_t *mac; { bcopy(hal->ah_sta_id, mac, IEEE80211_ADDR_LEN); } HAL_BOOL ar5k_ar5211_setMacAddress(hal, mac) struct ath_hal *hal; const u_int8_t *mac; { u_int32_t low_id, high_id; /* Set new station ID */ bcopy(mac, hal->ah_sta_id, IEEE80211_ADDR_LEN); bcopy(mac, &low_id, 4); bcopy(mac + 4, &high_id, 2); high_id = 0x0000ffff & htole32(high_id); AR5K_REG_WRITE(AR5K_AR5211_STA_ID0, htole32(low_id)); AR5K_REG_WRITE(AR5K_AR5211_STA_ID1, high_id); return (AH_TRUE); } HAL_BOOL ar5k_ar5211_setRegulatoryDomain(hal, regdomain, status) struct ath_hal *hal; u_int16_t regdomain; HAL_STATUS *status; { ieee80211_regdomain_t ieee_regdomain; ieee_regdomain = ar5k_regdomain_to_ieee(regdomain); if (ar5k_eeprom_regulation_domain(hal, AH_TRUE, &ieee_regdomain) == AH_TRUE) { *status = HAL_OK; return (AH_TRUE); } *status = EIO; return (AH_FALSE); } void ar5k_ar5211_setLedState(hal, state) struct ath_hal *hal; HAL_LED_STATE state; { u_int32_t led; AR5K_REG_DISABLE_BITS(AR5K_AR5211_PCICFG, AR5K_AR5211_PCICFG_LEDMODE | AR5K_AR5211_PCICFG_LED); /* * Some blinking values, define at your wish */ switch (state) { case IEEE80211_S_SCAN: case IEEE80211_S_AUTH: led = AR5K_AR5211_PCICFG_LEDMODE_PROP | AR5K_AR5211_PCICFG_LED_PEND; break; case IEEE80211_S_INIT: led = AR5K_AR5211_PCICFG_LEDMODE_PROP | AR5K_AR5211_PCICFG_LED_NONE; break; case IEEE80211_S_ASSOC: case IEEE80211_S_RUN: led = AR5K_AR5211_PCICFG_LEDMODE_PROP | AR5K_AR5211_PCICFG_LED_ASSOC; break; default: led = AR5K_AR5211_PCICFG_LEDMODE_PROM | AR5K_AR5211_PCICFG_LED_NONE; break; } AR5K_REG_ENABLE_BITS(AR5K_AR5211_PCICFG, led); } void ar5k_ar5211_writeAssocid(hal, bssid, assoc_id, tim_offset) struct ath_hal *hal; const u_int8_t *bssid; u_int16_t assoc_id; u_int16_t tim_offset; { u_int32_t low_id, high_id; /* * Set BSSID which triggers the "SME Join" operation */ bcopy(bssid, &low_id, 4); bcopy(bssid + 4, &high_id, 2); AR5K_REG_WRITE(AR5K_AR5211_BSS_ID0, htole32(low_id)); AR5K_REG_WRITE(AR5K_AR5211_BSS_ID1, htole32(high_id) | ((assoc_id & 0x3fff) << AR5K_AR5211_BSS_ID1_AID_S)); bcopy(bssid, hal->ah_bssid, IEEE80211_ADDR_LEN); if (assoc_id == 0) { ar5k_ar5211_disablePSPoll(hal); return; } AR5K_REG_WRITE(AR5K_AR5211_BEACON, (AR5K_REG_READ(AR5K_AR5211_BEACON) & ~AR5K_AR5211_BEACON_TIM) | (((tim_offset ? tim_offset + 4 : 0) << AR5K_AR5211_BEACON_TIM_S) & AR5K_AR5211_BEACON_TIM)); ar5k_ar5211_enablePSPoll(hal, NULL, 0); } HAL_BOOL ar5k_ar5211_gpioCfgOutput(hal, gpio) struct ath_hal *hal; u_int32_t gpio; { if (gpio > AR5K_AR5211_NUM_GPIO) return (AH_FALSE); AR5K_REG_WRITE(AR5K_AR5211_GPIOCR, (AR5K_REG_READ(AR5K_AR5211_GPIOCR) &~ AR5K_AR5211_GPIOCR_ALL(gpio)) | AR5K_AR5211_GPIOCR_ALL(gpio)); return (AH_TRUE); } HAL_BOOL ar5k_ar5211_gpioCfgInput(hal, gpio) struct ath_hal *hal; u_int32_t gpio; { if (gpio > AR5K_AR5211_NUM_GPIO) return (AH_FALSE); AR5K_REG_WRITE(AR5K_AR5211_GPIOCR, (AR5K_REG_READ(AR5K_AR5211_GPIOCR) &~ AR5K_AR5211_GPIOCR_ALL(gpio)) | AR5K_AR5211_GPIOCR_NONE(gpio)); return (AH_TRUE); } u_int32_t ar5k_ar5211_gpioGet(hal, gpio) struct ath_hal *hal; u_int32_t gpio; { if (gpio > AR5K_AR5211_NUM_GPIO) return (0xffffffff); /* GPIO input magic */ return (((AR5K_REG_READ(AR5K_AR5211_GPIODI) & AR5K_AR5211_GPIODI_M) >> gpio) & 0x1); } HAL_BOOL ar5k_ar5211_gpioSet(hal, gpio, val) struct ath_hal *hal; u_int32_t gpio; u_int32_t val; { u_int32_t data; if (gpio > AR5K_AR5211_NUM_GPIO) return (0xffffffff); /* GPIO output magic */ data = AR5K_REG_READ(AR5K_AR5211_GPIODO); data &= ~(1 << gpio); data |= (val&1) << gpio; AR5K_REG_WRITE(AR5K_AR5211_GPIODO, data); return (AH_TRUE); } void ar5k_ar5211_gpioSetIntr(hal, gpio, interrupt_level) struct ath_hal *hal; u_int gpio; u_int32_t interrupt_level; { u_int32_t data; if (gpio > AR5K_AR5211_NUM_GPIO) return; /* * Set the GPIO interrupt */ data = (AR5K_REG_READ(AR5K_AR5211_GPIOCR) & ~(AR5K_AR5211_GPIOCR_INT_SEL(gpio) | AR5K_AR5211_GPIOCR_INT_SELH | AR5K_AR5211_GPIOCR_INT_ENA | AR5K_AR5211_GPIOCR_ALL(gpio))) | (AR5K_AR5211_GPIOCR_INT_SEL(gpio) | AR5K_AR5211_GPIOCR_INT_ENA); AR5K_REG_WRITE(AR5K_AR5211_GPIOCR, interrupt_level ? data : (data | AR5K_AR5211_GPIOCR_INT_SELH)); hal->ah_imr |= AR5K_AR5211_PIMR_GPIO; /* Enable GPIO interrupts */ AR5K_REG_ENABLE_BITS(AR5K_AR5211_PIMR, AR5K_AR5211_PIMR_GPIO); } u_int32_t ar5k_ar5211_getTsf32(hal) struct ath_hal *hal; { return (AR5K_REG_READ(AR5K_AR5211_TSF_L32)); } u_int64_t ar5k_ar5211_getTsf64(hal) struct ath_hal *hal; { u_int64_t tsf = AR5K_REG_READ(AR5K_AR5211_TSF_U32); return (AR5K_REG_READ(AR5K_AR5211_TSF_L32) | (tsf << 32)); } void ar5k_ar5211_resetTsf(hal) struct ath_hal *hal; { AR5K_REG_ENABLE_BITS(AR5K_AR5211_BEACON, AR5K_AR5211_BEACON_RESET_TSF); } u_int16_t ar5k_ar5211_getRegDomain(hal) struct ath_hal *hal; { return (ar5k_get_regdomain(hal)); } HAL_BOOL ar5k_ar5211_detectCardPresent(hal) struct ath_hal *hal; { u_int16_t magic; /* * Checking the EEPROM's magic value could be an indication * if the card is still present. I didn't find another suitable * way to do this. */ if (ar5k_ar5211_eeprom_read(hal, AR5K_EEPROM_MAGIC, &magic) != 0) return (AH_FALSE); return (magic == AR5K_EEPROM_MAGIC_VALUE ? AH_TRUE : AH_FALSE); } void ar5k_ar5211_updateMibCounters(hal, statistics) struct ath_hal *hal; HAL_MIB_STATS *statistics; { statistics->ackrcv_bad += AR5K_REG_READ(AR5K_AR5211_ACK_FAIL); statistics->rts_bad += AR5K_REG_READ(AR5K_AR5211_RTS_FAIL); statistics->rts_good += AR5K_REG_READ(AR5K_AR5211_RTS_OK); statistics->fcs_bad += AR5K_REG_READ(AR5K_AR5211_FCS_FAIL); statistics->beacons += AR5K_REG_READ(AR5K_AR5211_BEACON_CNT); } HAL_RFGAIN ar5k_ar5211_getRfGain(hal) struct ath_hal *hal; { return (HAL_RFGAIN_INACTIVE); } HAL_BOOL ar5k_ar5211_setSlotTime(hal, slot_time) struct ath_hal *hal; u_int slot_time; { if (slot_time < HAL_SLOT_TIME_9 || slot_time > HAL_SLOT_TIME_MAX) return (AH_FALSE); AR5K_REG_WRITE(AR5K_AR5211_DCU_GBL_IFS_SLOT, ar5k_htoclock(slot_time, hal->ah_turbo)); return (AH_TRUE); } u_int ar5k_ar5211_getSlotTime(hal) struct ath_hal *hal; { return (ar5k_clocktoh(AR5K_REG_READ(AR5K_AR5211_DCU_GBL_IFS_SLOT) & 0xffff, hal->ah_turbo)); } HAL_BOOL ar5k_ar5211_setAckTimeout(hal, timeout) struct ath_hal *hal; u_int timeout; { if (ar5k_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_AR5211_TIME_OUT_ACK), hal->ah_turbo) <= timeout) return (AH_FALSE); AR5K_REG_WRITE_BITS(AR5K_AR5211_TIME_OUT, AR5K_AR5211_TIME_OUT_ACK, ar5k_htoclock(timeout, hal->ah_turbo)); return (AH_TRUE); } u_int ar5k_ar5211_getAckTimeout(hal) struct ath_hal *hal; { return (ar5k_clocktoh(AR5K_REG_MS(AR5K_REG_READ(AR5K_AR5211_TIME_OUT), AR5K_AR5211_TIME_OUT_ACK), hal->ah_turbo)); } HAL_BOOL ar5k_ar5211_setCTSTimeout(hal, timeout) struct ath_hal *hal; u_int timeout; { if (ar5k_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_AR5211_TIME_OUT_CTS), hal->ah_turbo) <= timeout) return (AH_FALSE); AR5K_REG_WRITE_BITS(AR5K_AR5211_TIME_OUT, AR5K_AR5211_TIME_OUT_CTS, ar5k_htoclock(timeout, hal->ah_turbo)); return (AH_TRUE); } u_int ar5k_ar5211_getCTSTimeout(hal) struct ath_hal *hal; { return (ar5k_clocktoh(AR5K_REG_MS(AR5K_REG_READ(AR5K_AR5211_TIME_OUT), AR5K_AR5211_TIME_OUT_CTS), hal->ah_turbo)); } /* * Key table (WEP) functions */ HAL_BOOL ar5k_ar5211_isHwCipherSupported(hal, cipher) struct ath_hal *hal; HAL_CIPHER cipher; { /* * The AR5211 only supports WEP */ if (cipher == HAL_CIPHER_WEP) return (AH_TRUE); return (AH_FALSE); } u_int32_t ar5k_ar5211_getKeyCacheSize(hal) struct ath_hal *hal; { return (AR5K_AR5211_KEYCACHE_SIZE); } HAL_BOOL ar5k_ar5211_resetKeyCacheEntry(hal, entry) struct ath_hal *hal; u_int16_t entry; { int i; AR5K_ASSERT_ENTRY(entry, AR5K_AR5211_KEYTABLE_SIZE); for (i = 0; i < AR5K_AR5211_KEYCACHE_SIZE; i++) AR5K_REG_WRITE(AR5K_AR5211_KEYTABLE_OFF(entry, i), 0); return (AH_FALSE); } HAL_BOOL ar5k_ar5211_isKeyCacheEntryValid(hal, entry) struct ath_hal *hal; u_int16_t entry; { AR5K_ASSERT_ENTRY(entry, AR5K_AR5211_KEYTABLE_SIZE); /* * Check the validation flag at the end of the entry */ if (AR5K_REG_READ(AR5K_AR5211_KEYTABLE_MAC1(entry)) & AR5K_AR5211_KEYTABLE_VALID) return (AH_TRUE); return (AH_FALSE); } HAL_BOOL ar5k_ar5211_setKeyCacheEntry(hal, entry, keyval, mac, xor_notused) struct ath_hal *hal; u_int16_t entry; const HAL_KEYVAL *keyval; const u_int8_t *mac; int xor_notused; { int elements = AR5K_AR5211_KEYCACHE_SIZE - 2, i; u_int32_t key_v[elements]; AR5K_ASSERT_ENTRY(entry, AR5K_AR5211_KEYTABLE_SIZE); bzero(&key_v, sizeof(key_v)); switch (keyval->wk_len) { case AR5K_KEYVAL_LENGTH_40: bcopy(keyval->wk_key, &key_v[0], 4); bcopy(keyval->wk_key + 4, &key_v[1], 1); key_v[5] = AR5K_AR5211_KEYTABLE_TYPE_40; break; case AR5K_KEYVAL_LENGTH_104: bcopy(keyval->wk_key, &key_v[0], 4); bcopy(keyval->wk_key + 4, &key_v[1], 2); bcopy(keyval->wk_key + 6, &key_v[2], 4); bcopy(keyval->wk_key + 10, &key_v[3], 2); bcopy(keyval->wk_key + 12, &key_v[4], 1); key_v[5] = AR5K_AR5211_KEYTABLE_TYPE_104; break; case AR5K_KEYVAL_LENGTH_128: bcopy(keyval->wk_key, &key_v[0], 4); bcopy(keyval->wk_key + 4, &key_v[1], 2); bcopy(keyval->wk_key + 6, &key_v[2], 4); bcopy(keyval->wk_key + 10, &key_v[3], 2); bcopy(keyval->wk_key + 12, &key_v[4], 4); key_v[5] = AR5K_AR5211_KEYTABLE_TYPE_128; break; default: /* Unsupported key length (not WEP40/104/128) */ return (AH_FALSE); } for (i = 0; i < elements; i++) AR5K_REG_WRITE(AR5K_AR5211_KEYTABLE_OFF(entry, i), key_v[i]); return (ar5k_ar5211_setKeyCacheEntryMac(hal, entry, mac)); } HAL_BOOL ar5k_ar5211_setKeyCacheEntryMac(hal, entry, mac) struct ath_hal *hal; u_int16_t entry; const u_int8_t *mac; { u_int32_t low_id, high_id; const u_int8_t *mac_v; /* * Invalid entry (key table overflow) */ AR5K_ASSERT_ENTRY(entry, AR5K_AR5211_KEYTABLE_SIZE); /* MAC may be NULL if it's a broadcast key */ mac_v = mac == NULL ? etherbroadcastaddr : mac; bcopy(mac_v, &low_id, 4); bcopy(mac_v + 4, &high_id, 2); high_id |= AR5K_AR5211_KEYTABLE_VALID; AR5K_REG_WRITE(AR5K_AR5211_KEYTABLE_MAC0(entry), htole32(low_id)); AR5K_REG_WRITE(AR5K_AR5211_KEYTABLE_MAC1(entry), htole32(high_id)); return (AH_TRUE); } /* * Power management functions */ HAL_BOOL ar5k_ar5211_setPowerMode(hal, mode, set_chip, sleep_duration) struct ath_hal *hal; HAL_POWER_MODE mode; HAL_BOOL set_chip; u_int16_t sleep_duration; { int i; switch (mode) { case HAL_PM_AUTO: if (set_chip == AH_TRUE) { AR5K_REG_WRITE(AR5K_AR5211_SCR, AR5K_AR5211_SCR_SLE | sleep_duration); } break; case HAL_PM_FULL_SLEEP: if (set_chip == AH_TRUE) { AR5K_REG_WRITE(AR5K_AR5211_SCR, AR5K_AR5211_SCR_SLE_SLP); } break; case HAL_PM_AWAKE: if (set_chip == AH_FALSE) goto commit; AR5K_REG_WRITE(AR5K_AR5211_SCR, AR5K_AR5211_SCR_SLE_WAKE); for (i = 5000; i > 0; i--) { /* Check if the AR5211 did wake up */ if ((AR5K_REG_READ(AR5K_AR5211_PCICFG) & AR5K_AR5211_PCICFG_SPWR_DN) == 0) break; /* Wait a bit and retry */ AR5K_DELAY(200); AR5K_REG_WRITE(AR5K_AR5211_SCR, AR5K_AR5211_SCR_SLE_WAKE); } /* Fail if the AR5211 didn't wake up */ if (i <= 0) return (AH_FALSE); break; case HAL_PM_NETWORK_SLEEP: case HAL_PM_UNDEFINED: default: return (AH_FALSE); } commit: hal->ah_power_mode = mode; AR5K_REG_DISABLE_BITS(AR5K_AR5211_STA_ID1, AR5K_AR5211_STA_ID1_DEFAULT_ANTENNA); AR5K_REG_ENABLE_BITS(AR5K_AR5211_STA_ID1, AR5K_AR5211_STA_ID1_PWR_SV); return (AH_TRUE); } HAL_POWER_MODE ar5k_ar5211_getPowerMode(hal) struct ath_hal *hal; { return (hal->ah_power_mode); } HAL_BOOL ar5k_ar5211_queryPSPollSupport(hal) struct ath_hal *hal; { /* nope */ return (AH_FALSE); } HAL_BOOL ar5k_ar5211_initPSPoll(hal) struct ath_hal *hal; { /* * Not used on the AR5211 */ return (AH_FALSE); } HAL_BOOL ar5k_ar5211_enablePSPoll(hal, bssid, assoc_id) struct ath_hal *hal; u_int8_t *bssid; u_int16_t assoc_id; { return (AH_FALSE); } HAL_BOOL ar5k_ar5211_disablePSPoll(hal) struct ath_hal *hal; { return (AH_FALSE); } /* * Beacon functions */ void ar5k_ar5211_beaconInit(hal, next_beacon, interval) struct ath_hal *hal; u_int32_t next_beacon; u_int32_t interval; { u_int32_t timer1, timer2, timer3; /* * Set the additional timers by mode */ switch (hal->ah_op_mode) { case HAL_M_STA: timer1 = 0x0000ffff; timer2 = 0x0007ffff; break; default: timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) << 0x00000003; timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) << 0x00000003; } timer3 = next_beacon + (hal->ah_atim_window ? hal->ah_atim_window : 1); /* * Enable all timers and set the beacon register * (next beacon, DMA beacon, software beacon, ATIM window time) */ AR5K_REG_WRITE(AR5K_AR5211_TIMER0, next_beacon); AR5K_REG_WRITE(AR5K_AR5211_TIMER1, timer1); AR5K_REG_WRITE(AR5K_AR5211_TIMER2, timer2); AR5K_REG_WRITE(AR5K_AR5211_TIMER3, timer3); AR5K_REG_WRITE(AR5K_AR5211_BEACON, interval & (AR5K_AR5211_BEACON_PERIOD | AR5K_AR5211_BEACON_RESET_TSF | AR5K_AR5211_BEACON_ENABLE)); } void ar5k_ar5211_setStationBeaconTimers(hal, state, tsf, dtim_count, cfp_count) struct ath_hal *hal; const HAL_BEACON_STATE *state; u_int32_t tsf; u_int32_t dtim_count; u_int32_t cfp_count; { u_int32_t cfp_period, next_cfp; /* Return on an invalid beacon state */ if (state->bs_interval < 1) return; /* * PCF support? */ if (state->bs_cfp_period > 0) { /* Enable CFP mode and set the CFP and timer registers */ cfp_period = state->bs_cfp_period * state->bs_dtim_period * state->bs_interval; next_cfp = (cfp_count * state->bs_dtim_period + dtim_count) * state->bs_interval; AR5K_REG_DISABLE_BITS(AR5K_AR5211_STA_ID1, AR5K_AR5211_STA_ID1_DEFAULT_ANTENNA | AR5K_AR5211_STA_ID1_PCF); AR5K_REG_WRITE(AR5K_AR5211_CFP_PERIOD, cfp_period); AR5K_REG_WRITE(AR5K_AR5211_CFP_DUR, state->bs_cfp_max_duration); AR5K_REG_WRITE(AR5K_AR5211_TIMER2, (tsf + (next_cfp == 0 ? cfp_period : next_cfp)) << 3); } else { /* Disable PCF mode */ AR5K_REG_DISABLE_BITS(AR5K_AR5211_STA_ID1, AR5K_AR5211_STA_ID1_DEFAULT_ANTENNA | AR5K_AR5211_STA_ID1_PCF); } /* * Enable the beacon timer register */ AR5K_REG_WRITE(AR5K_AR5211_TIMER0, state->bs_next_beacon); /* * Start the beacon timers */ AR5K_REG_WRITE(AR5K_AR5211_BEACON, (AR5K_REG_READ(AR5K_AR5211_BEACON) &~ (AR5K_AR5211_BEACON_PERIOD | AR5K_AR5211_BEACON_TIM)) | AR5K_REG_SM(state->bs_tim_offset ? state->bs_tim_offset + 4 : 0, AR5K_AR5211_BEACON_TIM) | AR5K_REG_SM(state->bs_interval, AR5K_AR5211_BEACON_PERIOD)); /* * Write new beacon miss threshold, if it appears to be valid */ if ((AR5K_AR5211_RSSI_THR_BMISS >> AR5K_AR5211_RSSI_THR_BMISS_S) < state->bs_bmiss_threshold) return; AR5K_REG_WRITE_BITS(AR5K_AR5211_RSSI_THR_M, AR5K_AR5211_RSSI_THR_BMISS, state->bs_bmiss_threshold); AR5K_REG_WRITE_BITS(AR5K_AR5211_SCR, AR5K_AR5211_SCR_SLDUR, (state->bs_sleepduration - 3) << 3); } void ar5k_ar5211_resetStationBeaconTimers(hal) struct ath_hal *hal; { /* * Disable beacon timer */ AR5K_REG_WRITE(AR5K_AR5211_TIMER0, 0); /* * Disable some beacon register values */ AR5K_REG_DISABLE_BITS(AR5K_AR5211_STA_ID1, AR5K_AR5211_STA_ID1_DEFAULT_ANTENNA | AR5K_AR5211_STA_ID1_PCF); AR5K_REG_WRITE(AR5K_AR5211_BEACON, AR5K_AR5211_BEACON_PERIOD); } HAL_BOOL ar5k_ar5211_waitForBeaconDone(hal, phys_addr) struct ath_hal *hal; bus_addr_t phys_addr; { HAL_BOOL ret; /* * Wait for beaconn queue to be done */ ret = ar5k_register_timeout(hal, AR5K_AR5211_QCU_STS(HAL_TX_QUEUE_ID_BEACON), AR5K_AR5211_QCU_STS_FRMPENDCNT, 0, AH_FALSE); if (AR5K_REG_READ_Q(AR5K_AR5211_QCU_TXE, HAL_TX_QUEUE_ID_BEACON)) return (AH_FALSE); return (ret); } /* * Interrupt handling */ HAL_BOOL ar5k_ar5211_isInterruptPending(hal) struct ath_hal *hal; { return (AR5K_REG_READ(AR5K_AR5211_INTPEND) == 0 ? AH_FALSE : AH_TRUE); } HAL_BOOL ar5k_ar5211_getPendingInterrupts(hal, interrupt_mask) struct ath_hal *hal; u_int32_t *interrupt_mask; { u_int32_t data; /* * Read interrupt status from the Read-And-Clear shadow register */ data = AR5K_REG_READ(AR5K_AR5211_RAC_PISR); /* * Get abstract interrupt mask (HAL-compatible) */ *interrupt_mask = (data & HAL_INT_COMMON) & hal->ah_imr; if (data == HAL_INT_NOCARD) return (AH_FALSE); if (data & (AR5K_AR5211_PISR_RXOK | AR5K_AR5211_PISR_RXERR)) *interrupt_mask |= HAL_INT_RX; if (data & (AR5K_AR5211_PISR_TXOK | AR5K_AR5211_PISR_TXERR)) *interrupt_mask |= HAL_INT_TX; if (data & (AR5K_AR5211_PISR_HIUERR)) *interrupt_mask |= HAL_INT_FATAL; /* * Special interrupt handling (not catched by the driver) */ if (((*interrupt_mask) & AR5K_AR5211_PISR_RXPHY) && hal->ah_radar.r_enabled == AH_TRUE) ar5k_radar_alert(hal); return (AH_TRUE); } u_int32_t ar5k_ar5211_getInterrupts(hal) struct ath_hal *hal; { /* Return the interrupt mask stored previously */ return (hal->ah_imr); } HAL_INT ar5k_ar5211_setInterrupts(hal, new_mask) struct ath_hal *hal; HAL_INT new_mask; { HAL_INT old_mask, int_mask; /* * Disable card interrupts to prevent any race conditions * (they will be re-enabled afterwards). */ AR5K_REG_WRITE(AR5K_AR5211_IER, AR5K_AR5211_IER_DISABLE); old_mask = hal->ah_imr; /* * Add additional, chipset-dependent interrupt mask flags * and write them to the IMR (interrupt mask register). */ int_mask = new_mask & HAL_INT_COMMON; if (new_mask & HAL_INT_RX) int_mask |= AR5K_AR5211_PIMR_RXOK | AR5K_AR5211_PIMR_RXERR | AR5K_AR5211_PIMR_RXORN | AR5K_AR5211_PIMR_RXDESC; if (new_mask & HAL_INT_TX) int_mask |= AR5K_AR5211_PIMR_TXOK | AR5K_AR5211_PIMR_TXERR | AR5K_AR5211_PIMR_TXDESC | AR5K_AR5211_PIMR_TXURN; if (new_mask & HAL_INT_FATAL) { int_mask |= AR5K_AR5211_PIMR_HIUERR; AR5K_REG_ENABLE_BITS(AR5K_AR5211_SIMR2, AR5K_AR5211_SIMR2_MCABT | AR5K_AR5211_SIMR2_SSERR | AR5K_AR5211_SIMR2_DPERR); } if (hal->ah_op_mode & HAL_M_HOSTAP) { int_mask |= AR5K_AR5211_PIMR_MIB; } else { int_mask &= ~AR5K_AR5211_PIMR_MIB; } AR5K_REG_WRITE(AR5K_AR5211_PIMR, int_mask); /* Store new interrupt mask */ hal->ah_imr = new_mask; /* ..re-enable interrupts */ AR5K_REG_WRITE(AR5K_AR5211_IER, AR5K_AR5211_IER_ENABLE); return (old_mask); } /* * Misc internal functions */ HAL_BOOL ar5k_ar5211_get_capabilities(hal) struct ath_hal *hal; { u_int16_t ee_header; /* Capabilities stored in the EEPROM */ ee_header = hal->ah_capabilities.cap_eeprom.ee_header; /* * XXX The AR5211 tranceiver supports frequencies from 4920 to 6100GHz * XXX and from 2312 to 2732GHz. There are problems with the current * XXX ieee80211 implementation because the IEEE channel mapping * XXX does not support negative channel numbers (2312MHz is channel * XXX -19). Of course, this doesn't matter because these channels * XXX are out of range but some regulation domains like MKK (Japan) * XXX will support frequencies somewhere around 4.8GHz. */ /* * Set radio capabilities */ if (AR5K_EEPROM_HDR_11A(ee_header)) { hal->ah_capabilities.cap_range.range_5ghz_min = 5005; /* 4920 */ hal->ah_capabilities.cap_range.range_5ghz_max = 6100; /* Set supported modes */ hal->ah_capabilities.cap_mode = HAL_MODE_11A | HAL_MODE_TURBO; } /* This