/* $OpenBSD: ar9003.c,v 1.54 2022/01/09 05:42:38 jsg Exp $ */ /*- * Copyright (c) 2010 Damien Bergamini * Copyright (c) 2010 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Driver for Atheros 802.11a/g/n chipsets. * Routines for AR9003 family. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include /* uintptr_t */ #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #include int ar9003_attach(struct athn_softc *); int ar9003_read_eep_word(struct athn_softc *, uint32_t, uint16_t *); int ar9003_read_eep_data(struct athn_softc *, uint32_t, void *, int); int ar9003_read_otp_word(struct athn_softc *, uint32_t, uint32_t *); int ar9003_read_otp_data(struct athn_softc *, uint32_t, void *, int); int ar9003_find_rom(struct athn_softc *); int ar9003_restore_rom_block(struct athn_softc *, uint8_t, uint8_t, const uint8_t *, int); int ar9003_read_rom(struct athn_softc *); int ar9003_gpio_read(struct athn_softc *, int); void ar9003_gpio_write(struct athn_softc *, int, int); void ar9003_gpio_config_input(struct athn_softc *, int); void ar9003_gpio_config_output(struct athn_softc *, int, int); void ar9003_rfsilent_init(struct athn_softc *); int ar9003_dma_alloc(struct athn_softc *); void ar9003_dma_free(struct athn_softc *); int ar9003_tx_alloc(struct athn_softc *); void ar9003_tx_free(struct athn_softc *); int ar9003_rx_alloc(struct athn_softc *, int, int); void ar9003_rx_free(struct athn_softc *, int); void ar9003_reset_txsring(struct athn_softc *); void ar9003_rx_enable(struct athn_softc *); void ar9003_rx_radiotap(struct athn_softc *, struct mbuf *, struct ar_rx_status *); int ar9003_rx_process(struct athn_softc *, int, struct mbuf_list *); void ar9003_rx_intr(struct athn_softc *, int); int ar9003_tx_process(struct athn_softc *); void ar9003_tx_intr(struct athn_softc *); int ar9003_swba_intr(struct athn_softc *); int ar9003_intr(struct athn_softc *); int ar9003_tx(struct athn_softc *, struct mbuf *, struct ieee80211_node *, int); void ar9003_set_rf_mode(struct athn_softc *, struct ieee80211_channel *); int ar9003_rf_bus_request(struct athn_softc *); void ar9003_rf_bus_release(struct athn_softc *); void ar9003_set_phy(struct athn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); void ar9003_set_delta_slope(struct athn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); void ar9003_enable_antenna_diversity(struct athn_softc *); void ar9003_init_baseband(struct athn_softc *); void ar9003_disable_phy(struct athn_softc *); void ar9003_init_chains(struct athn_softc *); void ar9003_set_rxchains(struct athn_softc *); void ar9003_read_noisefloor(struct athn_softc *, int16_t *, int16_t *); void ar9003_write_noisefloor(struct athn_softc *, int16_t *, int16_t *); int ar9003_get_noisefloor(struct athn_softc *); void ar9003_apply_noisefloor(struct athn_softc *); void ar9003_bb_load_noisefloor(struct athn_softc *); void ar9003_do_noisefloor_calib(struct athn_softc *); void ar9003_init_noisefloor_calib(struct athn_softc *); int ar9003_init_calib(struct athn_softc *); void ar9003_do_calib(struct athn_softc *); void ar9003_next_calib(struct athn_softc *); void ar9003_calib_iq(struct athn_softc *); int ar9003_get_iq_corr(struct athn_softc *, int32_t[], int32_t[]); int ar9003_calib_tx_iq(struct athn_softc *); void ar9003_paprd_calib(struct athn_softc *, struct ieee80211_channel *); int ar9003_get_desired_txgain(struct athn_softc *, int, int); void ar9003_force_txgain(struct athn_softc *, uint32_t); void ar9003_set_training_gain(struct athn_softc *, int); int ar9003_paprd_tx_tone(struct athn_softc *); int ar9003_compute_predistortion(struct athn_softc *, const uint32_t *, const uint32_t *); void ar9003_enable_predistorter(struct athn_softc *, int); void ar9003_paprd_enable(struct athn_softc *); void ar9003_paprd_tx_tone_done(struct athn_softc *); void ar9003_write_txpower(struct athn_softc *, int16_t power[]); void ar9003_reset_rx_gain(struct athn_softc *, struct ieee80211_channel *); void ar9003_reset_tx_gain(struct athn_softc *, struct ieee80211_channel *); void ar9003_hw_init(struct athn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); void ar9003_get_lg_tpow(struct athn_softc *, struct ieee80211_channel *, uint8_t, const uint8_t *, const struct ar_cal_target_power_leg *, int, uint8_t[]); void ar9003_get_ht_tpow(struct athn_softc *, struct ieee80211_channel *, uint8_t, const uint8_t *, const struct ar_cal_target_power_ht *, int, uint8_t[]); void ar9003_set_noise_immunity_level(struct athn_softc *, int); void ar9003_enable_ofdm_weak_signal(struct athn_softc *); void ar9003_disable_ofdm_weak_signal(struct athn_softc *); void ar9003_set_cck_weak_signal(struct athn_softc *, int); void ar9003_set_firstep_level(struct athn_softc *, int); void ar9003_set_spur_immunity_level(struct athn_softc *, int); /* Extern functions. */ void athn_stop(struct ifnet *, int); int athn_interpolate(int, int, int, int, int); int athn_txtime(struct athn_softc *, int, int, u_int); void athn_inc_tx_trigger_level(struct athn_softc *); int athn_tx_pending(struct athn_softc *, int); void athn_stop_tx_dma(struct athn_softc *, int); void athn_get_delta_slope(uint32_t, uint32_t *, uint32_t *); void athn_config_pcie(struct athn_softc *); void athn_config_nonpcie(struct athn_softc *); uint8_t athn_chan2fbin(struct ieee80211_channel *); int ar9003_attach(struct athn_softc *sc) { struct athn_ops *ops = &sc->ops; int error; /* Set callbacks for AR9003 family. */ ops->gpio_read = ar9003_gpio_read; ops->gpio_write = ar9003_gpio_write; ops->gpio_config_input = ar9003_gpio_config_input; ops->gpio_config_output = ar9003_gpio_config_output; ops->rfsilent_init = ar9003_rfsilent_init; ops->dma_alloc = ar9003_dma_alloc; ops->dma_free = ar9003_dma_free; ops->rx_enable = ar9003_rx_enable; ops->intr = ar9003_intr; ops->tx = ar9003_tx; ops->set_rf_mode = ar9003_set_rf_mode; ops->rf_bus_request = ar9003_rf_bus_request; ops->rf_bus_release = ar9003_rf_bus_release; ops->set_phy = ar9003_set_phy; ops->set_delta_slope = ar9003_set_delta_slope; ops->enable_antenna_diversity = ar9003_enable_antenna_diversity; ops->init_baseband = ar9003_init_baseband; ops->disable_phy = ar9003_disable_phy; ops->set_rxchains = ar9003_set_rxchains; ops->noisefloor_calib = ar9003_do_noisefloor_calib; ops->init_noisefloor_calib = ar9003_init_noisefloor_calib; ops->get_noisefloor = ar9003_get_noisefloor; ops->apply_noisefloor = ar9003_apply_noisefloor; ops->do_calib = ar9003_do_calib; ops->next_calib = ar9003_next_calib; ops->hw_init = ar9003_hw_init; ops->set_noise_immunity_level = ar9003_set_noise_immunity_level; ops->enable_ofdm_weak_signal = ar9003_enable_ofdm_weak_signal; ops->disable_ofdm_weak_signal = ar9003_disable_ofdm_weak_signal; ops->set_cck_weak_signal = ar9003_set_cck_weak_signal; ops->set_firstep_level = ar9003_set_firstep_level; ops->set_spur_immunity_level = ar9003_set_spur_immunity_level; /* Set MAC registers offsets. */ sc->obs_off = AR_OBS; sc->gpio_input_en_off = AR_GPIO_INPUT_EN_VAL; if (!(sc->flags & ATHN_FLAG_PCIE)) athn_config_nonpcie(sc); else athn_config_pcie(sc); /* Determine ROM type and location. */ if ((error = ar9003_find_rom(sc)) != 0) { printf("%s: could not find ROM\n", sc->sc_dev.dv_xname); return (error); } /* Read entire ROM content in memory. */ if ((error = ar9003_read_rom(sc)) != 0) { printf("%s: could not read ROM\n", sc->sc_dev.dv_xname); return (error); } /* Determine if it is a non-enterprise AR9003 card. */ if (AR_READ(sc, AR_ENT_OTP) & AR_ENT_OTP_MPSD) sc->flags |= ATHN_FLAG_NON_ENTERPRISE; ops->setup(sc); return (0); } /* * Read 16-bit word from EEPROM. */ int ar9003_read_eep_word(struct athn_softc *sc, uint32_t addr, uint16_t *val) { uint32_t reg; int ntries; reg = AR_READ(sc, AR_EEPROM_OFFSET(addr)); for (ntries = 0; ntries < 1000; ntries++) { reg = AR_READ(sc, AR_EEPROM_STATUS_DATA); if (!(reg & (AR_EEPROM_STATUS_DATA_BUSY | AR_EEPROM_STATUS_DATA_PROT_ACCESS))) { *val = MS(reg, AR_EEPROM_STATUS_DATA_VAL); return (0); } DELAY(10); } *val = 0xffff; return (ETIMEDOUT); } /* * Read an arbitrary number of bytes at a specified address in EEPROM. * NB: The address may not be 16-bit aligned. */ int ar9003_read_eep_data(struct athn_softc *sc, uint32_t addr, void *buf, int len) { uint8_t *dst = buf; uint16_t val; int error; if (len > 0 && (addr & 1)) { /* Deal with non-aligned reads. */ addr >>= 1; error = ar9003_read_eep_word(sc, addr, &val); if (error != 0) return (error); *dst++ = val & 0xff; addr--; len--; } else addr >>= 1; for (; len >= 2; addr--, len -= 2) { error = ar9003_read_eep_word(sc, addr, &val); if (error != 0) return (error); *dst++ = val >> 8; *dst++ = val & 0xff; } if (len > 0) { error = ar9003_read_eep_word(sc, addr, &val); if (error != 0) return (error); *dst++ = val >> 8; } return (0); } /* * Read 32-bit word from OTPROM. */ int ar9003_read_otp_word(struct athn_softc *sc, uint32_t addr, uint32_t *val) { uint32_t reg; int ntries; reg = AR_READ(sc, AR_OTP_BASE(addr)); for (ntries = 0; ntries < 1000; ntries++) { reg = AR_READ(sc, AR_OTP_STATUS); if (MS(reg, AR_OTP_STATUS_TYPE) == AR_OTP_STATUS_VALID) { *val = AR_READ(sc, AR_OTP_READ_DATA); return (0); } DELAY(10); } return (ETIMEDOUT); } /* * Read an arbitrary number of bytes at a specified address in OTPROM. * NB: The address may not be 32-bit aligned. */ int ar9003_read_otp_data(struct athn_softc *sc, uint32_t addr, void *buf, int len) { uint8_t *dst = buf; uint32_t val; int error; /* NB: not optimal for non-aligned reads, but correct. */ for (; len > 0; addr--, len--) { error = ar9003_read_otp_word(sc, addr >> 2, &val); if (error != 0) return (error); *dst++ = (val >> ((addr & 3) * 8)) & 0xff; } return (0); } /* * Determine if the chip has an external EEPROM or an OTPROM and its size. */ int ar9003_find_rom(struct athn_softc *sc) { struct athn_ops *ops = &sc->ops; uint32_t hdr; int error; /* Try EEPROM. */ ops->read_rom_data = ar9003_read_eep_data; sc->eep_size = AR_SREV_9485(sc) ? 