/* $OpenBSD: ar5416.c,v 1.20 2017/01/12 16:32:28 stsp Exp $ */ /*- * Copyright (c) 2009 Damien Bergamini * Copyright (c) 2008-2009 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Driver for Atheros 802.11a/g/n chipsets. * Routines for AR5416, AR5418 and AR9160 chipsets. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include int ar5416_attach(struct athn_softc *); void ar5416_setup(struct athn_softc *); void ar5416_swap_rom(struct athn_softc *); const struct ar_spur_chan * ar5416_get_spur_chans(struct athn_softc *, int); int ar5416_set_synth(struct athn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); uint8_t ar5416_reverse_bits(uint8_t, int); uint8_t ar5416_get_rf_rev(struct athn_softc *); void ar5416_init_from_rom(struct athn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); int ar5416_init_calib(struct athn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); void ar5416_set_power_calib(struct athn_softc *, struct ieee80211_channel *); void ar5416_set_txpower(struct athn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); void ar5416_spur_mitigate(struct athn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); void ar5416_rw_rfbits(uint32_t *, int, int, uint32_t, int); void ar5416_rw_bank6tpc(struct athn_softc *, struct ieee80211_channel *, uint32_t *); void ar5416_rf_reset(struct athn_softc *, struct ieee80211_channel *); void ar5416_reset_bb_gain(struct athn_softc *, struct ieee80211_channel *); void ar5416_force_bias(struct athn_softc *, struct ieee80211_channel *); void ar9160_rw_addac(struct athn_softc *, struct ieee80211_channel *, uint32_t *); void ar5416_reset_addac(struct athn_softc *, struct ieee80211_channel *); void ar5416_get_pdadcs(struct athn_softc *, struct ieee80211_channel *, int, int, uint8_t, uint8_t *, uint8_t *); /* Extern functions. */ uint8_t athn_chan2fbin(struct ieee80211_channel *); void athn_get_pier_ival(uint8_t, const uint8_t *, int, int *, int *); int ar5008_attach(struct athn_softc *); void ar5008_write_txpower(struct athn_softc *, int16_t power[]); void ar5008_get_pdadcs(struct athn_softc *, uint8_t, struct athn_pier *, struct athn_pier *, int, int, uint8_t, uint8_t *, uint8_t *); void ar5008_set_viterbi_mask(struct athn_softc *, int); void ar5008_get_lg_tpow(struct athn_softc *, struct ieee80211_channel *, uint8_t, const struct ar_cal_target_power_leg *, int, uint8_t[]); void ar5008_get_ht_tpow(struct athn_softc *, struct ieee80211_channel *, uint8_t, const struct ar_cal_target_power_ht *, int, uint8_t[]); void ar9280_olpc_get_pdadcs(struct athn_softc *, struct ieee80211_channel *, int, uint8_t *, uint8_t *, uint8_t *); int ar5416_attach(struct athn_softc *sc) { sc->eep_base = AR5416_EEP_START_LOC; sc->eep_size = sizeof(struct ar5416_eeprom); sc->def_nf = AR5416_PHY_CCA_MAX_GOOD_VALUE; sc->ngpiopins = 14; sc->led_pin = 1; sc->workaround = AR5416_WA_DEFAULT; sc->ops.setup = ar5416_setup; sc->ops.swap_rom = ar5416_swap_rom; sc->ops.init_from_rom = ar5416_init_from_rom; sc->ops.set_txpower = ar5416_set_txpower; sc->ops.set_synth = ar5416_set_synth; sc->ops.spur_mitigate = ar5416_spur_mitigate; sc->ops.get_spur_chans = ar5416_get_spur_chans; if (AR_SREV_9160_10_OR_LATER(sc)) sc->ini = &ar9160_ini; else sc->ini = &ar5416_ini; sc->serdes = &ar5416_serdes; return (ar5008_attach(sc)); } void ar5416_setup(struct athn_softc *sc) { /* Select ADDAC programming. */ if (AR_SREV_9160_11(sc)) sc->addac = &ar9160_1_1_addac; else if (AR_SREV_9160_10_OR_LATER(sc)) sc->addac = &ar9160_1_0_addac; else if (AR_SREV_5416_22_OR_LATER(sc)) sc->addac = &ar5416_2_2_addac; else sc->addac = &ar5416_2_1_addac; } void ar5416_swap_rom(struct athn_softc *sc) { struct ar5416_eeprom *eep = sc->eep; struct ar5416_modal_eep_header *modal; int i, j; for (i = 0; i < 2; i++) { /* Dual-band. */ modal = &eep->modalHeader[i]; modal->antCtrlCommon = swap32(modal->antCtrlCommon); for (j = 0; j < AR5416_MAX_CHAINS; j++) { modal->antCtrlChain[j] = swap32(modal->antCtrlChain[j]); } for (j = 0; j < AR_EEPROM_MODAL_SPURS; j++) { modal->spurChans[j].spurChan = swap16(modal->spurChans[j].spurChan); } } } const struct ar_spur_chan * ar5416_get_spur_chans(struct athn_softc *sc, int is2ghz) { const struct ar5416_eeprom *eep = sc->eep; return (eep->modalHeader[is2ghz].spurChans); } int ar5416_set_synth(struct athn_softc *sc, struct ieee80211_channel *c, struct ieee80211_channel *extc) { uint32_t phy, reg; uint32_t freq = c->ic_freq; uint8_t chansel; phy = 0; if (IEEE80211_IS_CHAN_2GHZ(c)) { if (((freq - 2192) % 5) == 0) { chansel = ((freq - 672) * 2 - 3040) / 10; } else if (((freq - 2224) % 5) == 0) { chansel = ((freq - 704) * 2 - 3040) / 10; phy |= AR5416_BMODE_SYNTH; } else return (EINVAL); chansel <<= 2; reg = AR_READ(sc, AR_PHY_CCK_TX_CTRL); if (freq == 2484) /* Channel 14. */ reg |= AR_PHY_CCK_TX_CTRL_JAPAN; else reg &= ~AR_PHY_CCK_TX_CTRL_JAPAN; AR_WRITE(sc, AR_PHY_CCK_TX_CTRL, reg); /* Fix for orientation sensitivity issue. */ if (AR_SREV_5416(sc)) ar5416_force_bias(sc, c); } else { if (freq >= 5120 && (freq % 20) == 0) { chansel = (freq - 4800) / 20; chansel <<= 2; phy |= SM(AR5416_AMODE_REFSEL, 2); } else if ((freq % 10) == 0) { chansel = (freq - 4800) / 10; chansel <<= 1; if (AR_SREV_9160_10_OR_LATER(sc)) phy |= SM(AR5416_AMODE_REFSEL, 1); else phy |= SM(AR5416_AMODE_REFSEL, 2); } else if ((freq % 5) == 0) { chansel = (freq - 4800) / 5; phy |= SM(AR5416_AMODE_REFSEL, 2); } else return (EINVAL); } chansel = ar5416_reverse_bits(chansel, 8); phy |= chansel << 8 | 1 << 5 | 1; DPRINTFN(4, ("AR_PHY(0x37)=0x%08x\n", phy)); AR_WRITE(sc, AR_PHY(0x37), phy); return (0); } void ar5416_init_from_rom(struct athn_softc *sc, struct ieee80211_channel *c, struct ieee80211_channel *extc) { static const uint32_t chainoffset[] = { 0x0000, 0x2000, 0x1000 }; const struct ar5416_eeprom *eep = sc->eep; const struct ar5416_modal_eep_header *modal; uint32_t reg, offset; uint8_t txRxAtten; int i; modal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(c)]; AR_WRITE(sc, AR_PHY_SWITCH_COM, modal->antCtrlCommon); for (i = 0; i < AR5416_MAX_CHAINS; i++) { if (AR_SREV_5416_20_OR_LATER(sc) && (sc->rxchainmask == 0x5 || sc->txchainmask == 0x5)) offset = chainoffset[i]; else offset = i * 0x1000; AR_WRITE(sc, AR_PHY_SWITCH_CHAIN_0 + offset, modal->antCtrlChain[i]); reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0 + offset); reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, modal->iqCalICh[i]); reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, modal->iqCalQCh[i]); AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0 + offset, reg); if (i > 0 && !AR_SREV_5416_20_OR_LATER(sc)) continue; if (sc->eep_rev >= AR_EEP_MINOR_VER_3) { reg = AR_READ(sc, AR_PHY_GAIN_2GHZ + offset); reg = RW(reg, AR_PHY_GAIN_2GHZ_BSW_MARGIN, modal->bswMargin[i]); reg = RW(reg, AR_PHY_GAIN_2GHZ_BSW_ATTEN, modal->bswAtten[i]); AR_WRITE(sc, AR_PHY_GAIN_2GHZ + offset, reg); } if (sc->eep_rev >= AR_EEP_MINOR_VER_3) txRxAtten = modal->txRxAttenCh[i]; else /* Workaround for ROM versions < 14.3. */ txRxAtten = IEEE80211_IS_CHAN_2GHZ(c) ? 23 : 44; reg = AR_READ(sc, AR_PHY_RXGAIN + offset); reg = RW(reg, AR_PHY_RXGAIN_TXRX_ATTEN, txRxAtten); AR_WRITE(sc, AR_PHY_RXGAIN + offset, reg); reg = AR_READ(sc, AR_PHY_GAIN_2GHZ + offset); reg = RW(reg, AR_PHY_GAIN_2GHZ_RXTX_MARGIN, modal->rxTxMarginCh[i]); AR_WRITE(sc, AR_PHY_GAIN_2GHZ + offset, reg); } reg = AR_READ(sc, AR_PHY_SETTLING); reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->switchSettling); AR_WRITE(sc, AR_PHY_SETTLING, reg); reg = AR_READ(sc, AR_PHY_DESIRED_SZ); reg = RW(reg, AR_PHY_DESIRED_SZ_ADC, modal->adcDesiredSize); reg = RW(reg, AR_PHY_DESIRED_SZ_PGA, modal->pgaDesiredSize); AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg); reg = SM(AR_PHY_RF_CTL4_TX_END_XPAA_OFF, modal->txEndToXpaOff); reg |= SM(AR_PHY_RF_CTL4_TX_END_XPAB_OFF, modal->txEndToXpaOff); reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAA_ON, modal->txFrameToXpaOn); reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAB_ON, modal->txFrameToXpaOn); AR_WRITE(sc, AR_PHY_RF_CTL4, reg); reg = AR_READ(sc, AR_PHY_RF_CTL3); reg = RW(reg, AR_PHY_TX_END_TO_A2_RX_ON, modal->txEndToRxOn); AR_WRITE(sc, AR_PHY_RF_CTL3, reg); reg = AR_READ(sc, AR_PHY_CCA(0)); reg = RW(reg, AR_PHY_CCA_THRESH62, modal->thresh62); AR_WRITE(sc, AR_PHY_CCA(0), reg); reg = AR_READ(sc, AR_PHY_EXT_CCA(0)); reg = RW(reg, AR_PHY_EXT_CCA_THRESH62, modal->thresh62); AR_WRITE(sc, AR_PHY_EXT_CCA(0), reg); if (sc->eep_rev >= AR_EEP_MINOR_VER_2) { reg = AR_READ(sc, AR_PHY_RF_CTL2); reg = RW(reg, AR_PHY_TX_END_DATA_START, modal->txFrameToDataStart); reg = RW(reg, AR_PHY_TX_END_PA_ON, modal->txFrameToPaOn); AR_WRITE(sc, AR_PHY_RF_CTL2, reg); } if (sc->eep_rev >= AR_EEP_MINOR_VER_3 && extc != NULL) { /* Overwrite switch settling with HT-40 value. */ reg = AR_READ(sc, AR_PHY_SETTLING); reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->swSettleHt40); AR_WRITE(sc, AR_PHY_SETTLING, reg); } } int ar5416_init_calib(struct athn_softc *sc, struct ieee80211_channel *c, struct ieee80211_channel *extc) { int ntries; if (AR_SREV_9280_10_OR_LATER(sc)) { /* XXX Linux tests AR9287?! */ AR_CLRBITS(sc, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC); AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL); } /* Calibrate the AGC. */ AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL); /* Poll for offset calibration completion. */ for (ntries = 0; ntries < 10000; ntries++) { if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_CAL)) break; DELAY(10); } if (ntries == 10000) return (ETIMEDOUT); if (AR_SREV_9280_10_OR_LATER(sc)) { AR_SETBITS(sc, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC); AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL); } return (0); } void ar5416_get_pdadcs(struct athn_softc *sc, struct ieee80211_channel *c, int chain, int nxpdgains, uint8_t overlap, uint8_t *boundaries, uint8_t *pdadcs) { const struct ar5416_eeprom *eep = sc->eep; const struct ar5416_cal_data_per_freq *pierdata; const uint8_t *pierfreq; struct athn_pier lopier, hipier; int16_t delta; uint8_t fbin, pwroff; int i, lo, hi, npiers; if (IEEE80211_IS_CHAN_2GHZ(c)) { pierfreq = eep->calFreqPier2G; pierdata = eep->calPierData2G[chain]; npiers = AR5416_NUM_2G_CAL_PIERS; } else { pierfreq = eep->calFreqPier5G; pierdata = eep->calPierData5G[chain]; npiers = AR5416_NUM_5G_CAL_PIERS; } /* Find channel in ROM pier table. */ fbin = athn_chan2fbin(c); athn_get_pier_ival(fbin, pierfreq, npiers, &lo, &hi); lopier.fbin = pierfreq[lo]; hipier.fbin = pierfreq[hi]; for (i = 0; i < nxpdgains; i++) { lopier.pwr[i] = pierdata[lo].pwrPdg[i]; lopier.vpd[i] = pierdata[lo].vpdPdg[i]; hipier.pwr[i] = pierdata[lo].pwrPdg[i]; hipier.vpd[i] = pierdata[lo].vpdPdg[i]; } ar5008_get_pdadcs(sc, fbin, &lopier, &hipier, nxpdgains, AR5416_PD_GAIN_ICEPTS, overlap, boundaries, pdadcs); if (!AR_SREV_9280_20_OR_LATER(sc)) return; if (sc->eep_rev >= AR_EEP_MINOR_VER_21) pwroff = eep->baseEepHeader.pwrTableOffset; else pwroff = AR_PWR_TABLE_OFFSET_DB; delta = (pwroff - AR_PWR_TABLE_OFFSET_DB) * 2; /* In half dB. */ /* Change the original gain boundaries setting. */ for (i = 0; i < nxpdgains; i++) { /* XXX Possible overflows? */ boundaries[i] -= delta; if (boundaries[i] > AR_MAX_RATE_POWER - overlap) boundaries[i] = AR_MAX_RATE_POWER - overlap; } if (delta != 0) { /* Shift the PDADC table to start at the new offset. */ for (i = 0; i < AR_NUM_PDADC_VALUES; i++) pdadcs[i] = pdadcs[MIN(i + delta, AR_NUM_PDADC_VALUES - 1)]; } } void ar5416_set_power_calib(struct athn_softc *sc, struct ieee80211_channel *c) { static const uint32_t chainoffset[] = { 0x0000, 0x2000, 0x1000 }; const struct ar5416_eeprom *eep = sc->eep; const struct ar5416_modal_eep_header *modal; uint8_t boundaries[AR_PD_GAINS_IN_MASK]; uint8_t pdadcs[AR_NUM_PDADC_VALUES]; uint8_t xpdgains[AR5416_NUM_PD_GAINS]; uint8_t overlap, txgain; uint32_t reg, offset; int i, j, nxpdgains; modal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(c)]; if (sc->eep_rev < AR_EEP_MINOR_VER_2) { overlap = MS(AR_READ(sc, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP); } else overlap = modal->pdGainOverlap; if ((sc->flags & ATHN_FLAG_OLPC) && IEEE80211_IS_CHAN_2GHZ(c)) { /* XXX not here. */ sc->pdadc = ((const struct ar_cal_data_per_freq_olpc *) eep->calPierData2G[0])->vpdPdg[0][0]; } nxpdgains = 0; memset(xpdgains, 0, sizeof(xpdgains)); for (i = AR5416_PD_GAINS_IN_MASK - 1; i >= 0; i--) { if (nxpdgains >= AR5416_NUM_PD_GAINS) break; /* Can't happen. */ if (modal->xpdGain & (1 << i)) xpdgains[nxpdgains++] = i; } reg = AR_READ(sc, AR_PHY_TPCRG1); reg = RW(reg, AR_PHY_TPCRG1_NUM_PD_GAIN, nxpdgains - 1); reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_1, xpdgains[0]); reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_2, xpdgains[1]); reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_3, xpdgains[2]); AR_WRITE(sc, AR_PHY_TPCRG1, reg); for (i = 0; i < AR5416_MAX_CHAINS; i++) { if (!