chip will support 802.11b if the 2GHz radio is connected */ if (AR5K_EEPROM_HDR_11B(ee_header) || AR5K_EEPROM_HDR_11G(ee_header)) { hal->ah_capabilities.cap_range.range_2ghz_min = 2412; /* 2312 */ hal->ah_capabilities.cap_range.range_2ghz_max = 2732; hal->ah_capabilities.cap_mode |= HAL_MODE_11B; if (AR5K_EEPROM_HDR_11B(ee_header)) hal->ah_capabilities.cap_mode |= HAL_MODE_11B; if (AR5K_EEPROM_HDR_11G(ee_header)) hal->ah_capabilities.cap_mode |= HAL_MODE_11G; } /* GPIO */ hal->ah_gpio_npins = AR5K_AR5211_NUM_GPIO; /* Set number of supported TX queues */ hal->ah_capabilities.cap_queues.q_tx_num = AR5K_AR5211_TX_NUM_QUEUES; return (AH_TRUE); } void ar5k_ar5211_radar_alert(hal, enable) struct ath_hal *hal; HAL_BOOL enable; { /* * Enable radar detection */ AR5K_REG_WRITE(AR5K_AR5211_IER, AR5K_AR5211_IER_DISABLE); if (enable == AH_TRUE) { AR5K_REG_WRITE(AR5K_AR5211_PHY_RADAR, AR5K_AR5211_PHY_RADAR_ENABLE); AR5K_REG_ENABLE_BITS(AR5K_AR5211_PIMR, AR5K_AR5211_PIMR_RXPHY); } else { AR5K_REG_WRITE(AR5K_AR5211_PHY_RADAR, AR5K_AR5211_PHY_RADAR_DISABLE); AR5K_REG_DISABLE_BITS(AR5K_AR5211_PIMR, AR5K_AR5211_PIMR_RXPHY); } AR5K_REG_WRITE(AR5K_AR5211_IER, AR5K_AR5211_IER_ENABLE); } /* * EEPROM access functions */ HAL_BOOL ar5k_ar5211_eeprom_is_busy(hal) struct ath_hal *hal; { return (AR5K_REG_READ(AR5K_AR5211_CFG) & AR5K_AR5211_CFG_EEBS ? AH_TRUE : AH_FALSE); } int ar5k_ar5211_eeprom_read(hal, offset, data) struct ath_hal *hal; u_int32_t offset; u_int16_t *data; { u_int32_t status, i; /* * Initialize EEPROM access */ AR5K_REG_WRITE(AR5K_AR5211_EEPROM_BASE, (u_int8_t)offset); AR5K_REG_ENABLE_BITS(AR5K_AR5211_EEPROM_CMD, AR5K_AR5211_EEPROM_CMD_READ); for (i = AR5K_TUNE_REGISTER_TIMEOUT; i > 0; i--) { status = AR5K_REG_READ(AR5K_AR5211_EEPROM_STATUS); if (status & AR5K_AR5211_EEPROM_STAT_RDDONE) { if (status & AR5K_AR5211_EEPROM_STAT_RDERR) return (EIO); *data = (u_int16_t) (AR5K_REG_READ(AR5K_AR5211_EEPROM_DATA) & 0xffff); return (0); } AR5K_DELAY(15); } return (ETIMEDOUT); } int ar5k_ar5211_eeprom_write(hal, offset, data) struct ath_hal *hal; u_int32_t offset; u_int16_t data; { u_int32_t status, timeout; /* Enable eeprom access */ AR5K_REG_ENABLE_BITS(AR5K_AR5211_EEPROM_CMD, AR5K_AR5211_EEPROM_CMD_RESET); AR5K_REG_ENABLE_BITS(AR5K_AR5211_EEPROM_CMD, AR5K_AR5211_EEPROM_CMD_WRITE); /* * Prime write pump */ AR5K_REG_WRITE(AR5K_AR5211_EEPROM_BASE, (u_int8_t)offset - 1); for (timeout = 10000; timeout > 0; timeout--) { AR5K_DELAY(1); status = AR5K_REG_READ(AR5K_AR5211_EEPROM_STATUS); if (status & AR5K_AR5211_EEPROM_STAT_WRDONE) { if (status & AR5K_AR5211_EEPROM_STAT_WRERR) return (EIO); return (0); } } return (ETIMEDOUT); }