/* $OpenBSD: ar9280.c,v 1.17 2011/01/06 07:27:15 damien Exp $ */ /*- * Copyright (c) 2009 Damien Bergamini * Copyright (c) 2008-2009 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Driver for Atheros 802.11a/g/n chipsets. * Routines for AR9220, AR9223, AR9280 and AR9281 chipsets. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* We share the ROM layout. */ #include int ar9280_attach(struct athn_softc *); void ar9280_setup(struct athn_softc *); int ar9280_set_synth(struct athn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); void ar9280_init_from_rom(struct athn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); void ar9280_spur_mitigate(struct athn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); void ar9280_olpc_get_pdadcs(struct athn_softc *, struct ieee80211_channel *, int, uint8_t *, uint8_t *, uint8_t *); void ar9280_reset_rx_gain(struct athn_softc *, struct ieee80211_channel *); void ar9280_reset_tx_gain(struct athn_softc *, struct ieee80211_channel *); void ar9280_olpc_init(struct athn_softc *); void ar9280_olpc_temp_compensation(struct athn_softc *); /* Extern functions. */ uint8_t athn_chan2fbin(struct ieee80211_channel *); void athn_get_pier_ival(uint8_t, const uint8_t *, int, int *, int *); int ar5008_attach(struct athn_softc *); void ar5008_set_viterbi_mask(struct athn_softc *, int); void ar5416_swap_rom(struct athn_softc *); void ar5416_set_txpower(struct athn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); const struct ar_spur_chan * ar5416_get_spur_chans(struct athn_softc *, int); int ar9280_attach(struct athn_softc *sc) { sc->eep_base = AR5416_EEP_START_LOC; sc->eep_size = sizeof(struct ar5416_eeprom); sc->def_nf = AR9280_PHY_CCA_MAX_GOOD_VALUE; sc->ngpiopins = (sc->flags & ATHN_FLAG_USB) ? 16 : 10; sc->led_pin = 1; sc->workaround = AR9280_WA_DEFAULT; sc->ops.setup = ar9280_setup; sc->ops.swap_rom = ar5416_swap_rom; sc->ops.init_from_rom = ar9280_init_from_rom; sc->ops.set_txpower = ar5416_set_txpower; sc->ops.set_synth = ar9280_set_synth; sc->ops.spur_mitigate = ar9280_spur_mitigate; sc->ops.get_spur_chans = ar5416_get_spur_chans; sc->ops.olpc_init = ar9280_olpc_init; sc->ops.olpc_temp_compensation = ar9280_olpc_temp_compensation; sc->ini = &ar9280_2_0_ini; sc->serdes = ar9280_2_0_serdes; return (ar5008_attach(sc)); } void ar9280_setup(struct athn_softc *sc) { const struct ar5416_eeprom *eep = sc->eep; uint8_t type; /* Determine if open loop power control should be used. */ if (sc->eep_rev >= AR_EEP_MINOR_VER_19 && eep->baseEepHeader.openLoopPwrCntl) sc->flags |= ATHN_FLAG_OLPC; /* Determine if fast PLL clock is supported. */ if (AR_SREV_9280_20(sc) && (sc->eep_rev <= AR_EEP_MINOR_VER_16 || eep->baseEepHeader.fastClk5g)) sc->flags |= ATHN_FLAG_FAST_PLL_CLOCK; /* * Determine if initialization value for AR_AN_TOP2 must be fixed. * This is required