4096 : 1024; sc->eep_base = sc->eep_size - 1; error = ops->read_rom_data(sc, sc->eep_base, &hdr, sizeof(hdr)); if (error == 0 && hdr != 0 && hdr != 0xffffffff) return (0); sc->eep_size = 512; sc->eep_base = sc->eep_size - 1; error = ops->read_rom_data(sc, sc->eep_base, &hdr, sizeof(hdr)); if (error == 0 && hdr != 0 && hdr != 0xffffffff) return (0); /* Try OTPROM. */ ops->read_rom_data = ar9003_read_otp_data; sc->eep_size = 1024; sc->eep_base = sc->eep_size - 1; error = ops->read_rom_data(sc, sc->eep_base, &hdr, sizeof(hdr)); if (error == 0 && hdr != 0 && hdr != 0xffffffff) return (0); sc->eep_size = 512; sc->eep_base = sc->eep_size - 1; error = ops->read_rom_data(sc, sc->eep_base, &hdr, sizeof(hdr)); if (error == 0 && hdr != 0 && hdr != 0xffffffff) return (0); return (EIO); /* Not found. */ } int ar9003_restore_rom_block(struct athn_softc *sc, uint8_t alg, uint8_t ref, const uint8_t *buf, int len) { const uint8_t *def, *ptr, *end; uint8_t *eep = sc->eep; int off, clen; if (alg == AR_EEP_COMPRESS_BLOCK) { /* Block contains chunks that shadow ROM template. */ def = sc->ops.get_rom_template(sc, ref); if (def == NULL) { DPRINTF(("unknown template image %d\n", ref)); return (EINVAL); } /* Start with template. */ memcpy(eep, def, sc->eep_size); /* Shadow template with chunks. */ off = 0; /* Offset in ROM image. */ ptr = buf; /* Offset in block. */ end = buf + len; /* Process chunks. */ while (ptr + 2 <= end) { off += *ptr++; /* Gap with previous chunk. */ clen = *ptr++; /* Chunk length. */ /* Make sure block is large enough. */ if (ptr + clen > end) return (EINVAL); /* Make sure chunk fits in ROM image. */ if (off + clen > sc->eep_size) return (EINVAL); /* Restore chunk. */ DPRINTFN(2, ("ROM chunk @%d/%d\n", off, clen)); memcpy(&eep[off], ptr, clen); ptr += clen; off += clen; } } else if (alg == AR_EEP_COMPRESS_NONE) { /* Block contains full ROM image. */ if (len != sc->eep_size) { DPRINTF(("block length mismatch %d\n", len)); return (EINVAL); } memcpy(eep, buf, len); } return (0); } int ar9003_read_rom(struct athn_softc *sc) { struct athn_ops *ops = &sc->ops; uint8_t *buf, *ptr, alg, ref; uint16_t sum, rsum; uint32_t hdr; int error, addr, len, i, j; /* Allocate space to store ROM in host memory. */ sc->eep = malloc(sc->eep_size, M_DEVBUF, M_NOWAIT); if (sc->eep == NULL) return (ENOMEM); /* Allocate temporary buffer to store ROM blocks. */ buf = malloc(2048, M_DEVBUF, M_NOWAIT); if (buf == NULL) return (ENOMEM); /* Restore vendor-specified ROM blocks. */ addr = sc->eep_base; for (i = 0; i < 100; i++) { /* Read block header. */ error = ops->read_rom_data(sc, addr, &hdr, sizeof(hdr)); if (error != 0) break; if (hdr == 0 || hdr == 0xffffffff) break; addr -= sizeof(hdr); /* Extract bits from header. */ ptr = (uint8_t *)&hdr; alg = (ptr[0] & 0xe0) >> 5; ref = (ptr[1] & 0x80) >> 2 | (ptr[0] & 0x1f); len = (ptr[1] & 0x7f) << 4 | (ptr[2] & 0xf0) >> 4; DPRINTFN(2, ("ROM block %d: alg=%d ref=%d len=%d\n", i, alg, ref, len)); /* Read block data (len <= 0x7ff). */ error = ops->read_rom_data(sc, addr, buf, len); if (error != 0) break; addr -= len; /* Read block checksum. */ error = ops->read_rom_data(sc, addr, &sum, sizeof(sum)); if (error != 0) break; addr -= sizeof(sum); /* Compute block checksum. */ rsum = 0; for (j = 0; j < len; j++) rsum += buf[j]; /* Compare to that in ROM. */ if (letoh16(sum) != rsum) { DPRINTF(("bad block checksum 0x%x/0x%x\n", letoh16(sum), rsum)); continue; /* Skip bad block. */ } /* Checksum is correct, restore block. */ ar9003_restore_rom_block(sc, alg, ref, buf, len); } #if BYTE_ORDER == BIG_ENDIAN /* NB: ROM is always little endian. */ if (error == 0) ops->swap_rom(sc); #endif free(buf, M_DEVBUF, 0); return (error); } /* * Access to General Purpose Input/Output ports. */ int ar9003_gpio_read(struct athn_softc *sc, int pin) { KASSERT(pin < sc->ngpiopins); return (((AR_READ(sc, AR_GPIO_IN) & AR9300_GPIO_IN_VAL) & (1 << pin)) != 0); } void ar9003_gpio_write(struct athn_softc *sc, int pin, int set) { uint32_t reg; KASSERT(pin < sc->ngpiopins); reg = AR_READ(sc, AR_GPIO_IN_OUT); if (set) reg |= 1 << pin; else reg &= ~(1 << pin); AR_WRITE(sc, AR_GPIO_IN_OUT, reg); AR_WRITE_BARRIER(sc); } void ar9003_gpio_config_input(struct athn_softc *sc, int pin) { uint32_t reg; reg = AR_READ(sc, AR_GPIO_OE_OUT); reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2)); reg |= AR_GPIO_OE_OUT_DRV_NO << (pin * 2); AR_WRITE(sc, AR_GPIO_OE_OUT, reg); AR_WRITE_BARRIER(sc); } void ar9003_gpio_config_output(struct athn_softc *sc, int pin, int type) { uint32_t reg; int mux, off; mux = pin / 6; off = pin % 6; reg = AR_READ(sc, AR_GPIO_OUTPUT_MUX(mux)); reg &= ~(0x1f << (off * 5)); reg |= (type & 0x1f) << (off * 5); AR_WRITE(sc, AR_GPIO_OUTPUT_MUX(mux), reg); reg = AR_READ(sc, AR_GPIO_OE_OUT); reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2)); reg |= AR_GPIO_OE_OUT_DRV_ALL << (pin * 2); AR_WRITE(sc, AR_GPIO_OE_OUT, reg); AR_WRITE_BARRIER(sc); } void ar9003_rfsilent_init(struct athn_softc *sc) { uint32_t reg; /* Configure hardware radio switch. */ AR_SETBITS(sc, AR_GPIO_INPUT_EN_VAL, AR_GPIO_INPUT_EN_VAL_RFSILENT_BB); reg = AR_READ(sc, AR_GPIO_INPUT_MUX2); reg = RW(reg, AR_GPIO_INPUT_MUX2_RFSILENT, 0); AR_WRITE(sc, AR_GPIO_INPUT_MUX2, reg); ar9003_gpio_config_input(sc, sc->rfsilent_pin); AR_SETBITS(sc, AR_PHY_TEST, AR_PHY_TEST_RFSILENT_BB); if (!(sc->flags & ATHN_FLAG_RFSILENT_REVERSED)) { AR_SETBITS(sc, AR_GPIO_INTR_POL, AR_GPIO_INTR_POL_PIN(sc->rfsilent_pin)); } AR_WRITE_BARRIER(sc); } int ar9003_dma_alloc(struct athn_softc *sc) { int error; error = ar9003_tx_alloc(sc); if (error != 0) return (error); error = ar9003_rx_alloc(sc, ATHN_QID_LP, AR9003_RX_LP_QDEPTH); if (error != 0) return (error); error = ar9003_rx_alloc(sc, ATHN_QID_HP, AR9003_RX_HP_QDEPTH); if (error != 0) return (error); return (0); } void ar9003_dma_free(struct athn_softc *sc) { ar9003_tx_free(sc); ar9003_rx_free(sc, ATHN_QID_LP); ar9003_rx_free(sc, ATHN_QID_HP); } int ar9003_tx_alloc(struct athn_softc *sc) { struct athn_tx_buf *bf; bus_size_t size; int error, nsegs, i; /* * Allocate Tx status ring. */ size = AR9003_NTXSTATUS * sizeof(struct ar_tx_status); error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT, &sc->txsmap); if (error != 0) goto fail; error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->txsseg, 1, &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO); if (error != 0) goto fail; error = bus_dmamem_map(sc->sc_dmat, &sc->txsseg, 1, size, (caddr_t *)&sc->txsring, BUS_DMA_NOWAIT | BUS_DMA_COHERENT); if (error != 0) goto fail; error = bus_dmamap_load_raw(sc->sc_dmat, sc->txsmap, &sc->txsseg, 1, size, BUS_DMA_NOWAIT | BUS_DMA_READ); if (error != 0) goto fail; /* * Allocate a pool of Tx descriptors shared between all Tx queues. */ size = ATHN_NTXBUFS * sizeof(struct ar_tx_desc); error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT, &sc->map); if (error != 0) goto fail; error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->seg, 1, &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO); if (error != 0) goto fail; error = bus_dmamem_map(sc->sc_dmat, &sc->seg, 1, size, (caddr_t *)&sc->descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT); if (error != 0) goto fail; error = bus_dmamap_load_raw(sc->sc_dmat, sc->map, &sc->seg, 1, size, BUS_DMA_NOWAIT | BUS_DMA_WRITE); if (error != 0) goto fail; SIMPLEQ_INIT(&sc->txbufs); for (i = 0; i < ATHN_NTXBUFS; i++) { bf = &sc->txpool[i]; error = bus_dmamap_create(sc->sc_dmat, ATHN_TXBUFSZ, AR9003_MAX_SCATTER, ATHN_TXBUFSZ, 0, BUS_DMA_NOWAIT, &bf->bf_map); if (error != 0) { printf("%s: could not create Tx buf DMA map\n", sc->sc_dev.dv_xname); goto fail; } bf->bf_descs = &((struct ar_tx_desc *)sc->descs)[i]; bf->bf_daddr = sc->map->dm_segs[0].ds_addr + i * sizeof(struct ar_tx_desc); SIMPLEQ_INSERT_TAIL(&sc->txbufs, bf, bf_list); } return (0); fail: ar9003_tx_free(sc); return (error); } void ar9003_tx_free(struct athn_softc *sc) { struct athn_tx_buf *bf; int i; for (i = 0; i < ATHN_NTXBUFS; i++) { bf = &sc->txpool[i]; if (bf->bf_map != NULL) bus_dmamap_destroy(sc->sc_dmat, bf->bf_map); } /* Free Tx descriptors. */ if (sc->map != NULL) { if (sc->descs != NULL) { bus_dmamap_unload(sc->sc_dmat, sc->map); bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->descs, ATHN_NTXBUFS * sizeof(struct ar_tx_desc)); bus_dmamem_free(sc->sc_dmat, &sc->seg, 1); } bus_dmamap_destroy(sc->sc_dmat, sc->map); } /* Free Tx status ring. */ if (sc->txsmap != NULL) { if (sc->txsring != NULL) { bus_dmamap_unload(sc->sc_dmat, sc->txsmap); bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->txsring, AR9003_NTXSTATUS * sizeof(struct ar_tx_status)); bus_dmamem_free(sc->sc_dmat, &sc->txsseg, 1); } bus_dmamap_destroy(sc->sc_dmat, sc->txsmap); } } int ar9003_rx_alloc(struct athn_softc *sc, int qid, int count) { struct athn_rxq *rxq = &sc->rxq[qid]; struct athn_rx_buf *bf; struct ar_rx_status *ds; int error, i; rxq->bf = mallocarray(count, sizeof(*bf), M_DEVBUF, M_NOWAIT | M_ZERO); if (rxq->bf == NULL) return (ENOMEM); rxq->count = count; for (i = 0; i < rxq->count; i++) { bf = &rxq->bf[i]; error = bus_dmamap_create(sc->sc_dmat, ATHN_RXBUFSZ, 1, ATHN_RXBUFSZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &bf->bf_map); if (error != 0) { printf("%s: could not create Rx buf DMA map\n", sc->sc_dev.dv_xname); goto fail; } /* * Assumes MCLGETL returns cache-line-size aligned buffers. */ bf->bf_m = MCLGETL(NULL, M_DONTWAIT, ATHN_RXBUFSZ); if (bf->bf_m == NULL) { printf("%s: could not allocate Rx mbuf\n", sc->sc_dev.dv_xname); error = ENOBUFS; goto fail; } error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not DMA map Rx buffer\n", sc->sc_dev.dv_xname); goto fail; } ds = mtod(bf->bf_m, struct ar_rx_status *); memset(ds, 0, sizeof(*ds)); bf->bf_desc = ds; bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr; bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ, BUS_DMASYNC_PREREAD); } return (0); fail: ar9003_rx_free(sc, qid); return (error); } void ar9003_rx_free(struct athn_softc *sc, int qid) { struct athn_rxq *rxq = &sc->rxq[qid]; struct athn_rx_buf *bf; int i; if (rxq->bf == NULL) return; for (i = 0; i < rxq->count; i++) { bf = &rxq->bf[i]; if (bf->bf_map != NULL) bus_dmamap_destroy(sc->sc_dmat, bf->bf_map); m_freem(bf->bf_m); } free(rxq->bf, M_DEVBUF, 0); } void ar9003_reset_txsring(struct athn_softc *sc) { sc->txscur = 0; memset(sc->txsring, 0, AR9003_NTXSTATUS * sizeof(struct ar_tx_status)); AR_WRITE(sc, AR_Q_STATUS_RING_START, sc->txsmap->dm_segs[0].ds_addr); AR_WRITE(sc, AR_Q_STATUS_RING_END, sc->txsmap->dm_segs[0].ds_addr + sc->txsmap->dm_segs[0].ds_len); AR_WRITE_BARRIER(sc); } void ar9003_rx_enable(struct athn_softc *sc) { struct athn_rxq *rxq; struct athn_rx_buf *bf; struct ar_rx_status *ds; uint32_t reg; int qid, i; reg = AR_READ(sc, AR_RXBP_THRESH); reg = RW(reg, AR_RXBP_THRESH_HP, 1); reg = RW(reg, AR_RXBP_THRESH_LP, 1); AR_WRITE(sc, AR_RXBP_THRESH, reg); /* Set Rx buffer size. */ AR_WRITE(sc, AR_DATABUF_SIZE, ATHN_RXBUFSZ - sizeof(*ds)); for (qid = 0; qid < 2; qid++) { rxq = &sc->rxq[qid]; /* Setup Rx status descriptors. */ SIMPLEQ_INIT(&rxq->head); for (i = 0; i < rxq->count; i++) { bf = &rxq->bf[i]; ds = bf->bf_desc; memset(ds, 0, sizeof(*ds)); if (qid == ATHN_QID_LP) AR_WRITE(sc, AR_LP_RXDP, bf->bf_daddr); else AR_WRITE(sc, AR_HP_RXDP, bf->bf_daddr); AR_WRITE_BARRIER(sc); SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list); } } /* Enable Rx. */ AR_WRITE(sc, AR_CR, 0); AR_WRITE_BARRIER(sc); } #if NBPFILTER > 0 void ar9003_rx_radiotap(struct athn_softc *sc, struct mbuf *m, struct ar_rx_status *ds) { #define IEEE80211_RADIOTAP_F_SHORTGI 0x80 /* XXX from FBSD */ struct athn_rx_radiotap_header *tap = &sc->sc_rxtap; struct ieee80211com *ic = &sc->sc_ic; uint64_t tsf; uint32_t tstamp; uint8_t rate; /* Extend the 15-bit timestamp from Rx status to 64-bit TSF. */ tstamp = ds->ds_status3; tsf = AR_READ(sc, AR_TSF_U32); tsf = tsf << 32 | AR_READ(sc, AR_TSF_L32); if ((tsf & 0x7fff) < tstamp) tsf -= 0x8000; tsf = (tsf & ~0x7fff) | tstamp; tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; tap->wr_tsft = htole64(tsf); tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); tap->wr_dbm_antsignal = MS(ds->ds_status5, AR_RXS5_RSSI_COMBINED); /* XXX noise. */ tap->wr_antenna = MS(ds->ds_status4, AR_RXS4_ANTENNA); tap->wr_rate = 0; /* In case it can't be found below. */ rate = MS(ds->ds_status1, AR_RXS1_RATE); if (rate & 0x80) { /* HT. */ /* Bit 7 set means HT MCS instead of rate. */ tap->wr_rate = rate; if (!