(sc->txchainmask & (1 << i))) continue; if (AR_SREV_5416_20_OR_LATER(sc) && (sc->rxchainmask == 0x5 || sc->txchainmask == 0x5)) offset = chainoffset[i]; else offset = i * 0x1000; if (sc->flags & ATHN_FLAG_OLPC) { ar9280_olpc_get_pdadcs(sc, c, i, boundaries, pdadcs, &txgain); reg = AR_READ(sc, AR_PHY_TX_PWRCTRL6_0); reg = RW(reg, AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3); AR_WRITE(sc, AR_PHY_TX_PWRCTRL6_0, reg); reg = AR_READ(sc, AR_PHY_TX_PWRCTRL6_1); reg = RW(reg, AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3); AR_WRITE(sc, AR_PHY_TX_PWRCTRL6_1, reg); reg = AR_READ(sc, AR_PHY_TX_PWRCTRL7); reg = RW(reg, AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, txgain); AR_WRITE(sc, AR_PHY_TX_PWRCTRL7, reg); overlap = 6; } else { ar5416_get_pdadcs(sc, c, i, nxpdgains, overlap, boundaries, pdadcs); } /* Write boundaries. */ if (i == 0 || AR_SREV_5416_20_OR_LATER(sc)) { reg = SM(AR_PHY_TPCRG5_PD_GAIN_OVERLAP, overlap); reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1, boundaries[0]); reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2, boundaries[1]); reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3, boundaries[2]); reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4, boundaries[3]); AR_WRITE(sc, AR_PHY_TPCRG5 + offset, reg); } /* Write PDADC values. */ for (j = 0; j < AR_NUM_PDADC_VALUES; j += 4) { AR_WRITE(sc, AR_PHY_PDADC_TBL_BASE + offset + j, pdadcs[j + 0] << 0 | pdadcs[j + 1] << 8 | pdadcs[j + 2] << 16 | pdadcs[j + 3] << 24); } } } void ar5416_set_txpower(struct athn_softc *sc, struct ieee80211_channel *c, struct ieee80211_channel *extc) { const struct ar5416_eeprom *eep = sc->eep; const struct ar5416_modal_eep_header *modal; uint8_t tpow_cck[4], tpow_ofdm[4]; uint8_t tpow_cck_ext[4], tpow_ofdm_ext[4]; uint8_t tpow_ht20[8], tpow_ht40[8]; uint8_t ht40inc; int16_t pwr = 0, pwroff, max_ant_gain, power[ATHN_POWER_COUNT]; uint8_t cckinc; int i; ar5416_set_power_calib(sc, c); modal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(c)]; /* Compute transmit power reduction due to antenna gain. */ max_ant_gain = MAX(modal->antennaGainCh[0], modal->antennaGainCh[1]); max_ant_gain = MAX(modal->antennaGainCh[2], max_ant_gain); /* XXX */ /* * Reduce scaled power by number of active chains to get per-chain * transmit power level. */ if (sc->ntxchains == 2) pwr -= AR_PWR_DECREASE_FOR_2_CHAIN; else if (sc->ntxchains == 3) pwr -= AR_PWR_DECREASE_FOR_3_CHAIN; if (pwr < 0) pwr = 0; if (IEEE80211_IS_CHAN_2GHZ(c)) { /* Get CCK target powers. */ ar5008_get_lg_tpow(sc, c, AR_CTL_11B, eep->calTargetPowerCck, AR5416_NUM_2G_CCK_TARGET_POWERS, tpow_cck); /* Get OFDM target powers. */ ar5008_get_lg_tpow(sc, c, AR_CTL_11G, eep->calTargetPower2G, AR5416_NUM_2G_20_TARGET_POWERS, tpow_ofdm); /* Get HT-20 target powers. */ ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT20, eep->calTargetPower2GHT20, AR5416_NUM_2G_20_TARGET_POWERS, tpow_ht20); if (extc != NULL) { /* Get HT-40 target powers. */ ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT40, eep->calTargetPower2GHT40, AR5416_NUM_2G_40_TARGET_POWERS, tpow_ht40); /* Get secondary channel CCK target powers. */ ar5008_get_lg_tpow(sc, extc, AR_CTL_11B, eep->calTargetPowerCck, AR5416_NUM_2G_CCK_TARGET_POWERS, tpow_cck_ext); /* Get secondary channel OFDM target powers. */ ar5008_get_lg_tpow(sc, extc, AR_CTL_11G, eep->calTargetPower2G, AR5416_NUM_2G_20_TARGET_POWERS, tpow_ofdm_ext); } } else { /* Get OFDM target powers. */ ar5008_get_lg_tpow(sc, c, AR_CTL_11A, eep->calTargetPower5G, AR5416_NUM_5G_20_TARGET_POWERS, tpow_ofdm); /* Get HT-20 target powers. */ ar5008_get_ht_tpow(sc, c, AR_CTL_5GHT20, eep->calTargetPower5GHT20, AR5416_NUM_5G_20_TARGET_POWERS, tpow_ht20); if (extc != NULL) { /* Get HT-40 target powers. */ ar5008_get_ht_tpow(sc, c, AR_CTL_5GHT40, eep->calTargetPower5GHT40, AR5416_NUM_5G_40_TARGET_POWERS, tpow_ht40); /* Get secondary channel OFDM target powers. */ ar5008_get_lg_tpow(sc, extc, AR_CTL_11A, eep->calTargetPower5G, AR5416_NUM_5G_20_TARGET_POWERS, tpow_ofdm_ext); } } /* Compute CCK/OFDM delta. */ cckinc = (sc->flags & ATHN_FLAG_OLPC) ? -2 : 0; memset(power, 0, sizeof(power)); /* Shuffle target powers accross transmit rates. */ power[ATHN_POWER_OFDM6 ] = power[ATHN_POWER_OFDM9 ] = power[ATHN_POWER_OFDM12] = power[ATHN_POWER_OFDM18] = power[ATHN_POWER_OFDM24] = tpow_ofdm[0]; power[ATHN_POWER_OFDM36] = tpow_ofdm[1]; power[ATHN_POWER_OFDM48] = tpow_ofdm[2]; power[ATHN_POWER_OFDM54] = tpow_ofdm[3]; power[ATHN_POWER_XR ] = tpow_ofdm[0]; if (IEEE80211_IS_CHAN_2GHZ(c)) { power[ATHN_POWER_CCK1_LP ] = tpow_cck[0] + cckinc; power[ATHN_POWER_CCK2_LP ] = power[ATHN_POWER_CCK2_SP ] = tpow_cck[1] + cckinc; power[ATHN_POWER_CCK55_LP] = power[ATHN_POWER_CCK55_SP] = tpow_cck[2] + cckinc; power[ATHN_POWER_CCK11_LP] = power[ATHN_POWER_CCK11_SP] = tpow_cck[3] + cckinc; } for (i = 0; i < nitems(tpow_ht20); i++) power[ATHN_POWER_HT20(i)] = tpow_ht20[i]; if (extc != NULL) { /* Correct PAR difference between HT40 and HT20/Legacy. */ if (sc->eep_rev >= AR_EEP_MINOR_VER_2) ht40inc = modal->ht40PowerIncForPdadc; else ht40inc = AR_HT40_POWER_INC_FOR_PDADC; for (i = 0; i < nitems(tpow_ht40); i++) power[ATHN_POWER_HT40(i)] = tpow_ht40[i] + ht40inc; power[ATHN_POWER_OFDM_DUP] = tpow_ht40[0]; power[ATHN_POWER_CCK_DUP ] = tpow_ht40[0] + cckinc; power[ATHN_POWER_OFDM_EXT] = tpow_ofdm_ext[0]; if (IEEE80211_IS_CHAN_2GHZ(c)) power[ATHN_POWER_CCK_EXT] = tpow_cck_ext[0] + cckinc; } if (AR_SREV_9280_10_OR_LATER(sc)) { if (sc->eep_rev >= AR_EEP_MINOR_VER_21) pwroff = eep->baseEepHeader.pwrTableOffset; else pwroff = AR_PWR_TABLE_OFFSET_DB; for (i = 0; i < ATHN_POWER_COUNT; i++) power[i] -= pwroff * 2; /* In half dB. */ } for (i = 0; i < ATHN_POWER_COUNT; i++) { if (power[i] > AR_MAX_RATE_POWER) power[i] = AR_MAX_RATE_POWER; } /* Write transmit power values to hardware. */ ar5008_write_txpower(sc, power); /* * Write transmit power substraction for dynamic chain changing * and per-packet transmit power. */ AR_WRITE(sc, AR_PHY_POWER_TX_SUB, (modal->pwrDecreaseFor3Chain & 0x3f) << 6 | (modal->pwrDecreaseFor2Chain & 0x3f)); } void ar5416_spur_mitigate(struct athn_softc *sc, struct ieee80211_channel *c, struct ieee80211_channel *extc) { const struct ar_spur_chan *spurchans; int i, spur, bin, spur_delta_phase, spur_freq_sd; spurchans = sc->ops.get_spur_chans(sc, IEEE80211_IS_CHAN_2GHZ(c)); for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { spur = spurchans[i].spurChan; if (spur == AR_NO_SPUR) return; /* XXX disable if it was enabled! */ spur -= c->ic_freq * 10; /* Verify range +/-9.5MHz */ if (abs(spur) < 95) break; } if (i == AR_EEPROM_MODAL_SPURS) return; /* XXX disable if it was enabled! */ DPRINTFN(2, ("enabling spur mitigation\n")); AR_SETBITS(sc, AR_PHY_TIMING_CTRL4_0, AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI | AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER | AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK | AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK); AR_WRITE(sc, AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_MASK_RATE_CNTL | AR_PHY_SPUR_REG_ENABLE_MASK_PPM | AR_PHY_SPUR_REG_MASK_RATE_SELECT | AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI | SM(AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, AR_SPUR_RSSI_THRESH)); spur_delta_phase = (spur * 524288) / 100; if (IEEE80211_IS_CHAN_2GHZ(c)) spur_freq_sd = (spur * 2048) / 440; else spur_freq_sd = (spur * 2048) / 400; AR_WRITE(sc, AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_IN_AGC | SM(AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd) | SM(AR_PHY_TIMING11_SPUR_DELTA_PHASE, spur_delta_phase)); bin = spur * 32; ar5008_set_viterbi_mask(sc, bin); } uint8_t ar5416_reverse_bits(uint8_t v, int nbits) { KASSERT(nbits <= 8); v = ((v >> 1) & 0x55) | ((v & 0x55) << 1); v = ((v >> 2) & 0x33) | ((v & 0x33) << 2); v = ((v >> 4) & 0x0f) | ((v & 0x0f) << 4); return (v >> (8 - nbits)); } uint8_t ar5416_get_rf_rev(struct athn_softc *sc) { uint8_t rev, reg; int i; /* Allow access to analog chips. */ AR_WRITE(sc, AR_PHY(0), 0x00000007); AR_WRITE(sc, AR_PHY(0x36), 0x00007058); for (i = 0; i < 8; i++) AR_WRITE(sc, AR_PHY(0x20), 0x00010000); reg = (AR_READ(sc, AR_PHY(256)) >> 24) & 0xff; reg = (reg & 0xf0) >> 4 | (reg & 0x0f) << 4; rev = ar5416_reverse_bits(reg, 8); if ((rev & AR_RADIO_SREV_MAJOR) == 0) rev = AR_RAD5133_SREV_MAJOR; return (rev); } /* * Replace bits "off" to "off+nbits-1" in column "col" with the specified * value. */ void ar5416_rw_rfbits(uint32_t *buf, int col, int off, uint32_t val, int nbits) { int idx, bit; KASSERT(off >= 1 && col < 4 && nbits <= 32); off--; /* Starts at 1. */ while (nbits-- > 0) { idx = off / 8; bit = off % 8; buf[idx] &= ~(1 << (bit + col * 8)); buf[idx] |= ((val >> nbits) & 1) << (bit + col * 8); off++; } } /* * Overwrite db and ob based on ROM settings. */ void ar5416_rw_bank6tpc(struct athn_softc *sc, struct ieee80211_channel *c, uint32_t *rwbank6tpc) { const struct ar5416_eeprom *eep = sc->eep; const struct ar5416_modal_eep_header *modal; if (IEEE80211_IS_CHAN_5GHZ(c)) { modal = &eep->modalHeader[0]; /* 5GHz db in column 0, bits [200-202]. */ ar5416_rw_rfbits(rwbank6tpc, 0, 200, modal->db, 3); /* 5GHz ob in column 0, bits [203-205]. */ ar5416_rw_rfbits(rwbank6tpc, 0, 203, modal->ob, 3); } else { modal = &eep->modalHeader[1]; /* 2GHz db in column 0, bits [194-196]. */ ar5416_rw_rfbits(rwbank6tpc, 0, 194, modal->db, 3); /* 2GHz ob in column 0, bits [197-199]. */ ar5416_rw_rfbits(rwbank6tpc, 0, 197, modal->ob, 3); } } /* * Program analog RF. */ void ar5416_rf_reset(struct athn_softc *sc, struct ieee80211_channel *c) { const uint32_t *bank6tpc; int i; /* Bank 0. */ AR_WRITE(sc, 0x98b0, 0x1e5795e5); AR_WRITE(sc, 0x98e0, 0x02008020); /* Bank 1. */ AR_WRITE(sc, 0x98b0, 0x02108421); AR_WRITE(sc, 0x98ec, 0x00000008); /* Bank 2. */ AR_WRITE(sc, 0x98b0, 0x0e73ff17); AR_WRITE(sc, 0x98e0, 0x00000420); /* Bank 3. */ if (IEEE80211_IS_CHAN_5GHZ(c)) AR_WRITE(sc, 