for some AR9220 devices such as Ubiquiti SR71-12. */ if (AR_SREV_9280_20(sc) && sc->eep_rev > AR_EEP_MINOR_VER_10 && !eep->baseEepHeader.pwdclkind) { DPRINTF(("AR_AN_TOP2 fixup required\n")); sc->flags |= ATHN_FLAG_AN_TOP2_FIXUP; } if (AR_SREV_9280_20(sc)) { /* Check if we have a valid rxGainType field in ROM. */ if (sc->eep_rev >= AR_EEP_MINOR_VER_17) { /* Select initialization values based on ROM. */ type = eep->baseEepHeader.rxGainType; DPRINTF(("Rx gain type=0x%x\n", type)); if (type == AR5416_EEP_RXGAIN_23DB_BACKOFF) sc->rx_gain = &ar9280_2_0_rx_gain_23db_backoff; else if (type == AR5416_EEP_RXGAIN_13DB_BACKOFF) sc->rx_gain = &ar9280_2_0_rx_gain_13db_backoff; else sc->rx_gain = &ar9280_2_0_rx_gain; } else sc->rx_gain = &ar9280_2_0_rx_gain; /* Check if we have a valid txGainType field in ROM. */ if (sc->eep_rev >= AR_EEP_MINOR_VER_19) { /* Select initialization values based on ROM. */ type = eep->baseEepHeader.txGainType; DPRINTF(("Tx gain type=0x%x\n", type)); if (type == AR_EEP_TXGAIN_HIGH_POWER) sc->tx_gain = &ar9280_2_0_tx_gain_high_power; else sc->tx_gain = &ar9280_2_0_tx_gain; } else sc->tx_gain = &ar9280_2_0_tx_gain; } } int ar9280_set_synth(struct athn_softc *sc, struct ieee80211_channel *c, struct ieee80211_channel *extc) { uint32_t phy, reg, ndiv = 0; uint32_t freq = c->ic_freq; phy = AR_READ(sc, AR9280_PHY_SYNTH_CONTROL) & ~0x3fffffff; if (IEEE80211_IS_CHAN_2GHZ(c)) { phy |= (freq << 16) / 15; phy |= AR9280_BMODE | AR9280_FRACMODE; if (AR_SREV_9287_11_OR_LATER(sc)) { /* NB: Magic values from the Linux driver. */ if (freq == 2484) { /* Channel 14. */ /* Japanese regulatory requirements. */ AR_WRITE(sc, AR_PHY(637), 0x00000000); AR_WRITE(sc, AR_PHY(638), 0xefff0301); AR_WRITE(sc, AR_PHY(639), 0xca9228ee); } else { AR_WRITE(sc, AR_PHY(637), 0x00fffeff); AR_WRITE(sc, AR_PHY(638), 0x00f5f9ff); AR_WRITE(sc, AR_PHY(639), 0xb79f6427); } } else { reg = AR_READ(sc, AR_PHY_CCK_TX_CTRL); if (freq == 2484) /* Channel 14. */ reg |= AR_PHY_CCK_TX_CTRL_JAPAN; else reg &= ~AR_PHY_CCK_TX_CTRL_JAPAN; AR_WRITE(sc, AR_PHY_CCK_TX_CTRL, reg); } } else { if (AR_SREV_9285_10_OR_LATER(sc) || sc->eep_rev < AR_EEP_MINOR_VER_22 || !((struct ar5416_base_eep_header *)sc->eep)->frac_n_5g) { if ((freq % 20) == 0) { ndiv = (freq * 3) / 60; phy |= SM(AR9280_AMODE_REFSEL, 3); } else if ((freq % 10) == 0) { ndiv = (freq * 6) / 60; phy |= SM(AR9280_AMODE_REFSEL, 2); } } if (ndiv != 0) { phy |= (ndiv & 0x1ff) << 17; phy |= (ndiv & ~0x1ff) * 2; } else { phy |= (freq << 15) / 15; phy |= AR9280_FRACMODE; reg = AR_READ(sc, AR_AN_SYNTH9); reg = RW(reg, AR_AN_SYNTH9_REFDIVA, 1); AR_WRITE(sc, AR_AN_SYNTH9, reg); } } AR_WRITE_BARRIER(sc); DPRINTFN(4, ("AR9280_PHY_SYNTH_CONTROL=0x%08x\n", phy)); AR_WRITE(sc, AR9280_PHY_SYNTH_CONTROL, phy); AR_WRITE_BARRIER(sc); return (0); } void ar9280_init_from_rom(struct athn_softc *sc, struct