(ds->ds_status4 & AR_RXS4_GI)) tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI; } else if (rate & 0x10) { /* CCK. */ if (rate & 0x04) tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; switch (rate & ~0x14) { case 0xb: tap->wr_rate = 2; break; case 0xa: tap->wr_rate = 4; break; case 0x9: tap->wr_rate = 11; break; case 0x8: tap->wr_rate = 22; break; } } else { /* OFDM. */ switch (rate) { case 0xb: tap->wr_rate = 12; break; case 0xf: tap->wr_rate = 18; break; case 0xa: tap->wr_rate = 24; break; case 0xe: tap->wr_rate = 36; break; case 0x9: tap->wr_rate = 48; break; case 0xd: tap->wr_rate = 72; break; case 0x8: tap->wr_rate = 96; break; case 0xc: tap->wr_rate = 108; break; } } bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_DIRECTION_IN); } #endif int ar9003_rx_process(struct athn_softc *sc, int qid, struct mbuf_list *ml) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct athn_rxq *rxq = &sc->rxq[qid]; struct athn_rx_buf *bf; struct ar_rx_status *ds; struct ieee80211_frame *wh; struct ieee80211_rxinfo rxi; struct ieee80211_node *ni; struct mbuf *m, *m1; int error, len; bf = SIMPLEQ_FIRST(&rxq->head); if (__predict_false(bf == NULL)) { /* Should not happen. */ printf("%s: Rx queue is empty!\n", sc->sc_dev.dv_xname); return (ENOENT); } bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ, BUS_DMASYNC_POSTREAD); ds = mtod(bf->bf_m, struct ar_rx_status *); if (!(ds->ds_status11 & AR_RXS11_DONE)) return (EBUSY); /* Check that it is a valid Rx status descriptor. */ if ((ds->ds_info & (AR_RXI_DESC_ID_M | AR_RXI_DESC_TX | AR_RXI_CTRL_STAT)) != SM(AR_RXI_DESC_ID, AR_VENDOR_ATHEROS)) goto skip; if (!(ds->ds_status11 & AR_RXS11_FRAME_OK)) { if (ds->ds_status11 & AR_RXS11_CRC_ERR) DPRINTFN(6, ("CRC error\n")); else if (ds->ds_status11 & AR_RXS11_PHY_ERR) DPRINTFN(6, ("PHY error=0x%x\n", MS(ds->ds_status11, AR_RXS11_PHY_ERR_CODE))); else if (ds->ds_status11 & AR_RXS11_DECRYPT_CRC_ERR) DPRINTFN(6, ("Decryption CRC error\n")); else if (ds->ds_status11 & AR_RXS11_MICHAEL_ERR) { DPRINTFN(2, ("Michael MIC failure\n")); /* Report Michael MIC failures to net80211. */ ic->ic_stats.is_rx_locmicfail++; ieee80211_michael_mic_failure(ic, 0); /* * XXX Check that it is not a control frame * (invalid MIC failures on valid ctl frames). */ } ifp->if_ierrors++; goto skip; } len = MS(ds->ds_status2, AR_RXS2_DATA_LEN); if (__predict_false(len < IEEE80211_MIN_LEN || len > ATHN_RXBUFSZ - sizeof(*ds))) { DPRINTF(("corrupted descriptor length=%d\n", len)); ifp->if_ierrors++; goto skip; } /* Allocate a new Rx buffer. */ m1 = MCLGETL(NULL, M_DONTWAIT, ATHN_RXBUFSZ); if (__predict_false(m1 == NULL)) { ic->ic_stats.is_rx_nombuf++; ifp->if_ierrors++; goto skip; } /* Unmap the old Rx buffer. */ bus_dmamap_unload(sc->sc_dmat, bf->bf_map); /* Map the new Rx buffer. */ error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, mtod(m1, void *), ATHN_RXBUFSZ, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ); if (__predict_false(error != 0)) { m_freem(m1); /* Remap the old Rx buffer or panic. */ error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ); KASSERT(error != 0); bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr; ifp->if_ierrors++; goto skip; } bf->bf_desc = mtod(m1, struct ar_rx_status *); bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr; m = bf->bf_m; bf->bf_m = m1; /* Finalize mbuf. */ /* Strip Rx status descriptor from head. */ m->m_data = (caddr_t)&ds[1]; m->m_pkthdr.len = m->m_len = len; /* Grab a reference to the source node. */ wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, wh); /* Remove any HW padding after the 802.11 header. */ if (!(wh->i_fc[0] & IEEE80211_FC0_TYPE_CTL)) { u_int hdrlen = ieee80211_get_hdrlen(wh); if (hdrlen & 3) { memmove((caddr_t)wh + 2, wh, hdrlen); m_adj(m, 2); } } #if NBPFILTER > 0 if (__predict_false(sc->sc_drvbpf != NULL)) ar9003_rx_radiotap(sc, m, ds); #endif /* Trim 802.11 FCS after radiotap. */ m_adj(m, -IEEE80211_CRC_LEN); /* Send the frame to the 802.11 layer. */ rxi.rxi_flags = 0; /* XXX */ rxi.rxi_rssi = MS(ds->ds_status5, AR_RXS5_RSSI_COMBINED); rxi.rxi_tstamp = ds->ds_status3; ieee80211_inputm(ifp, m, ni, &rxi, ml); /* Node is no longer needed. */ ieee80211_release_node(ic, ni); skip: /* Unlink this descriptor from head. */ SIMPLEQ_REMOVE_HEAD(&rxq->head, bf_list); memset(bf->bf_desc, 0, sizeof(*ds)); /* Re-use this descriptor and link it to tail. */ bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ, BUS_DMASYNC_PREREAD); if (qid == ATHN_QID_LP) AR_WRITE(sc, AR_LP_RXDP, bf->bf_daddr); else AR_WRITE(sc, AR_HP_RXDP, bf->bf_daddr); AR_WRITE_BARRIER(sc); SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list); /* Re-enable Rx. */ AR_WRITE(sc, AR_CR, 0); AR_WRITE_BARRIER(sc); return (0); } void ar9003_rx_intr(struct athn_softc *sc, int qid) { struct mbuf_list ml = MBUF_LIST_INITIALIZER(); struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; while (ar9003_rx_process(sc, qid, &ml) == 0); if_input(ifp, &ml); } int ar9003_tx_process(struct athn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct athn_txq *txq; struct athn_node *an; struct athn_tx_buf *bf; struct ar_tx_status *ds; uint8_t qid, failcnt; ds = &((struct ar_tx_status *)sc->txsring)[sc->txscur]; if (!(ds->ds_status8 & AR_TXS8_DONE)) return (EBUSY); sc->txscur = (sc->txscur + 1) % AR9003_NTXSTATUS; /* Check that it is a valid Tx status descriptor. */ if ((ds->ds_info & (AR_TXI_DESC_ID_M | AR_TXI_DESC_TX)) != (SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) | AR_TXI_DESC_TX)) { memset(ds, 0, sizeof(*ds)); return (0); } /* Retrieve the queue that was used to send this PDU. */ qid = MS(ds->ds_info, AR_TXI_QCU_NUM); txq = &sc->txq[qid]; bf = SIMPLEQ_FIRST(&txq->head); if (bf == NULL || bf == txq->wait) { memset(ds, 0, sizeof(*ds)); return (0); } SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list); sc->sc_tx_timer = 0; if (ds->ds_status3 & AR_TXS3_EXCESSIVE_RETRIES) ifp->if_oerrors++; if (ds->ds_status3 & AR_TXS3_UNDERRUN) athn_inc_tx_trigger_level(sc); /* Wakeup PA predistortion state machine. */ if (bf->bf_txflags & ATHN_TXFLAG_PAPRD) ar9003_paprd_tx_tone_done(sc); an = (struct athn_node *)bf->bf_ni; /* * NB: the data fail count contains the number of un-acked tries * for the final series used. We must add the number of tries for * each series that was fully processed. */ failcnt = MS(ds->ds_status3, AR_TXS3_DATA_FAIL_CNT); /* NB: Assume two tries per series. */ failcnt += MS(ds->ds_status8, AR_TXS8_FINAL_IDX) * 2; /* Update rate control statistics. */ an->amn.amn_txcnt++; if (failcnt > 0) an->amn.amn_retrycnt++; DPRINTFN(5, ("Tx done qid=%d status3=%d fail count=%d\n", qid, ds->ds_status3, failcnt)); /* Reset Tx status descriptor. */ memset(ds, 0, sizeof(*ds)); /* Unmap Tx buffer. */ bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, bf->bf_map); m_freem(bf->bf_m); bf->bf_m = NULL; ieee80211_release_node(ic, bf->bf_ni); bf->bf_ni = NULL; /* Link Tx buffer back to global free list. */ SIMPLEQ_INSERT_TAIL(&sc->txbufs, bf, bf_list); /* Queue buffers that are waiting if there is new room. */ if (--txq->queued < AR9003_TX_QDEPTH && txq->wait != NULL) { AR_WRITE(sc, AR_QTXDP(qid), txq->wait->bf_daddr); AR_WRITE_BARRIER(sc); txq->wait = SIMPLEQ_NEXT(txq->wait, bf_list); } return (0); } void ar9003_tx_intr(struct athn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; while (ar9003_tx_process(sc) == 0); if (!SIMPLEQ_EMPTY(&sc->txbufs)) { ifq_clr_oactive(&ifp->if_snd); ifp->if_start(ifp); } } #ifndef IEEE80211_STA_ONLY /* * Process Software Beacon Alert interrupts. */ int ar9003_swba_intr(struct athn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct ieee80211_node *ni = ic->ic_bss; struct athn_tx_buf *bf = sc->bcnbuf; struct ieee80211_frame *wh; struct ar_tx_desc *ds; struct mbuf *m; uint32_t sum; uint8_t ridx, hwrate; int error, totlen; if (ic->ic_tim_mcast_pending && mq_empty(&ni->ni_savedq) && SIMPLEQ_EMPTY(&sc->txq[ATHN_QID_CAB].head)) ic->ic_tim_mcast_pending = 0; if (ic->ic_dtim_count == 0) ic->ic_dtim_count = ic->ic_dtim_period - 1; else ic->ic_dtim_count--; /* Make sure previous beacon has been sent. */ if (athn_tx_pending(sc, ATHN_QID_BEACON)) { DPRINTF(("beacon stuck\n")); return (EBUSY); } /* Get new beacon. */ m = ieee80211_beacon_alloc(ic, ic->ic_bss); if (__predict_false(m == NULL)) return (ENOBUFS); /* Assign sequence number. */ wh = mtod(m, struct ieee80211_frame *); *(uint16_t *)&wh->i_seq[0] = htole16(ic->ic_bss->ni_txseq << IEEE80211_SEQ_SEQ_SHIFT); ic->ic_bss->ni_txseq++; /* Unmap and free old beacon if any. */ if (__predict_true(bf->bf_m != NULL)) { bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, bf->bf_map); m_freem(bf->bf_m); bf->bf_m = NULL; } /* DMA map new beacon. */ error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m, BUS_DMA_NOWAIT | BUS_DMA_WRITE); if (__predict_false(error != 0)) { m_freem(m); return (error); } bf->bf_m = m; /* Setup Tx descriptor (simplified ar9003_tx()). */ ds = bf->bf_descs; memset(ds, 0, sizeof(*ds)); ds->ds_info = SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) | SM(AR_TXI_DESC_NDWORDS, 23) | SM(AR_TXI_QCU_NUM, ATHN_QID_BEACON) | AR_TXI_DESC_TX | AR_TXI_CTRL_STAT; totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; ds->ds_ctl11 = SM(AR_TXC11_FRAME_LEN, totlen); ds->ds_ctl11 |= SM(AR_TXC11_XMIT_POWER, AR_MAX_RATE_POWER); ds->ds_ctl12 = SM(AR_TXC12_FRAME_TYPE, AR_FRAME_TYPE_BEACON); ds->ds_ctl12 |= AR_TXC12_NO_ACK; ds->ds_ctl17 = SM(AR_TXC17_ENCR_TYPE, AR_ENCR_TYPE_CLEAR); /* Write number of tries. */ ds->ds_ctl13 = SM(AR_TXC13_XMIT_DATA_TRIES0, 1); /* Write Tx rate. */ ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1; hwrate = athn_rates[ridx].hwrate; ds->ds_ctl14 = SM(AR_TXC14_XMIT_RATE0, hwrate); /* Write Tx chains. */ ds->ds_ctl18 = SM(AR_TXC18_CHAIN_SEL0, sc->txchainmask); ds->ds_segs[0].ds_data = bf->bf_map->dm_segs[0].ds_addr; /* Segment length must be a multiple of 4. */ ds->ds_segs[0].ds_ctl |= SM(AR_TXC_BUF_LEN, (bf->bf_map->dm_segs[0].ds_len + 3) & ~3); /* Compute Tx descriptor checksum. */ sum = ds->ds_info; sum += ds->ds_segs[0].ds_data; sum += ds->ds_segs[0].ds_ctl; sum = (sum >> 16) + (sum & 0xffff); ds->ds_ctl10 = SM(AR_TXC10_PTR_CHK_SUM, sum); bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize, BUS_DMASYNC_PREWRITE); /* Stop Tx DMA before putting the new beacon on the queue. */ athn_stop_tx_dma(sc, ATHN_QID_BEACON); AR_WRITE(sc, AR_QTXDP(ATHN_QID_BEACON), bf->bf_daddr); for(;;) { if (SIMPLEQ_EMPTY(&sc->txbufs)) break; m = mq_dequeue(&ni->ni_savedq); if (m == NULL) break; if (!mq_empty(&ni->ni_savedq)) { /* more queued frames, set the more data bit */ wh = mtod(m, struct ieee80211_frame *); wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; } if (sc->ops.tx(sc, m, ni, ATHN_TXFLAG_CAB) != 0) { ieee80211_release_node(ic, ni); ifp->if_oerrors++; break; } } /* Kick Tx. */ AR_WRITE(sc, AR_Q_TXE, 1 << ATHN_QID_BEACON); AR_WRITE_BARRIER(sc); return (0); } #endif int ar9003_intr(struct athn_softc *sc) { uint32_t intr, intr2, intr5, sync; /* Get pending interrupts. */ intr = AR_READ(sc, AR_INTR_ASYNC_CAUSE); if (!