0x98f0, 0x01400018); else AR_WRITE(sc, 0x98f0, 0x01c00018); /* Select the Bank 6 TPC values to use. */ if (AR_SREV_9160_10_OR_LATER(sc)) bank6tpc = ar9160_bank6tpc_vals; else bank6tpc = ar5416_bank6tpc_vals; if (sc->eep_rev >= AR_EEP_MINOR_VER_2) { uint32_t *rwbank6tpc = sc->rwbuf; /* Copy values from .rodata to writable buffer. */ memcpy(rwbank6tpc, bank6tpc, 32 * sizeof(uint32_t)); ar5416_rw_bank6tpc(sc, c, rwbank6tpc); bank6tpc = rwbank6tpc; } /* Bank 6 TPC. */ for (i = 0; i < 32; i++) AR_WRITE(sc, 0x989c, bank6tpc[i]); if (IEEE80211_IS_CHAN_5GHZ(c)) AR_WRITE(sc, 0x98d0, 0x0000000f); else AR_WRITE(sc, 0x98d0, 0x0010000f); /* Bank 7. */ AR_WRITE(sc, 0x989c, 0x00000500); AR_WRITE(sc, 0x989c, 0x00000800); AR_WRITE(sc, 0x98cc, 0x0000000e); } void ar5416_reset_bb_gain(struct athn_softc *sc, struct ieee80211_channel *c) { const uint32_t *pvals; int i; if (IEEE80211_IS_CHAN_2GHZ(c)) pvals = ar5416_bb_rfgain_vals_2g; else pvals = ar5416_bb_rfgain_vals_5g; for (i = 0; i < 64; i++) AR_WRITE(sc, AR_PHY_BB_RFGAIN(i), pvals[i]); } /* * Fix orientation sensitivity issue on AR5416/2GHz by increasing * rf_pwd_icsyndiv. */ void ar5416_force_bias(struct athn_softc *sc, struct ieee80211_channel *c) { uint32_t *rwbank6 = sc->rwbuf; uint8_t bias; int i; KASSERT(IEEE80211_IS_CHAN_2GHZ(c)); /* Copy values from .rodata to writable buffer. */ memcpy(rwbank6, ar5416_bank6_vals, sizeof(ar5416_bank6_vals)); if (c->ic_freq < 2412) bias = 0; else if (c->ic_freq < 2422) bias = 1; else bias = 2; ar5416_reverse_bits(bias, 3); /* Overwrite "rf_pwd_icsyndiv" (column 3, bits [181-183].) */ ar5416_rw_rfbits(rwbank6, 3, 181, bias, 3); /* Write Bank 6. */ for (i = 0; i < 32; i++) AR_WRITE(sc, 0x989c, rwbank6[i]); AR_WRITE(sc, 0x98d0, 0x0010000f); } /* * Overwrite XPA bias level based on ROM setting. */ void ar9160_rw_addac(struct athn_softc *sc, struct ieee80211_channel *c, uint32_t *addac) { struct ar5416_eeprom *eep = sc->eep; struct ar5416_modal_eep_header *modal; uint8_t fbin, bias; int i; /* XXX xpaBiasLvlFreq values have not been endian-swapped? */ /* Get the XPA bias level to use for the specified channel. */ modal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(c)]; if (modal->xpaBiasLvl == 0xff) { bias = modal->xpaBiasLvlFreq[0] >> 14; fbin = athn_chan2fbin(c); for (i = 1; i < 3; i++) { if (modal->xpaBiasLvlFreq[i] == 0) break; if ((modal->xpaBiasLvlFreq[i] & 0xff) < fbin) break; bias = modal->xpaBiasLvlFreq[i] >> 14; } } else bias = modal->xpaBiasLvl & 0x3; bias = ar5416_reverse_bits(bias, 2); /* Put in host bit-order. */ DPRINTFN(4, ("bias level=%d\n", bias)); if (IEEE80211_IS_CHAN_2GHZ(c)) ar5416_rw_rfbits(addac, 0, 60, bias, 2); else ar5416_rw_rfbits(addac, 0, 55, bias, 2); } void ar5416_reset_addac(struct athn_softc *sc, struct ieee80211_channel *c) { const struct athn_addac *addac = sc->addac; const uint32_t *pvals; int i; if (AR_SREV_9160(sc) && sc->eep_rev >= AR_EEP_MINOR_VER_7) { uint32_t *rwaddac = sc->rwbuf; /* Copy values from .rodata to writable buffer. */ memcpy(rwaddac, addac->vals, addac->nvals * sizeof(uint32_t)); ar9160_rw_addac(sc, c, rwaddac); pvals = rwaddac; } else pvals = addac->vals; for (i = 0; i < addac->nvals; i++) AR_WRITE(sc, 0x989c, pvals[i]); AR_WRITE(sc, 0x98cc, 0); /* Finalize. */ }