ieee80211_channel *c, struct ieee80211_channel *extc) { static const uint32_t chainoffset[] = { 0x0000, 0x2000, 0x1000 }; const struct ar5416_eeprom *eep = sc->eep; const struct ar5416_modal_eep_header *modal; uint32_t reg, offset; uint8_t txRxAtten; int i; modal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(c)]; AR_WRITE(sc, AR_PHY_SWITCH_COM, modal->antCtrlCommon); for (i = 0; i < AR9280_MAX_CHAINS; i++) { if (sc->rxchainmask == 0x5 || sc->txchainmask == 0x5) offset = chainoffset[i]; else offset = i * 0x1000; AR_WRITE(sc, AR_PHY_SWITCH_CHAIN_0 + offset, modal->antCtrlChain[i]); reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0 + offset); reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, modal->iqCalICh[i]); reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, modal->iqCalQCh[i]); AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0 + offset, reg); if (sc->eep_rev >= AR_EEP_MINOR_VER_3) { reg = AR_READ(sc, AR_PHY_GAIN_2GHZ + offset); reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, modal->bswMargin[i]); reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_DB, modal->bswAtten[i]); reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, modal->xatten2Margin[i]); reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_DB, modal->xatten2Db[i]); AR_WRITE(sc, AR_PHY_GAIN_2GHZ + offset, reg); } if (sc->eep_rev >= AR_EEP_MINOR_VER_3) txRxAtten = modal->txRxAttenCh[i]; else /* Workaround for ROM versions < 14.3. */ txRxAtten = IEEE80211_IS_CHAN_2GHZ(c) ? 23 : 44; reg = AR_READ(sc, AR_PHY_RXGAIN + offset); reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAtten); reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_MARGIN, modal->rxTxMarginCh[i]); AR_WRITE(sc, AR_PHY_RXGAIN + offset, reg); } if (IEEE80211_IS_CHAN_2GHZ(c)) { reg = AR_READ(sc, AR_AN_RF2G1_CH0); reg = RW(reg, AR_AN_RF2G1_CH0_OB, modal->ob); reg = RW(reg, AR_AN_RF2G1_CH0_DB, modal->db); AR_WRITE(sc, AR_AN_RF2G1_CH0, reg); AR_WRITE_BARRIER(sc); DELAY(100); reg = AR_READ(sc, AR_AN_RF2G1_CH1); reg = RW(reg, AR_AN_RF2G1_CH1_OB, modal->ob_ch1); reg = RW(reg, AR_AN_RF2G1_CH1_DB, modal->db_ch1); AR_WRITE(sc, AR_AN_RF2G1_CH1, reg); AR_WRITE_BARRIER(sc); DELAY(100); } else { reg = AR_READ(sc, AR_AN_RF5G1_CH0); reg = RW(reg, AR_AN_RF5G1_CH0_OB5, modal->ob); reg = RW(reg, AR_AN_RF5G1_CH0_DB5, modal->db); AR_WRITE(sc, AR_AN_RF5G1_CH0, reg); AR_WRITE_BARRIER(sc); DELAY(100); reg = AR_READ(sc, AR_AN_RF5G1_CH1); reg = RW(reg, AR_AN_RF5G1_CH1_OB5, modal->ob_ch1); reg = RW(reg, AR_AN_RF5G1_CH1_DB5, modal->db_ch1); AR_WRITE(sc, AR_AN_RF5G1_CH1, reg); AR_WRITE_BARRIER(sc); DELAY(100); } reg = AR_READ(sc, AR_AN_TOP2); if ((sc->flags & ATHN_FLAG_USB) && IEEE80211_IS_CHAN_5GHZ(c)) { /* * Hardcode the output voltage of x-PA bias LDO to the * lowest value for UB94 such that the card doesn't get * too hot. */ reg = RW(reg, AR_AN_TOP2_XPABIAS_LVL, 0); } else reg = RW(reg, AR_AN_TOP2_XPABIAS_LVL, modal->xpaBiasLvl); if (modal->flagBits & AR5416_EEP_FLAG_LOCALBIAS) reg |= AR_AN_TOP2_LOCALBIAS; else reg &= ~AR_AN_TOP2_LOCALBIAS; AR_WRITE(sc, AR_AN_TOP2, reg); AR_WRITE_BARRIER(sc); DELAY(100); reg = AR_READ(sc, AR_PHY_XPA_CFG); if (modal->flagBits & AR5416_EEP_FLAG_FORCEXPAON) reg |= AR_PHY_FORCE_XPA_CFG; else reg &= ~AR_PHY_FORCE_XPA_CFG; AR_WRITE(sc, AR_PHY_XPA_CFG, reg); reg = AR_READ(sc, AR_PHY_SETTLING); reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->switchSettling); AR_WRITE(sc, AR_PHY_SETTLING, reg); reg = AR_READ(sc, AR_PHY_DESIRED_SZ); reg = RW(reg, AR_PHY_DESIRED_SZ_ADC, modal->adcDesiredSize); AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg); reg = SM(AR_PHY_RF_CTL4_TX_END_XPAA_OFF, modal->txEndToXpaOff); reg |= SM(AR_PHY_RF_CTL4_TX_END_XPAB_OFF, modal->txEndToXpaOff); reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAA_ON, modal->txFrameToXpaOn); reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAB_ON, modal->txFrameToXpaOn); AR_WRITE(sc, AR_PHY_RF_CTL4, reg); reg = AR_READ(sc, AR_PHY_RF_CTL3); reg = RW(reg, AR_PHY_TX_END_TO_A2_RX_ON, modal->txEndToRxOn); AR_WRITE(sc, AR_PHY_RF_CTL3, reg); reg = AR_READ(sc, AR_PHY_CCA(0)); reg = RW(reg, AR9280_PHY_CCA_THRESH62, modal->thresh62); AR_WRITE(sc, AR_PHY_CCA(0), reg); reg = AR_READ(sc, AR_PHY_EXT_CCA0); reg = RW(reg, AR_PHY_EXT_CCA0_THRESH62, modal->thresh62); AR_WRITE(sc, AR_PHY_EXT_CCA0, reg); if (sc->eep_rev >= AR_EEP_MINOR_VER_2) { reg = AR_READ(sc, AR_PHY_RF_CTL2); reg = RW(reg, AR_PHY_TX_END_DATA_START, modal->txFrameToDataStart); reg = RW(reg, AR_PHY_TX_END_PA_ON, modal->txFrameToPaOn); AR_WRITE(sc, AR_PHY_RF_CTL2, reg); } #ifndef IEEE80211_NO_HT if (sc->eep_rev >= AR_EEP_MINOR_VER_3 && extc != NULL) { /* Overwrite switch settling with HT-40 value. */ reg = AR_READ(sc, AR_PHY_SETTLING); reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->swSettleHt40); AR_WRITE(sc, AR_PHY_SETTLING, reg); } #endif if (sc->eep_rev >= AR_EEP_MINOR_VER_19) { reg = AR_READ(sc, AR_PHY_CCK_TX_CTRL); reg = RW(reg, AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK, MS(modal->miscBits, AR5416_EEP_MISC_TX_DAC_SCALE_CCK)); AR_WRITE(sc, AR_PHY_CCK_TX_CTRL, reg); } if (AR_SREV_9280_20(sc) && sc->eep_rev >= AR_EEP_MINOR_VER_20) { reg = AR_READ(sc, AR_AN_TOP1); if (eep->baseEepHeader.dacLpMode && (IEEE80211_IS_CHAN_2GHZ(c) || !eep->baseEepHeader.dacHiPwrMode_5G)) reg |= AR_AN_TOP1_DACLPMODE; else reg &= ~AR_AN_TOP1_DACLPMODE; AR_WRITE(sc, AR_AN_TOP1, reg); AR_WRITE_BARRIER(sc); DELAY(100); reg = AR_READ(sc, AR_PHY_FRAME_CTL); reg = RW(reg, AR_PHY_FRAME_CTL_TX_CLIP, MS(modal->miscBits, AR5416_EEP_MISC_TX_CLIP)); AR_WRITE(sc, AR_PHY_FRAME_CTL, reg); reg = AR_READ(sc, AR_PHY_TX_PWRCTRL9); reg = RW(reg, AR_PHY_TX_DESIRED_SCALE_CCK, eep->baseEepHeader.desiredScaleCCK); AR_WRITE(sc, AR_PHY_TX_PWRCTRL9, reg); } AR_WRITE_BARRIER(sc); } void ar9280_olpc_get_pdadcs(struct athn_softc *sc, struct ieee80211_channel *c, int chain, uint8_t *boundaries, uint8_t *pdadcs, uint8_t *txgain) { const struct ar5416_eeprom *eep = sc->eep; const struct ar_cal_data_per_freq_olpc *pierdata; const uint8_t *pierfreq; uint8_t fbin, pcdac, pwr, idx; int i, lo, hi, npiers; if (IEEE80211_IS_CHAN_2GHZ(c)) { pierfreq = eep->calFreqPier2G; pierdata = (const struct ar_cal_data_per_freq_olpc *) eep->calPierData2G[chain]; npiers = AR5416_NUM_2G_CAL_PIERS; } else { pierfreq = eep->calFreqPier5G; pierdata = (const struct ar_cal_data_per_freq_olpc *) eep->calPierData5G[chain]; npiers = AR5416_NUM_5G_CAL_PIERS; } /* Find channel in ROM pier table. */ fbin = athn_chan2fbin(c); athn_get_pier_ival(fbin, pierfreq, npiers, &lo, &hi); /* Get average. */ pwr = (pierdata[lo].pwrPdg[0][0] + pierdata[hi].pwrPdg[0][0]) / 2; pwr /= 2; /* Convert to dB. */ /* Find power control digital-to-analog converter (PCDAC) value. */ pcdac = pierdata[hi].pcdac[0][0]; for (idx = 0; idx < AR9280_TX_GAIN_TABLE_SIZE - 1; idx++) if (pcdac <= sc->tx_gain_tbl[idx]) break; *txgain = idx; DPRINTFN(3, ("fbin=%d lo=%d hi=%d pwr=%d pcdac=%d txgain=%d\n", fbin, lo, hi, pwr, pcdac, idx)); /* Fill phase domain analog-to-digital converter (PDADC) table. */ for (i = 0; i < AR_NUM_PDADC_VALUES; i++) pdadcs[i] = (i < pwr) ? 0x00 : 0xff; for (i = 0; i < AR_PD_GAINS_IN_MASK; i++) boundaries[i] = AR9280_PD_GAIN_BOUNDARY_DEFAULT; } void ar9280_spur_mitigate(struct athn_softc *sc, struct ieee80211_channel *c, struct ieee80211_channel *extc) { const struct ar_spur_chan *spurchans; int spur, bin, spur_delta_phase, spur_freq_sd, spur_subchannel_sd; int spur_off, range, i; /* NB: Always clear. */ AR_CLRBITS(sc, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX); range = (extc != NULL) ? 19 : 10; spurchans = sc->ops.get_spur_chans(sc, IEEE80211_IS_CHAN_2GHZ(c)); for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { spur = spurchans[i].spurChan; if (spur == AR_NO_SPUR) return; /* XXX disable if it was enabled! */ spur /= 10; if (IEEE80211_IS_CHAN_2GHZ(c)) spur += AR_BASE_FREQ_2GHZ; else spur += AR_BASE_FREQ_5GHZ; spur -= c->ic_freq; if (abs(spur) < range) break; } if (i == AR_EEPROM_MODAL_SPURS) return; /* XXX disable if it was enabled! */ DPRINTFN(2, ("enabling spur mitigation\n")); AR_SETBITS(sc, AR_PHY_TIMING_CTRL4_0, AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI | AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER | AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK | AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK); AR_WRITE(sc, AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_MASK_RATE_CNTL | AR_PHY_SPUR_REG_ENABLE_MASK_PPM | AR_PHY_SPUR_REG_MASK_RATE_SELECT | AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI | SM(AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, AR_SPUR_RSSI_THRESH)); #ifndef IEEE80211_NO_HT if (extc != NULL) { spur_delta_phase = (spur * 262144) / 10; if (spur < 0) { spur_subchannel_sd = 1; spur_off = spur + 10; } else { spur_subchannel_sd = 0; spur_off = spur - 10; } } else #endif { spur_delta_phase = (spur * 524288) / 10; spur_subchannel_sd = 0; spur_off = spur; } if (IEEE80211_IS_CHAN_2GHZ(c)) spur_freq_sd = (spur_off * 2048) / 44; else spur_freq_sd = (spur_off * 2048) / 40; AR_WRITE(sc, AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_IN_AGC | SM(AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd) | SM(AR_PHY_TIMING11_SPUR_DELTA_PHASE, spur_delta_phase)); AR_WRITE(sc, AR_PHY_SFCORR_EXT, SM(AR_PHY_SFCORR_SPUR_SUBCHNL_SD, spur_subchannel_sd)); AR_WRITE_BARRIER(sc); bin = spur * 320; ar5008_set_viterbi_mask(sc, bin); } void ar9280_reset_rx_gain(struct athn_softc *sc, struct ieee80211_channel *c) { const struct athn_gain *prog = sc->rx_gain; const uint32_t *pvals; int i; if (IEEE80211_IS_CHAN_2GHZ(c)) pvals = prog->vals_2g; else pvals = prog->vals_5g; for (i = 0; i < prog->nregs; i++) AR_WRITE(sc, prog->regs[i], pvals[i]); } void ar9280_reset_tx_gain(struct athn_softc *sc, struct ieee80211_channel *c) { const struct athn_gain *prog = sc->tx_gain; const uint32_t *pvals; int i; if (IEEE80211_IS_CHAN_2GHZ(c)) pvals = prog->vals_2g; else pvals = prog->vals_5g; for (i = 0; i < prog->nregs; i++) AR_WRITE(sc, prog->regs[i], pvals[i]); } void ar9280_olpc_init(struct athn_softc *sc) { uint32_t reg; int i; /* Save original Tx gain values. */ for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++) { reg = AR_READ(sc, AR_PHY_TX_GAIN_TBL(i)); sc->tx_gain_tbl[i] = MS(reg, AR_PHY_TX_GAIN); } /* Initial Tx gain temperature compensation. */ sc->tcomp = 0; } void ar9280_olpc_temp_compensation(struct athn_softc *sc) { const struct ar5416_eeprom *eep = sc->eep; int8_t pdadc, txgain, tcomp; uint32_t reg; int i; reg = AR_READ(sc, AR_PHY_TX_PWRCTRL4); pdadc = MS(reg, AR_PHY_TX_PWRCTRL_PD_AVG_OUT); DPRINTFN(3, ("PD Avg Out=%d\n", pdadc)); if (sc->pdadc == 0 || pdadc == 0) return; /* No frames transmitted yet. */ /* Compute Tx gain temperature compensation. */ if (sc->eep_rev >= AR_EEP_MINOR_VER_20 && eep->baseEepHeader.dacHiPwrMode_5G) tcomp = (pdadc - sc->pdadc + 4) / 8; else tcomp = (pdadc - sc->pdadc + 5) / 10; DPRINTFN(3, ("OLPC temp compensation=%d\n", tcomp)); if (tcomp == sc->tcomp) return; /* Don't rewrite the same values. */ sc->tcomp = tcomp; /* Adjust Tx gain values. */ for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++) { txgain = sc->tx_gain_tbl[i] - tcomp; if (txgain < 0) txgain = 0; reg = AR_READ(sc, AR_PHY_TX_GAIN_TBL(i)); reg = RW(reg, AR_PHY_TX_GAIN, txgain); AR_WRITE(sc, AR_PHY_TX_GAIN_TBL(i), reg); } AR_WRITE_BARRIER(sc); }