(intr & AR_INTR_MAC_IRQ) || intr == AR_INTR_SPURIOUS) { intr = AR_READ(sc, AR_INTR_SYNC_CAUSE); if (intr == AR_INTR_SPURIOUS || (intr & sc->isync) == 0) return (0); /* Not for us. */ } if ((AR_READ(sc, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) && (AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_ON) intr = AR_READ(sc, AR_ISR); else intr = 0; sync = AR_READ(sc, AR_INTR_SYNC_CAUSE) & sc->isync; if (intr == 0 && sync == 0) return (0); /* Not for us. */ if (intr != 0) { if (intr & AR_ISR_BCNMISC) { intr2 = AR_READ(sc, AR_ISR_S2); if (intr2 & AR_ISR_S2_TIM) /* TBD */; if (intr2 & AR_ISR_S2_TSFOOR) /* TBD */; if (intr2 & AR_ISR_S2_BB_WATCHDOG) /* TBD */; } intr = AR_READ(sc, AR_ISR_RAC); if (intr == AR_INTR_SPURIOUS) return (1); #ifndef IEEE80211_STA_ONLY if (intr & AR_ISR_SWBA) ar9003_swba_intr(sc); #endif if (intr & (AR_ISR_RXMINTR | AR_ISR_RXINTM)) ar9003_rx_intr(sc, ATHN_QID_LP); if (intr & (AR_ISR_LP_RXOK | AR_ISR_RXERR | AR_ISR_RXEOL)) ar9003_rx_intr(sc, ATHN_QID_LP); if (intr & AR_ISR_HP_RXOK) ar9003_rx_intr(sc, ATHN_QID_HP); if (intr & (AR_ISR_TXMINTR | AR_ISR_TXINTM)) ar9003_tx_intr(sc); if (intr & (AR_ISR_TXOK | AR_ISR_TXERR | AR_ISR_TXEOL)) ar9003_tx_intr(sc); if (intr & AR_ISR_GENTMR) { intr5 = AR_READ(sc, AR_ISR_S5_S); DPRINTF(("GENTMR trigger=%d thresh=%d\n", MS(intr5, AR_ISR_S5_GENTIMER_TRIG), MS(intr5, AR_ISR_S5_GENTIMER_THRESH))); } } if (sync != 0) { if (sync & AR_INTR_SYNC_RADM_CPL_TIMEOUT) { AR_WRITE(sc, AR_RC, AR_RC_HOSTIF); AR_WRITE(sc, AR_RC, 0); } if ((sc->flags & ATHN_FLAG_RFSILENT) && (sync & AR_INTR_SYNC_GPIO_PIN(sc->rfsilent_pin))) { struct ifnet *ifp = &sc->sc_ic.ic_if; printf("%s: radio switch turned off\n", sc->sc_dev.dv_xname); /* Turn the interface down. */ athn_stop(ifp, 1); return (1); } AR_WRITE(sc, AR_INTR_SYNC_CAUSE, sync); (void)AR_READ(sc, AR_INTR_SYNC_CAUSE); } return (1); } int ar9003_tx(struct athn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int txflags) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_key *k = NULL; struct ieee80211_frame *wh; struct athn_series series[4]; struct ar_tx_desc *ds; struct athn_txq *txq; struct athn_tx_buf *bf; struct athn_node *an = (void *)ni; struct mbuf *m1; uintptr_t entry; uint32_t sum; uint16_t qos = 0; uint8_t txpower, type, encrtype, tid, ridx[4]; int i, error, totlen, hasqos, qid; /* Grab a Tx buffer from our global free list. */ bf = SIMPLEQ_FIRST(&sc->txbufs); KASSERT(bf != NULL); /* Map 802.11 frame type to hardware frame type. */ wh = mtod(m, struct ieee80211_frame *); if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) { /* NB: Beacons do not use ar9003_tx(). */ if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == IEEE80211_FC0_SUBTYPE_PROBE_RESP) type = AR_FRAME_TYPE_PROBE_RESP; else if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == IEEE80211_FC0_SUBTYPE_ATIM) type = AR_FRAME_TYPE_ATIM; else type = AR_FRAME_TYPE_NORMAL; } else if ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) { type = AR_FRAME_TYPE_PSPOLL; } else type = AR_FRAME_TYPE_NORMAL; if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_get_txkey(ic, wh, ni); if ((m = ieee80211_encrypt(ic, m, k)) == NULL) return (ENOBUFS); wh = mtod(m, struct ieee80211_frame *); } /* XXX 2-byte padding for QoS and 4-addr headers. */ /* Select the HW Tx queue to use for this frame. */ if ((hasqos = ieee80211_has_qos(wh))) { qos = ieee80211_get_qos(wh); tid = qos & IEEE80211_QOS_TID; qid = athn_ac2qid[ieee80211_up_to_ac(ic, tid)]; } else if (type == AR_FRAME_TYPE_PSPOLL) { qid = ATHN_QID_PSPOLL; } else if (txflags & ATHN_TXFLAG_CAB) { qid = ATHN_QID_CAB; } else qid = ATHN_QID_AC_BE; txq = &sc->txq[qid]; /* Select the transmit rates to use for this frame. */ if (IEEE80211_IS_MULTICAST(wh->i_addr1) || (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA) { /* Use lowest rate for all tries. */ ridx[0] = ridx[1] = ridx[2] = ridx[3] = (ic->ic_curmode == IEEE80211_MODE_11A) ? ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1; } else if (ic->ic_fixed_rate != -1) { /* Use same fixed rate for all tries. */ ridx[0] = ridx[1] = ridx[2] = ridx[3] = sc->fixed_ridx; } else { int txrate = ni->ni_txrate; /* Use fallback table of the node. */ for (i = 0; i < 4; i++) { ridx[i] = an->ridx[txrate]; txrate = an->fallback[txrate]; } } #if NBPFILTER > 0 if (__predict_false(sc->sc_drvbpf != NULL)) { struct athn_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; /* Use initial transmit rate. */ tap->wt_rate = athn_rates[ridx[0]].rate; tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); if (athn_rates[ridx[0]].phy == IEEE80211_T_DS && ridx[0] != ATHN_RIDX_CCK1 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_DIRECTION_OUT); } #endif /* DMA map mbuf. */ error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m, BUS_DMA_NOWAIT | BUS_DMA_WRITE); if (__predict_false(error != 0)) { if (error != EFBIG) { printf("%s: can't map mbuf (error %d)\n", sc->sc_dev.dv_xname, error); m_freem(m); return (error); } /* * DMA mapping requires too many DMA segments; linearize * mbuf in kernel virtual address space and retry. */ MGETHDR(m1, M_DONTWAIT, MT_DATA); if (m1 == NULL) { m_freem(m); return (ENOBUFS); } if (m->m_pkthdr.len > MHLEN) { MCLGET(m1, M_DONTWAIT); if (!(m1->m_flags & M_EXT)) { m_freem(m); m_freem(m1); return (ENOBUFS); } } m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, caddr_t)); m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len; m_freem(m); m = m1; error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m, BUS_DMA_NOWAIT | BUS_DMA_WRITE); if (error != 0) { printf("%s: can't map mbuf (error %d)\n", sc->sc_dev.dv_xname, error); m_freem(m); return (error); } } bf->bf_m = m; bf->bf_ni = ni; bf->bf_txflags = txflags; wh = mtod(m, struct ieee80211_frame *); totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; /* Setup Tx descriptor. */ ds = bf->bf_descs; memset(ds, 0, sizeof(*ds)); ds->ds_info = SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) | SM(AR_TXI_DESC_NDWORDS, 23) | SM(AR_TXI_QCU_NUM, qid) | AR_TXI_DESC_TX | AR_TXI_CTRL_STAT; ds->ds_ctl11 = AR_TXC11_CLR_DEST_MASK; txpower = AR_MAX_RATE_POWER; /* Get from per-rate registers. */ ds->ds_ctl11 |= SM(AR_TXC11_XMIT_POWER, txpower); ds->ds_ctl12 = SM(AR_TXC12_FRAME_TYPE, type); if (IEEE80211_IS_MULTICAST(wh->i_addr1) || (hasqos && (qos & IEEE80211_QOS_ACK_POLICY_MASK) == IEEE80211_QOS_ACK_POLICY_NOACK)) ds->ds_ctl12 |= AR_TXC12_NO_ACK; if (0 && k != NULL) { /* * Map 802.11 cipher to hardware encryption type and * compute MIC+ICV overhead. */ switch (k->k_cipher) { case IEEE80211_CIPHER_WEP40: case IEEE80211_CIPHER_WEP104: encrtype = AR_ENCR_TYPE_WEP; totlen += 4; break; case IEEE80211_CIPHER_TKIP: encrtype = AR_ENCR_TYPE_TKIP; totlen += 12; break; case IEEE80211_CIPHER_CCMP: encrtype = AR_ENCR_TYPE_AES; totlen += 8; break; default: panic("unsupported cipher"); } /* * NB: The key cache entry index is stored in the key * private field when the key is installed. */ entry = (uintptr_t)k->k_priv; ds->ds_ctl12 |= SM(AR_TXC12_DEST_IDX, entry); ds->ds_ctl11 |= AR_TXC11_DEST_IDX_VALID; } else encrtype = AR_ENCR_TYPE_CLEAR; ds->ds_ctl17 = SM(AR_TXC17_ENCR_TYPE, encrtype); /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ if (!IEEE80211_IS_MULTICAST(wh->i_addr1) && (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { /* NB: Group frames are sent using CCK in 802.11b/g. */ if (totlen > ic->ic_rtsthreshold) { ds->ds_ctl11 |= AR_TXC11_RTS_ENABLE; } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && athn_rates[ridx[0]].phy == IEEE80211_T_OFDM) { if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) ds->ds_ctl11 |= AR_TXC11_RTS_ENABLE; else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) ds->ds_ctl11 |= AR_TXC11_CTS_ENABLE; } } /* * Disable multi-rate retries when protection is used. * The RTS/CTS frame's duration field is fixed and won't be * updated by hardware when the data rate changes. */ if (ds->ds_ctl11 & (AR_TXC11_RTS_ENABLE | AR_TXC11_CTS_ENABLE)) { ridx[1] = ridx[2] = ridx[3] = ridx[0]; } /* Setup multi-rate retries. */ for (i = 0; i < 4; i++) { series[i].hwrate = athn_rates[ridx[i]].hwrate; if (athn_rates[ridx[i]].phy == IEEE80211_T_DS && ridx[i] != ATHN_RIDX_CCK1 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) series[i].hwrate |= 0x04; series[i].dur = 0; } if (!(ds->ds_ctl12 & AR_TXC12_NO_ACK)) { /* Compute duration for each series. */ for (i = 0; i < 4; i++) { series[i].dur = athn_txtime(sc, IEEE80211_ACK_LEN, athn_rates[ridx[i]].rspridx, ic->ic_flags); } } /* If this is a PA training frame, select the Tx chain to use. */ if (__predict_false(txflags & ATHN_TXFLAG_PAPRD)) { ds->ds_ctl12 |= SM(AR_TXC12_PAPRD_CHAIN_MASK, 1 << sc->paprd_curchain); } /* Write number of tries for each series. */ ds->ds_ctl13 = SM(AR_TXC13_XMIT_DATA_TRIES0, 2) | SM(AR_TXC13_XMIT_DATA_TRIES1, 2) | SM(AR_TXC13_XMIT_DATA_TRIES2, 2) | SM(AR_TXC13_XMIT_DATA_TRIES3, 4); /* Tell HW to update duration field in 802.11 header. */ if (type != AR_FRAME_TYPE_PSPOLL) ds->ds_ctl13 |= AR_TXC13_DUR_UPDATE_ENA; /* Write Tx rate for each series. */ ds->ds_ctl14 = SM(AR_TXC14_XMIT_RATE0, series[0].hwrate) | SM(AR_TXC14_XMIT_RATE1, series[1].hwrate) | SM(AR_TXC14_XMIT_RATE2, series[2].hwrate) | SM(AR_TXC14_XMIT_RATE3, series[3].hwrate); /* Write duration for each series. */ ds->ds_ctl15 = SM(AR_TXC15_PACKET_DUR0, series[0].dur) | SM(AR_TXC15_PACKET_DUR1, series[1].dur); ds->ds_ctl16 = SM(AR_TXC16_PACKET_DUR2, series[2].dur) | SM(AR_TXC16_PACKET_DUR3, series[3].dur); if ((sc->flags & ATHN_FLAG_3TREDUCE_CHAIN) && ic->ic_curmode == IEEE80211_MODE_11A) { /* * In order to not exceed PCIe power requirements, we only * use two Tx chains for MCS0~15 on 5GHz band on these chips. */ ds->ds_ctl18 = SM(AR_TXC18_CHAIN_SEL0, (ridx[0] <= ATHN_RIDX_MCS15) ? 0x3 : sc->txchainmask) | SM(AR_TXC18_CHAIN_SEL1, (ridx[1] <= ATHN_RIDX_MCS15) ? 0x3 : sc->txchainmask) | SM(AR_TXC18_CHAIN_SEL2, (ridx[2] <= ATHN_RIDX_MCS15) ? 0x3 : sc->txchainmask) | SM(AR_TXC18_CHAIN_SEL3, (ridx[3] <= ATHN_RIDX_MCS15) ? 0x3 : sc->txchainmask); } else { /* Use the same Tx chains for all tries. */ ds->ds_ctl18 = SM(AR_TXC18_CHAIN_SEL0, sc->txchainmask) | SM(AR_TXC18_CHAIN_SEL1, sc->txchainmask) | SM(AR_TXC18_CHAIN_SEL2, sc->txchainmask) | SM(AR_TXC18_CHAIN_SEL3, sc->txchainmask); } #ifdef notyet /* Use the same short GI setting for all tries. */ if (ic->ic_flags & IEEE80211_F_SHGI) ds->ds_ctl18 |= AR_TXC18_GI0123; /* Use the same channel width for all tries. */ if (ic->ic_flags & IEEE80211_F_CBW40) ds->ds_ctl18 |= AR_TXC18_2040_0123; #endif if (ds->ds_ctl11 & (AR_TXC11_RTS_ENABLE | AR_TXC11_CTS_ENABLE)) { uint8_t protridx, hwrate; uint16_t dur = 0; /* Use the same protection mode for all tries. */ if (ds->ds_ctl11 & AR_TXC11_RTS_ENABLE) { ds->ds_ctl15 |= AR_TXC15_RTSCTS_QUAL01; ds->ds_ctl16 |= AR_TXC16_RTSCTS_QUAL23; } /* Select protection rate (suboptimal but ok). */ protridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK2; if (ds->ds_ctl11 & AR_TXC11_RTS_ENABLE) { /* Account for CTS duration. */ dur += athn_txtime(sc, IEEE80211_ACK_LEN, athn_rates[protridx].rspridx, ic->ic_flags); } dur += athn_txtime(sc, totlen, ridx[0], ic->ic_flags); if (!(ds->ds_ctl12 & AR_TXC12_NO_ACK)) { /* Account for ACK duration. */ dur += athn_txtime(sc, IEEE80211_ACK_LEN, athn_rates[ridx[0]].rspridx, ic->ic_flags); } /* Write protection frame duration and rate. */ ds->ds_ctl13 |= SM(AR_TXC13_BURST_DUR, dur); hwrate = athn_rates[protridx].hwrate; if (protridx == ATHN_RIDX_CCK2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) hwrate |= 0x04; ds->ds_ctl18 |= SM(AR_TXC18_RTSCTS_RATE, hwrate); } ds->ds_ctl11 |= SM(AR_TXC11_FRAME_LEN, totlen); ds->ds_ctl19 = AR_TXC19_NOT_SOUNDING; for (i = 0; i < bf->bf_map->dm_nsegs; i++) { ds->ds_segs[i].ds_data = bf->bf_map->dm_segs[i].ds_addr; ds->ds_segs[i].ds_ctl = SM(AR_TXC_BUF_LEN, bf->bf_map->dm_segs[i].ds_len); } /* Compute Tx descriptor checksum. */ sum = ds->ds_info + ds->ds_link; for (i = 0; i < 4; i++) { sum += ds->ds_segs[i].ds_data; sum += ds->ds_segs[i].ds_ctl; } sum = (sum >> 16) + (sum & 0xffff); ds->ds_ctl10 = SM(AR_TXC10_PTR_CHK_SUM, sum); bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize, BUS_DMASYNC_PREWRITE); DPRINTFN(6, ("Tx qid=%d nsegs=%d ctl11=0x%x ctl12=0x%x ctl14=0x%x\n", qid, bf->bf_map->dm_nsegs, ds->ds_ctl11, ds->ds_ctl12, ds->ds_ctl14)); SIMPLEQ_REMOVE_HEAD(&sc->txbufs, bf_list); SIMPLEQ_INSERT_TAIL(&txq->head, bf, bf_list); /* Queue buffer unless hardware FIFO is already full. */ if (++txq->queued <= AR9003_TX_QDEPTH) { AR_WRITE(sc, AR_QTXDP(qid), bf->bf_daddr); AR_WRITE_BARRIER(sc); } else if (txq->wait == NULL) txq->wait = bf; return (0); } void ar9003_set_rf_mode(struct athn_softc *sc, struct ieee80211_channel *c) { uint32_t reg; reg = IEEE80211_IS_CHAN_2GHZ(c) ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM; if (IEEE80211_IS_CHAN_5GHZ(c) && (sc->flags & ATHN_FLAG_FAST_PLL_CLOCK)) { reg |= AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE; } AR_WRITE(sc, AR_PHY_MODE, reg); AR_WRITE_BARRIER(sc); } static __inline uint32_t ar9003_synth_delay(struct athn_softc *sc) { uint32_t delay; delay = MS(AR_READ(sc, AR_PHY_RX_DELAY), AR_PHY_RX_DELAY_DELAY); if (sc->sc_ic.ic_curmode == IEEE80211_MODE_11B) delay = (delay * 4) / 22; else delay = delay / 10; /* in 100ns steps */ return (delay); } int ar9003_rf_bus_request(struct athn_softc *sc) { int ntries; /* Request RF Bus grant. */ AR_WRITE(sc, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN); for (ntries = 0; ntries < 10000; ntries++) { if (AR_READ(sc, AR_PHY_RFBUS_GRANT) & AR_PHY_RFBUS_GRANT_EN) return (0); DELAY(10); } DPRINTF(("could not kill baseband Rx")); return (ETIMEDOUT); } void ar9003_rf_bus_release(struct athn_softc *sc) { /* Wait for the synthesizer to settle. */ DELAY(AR_BASE_PHY_ACTIVE_DELAY + ar9003_synth_delay(sc)); /* Release the RF Bus grant. */ AR_WRITE(sc, AR_PHY_RFBUS_REQ, 0); AR_WRITE_BARRIER(sc); } void ar9003_set_phy(struct athn_softc *sc, struct ieee80211_channel *c, struct ieee80211_channel *extc) { uint32_t phy; phy = AR_READ(sc, AR_PHY_GEN_CTRL); phy |= AR_PHY_GC_HT_EN | AR_PHY_GC_SHORT_GI_40 | AR_PHY_GC_SINGLE_HT_LTF1 | AR_PHY_GC_WALSH; if (extc != NULL) { phy |= AR_PHY_GC_DYN2040_EN; if (extc > c) /* XXX */ phy |= AR_PHY_GC_DYN2040_PRI_CH; } /* Turn off Green Field detection for now. */ phy &= ~AR_PHY_GC_GF_DETECT_EN; AR_WRITE(sc, AR_PHY_GEN_CTRL, phy); AR_WRITE(sc, AR_2040_MODE, (extc != NULL) ? AR_2040_JOINED_RX_CLEAR : 0); /* Set global transmit timeout. */ AR_WRITE(sc, AR_GTXTO, SM(AR_GTXTO_TIMEOUT_LIMIT, 25)); /* Set carrier sense timeout. */ AR_WRITE(sc, AR_CST, SM(AR_CST_TIMEOUT_LIMIT, 15)); AR_WRITE_BARRIER(sc); } void ar9003_set_delta_slope(struct athn_softc *sc, struct ieee80211_channel *c, struct ieee80211_channel *extc) { uint32_t coeff, exp, man, reg; /* Set Delta Slope (exponent and mantissa). */ coeff = (100 << 24) / c->ic_freq; athn_get_delta_slope(coeff, &exp, &man); DPRINTFN(5, ("delta slope coeff exp=%u man=%u\n", exp, man)); reg = AR_READ(sc, AR_PHY_TIMING3); reg = RW(reg, AR_PHY_TIMING3_DSC_EXP, exp); reg = RW(reg, AR_PHY_TIMING3_DSC_MAN, man); AR_WRITE(sc, AR_PHY_TIMING3, reg); /* For Short GI, coeff is 9/10 that of normal coeff. */ coeff = (9 * coeff) / 10; athn_get_delta_slope(coeff, &exp, &man); DPRINTFN(5, ("delta slope coeff exp=%u man=%u\n", exp, man)); reg = AR_READ(sc, AR_PHY_SGI_DELTA); reg = RW(reg, AR_PHY_SGI_DSC_EXP, exp); reg = RW(reg, AR_PHY_SGI_DSC_MAN, man); AR_WRITE(sc, AR_PHY_SGI_DELTA, reg); AR_WRITE_BARRIER(sc); } void ar9003_enable_antenna_diversity(struct athn_softc *sc) { AR_SETBITS(sc, AR_PHY_CCK_DETECT, AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV); AR_WRITE_BARRIER(sc); } void ar9003_init_baseband(struct athn_softc *sc) { uint32_t synth_delay; synth_delay = ar9003_synth_delay(sc); /* Activate the PHY (includes baseband activate and synthesizer on). */ AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); AR_WRITE_BARRIER(sc); DELAY(AR_BASE_PHY_ACTIVE_DELAY + synth_delay); } void ar9003_disable_phy(struct athn_softc *sc) { AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS); AR_WRITE_BARRIER(sc); } void ar9003_init_chains(struct athn_softc *sc) { if (sc->rxchainmask == 0x5 || sc->txchainmask == 0x5) AR_SETBITS(sc, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN); /* Setup chain masks. */ AR_WRITE(sc, AR_PHY_RX_CHAINMASK, sc->rxchainmask); AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->rxchainmask); if (sc->flags & ATHN_FLAG_3TREDUCE_CHAIN) { /* * All self-generated frames are sent using two Tx chains * on these chips to not exceed PCIe power requirements. */ AR_WRITE(sc, AR_SELFGEN_MASK, 0x3); } else AR_WRITE(sc, AR_SELFGEN_MASK, sc->txchainmask); AR_WRITE_BARRIER(sc); } void ar9003_set_rxchains(struct athn_softc *sc) { if (sc->rxchainmask == 0x3 || sc->rxchainmask == 0x5) { AR_WRITE(sc, AR_PHY_RX_CHAINMASK, sc->rxchainmask); AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->rxchainmask); AR_WRITE_BARRIER(sc); } } void ar9003_read_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext) { /* Sign-extends 9-bit value (assumes upper bits are zeroes). */ #define SIGN_EXT(v) (((v) ^ 0x100) - 0x100) uint32_t reg; int i; for (i = 0; i < sc->nrxchains; i++) { reg = AR_READ(sc, AR_PHY_CCA(i)); nf[i] = MS(reg, AR_PHY_MINCCA_PWR); nf[i] = SIGN_EXT(nf[i]); reg = AR_READ(sc, AR_PHY_EXT_CCA(i)); nf_ext[i] = MS(reg, AR_PHY_EXT_MINCCA_PWR); nf_ext[i] = SIGN_EXT(nf_ext[i]); } #undef SIGN_EXT } void ar9003_write_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext) { uint32_t reg; int i; for (i = 0; i < sc->nrxchains; i++) { reg = AR_READ(sc, AR_PHY_CCA(i)); reg = RW(reg, AR_PHY_MAXCCA_PWR, nf[i]); AR_WRITE(sc, AR_PHY_CCA(i), reg); reg = AR_READ(sc, AR_PHY_EXT_CCA(i)); reg = RW(reg, AR_PHY_EXT_MAXCCA_PWR, nf_ext[i]); AR_WRITE(sc, AR_PHY_EXT_CCA(i), reg); } AR_WRITE_BARRIER(sc); } int ar9003_get_noisefloor(struct athn_softc *sc) { int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS]; int i; if (AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) { /* Noisefloor calibration not finished. */ return 0; } /* Noisefloor calibration is finished. */ ar9003_read_noisefloor(sc, nf, nf_ext); /* Update noisefloor history. */ for (i = 0; i < sc->nrxchains; i++) { sc->nf_hist[sc->nf_hist_cur].nf[i] = nf[i]; sc->nf_hist[sc->nf_hist_cur].nf_ext[i] = nf_ext[i]; } if (++sc->nf_hist_cur >= ATHN_NF_CAL_HIST_MAX) sc->nf_hist_cur = 0; return 1; } void ar9003_bb_load_noisefloor(struct athn_softc *sc) { int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS]; int i, ntries; /* Write filtered noisefloor values. */ for (i = 0; i < sc->nrxchains; i++) { nf[i] = sc->nf_priv[i] * 2; nf_ext[i] = sc->nf_ext_priv[i] * 2; } ar9003_write_noisefloor(sc, nf, nf_ext); /* Load filtered noisefloor values into baseband. */ AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF); AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF); AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); /* Wait for load to complete. */ for (ntries = 0; ntries < 1000; ntries++) { if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF)) break; DELAY(10); } if (ntries == 1000) { DPRINTF(("failed to load noisefloor values\n")); return; } /* Restore noisefloor values to initial (max) values. */ for (i = 0; i < AR_MAX_CHAINS; i++) nf[i] = nf_ext[i] = -50 * 2; ar9003_write_noisefloor(sc, nf, nf_ext); } void ar9003_apply_noisefloor(struct athn_softc *sc) { uint32_t agc_nfcal; agc_nfcal = AR_READ(sc, AR_PHY_AGC_CONTROL) & (AR_PHY_AGC_CONTROL_NF | AR_PHY_AGC_CONTROL_ENABLE_NF | AR_PHY_AGC_CONTROL_NO_UPDATE_NF); if (agc_nfcal & AR_PHY_AGC_CONTROL_NF) { /* Pause running NF calibration while values are updated. */ AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); AR_WRITE_BARRIER(sc); } ar9003_bb_load_noisefloor(sc); if (agc_nfcal & AR_PHY_AGC_CONTROL_NF) { /* Restart interrupted NF calibration. */ AR_SETBITS(sc, AR_PHY_AGC_CONTROL, agc_nfcal); AR_WRITE_BARRIER(sc); } } void ar9003_do_noisefloor_calib(struct athn_softc *sc) { AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF); AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF); AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); AR_WRITE_BARRIER(sc); } void ar9003_init_noisefloor_calib(struct athn_softc *sc) { AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); AR_WRITE_BARRIER(sc); } int ar9003_init_calib(struct athn_softc *sc) { uint8_t txchainmask, rxchainmask; uint32_t reg; int ntries; /* Save chains masks. */ txchainmask = sc->txchainmask; rxchainmask = sc->rxchainmask; /* Configure hardware before calibration. */ if (AR_READ(sc, AR_ENT_OTP) & AR_ENT_OTP_CHAIN2_DISABLE) txchainmask = rxchainmask = 0x3; else txchainmask = rxchainmask = 0x7; ar9003_init_chains(sc); /* Perform Tx IQ calibration. */ ar9003_calib_tx_iq(sc); /* Disable and re-enable the PHY chips. */ AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS); AR_WRITE_BARRIER(sc); DELAY(5); AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); /* Calibrate the AGC. */ AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL); /* Poll for offset calibration completion. */ for (ntries = 0; ntries < 10000; ntries++) { reg = AR_READ(sc, AR_PHY_AGC_CONTROL); if (!(reg & AR_PHY_AGC_CONTROL_CAL)) break; DELAY(10); } if (ntries == 10000) return (ETIMEDOUT); /* Restore chains masks. */ sc->txchainmask = txchainmask; sc->rxchainmask = rxchainmask; ar9003_init_chains(sc); return (0); } void ar9003_do_calib(struct athn_softc *sc) { uint32_t reg; if (sc->cur_calib_mask & ATHN_CAL_IQ) { reg = AR_READ(sc, AR_PHY_TIMING4); reg = RW(reg, AR_PHY_TIMING4_IQCAL_LOG_COUNT_MAX, 10); AR_WRITE(sc, AR_PHY_TIMING4, reg); AR_WRITE(sc, AR_PHY_CALMODE, AR_PHY_CALMODE_IQ); AR_SETBITS(sc, AR_PHY_TIMING4, AR_PHY_TIMING4_DO_CAL); AR_WRITE_BARRIER(sc); } else if (sc->cur_calib_mask & ATHN_CAL_TEMP) { AR_SETBITS(sc, AR_PHY_65NM_CH0_THERM, AR_PHY_65NM_CH0_THERM_LOCAL); AR_SETBITS(sc, AR_PHY_65NM_CH0_THERM, AR_PHY_65NM_CH0_THERM_START); AR_WRITE_BARRIER(sc); } } void ar9003_next_calib(struct athn_softc *sc) { /* Check if we have any calibration in progress. */ if (sc->cur_calib_mask != 0) { if (!(AR_READ(sc, AR_PHY_TIMING4) & AR_PHY_TIMING4_DO_CAL)) { /* Calibration completed for current sample. */ ar9003_calib_iq(sc); } } } void ar9003_calib_iq(struct athn_softc *sc) { struct athn_iq_cal *cal; uint32_t reg, i_coff_denom, q_coff_denom; int32_t i_coff, q_coff; int i, iq_corr_neg; for (i = 0; i < AR_MAX_CHAINS; i++) { cal = &sc->calib.iq[i]; /* Read IQ calibration measures (clear on read). */ cal->pwr_meas_i = AR_READ(sc, AR_PHY_IQ_ADC_MEAS_0_B(i)); cal->pwr_meas_q = AR_READ(sc, AR_PHY_IQ_ADC_MEAS_1_B(i)); cal->iq_corr_meas = (int32_t)AR_READ(sc, AR_PHY_IQ_ADC_MEAS_2_B(i)); } for (i = 0; i < sc->nrxchains; i++) { cal = &sc->calib.iq[i]; if (cal->pwr_meas_q == 0) continue; if ((iq_corr_neg = cal->iq_corr_meas < 0)) cal->iq_corr_meas = -cal->iq_corr_meas; i_coff_denom = (cal->pwr_meas_i / 2 + cal->pwr_meas_q / 2) / 256; q_coff_denom = cal->pwr_meas_q / 64; if (i_coff_denom == 0 || q_coff_denom == 0) continue; /* Prevents division by zero. */ i_coff = cal->iq_corr_meas / i_coff_denom; q_coff = (cal->pwr_meas_i / q_coff_denom) - 64; if (i_coff > 63) i_coff = 63; else if (i_coff < -63) i_coff = -63; /* Negate i_coff if iq_corr_meas is positive. */ if (!iq_corr_neg) i_coff = -i_coff; if (q_coff > 63) q_coff = 63; else if (q_coff < -63) q_coff = -63; DPRINTFN(2, ("IQ calibration for chain %d\n", i)); reg = AR_READ(sc, AR_PHY_RX_IQCAL_CORR_B(i)); reg = RW(reg, AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF, i_coff); reg = RW(reg, AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF, q_coff); AR_WRITE(sc, AR_PHY_RX_IQCAL_CORR_B(i), reg); } /* Apply new settings. */ AR_SETBITS(sc, AR_PHY_RX_IQCAL_CORR_B(0), AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE); AR_WRITE_BARRIER(sc); /* IQ calibration done. */ sc->cur_calib_mask &= ~ATHN_CAL_IQ; memset(&sc->calib, 0, sizeof(sc->calib)); } #define DELPT 32 int ar9003_get_iq_corr(struct athn_softc *sc, int32_t res[6], int32_t coeff[2]) { /* Sign-extends 12-bit value (assumes upper bits are zeroes). */ #define SIGN_EXT(v) (((v) ^ 0x800) - 0x800) #define SCALE (1 << 15) #define SHIFT (1 << 8) struct { int32_t m, p, c; } val[2][2]; int32_t mag[2][2], phs[2][2], cos[2], sin[2]; int32_t min, max, div, f1, f2, f3, m, p, c; int32_t txmag, txphs, rxmag, rxphs; int32_t q_coff, i_coff; int i, j; /* Extract our twelve signed 12-bit values from res[] array. */ val[0][0].m = res[0] & 0xfff; val[0][0].p = (res[0] >> 12) & 0xfff; val[0][0].c = ((res[0] >> 24) & 0xff) | (res[1] & 0xf) << 8; val[0][1].m = (res[1] >> 4) & 0xfff; val[0][1].p = res[2] & 0xfff; val[0][1].c = (res[2] >> 12) & 0xfff; val[1][0].m = ((res[2] >> 24) & 0xff) | (res[3] & 0xf) << 8; val[1][0].p = (res[3] >> 4) & 0xfff; val[1][0].c = res[4] & 0xfff; val[1][1].m = (res[4] >> 12) & 0xfff; val[1][1].p = ((res[4] >> 24) & 0xff) | (res[5] & 0xf) << 8; val[1][1].c = (res[5] >> 4) & 0xfff; for (i = 0; i < 2; i++) { for (j = 0; j < 2; j++) { m = SIGN_EXT(val[i][j].m); p = SIGN_EXT(val[i][j].p); c = SIGN_EXT(val[i][j].c); if (p == 0) return (1); /* Prevent division by 0. */ mag[i][j] = (m * SCALE) / p; phs[i][j] = (c * SCALE) / p; } sin[i] = ((mag[i][0] - mag[i][1]) * SHIFT) / DELPT; cos[i] = ((phs[i][0] - phs[i][1]) * SHIFT) / DELPT; /* Find magnitude by approximation. */ min = MIN(abs(sin[i]), abs(cos[i])); max = MAX(abs(sin[i]), abs(cos[i])); div = max - (max / 32) + (min / 8) + (min / 4); if (div == 0) return (1); /* Prevent division by 0. */ /* Normalize sin and cos by magnitude. */ sin[i] = (sin[i] * SCALE) / div; cos[i] = (cos[i] * SCALE) / div; } /* Compute IQ mismatch (solve 4x4 linear equation). */ f1 = cos[0] - cos[1]; f3 = sin[0] - sin[1]; f2 = (f1 * f1 + f3 * f3) / SCALE; if (f2 == 0) return (1); /* Prevent division by 0. */ /* Compute Tx magnitude mismatch. */ txmag = (f1 * ( mag[0][0] - mag[1][0]) + f3 * ( phs[0][0] - phs[1][0])) / f2; /* Compute Tx phase mismatch. */ txphs = (f3 * (-mag[0][0] + mag[1][0]) + f1 * ( phs[0][0] - phs[1][0])) / f2; if (txmag == SCALE) return (1); /* Prevent division by 0. */ /* Compute Rx magnitude mismatch. */ rxmag = mag[0][0] - (cos[0] * txmag + sin[0] * txphs) / SCALE; /* Compute Rx phase mismatch. */ rxphs = phs[0][0] + (sin[0] * txmag - cos[0] * txphs) / SCALE; if (-rxmag == SCALE) return (1); /* Prevent division by 0. */ txmag = (txmag * SCALE) / (SCALE - txmag); txphs = -txphs; q_coff = (txmag * 128) / SCALE; if (q_coff < -63) q_coff = -63; else if (q_coff > 63) q_coff = 63; i_coff = (txphs * 256) / SCALE; if (i_coff < -63) i_coff = -63; else if (i_coff > 63) i_coff = 63; coeff[0] = q_coff * 128 + i_coff; rxmag = (-rxmag * SCALE) / (SCALE + rxmag); rxphs = -rxphs; q_coff = (rxmag * 128) / SCALE; if (q_coff < -63) q_coff = -63; else if (q_coff > 63) q_coff = 63; i_coff = (rxphs * 256) / SCALE; if (i_coff < -63) i_coff = -63; else if (i_coff > 63) i_coff = 63; coeff[1] = q_coff * 128 + i_coff; return (0); #undef SHIFT #undef SCALE #undef SIGN_EXT } int ar9003_calib_tx_iq(struct athn_softc *sc) { uint32_t reg; int32_t res[6], coeff[2]; int i, j, ntries; reg = AR_READ(sc, AR_PHY_TX_IQCAL_CONTROL_1); reg = RW(reg, AR_PHY_TX_IQCAQL_CONTROL_1_IQCORR_I_Q_COFF_DELPT, DELPT); AR_WRITE(sc, AR_PHY_TX_IQCAL_CONTROL_1, reg); /* Start Tx IQ calibration. */ AR_SETBITS(sc, AR_PHY_TX_IQCAL_START, AR_PHY_TX_IQCAL_START_DO_CAL); /* Wait for completion. */ for (ntries = 0; ntries < 10000; ntries++) { reg = AR_READ(sc, AR_PHY_TX_IQCAL_START); if (!(reg & AR_PHY_TX_IQCAL_START_DO_CAL)) break; DELAY(10); } if (ntries == 10000) return (ETIMEDOUT); for (i = 0; i < sc->ntxchains; i++) { /* Read Tx IQ calibration status for this chain. */ reg = AR_READ(sc, AR_PHY_TX_IQCAL_STATUS_B(i)); if (reg & AR_PHY_TX_IQCAL_STATUS_FAILED) return (EIO); /* * Read Tx IQ calibration results for this chain. * This consists in twelve signed 12-bit values. */ for (j = 0; j < 3; j++) { AR_CLRBITS(sc, AR_PHY_CHAN_INFO_MEMORY, AR_PHY_CHAN_INFO_TAB_S2_READ); reg = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(i, j)); res[j * 2 + 0] = reg; AR_SETBITS(sc, AR_PHY_CHAN_INFO_MEMORY, AR_PHY_CHAN_INFO_TAB_S2_READ); reg = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(i, j)); res[j * 2 + 1] = reg & 0xffff; } /* Compute Tx IQ correction. */ if (ar9003_get_iq_corr(sc, res, coeff) != 0) return (EIO); /* Write Tx IQ correction coefficients. */ reg = AR_READ(sc, AR_PHY_TX_IQCAL_CORR_COEFF_01_B(i)); reg = RW(reg, AR_PHY_TX_IQCAL_CORR_COEFF_01_COEFF_TABLE, coeff[0]); AR_WRITE(sc, AR_PHY_TX_IQCAL_CORR_COEFF_01_B(i), reg); reg = AR_READ(sc, AR_PHY_RX_IQCAL_CORR_B(i)); reg = RW(reg, AR_PHY_RX_IQCAL_CORR_LOOPBACK_IQCORR_Q_Q_COFF, coeff[1] >> 7); reg = RW(reg, AR_PHY_RX_IQCAL_CORR_LOOPBACK_IQCORR_Q_I_COFF, coeff[1]); AR_WRITE(sc, AR_PHY_RX_IQCAL_CORR_B(i), reg); AR_WRITE_BARRIER(sc); } /* Enable Tx IQ correction. */ AR_SETBITS(sc, AR_PHY_TX_IQCAL_CONTROL_3, AR_PHY_TX_IQCAL_CONTROL_3_IQCORR_EN); AR_SETBITS(sc, AR_PHY_RX_IQCAL_CORR_B(0), AR_PHY_RX_IQCAL_CORR_B0_LOOPBACK_IQCORR_EN); AR_WRITE_BARRIER(sc); return (0); } #undef DELPT /*- * The power amplifier predistortion state machine works as follows: * 1) Disable digital predistorters for all Tx chains * 2) Repeat steps 3~7 for all Tx chains * 3) Force Tx gain to that of training signal * 4) Send training signal (asynchronous) * 5) Wait for training signal to complete (asynchronous) * 6) Read PA measurements (input power, output power, output phase) * 7) Compute the predistortion function that linearizes PA output * 8) Write predistortion functions to hardware tables for all Tx chains * 9) Enable digital predistorters for all Tx chains */ void ar9003_paprd_calib(struct athn_softc *sc, struct ieee80211_channel *c) { static const int scaling[] = { 261376, 248079, 233759, 220464, 208194, 196949, 185706, 175487 }; struct athn_ops *ops = &sc->ops; uint32_t reg, ht20mask, ht40mask; int i; /* Read PA predistortion masks from ROM. */ ops->get_paprd_masks(sc, c, &ht20mask, &ht40mask); /* AM-to-AM: amplifier's amplitude characteristic. */ reg = AR_READ(sc, AR_PHY_PAPRD_AM2AM); reg = RW(reg, AR_PHY_PAPRD_AM2AM_MASK, ht20mask); AR_WRITE(sc, AR_PHY_PAPRD_AM2AM, reg); /* AM-to-PM: amplifier's phase transfer characteristic. */ reg = AR_READ(sc, AR_PHY_PAPRD_AM2PM); reg = RW(reg, AR_PHY_PAPRD_AM2PM_MASK, ht20mask); AR_WRITE(sc, AR_PHY_PAPRD_AM2PM, reg); reg = AR_READ(sc, AR_PHY_PAPRD_HT40); reg = RW(reg, AR_PHY_PAPRD_HT40_MASK, ht40mask); AR_WRITE(sc, AR_PHY_PAPRD_HT40, reg); for (i = 0; i < AR9003_MAX_CHAINS; i++) { AR_SETBITS(sc, AR_PHY_PAPRD_CTRL0_B(i), AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE); reg = AR_READ(sc, AR_PHY_PAPRD_CTRL1_B(i)); reg = RW(reg, AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT, 181); reg = RW(reg, AR_PHY_PAPRD_CTRL1_MAG_SCALE_FACT, 361); reg &= ~AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA; reg |= AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENA; reg |= AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENA; AR_WRITE(sc, AR_PHY_PAPRD_CTRL1_B(i), reg); reg = AR_READ(sc, AR_PHY_PAPRD_CTRL0_B(i)); reg = RW(reg, AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3); AR_WRITE(sc, AR_PHY_PAPRD_CTRL0_B(i), reg); } /* Disable all digital predistorters during calibration. */ for (i = 0; i < AR9003_MAX_CHAINS; i++) { AR_CLRBITS(sc, AR_PHY_PAPRD_CTRL0_B(i), AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE); } AR_WRITE_BARRIER(sc); /* * Configure training signal. */ reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL1); reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL1_AGC2_SETTLING, 28); reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL1_LB_SKIP, 0x30); reg &= ~AR_PHY_PAPRD_TRAINER_CNTL1_RX_BB_GAIN_FORCE; reg &= ~AR_PHY_PAPRD_TRAINER_CNTL1_IQCORR_ENABLE; reg |= AR_PHY_PAPRD_TRAINER_CNTL1_LB_ENABLE; reg |= AR_PHY_PAPRD_TRAINER_CNTL1_TX_GAIN_FORCE; reg |= AR_PHY_PAPRD_TRAINER_CNTL1_TRAIN_ENABLE; AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL1, reg); AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL2, 147); reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL3); reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_FINE_CORR_LEN, 4); reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_COARSE_CORR_LEN, 4); reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_NUM_CORR_STAGES, 7); reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_MIN_LOOPBACK_DEL, 1); if (AR_SREV_9485(sc)) reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_QUICK_DROP, -3); else reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_QUICK_DROP, -6); reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_ADC_DESIRED_SIZE, -15); reg |= AR_PHY_PAPRD_TRAINER_CNTL3_BBTXMIX_DISABLE; AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL3, reg); reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL4); reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_SAFETY_DELTA, 0); reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_MIN_CORR, 400); reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_NUM_TRAIN_SAMPLES, 100); AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL4, reg); for (i = 0; i < nitems(scaling); i++) { reg = AR_READ(sc, AR_PHY_PAPRD_PRE_POST_SCALE_B0(i)); reg = RW(reg, AR_PHY_PAPRD_PRE_POST_SCALING, scaling[i]); AR_WRITE(sc, AR_PHY_PAPRD_PRE_POST_SCALE_B0(i), reg); } /* Save Tx gain table. */ for (i = 0; i < AR9003_TX_GAIN_TABLE_SIZE; i++) sc->txgain[i] = AR_READ(sc, AR_PHY_TXGAIN_TABLE(i)); /* Set Tx power of training signal (use setting for MCS0). */ sc->trainpow = MS(AR_READ(sc, AR_PHY_PWRTX_RATE5), AR_PHY_PWRTX_RATE5_POWERTXHT20_0) - 4; /* * Start PA predistortion calibration state machine. */ /* Find first available Tx chain. */ sc->paprd_curchain = 0; while (!(sc->txchainmask & (1 << sc->paprd_curchain))) sc->paprd_curchain++; /* Make sure training done bit is clear. */ AR_CLRBITS(sc, AR_PHY_PAPRD_TRAINER_STAT1, AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE); AR_WRITE_BARRIER(sc); /* Transmit training signal. */ ar9003_paprd_tx_tone(sc); } int ar9003_get_desired_txgain(struct athn_softc *sc, int chain, int pow) { int32_t scale, atemp, avolt, tempcal, voltcal, temp, volt; int32_t tempcorr, voltcorr; uint32_t reg; int8_t delta; scale = MS(AR_READ(sc, AR_PHY_TPC_12), AR_PHY_TPC_12_DESIRED_SCALE_HT40_5); reg = AR_READ(sc, AR_PHY_TPC_19); atemp = MS(reg, AR_PHY_TPC_19_ALPHA_THERM); avolt = MS(reg, AR_PHY_TPC_19_ALPHA_VOLT); reg = AR_READ(sc, AR_PHY_TPC_18); tempcal = MS(reg, AR_PHY_TPC_18_THERM_CAL); voltcal = MS(reg, AR_PHY_TPC_18_VOLT_CAL); reg = AR_READ(sc, AR_PHY_BB_THERM_ADC_4); temp = MS(reg, AR_PHY_BB_THERM_ADC_4_LATEST_THERM); volt = MS(reg, AR_PHY_BB_THERM_ADC_4_LATEST_VOLT); delta = (int8_t)MS(AR_READ(sc, AR_PHY_TPC_11_B(chain)), AR_PHY_TPC_11_OLPC_GAIN_DELTA); /* Compute temperature and voltage correction. */ tempcorr = (atemp * (temp - tempcal) + 128) / 256; voltcorr = (avolt * (volt - voltcal) + 64) / 128; /* Compute desired Tx gain. */ return (pow - delta - tempcorr - voltcorr + scale); } void ar9003_force_txgain(struct athn_softc *sc, uint32_t txgain) { uint32_t reg; reg = AR_READ(sc, AR_PHY_TX_FORCED_GAIN); reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXBB1DBGAIN, MS(txgain, AR_PHY_TXGAIN_TXBB1DBGAIN)); reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXBB6DBGAIN, MS(txgain, AR_PHY_TXGAIN_TXBB6DBGAIN)); reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXMXRGAIN, MS(txgain, AR_PHY_TXGAIN_TXMXRGAIN)); reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNA, MS(txgain, AR_PHY_TXGAIN_PADRVGNA)); reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNB, MS(txgain, AR_PHY_TXGAIN_PADRVGNB)); reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNC, MS(txgain, AR_PHY_TXGAIN_PADRVGNC)); reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGND, MS(txgain, AR_PHY_TXGAIN_PADRVGND)); reg &= ~AR_PHY_TX_FORCED_GAIN_ENABLE_PAL; reg &= ~AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN; AR_WRITE(sc, AR_PHY_TX_FORCED_GAIN, reg); reg = AR_READ(sc, AR_PHY_TPC_1); reg = RW(reg, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0); reg &= ~AR_PHY_TPC_1_FORCE_DAC_GAIN; AR_WRITE(sc, AR_PHY_TPC_1, reg); AR_WRITE_BARRIER(sc); } void ar9003_set_training_gain(struct athn_softc *sc, int chain) { int i, gain; /* * Get desired gain for training signal power (take into account * current temperature/voltage). */ gain = ar9003_get_desired_txgain(sc, chain, sc->trainpow); /* Find entry in table. */ for (i = 0; i < AR9003_TX_GAIN_TABLE_SIZE - 1; i++) if (MS(sc->txgain[i], AR_PHY_TXGAIN_INDEX) >= gain) break; ar9003_force_txgain(sc, sc->txgain[i]); } int ar9003_paprd_tx_tone(struct athn_softc *sc) { #define TONE_LEN 1800 struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct mbuf *m; int error; /* Build a Null (no data) frame of TONE_LEN bytes. */ m = MCLGETL(NULL, M_DONTWAIT, TONE_LEN); if (m == NULL) return (ENOBUFS); memset(mtod(m, caddr_t), 0, TONE_LEN); wh = mtod(m, struct ieee80211_frame *); wh->i_fc[0] = IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA; wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; *(uint16_t *)wh->i_dur = htole16(10); /* XXX */ IEEE80211_ADDR_COPY(wh->i_addr1, ic->ic_myaddr); IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_myaddr); m->m_pkthdr.len = m->m_len = TONE_LEN; /* Set gain of training signal. */ ar9003_set_training_gain(sc, sc->paprd_curchain); /* Transmit training signal. */ ni = ieee80211_ref_node(ic->ic_bss); if ((error = ar9003_tx(sc, m, ni, ATHN_TXFLAG_PAPRD)) != 0) ieee80211_release_node(ic, ni); return (error); #undef TONE_LEN } static __inline int get_scale(int val) { int log = 0; /* Find the log base 2 (position of highest bit set). */ while (val >>= 1) log++; return ((log > 10) ? log - 10 : 0); } /* * Compute predistortion function to linearize power amplifier output based * on feedback from training signal. */ int ar9003_compute_predistortion(struct athn_softc *sc, const uint32_t *lo, const uint32_t *hi) { #define NBINS 23 int chain = sc->paprd_curchain; int x[NBINS + 1], y[NBINS + 1], t[NBINS + 1]; int b1[NBINS + 1], b2[NBINS + 1], xtilde[NBINS + 1]; int nsamples, txsum, rxsum, rosum, maxidx; int order, order5x, order5xrem, order3x, order3xrem, y5, y3; int icept, G, I, L, M, angle, xnonlin, y2, y4, sumy2, sumy4; int alpha, beta, scale, Qalpha, Qbeta, Qscale, Qx, Qb1, Qb2; int tavg, ttilde, maxb1abs, maxb2abs, maxxtildeabs, in; int tmp, i; /* Set values at origin. */ x[0] = y[0] = t[0] = 0; #define SCALE 32 maxidx = 0; for (i = 0; i < NBINS; i++) { nsamples = lo[i] & 0xffff; /* Skip bins that contain 16 or less samples. */ if (nsamples <= 16) { x[i + 1] = y[i + 1] = t[i + 1] = 0; continue; } txsum = (hi[i] & 0x7ff) << 16 | lo[i] >> 16; rxsum = (lo[i + NBINS] & 0xffff) << 5 | ((hi[i] >> 11) & 0x1f); rosum = (hi[i + NBINS] & 0x7ff) << 16 | hi[i + NBINS] >> 16; /* Sign-extend 27-bit value. */ rosum = (rosum ^ 0x4000000) - 0x4000000; txsum *= SCALE; rxsum *= SCALE; rosum *= SCALE; x[i + 1] = ((txsum + nsamples) / nsamples + SCALE) / SCALE; y[i + 1] = ((rxsum + nsamples) / nsamples + SCALE) / SCALE + SCALE * maxidx + SCALE / 2; t[i + 1] = (rosum + nsamples) / nsamples; maxidx++; } #undef SCALE #define SCALE_LOG 8 #define SCALE (1 << SCALE_LOG) if (x[6] == x[3]) return (1); /* Prevent division by 0. */ G = ((y[6] - y[3]) * SCALE + (x[6] - x[3])) / (x[6] - x[3]); if (G == 0) return (1); /* Prevent division by 0. */ sc->gain1[chain] = G; /* Save low signal gain. */ /* Find interception point. */ icept = (G * (x[0] - x[3]) + SCALE) / SCALE + y[3]; for (i = 0; i <= 3; i++) { y[i] = i * 32; x[i] = (y[i] * SCALE + G) / G; } for (i = 4; i <= maxidx; i++) y[i] -= icept; xnonlin = x[maxidx] - (y[maxidx] * SCALE + G) / G; order = (xnonlin + y[maxidx]) / y[maxidx]; if (order == 0) M = 10; else if (order == 1) M = 9; else M = 8; I = (maxidx >= 16) ? 7 : maxidx / 2; L = maxidx - I; sumy2 = sumy4 = y2 = y4 = 0; for (i = 0; i <= L; i++) { if (y[i + I] == 0) return (1); /* Prevent division by 0. */ xnonlin = x[i + I] - ((y[i + I] * SCALE) + G) / G; xtilde[i] = ((xnonlin << M) + y[i + I]) / y[i + I]; xtilde[i] = ((xtilde[i] << M) + y[i + I]) / y[i + I]; xtilde[i] = ((xtilde[i] << M) + y[i + I]) / y[i + I]; y2 = (y[i + I] * y[i + I] + SCALE * SCALE) / (SCALE * SCALE); sumy2 += y2; sumy4 += y2 * y2; b1[i] = y2 * (L + 1); b2[i] = y2; } for (i = 0; i <= L; i++) { b1[i] -= sumy2; b2[i] = sumy4 - sumy2 * b2[i]; } maxxtildeabs = maxb1abs = maxb2abs = 0; for (i = 0; i <= L; i++) { tmp = abs(xtilde[i]); if (tmp > maxxtildeabs) maxxtildeabs = tmp; tmp = abs(b1[i]); if (tmp > maxb1abs) maxb1abs = tmp; tmp = abs(b2[i]); if (tmp > maxb2abs) maxb2abs = tmp; } Qx = get_scale(maxxtildeabs); Qb1 = get_scale(maxb1abs); Qb2 = get_scale(maxb2abs); for (i = 0; i <= L; i++) { xtilde[i] /= 1 << Qx; b1[i] /= 1 << Qb1; b2[i] /= 1 << Qb2; } alpha = beta = 0; for (i = 0; i <= L; i++) { alpha += b1[i] * xtilde[i]; beta += b2[i] * xtilde[i]; } scale = ((y4 / SCALE_LOG) * (L + 1) - (y2 / SCALE_LOG) * sumy2) * SCALE_LOG; Qscale = get_scale(abs(scale)); scale /= 1 << Qscale; Qalpha = get_scale(abs(alpha)); alpha /= 1 << Qalpha; Qbeta = get_scale(abs(beta)); beta /= 1 << Qbeta; order = 3 * M - Qx - Qb1 - Qbeta + 10 + Qscale; order5x = 1 << (order / 5); order5xrem = 1 << (order % 5); order = 3 * M - Qx - Qb2 - Qalpha + 10 + Qscale; order3x = 1 << (order / 3); order3xrem = 1 << (order % 3); for (i = 0; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) { tmp = i * 32; /* Fifth order. */ y5 = ((beta * tmp) / 64) / order5x; y5 = (y5 * tmp) / order5x; y5 = (y5 * tmp) / order5x; y5 = (y5 * tmp) / order5x; y5 = (y5 * tmp) / order5x; y5 = y5 / order5xrem; /* Third order. */ y3 = (alpha * tmp) / order3x; y3 = (y3 * tmp) / order3x; y3 = (y3 * tmp) / order3x; y3 = y3 / order3xrem; in = y5 + y3 + (SCALE * tmp) / G; if (i >= 2 && in < sc->pa_in[chain][i - 1]) { in = sc->pa_in[chain][i - 1] + (sc->pa_in[chain][i - 1] - sc->pa_in[chain][i - 2]); } if (in > 1400) in = 1400; sc->pa_in[chain][i] = in; } /* Compute average theta of first 5 bins (linear region). */ tavg = 0; for (i = 1; i <= 5; i++) tavg += t[i]; tavg /= 5; for (i = 1; i <= 5; i++) t[i] = 0; for (i = 6; i <= maxidx; i++) t[i] -= tavg; alpha = beta = 0; for (i = 0; i <= L; i++) { ttilde = ((t[i + I] << M) + y[i + I]) / y[i + I]; ttilde = ((ttilde << M) + y[i + I]) / y[i + I]; ttilde = ((ttilde << M) + y[i + I]) / y[i + I]; alpha += b2[i] * ttilde; beta += b1[i] * ttilde; } Qalpha = get_scale(abs(alpha)); alpha /= 1 << Qalpha; Qbeta = get_scale(abs(beta)); beta /= 1 << Qbeta; order = 3 * M - Qx - Qb1 - Qbeta + 10 + Qscale + 5; order5x = 1 << (order / 5); order5xrem = 1 << (order % 5); order = 3 * M - Qx - Qb2 - Qalpha + 10 + Qscale + 5; order3x = 1 << (order / 3); order3xrem = 1 << (order % 3); for (i = 0; i <= 4; i++) sc->angle[chain][i] = 0; /* Linear at that range. */ for (i = 5; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) { tmp = i * 32; /* Fifth order. */ if (beta > 0) y5 = (((beta * tmp - 64) / 64) - order5x) / order5x; else y5 = (((beta * tmp - 64) / 64) + order5x) / order5x; y5 = (y5 * tmp) / order5x; y5 = (y5 * tmp) / order5x; y5 = (y5 * tmp) / order5x; y5 = (y5 * tmp) / order5x; y5 = y5 / order5xrem; /* Third order. */ if (beta > 0) /* XXX alpha? */ y3 = (alpha * tmp - order3x) / order3x; else y3 = (alpha * tmp + order3x) / order3x; y3 = (y3 * tmp) / order3x; y3 = (y3 * tmp) / order3x; y3 = y3 / order3xrem; angle = y5 + y3; if (angle < -150) angle = -150; else if (angle > 150) angle = 150; sc->angle[chain][i] = angle; } /* Angle for entry 4 is derived from angle for entry 5. */ sc->angle[chain][4] = (sc->angle[chain][5] + 2) / 2; return (0); #undef SCALE #undef SCALE_LOG #undef NBINS } void ar9003_enable_predistorter(struct athn_softc *sc, int chain) { uint32_t reg; int i; /* Write digital predistorter lookup table. */ for (i = 0; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) { AR_WRITE(sc, AR_PHY_PAPRD_MEM_TAB_B(chain, i), SM(AR_PHY_PAPRD_PA_IN, sc->pa_in[chain][i]) | SM(AR_PHY_PAPRD_ANGLE, sc->angle[chain][i])); } reg = AR_READ(sc, AR_PHY_PA_GAIN123_B(chain)); reg = RW(reg, AR_PHY_PA_GAIN123_PA_GAIN1, sc->gain1[chain]); AR_WRITE(sc, AR_PHY_PA_GAIN123_B(chain), reg); /* Indicate Tx power used for calibration (training signal). */ reg = AR_READ(sc, AR_PHY_PAPRD_CTRL1_B(chain)); reg = RW(reg, AR_PHY_PAPRD_CTRL1_POWER_AT_AM2AM_CAL, sc->trainpow); AR_WRITE(sc, AR_PHY_PAPRD_CTRL1_B(chain), reg); /* Enable digital predistorter for this chain. */ AR_SETBITS(sc, AR_PHY_PAPRD_CTRL0_B(chain), AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE); AR_WRITE_BARRIER(sc); } void ar9003_paprd_enable(struct athn_softc *sc) { int i; /* Enable digital predistorters for all Tx chains. */ for (i = 0; i < AR9003_MAX_CHAINS; i++) if (sc->txchainmask & (1 << i)) ar9003_enable_predistorter(sc, i); } /* * This function is called when our training signal has been sent. */ void ar9003_paprd_tx_tone_done(struct athn_softc *sc) { uint32_t lo[48], hi[48]; int i; /* Make sure training is complete. */ if (!(AR_READ(sc, AR_PHY_PAPRD_TRAINER_STAT1) & AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE)) return; /* Read feedback from training signal. */ AR_CLRBITS(sc, AR_PHY_CHAN_INFO_MEMORY, AR_PHY_CHAN_INFO_TAB_S2_READ); for (i = 0; i < nitems(lo); i++) lo[i] = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(0, i)); AR_SETBITS(sc, AR_PHY_CHAN_INFO_MEMORY, AR_PHY_CHAN_INFO_TAB_S2_READ); for (i = 0; i < nitems(hi); i++) hi[i] = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(0, i)); AR_CLRBITS(sc, AR_PHY_PAPRD_TRAINER_STAT1, AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE); /* Compute predistortion function based on this feedback. */ if (ar9003_compute_predistortion(sc, lo, hi) != 0) return; /* Get next available Tx chain. */ while (++sc->paprd_curchain < AR9003_MAX_CHAINS) if (sc->txchainmask & (1 << sc->paprd_curchain)) break; if (sc->paprd_curchain == AR9003_MAX_CHAINS) { /* All Tx chains measured; enable digital predistortion. */ ar9003_paprd_enable(sc); } else /* Measure next Tx chain. */ ar9003_paprd_tx_tone(sc); } void ar9003_write_txpower(struct athn_softc *sc, int16_t power[ATHN_POWER_COUNT]) { /* Make sure forced gain is disabled. */ AR_WRITE(sc, AR_PHY_TX_FORCED_GAIN, 0); AR_WRITE(sc, AR_PHY_PWRTX_RATE1, (power[ATHN_POWER_OFDM18 ] & 0x3f) << 24 | (power[ATHN_POWER_OFDM12 ] & 0x3f) << 16 | (power[ATHN_POWER_OFDM9 ] & 0x3f) << 8 | (power[ATHN_POWER_OFDM6 ] & 0x3f)); AR_WRITE(sc, AR_PHY_PWRTX_RATE2, (power[ATHN_POWER_OFDM54 ] & 0x3f) << 24 | (power[ATHN_POWER_OFDM48 ] & 0x3f) << 16 | (power[ATHN_POWER_OFDM36 ] & 0x3f) << 8 | (power[ATHN_POWER_OFDM24 ] & 0x3f)); AR_WRITE(sc, AR_PHY_PWRTX_RATE3, (power[ATHN_POWER_CCK2_SP ] & 0x3f) << 24 | (power[ATHN_POWER_CCK2_LP ] & 0x3f) << 16 | /* NB: No eXtended Range for AR9003. */ (power[ATHN_POWER_CCK1_LP ] & 0x3f)); AR_WRITE(sc, AR_PHY_PWRTX_RATE4, (power[ATHN_POWER_CCK11_SP] & 0x3f) << 24 | (power[ATHN_POWER_CCK11_LP] & 0x3f) << 16 | (power[ATHN_POWER_CCK55_SP] & 0x3f) << 8 | (power[ATHN_POWER_CCK55_LP] & 0x3f)); /* * NB: AR_PHY_PWRTX_RATE5 needs to be written even if HT is disabled * because it is read by PA predistortion functions. */ AR_WRITE(sc, AR_PHY_PWRTX_RATE5, (power[ATHN_POWER_HT20( 5)] & 0x3f) << 24 | (power[ATHN_POWER_HT20( 4)] & 0x3f) << 16 | (power[ATHN_POWER_HT20( 1)] & 0x3f) << 8 | (power[ATHN_POWER_HT20( 0)] & 0x3f)); AR_WRITE(sc, AR_PHY_PWRTX_RATE6, (power[ATHN_POWER_HT20(13)] & 0x3f) << 24 | (power[ATHN_POWER_HT20(12)] & 0x3f) << 16 | (power[ATHN_POWER_HT20( 7)] & 0x3f) << 8 | (power[ATHN_POWER_HT20( 6)] & 0x3f)); AR_WRITE(sc, AR_PHY_PWRTX_RATE7, (power[ATHN_POWER_HT40( 5)] & 0x3f) << 24 | (power[ATHN_POWER_HT40( 4)] & 0x3f) << 16 | (power[ATHN_POWER_HT40( 1)] & 0x3f) << 8 | (power[ATHN_POWER_HT40( 0)] & 0x3f)); AR_WRITE(sc, AR_PHY_PWRTX_RATE8, (power[ATHN_POWER_HT40(13)] & 0x3f) << 24 | (power[ATHN_POWER_HT40(12)] & 0x3f) << 16 | (power[ATHN_POWER_HT40( 7)] & 0x3f) << 8 | (power[ATHN_POWER_HT40( 6)] & 0x3f)); AR_WRITE(sc, AR_PHY_PWRTX_RATE10, (power[ATHN_POWER_HT20(21)] & 0x3f) << 24 | (power[ATHN_POWER_HT20(20)] & 0x3f) << 16 | (power[ATHN_POWER_HT20(15)] & 0x3f) << 8 | (power[ATHN_POWER_HT20(14)] & 0x3f)); AR_WRITE(sc, AR_PHY_PWRTX_RATE11, (power[ATHN_POWER_HT40(23)] & 0x3f) << 24 | (power[ATHN_POWER_HT40(22)] & 0x3f) << 16 | (power[ATHN_POWER_HT20(23)] & 0x3f) << 8 | (power[ATHN_POWER_HT20(22)] & 0x3f)); AR_WRITE(sc, AR_PHY_PWRTX_RATE12, (power[ATHN_POWER_HT40(21)] & 0x3f) << 24 | (power[ATHN_POWER_HT40(20)] & 0x3f) << 16 | (power[ATHN_POWER_HT40(15)] & 0x3f) << 8 | (power[ATHN_POWER_HT40(14)] & 0x3f)); AR_WRITE_BARRIER(sc); } void ar9003_reset_rx_gain(struct athn_softc *sc, struct ieee80211_channel *c) { #define X(x) ((uint32_t)(x) << 2) const struct athn_gain *prog = sc->rx_gain; const uint32_t *pvals; int i; if (IEEE80211_IS_CHAN_2GHZ(c)) pvals = prog->vals_2g; else pvals = prog->vals_5g; for (i = 0; i < prog->nregs; i++) AR_WRITE(sc, X(prog->regs[i]), pvals[i]); AR_WRITE_BARRIER(sc); #undef X } void ar9003_reset_tx_gain(struct athn_softc *sc, struct ieee80211_channel *c) { #define X(x) ((uint32_t)(x) << 2) const struct athn_gain *prog = sc->tx_gain; const uint32_t *pvals; int i; if (IEEE80211_IS_CHAN_2GHZ(c)) pvals = prog->vals_2g; else pvals = prog->vals_5g; for (i = 0; i < prog->nregs; i++) AR_WRITE(sc, X(prog->regs[i]), pvals[i]); AR_WRITE_BARRIER(sc); #undef X } void ar9003_hw_init(struct athn_softc *sc, struct ieee80211_channel *c, struct ieee80211_channel *extc) { #define X(x) ((uint32_t)(x) << 2) struct athn_ops *ops = &sc->ops; const struct athn_ini *ini = sc->ini; const uint32_t *pvals; uint32_t reg; int i; /* * The common init values include the pre and core phases for the * SoC, MAC, BB and Radio subsystems. */ DPRINTFN(4, ("writing pre and core init vals\n")); for (i = 0; i < ini->ncmregs; i++) { AR_WRITE(sc, X(ini->cmregs[i]), ini->cmvals[i]); if (AR_IS_ANALOG_REG(X(ini->cmregs[i]))) DELAY(100); if ((i & 0x1f) == 0) DELAY(1); } /* * The modal init values include the post phase for the SoC, MAC, * BB and Radio subsystems. */ if (extc != NULL) { if (IEEE80211_IS_CHAN_2GHZ(c)) pvals = ini->vals_2g40; else pvals = ini->vals_5g40; } else { if (IEEE80211_IS_CHAN_2GHZ(c)) pvals = ini->vals_2g20; else pvals = ini->vals_5g20; } DPRINTFN(4, ("writing post init vals\n")); for (i = 0; i < ini->nregs; i++) { AR_WRITE(sc, X(ini->regs[i]), pvals[i]); if (AR_IS_ANALOG_REG(X(ini->regs[i]))) DELAY(100); if ((i & 0x1f) == 0) DELAY(1); } if (sc->rx_gain != NULL) ar9003_reset_rx_gain(sc, c); if (sc->tx_gain != NULL) ar9003_reset_tx_gain(sc, c); if (IEEE80211_IS_CHAN_5GHZ(c) && (sc->flags & ATHN_FLAG_FAST_PLL_CLOCK)) { /* Update modal values for fast PLL clock. */ if (extc != NULL) pvals = ini->fastvals_5g40; else pvals = ini->fastvals_5g20; DPRINTFN(4, ("writing fast pll clock init vals\n")); for (i = 0; i < ini->nfastregs; i++) { AR_WRITE(sc, X(ini->fastregs[i]), pvals[i]); if (AR_IS_ANALOG_REG(X(ini->fastregs[i]))) DELAY(100); if ((i & 0x1f) == 0) DELAY(1); } } /* * Set the RX_ABORT and RX_DIS bits to prevent frames with corrupted * descriptor status. */ AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT); reg = AR_READ(sc, AR_PCU_MISC_MODE2); reg &= ~AR_PCU_MISC_MODE2_ADHOC_MCAST_KEYID_ENABLE; reg |= AR_PCU_MISC_MODE2_AGG_WEP_ENABLE_FIX; reg |= AR_PCU_MISC_MODE2_ENABLE_AGGWEP; AR_WRITE(sc, AR_PCU_MISC_MODE2, reg); AR_WRITE_BARRIER(sc); ar9003_set_phy(sc, c, extc); ar9003_init_chains(sc); ops->set_txpower(sc, c, extc); #undef X } void ar9003_get_lg_tpow(struct athn_softc *sc, struct ieee80211_channel *c, uint8_t ctl, const uint8_t *fbins, const struct ar_cal_target_power_leg *tgt, int nchans, uint8_t tpow[4]) { uint8_t fbin; int i, delta, lo, hi; lo = hi = -1; fbin = athn_chan2fbin(c); for (i = 0; i < nchans; i++) { delta = fbin - fbins[i]; /* Find the largest sample that is <= our frequency. */ if (delta >= 0 && (lo == -1 || delta < fbin - fbins[lo])) lo = i; /* Find the smallest sample that is >= our frequency. */ if (delta <= 0 && (hi == -1 || delta > fbin - fbins[hi])) hi = i; } if (lo == -1) lo = hi; else if (hi == -1) hi = lo; /* Interpolate values. */ for (i = 0; i < 4; i++) { tpow[i] = athn_interpolate(fbin, fbins[lo], tgt[lo].tPow2x[i], fbins[hi], tgt[hi].tPow2x[i]); } /* XXX Apply conformance test limit. */ } void ar9003_get_ht_tpow(struct athn_softc *sc, struct ieee80211_channel *c, uint8_t ctl, const uint8_t *fbins, const struct ar_cal_target_power_ht *tgt, int nchans, uint8_t tpow[14]) { uint8_t fbin; int i, delta, lo, hi; lo = hi = -1; fbin = athn_chan2fbin(c); for (i = 0; i < nchans; i++) { delta = fbin - fbins[i]; /* Find the largest sample that is <= our frequency. */ if (delta >= 0 && (lo == -1 || delta < fbin - fbins[lo])) lo = i; /* Find the smallest sample that is >= our frequency. */ if (delta <= 0 && (hi == -1 || delta > fbin - fbins[hi])) hi = i; } if (lo == -1) lo = hi; else if (hi == -1) hi = lo; /* Interpolate values. */ for (i = 0; i < 14; i++) { tpow[i] = athn_interpolate(fbin, fbins[lo], tgt[lo].tPow2x[i], fbins[hi], tgt[hi].tPow2x[i]); } /* XXX Apply conformance test limit. */ } /* * Adaptive noise immunity. */ void ar9003_set_noise_immunity_level(struct athn_softc *sc, int level) { int high = level == 4; uint32_t reg; reg = AR_READ(sc, AR_PHY_DESIRED_SZ); reg = RW(reg, AR_PHY_DESIRED_SZ_TOT_DES, high ? -62 : -55); AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg); reg = AR_READ(sc, AR_PHY_AGC); reg = RW(reg, AR_PHY_AGC_COARSE_LOW, high ? -70 : -64); reg = RW(reg, AR_PHY_AGC_COARSE_HIGH, high ? -12 : -14); AR_WRITE(sc, AR_PHY_AGC, reg); reg = AR_READ(sc, AR_PHY_FIND_SIG); reg = RW(reg, AR_PHY_FIND_SIG_FIRPWR, high ? -80 : -78); AR_WRITE(sc, AR_PHY_FIND_SIG, reg); AR_WRITE_BARRIER(sc); } void ar9003_enable_ofdm_weak_signal(struct athn_softc *sc) { uint32_t reg; reg = AR_READ(sc, AR_PHY_SFCORR_LOW); reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 50); reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 40); reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 48); AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg); reg = AR_READ(sc, AR_PHY_SFCORR); reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 77); reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 64); reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 16); AR_WRITE(sc, AR_PHY_SFCORR, reg); reg = AR_READ(sc, AR_PHY_SFCORR_EXT); reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 50); reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 40); reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 77); reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 64); AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg); AR_SETBITS(sc, AR_PHY_SFCORR_LOW, AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW); AR_WRITE_BARRIER(sc); } void ar9003_disable_ofdm_weak_signal(struct athn_softc *sc) { uint32_t reg; reg = AR_READ(sc, AR_PHY_SFCORR_LOW); reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 127); reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 127); reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 63); AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg); reg = AR_READ(sc, AR_PHY_SFCORR); reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 127); reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 127); reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 31); AR_WRITE(sc, AR_PHY_SFCORR, reg); reg = AR_READ(sc, AR_PHY_SFCORR_EXT); reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 127); reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 127); reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 127); reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 127); AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg); AR_CLRBITS(sc, AR_PHY_SFCORR_LOW, AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW); AR_WRITE_BARRIER(sc); } void ar9003_set_cck_weak_signal(struct athn_softc *sc, int high) { uint32_t reg; reg = AR_READ(sc, AR_PHY_CCK_DETECT); reg = RW(reg, AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK, high ? 6 : 8); AR_WRITE(sc, AR_PHY_CCK_DETECT, reg); AR_WRITE_BARRIER(sc); } void ar9003_set_firstep_level(struct athn_softc *sc, int level) { uint32_t reg; reg = AR_READ(sc, AR_PHY_FIND_SIG); reg = RW(reg, AR_PHY_FIND_SIG_FIRSTEP, level * 4); AR_WRITE(sc, AR_PHY_FIND_SIG, reg); AR_WRITE_BARRIER(sc); } void ar9003_set_spur_immunity_level(struct athn_softc *sc, int level) { uint32_t reg; reg = AR_READ(sc, AR_PHY_TIMING5); reg = RW(reg, AR_PHY_TIMING5_CYCPWR_THR1, (level + 1) * 2); AR_WRITE(sc, AR_PHY_TIMING5, reg); AR_WRITE_BARRIER(sc); }