/* $OpenBSD: ar9287.c,v 1.25 2017/01/12 16:32:28 stsp Exp $ */ /*- * Copyright (c) 2009 Damien Bergamini * Copyright (c) 2008-2009 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Driver for Atheros 802.11a/g/n chipsets. * Routines for AR9227 and AR9287 chipsets. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include int ar9287_attach(struct athn_softc *); void ar9287_setup(struct athn_softc *); void ar9287_swap_rom(struct athn_softc *); const struct ar_spur_chan *ar9287_get_spur_chans(struct athn_softc *, int); void ar9287_init_from_rom(struct athn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); void ar9287_get_pdadcs(struct athn_softc *, struct ieee80211_channel *, int, int, uint8_t, uint8_t *, uint8_t *); void ar9287_olpc_get_pdgain(struct athn_softc *, struct ieee80211_channel *, int, int8_t *); void ar9287_set_power_calib(struct athn_softc *, struct ieee80211_channel *); void ar9287_set_txpower(struct athn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); void ar9287_olpc_init(struct athn_softc *); void ar9287_olpc_temp_compensation(struct athn_softc *); void ar9287_1_3_enable_async_fifo(struct athn_softc *); void ar9287_1_3_setup_async_fifo(struct athn_softc *); /* Extern functions. */ uint8_t athn_chan2fbin(struct ieee80211_channel *); void athn_get_pier_ival(uint8_t, const uint8_t *, int, int *, int *); int ar5008_attach(struct athn_softc *); void ar5008_write_txpower(struct athn_softc *, int16_t power[]); void ar5008_get_pdadcs(struct athn_softc *, uint8_t, struct athn_pier *, struct athn_pier *, int, int, uint8_t, uint8_t *, uint8_t *); void ar5008_get_lg_tpow(struct athn_softc *, struct ieee80211_channel *, uint8_t, const struct ar_cal_target_power_leg *, int, uint8_t[]); void ar5008_get_ht_tpow(struct athn_softc *, struct ieee80211_channel *, uint8_t, const struct ar_cal_target_power_ht *, int, uint8_t[]); int ar9280_set_synth(struct athn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); void ar9280_spur_mitigate(struct athn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); int ar9287_attach(struct athn_softc *sc) { sc->eep_base = AR9287_EEP_START_LOC; sc->eep_size = sizeof(struct ar9287_eeprom); sc->def_nf = AR9287_PHY_CCA_MAX_GOOD_VALUE; sc->ngpiopins = (sc->flags & ATHN_FLAG_USB) ? 16 : 11; sc->led_pin = 8; sc->workaround = AR9285_WA_DEFAULT; sc->ops.setup = ar9287_setup; sc->ops.swap_rom = ar9287_swap_rom; sc->ops.init_from_rom = ar9287_init_from_rom; sc->ops.set_txpower = ar9287_set_txpower; sc->ops.set_synth = ar9280_set_synth; sc->ops.spur_mitigate = ar9280_spur_mitigate; sc->ops.get_spur_chans = ar9287_get_spur_chans; sc->ops.olpc_init = ar9287_olpc_init; sc->ops.olpc_temp_compensation = ar9287_olpc_temp_compensation; sc->ini = &ar9287_1_1_ini; sc->serdes = &ar9280_2_0_serdes; return (ar5008_attach(sc)); } void ar9287_setup(struct athn_softc *sc) { const struct ar9287_eeprom *eep = sc->eep; /* Determine if open loop power control should be used. */ if (eep->baseEepHeader.openLoopPwrCntl) sc->flags |= ATHN_FLAG_OLPC; sc->rx_gain = &ar9287_1_1_rx_gain; sc->tx_gain = &ar9287_1_1_tx_gain; } void ar9287_swap_rom(struct athn_softc *sc) { struct ar9287_eeprom *eep = sc->eep; int i; eep->modalHeader.antCtrlCommon = swap32(eep->modalHeader.antCtrlCommon); for (i = 0; i < AR9287_MAX_CHAINS; i++) { eep->modalHeader.antCtrlChain[i] = swap32(eep->modalHeader.antCtrlChain[i]); } for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { eep->modalHeader.spurChans[i].spurChan = swap16(eep->modalHeader.spurChans[i].spurChan); } } const struct ar_spur_chan * ar9287_get_spur_chans(struct athn_softc *sc, int is2ghz) { const struct ar9287_eeprom *eep = sc->eep; KASSERT(is2ghz); return (eep->modalHeader.spurChans); } void ar9287_init_from_rom(struct athn_softc *sc, struct ieee80211_channel *c, struct ieee80211_channel *extc) { const struct ar9287_eeprom *eep = sc->eep; const struct ar9287_modal_eep_header *modal = &eep->modalHeader; uint32_t reg, offset; int i; AR_WRITE(sc, AR_PHY_SWITCH_COM, modal->antCtrlCommon); for (i = 0; i < AR9287_MAX_CHAINS; i++) { offset = i * 0x1000; AR_WRITE(sc, AR_PHY_SWITCH_CHAIN_0 + offset, modal->antCtrlChain[i]); reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0 + offset); reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, modal->iqCalICh[i]); reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, modal->iqCalQCh[i]); AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0 + offset, reg); reg = AR_READ(sc, AR_PHY_GAIN_2GHZ + offset); reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, modal->bswMargin[i]); reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_DB, modal->bswAtten[i]); AR_WRITE(sc, AR_PHY_GAIN_2GHZ + offset, reg); reg = AR_READ(sc, AR_PHY_RXGAIN + offset); reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_MARGIN, modal->rxTxMarginCh[i]); reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_ATTEN, modal->txRxAttenCh[i]); AR_WRITE(sc, AR_PHY_RXGAIN + offset, reg); } reg = AR_READ(sc, AR_PHY_SETTLING); if (extc != NULL) reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->swSettleHt40); else reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->switchSettling); AR_WRITE(sc, AR_PHY_SETTLING, reg); reg = AR_READ(sc, AR_PHY_DESIRED_SZ); reg = RW(reg, AR_PHY_DESIRED_SZ_ADC, modal->adcDesiredSize); AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg); reg = SM(AR_PHY_RF_CTL4_TX_END_XPAA_OFF, modal->txEndToXpaOff); reg |= SM(AR_PHY_RF_CTL4_TX_END_XPAB_OFF, modal->txEndToXpaOff); reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAA_ON, modal->txFrameToXpaOn); reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAB_ON, modal->txFrameToXpaOn); AR_WRITE(sc, AR_PHY_RF_CTL4, reg); reg = AR_READ(sc, AR_PHY_RF_CTL3); reg = RW(reg, AR_PHY_TX_END_TO_A2_RX_ON, modal->txEndToRxOn); AR_WRITE(sc, AR_PHY_RF_CTL3, reg); reg = AR_READ(sc, AR_PHY_CCA(0)); reg = RW(reg, AR9280_PHY_CCA_THRESH62, modal->thresh62); AR_WRITE(sc, AR_PHY_CCA(0), reg); reg = AR_READ(sc, AR_PHY_EXT_CCA0); reg = RW(reg, AR_PHY_EXT_CCA0_THRESH62, modal->thresh62); AR_WRITE(sc, AR_PHY_EXT_CCA0, reg); reg = AR_READ(sc, AR9287_AN_RF2G3_CH0); reg = RW(reg, AR9287_AN_RF2G3_DB1, modal->db1); reg = RW(reg, AR9287_AN_RF2G3_DB2, modal->db2); reg = RW(reg, AR9287_AN_RF2G3_OB_CCK, modal->ob_cck); reg = RW(reg, AR9287_AN_RF2G3_OB_PSK, modal->ob_psk); reg = RW(reg, AR9287_AN_RF2G3_OB_QAM, modal->ob_qam); reg = RW(reg, AR9287_AN_RF2G3_OB_PAL_OFF, modal->ob_pal_off); AR_WRITE(sc, AR9287_AN_RF2G3_CH0, reg); AR_WRITE_BARRIER(sc); DELAY(100); reg = AR_READ(sc, AR9287_AN_RF2G3_CH1); reg = RW(reg, AR9287_AN_RF2G3_DB1, modal->db1); reg = RW(reg, AR9287_AN_RF2G3_DB2, modal->db2); reg = RW(reg, AR9287_AN_RF2G3_OB_CCK, modal->ob_cck); reg = RW(reg, AR9287_AN_RF2G3_OB_PSK, modal->ob_psk); reg = RW(reg, AR9287_AN_RF2G3_OB_QAM, modal->ob_qam); reg = RW(reg, AR9287_AN_RF2G3_OB_PAL_OFF, modal->ob_pal_off); AR_WRITE(sc, AR9287_AN_RF2G3_CH1, reg); AR_WRITE_BARRIER(sc); DELAY(100); reg = AR_READ(sc, AR_PHY_RF_CTL2); reg = RW(reg, AR_PHY_TX_END_DATA_START, modal->txFrameToDataStart); reg = RW(reg, AR_PHY_TX_END_PA_ON, modal->txFrameToPaOn); AR_WRITE(sc, AR_PHY_RF_CTL2, reg); reg = AR_READ(sc, AR9287_AN_TOP2); reg = RW(reg, AR9287_AN_TOP2_XPABIAS_LVL, modal->xpaBiasLvl); AR_WRITE(sc, AR9287_AN_TOP2, reg); AR_WRITE_BARRIER(sc); DELAY(100); } void ar9287_get_pdadcs(struct athn_softc *sc, struct ieee80211_channel *c, int chain, int nxpdgains, uint8_t overlap, uint8_t *boundaries, uint8_t *pdadcs) { const struct ar9287_eeprom *eep = sc->eep; const struct ar9287_cal_data_per_freq *pierdata; const uint8_t *pierfreq; struct athn_pier lopier, hipier; int16_t delta; uint8_t fbin; int i, lo, hi, npiers; pierfreq = eep->calFreqPier2G; pierdata = (const struct ar9287_cal_data_per_freq *) eep->calPierData2G[chain]; npiers = AR9287_NUM_2G_CAL_PIERS; /* Find channel in ROM pier table. */ fbin = athn_chan2fbin(c); athn_get_pier_ival(fbin, pierfreq, npiers, &lo, &hi); lopier.fbin = pierfreq[lo]; hipier.fbin = pierfreq[hi]; for (i = 0; i < nxpdgains; i++) { lopier.pwr[i] = pierdata[lo].pwrPdg[i]; lopier.vpd[i] = pierdata[lo].vpdPdg[i]; hipier.pwr[i] = pierdata[lo].pwrPdg[i]; hipier.vpd[i] = pierdata[lo].vpdPdg[i]; } ar5008_get_pdadcs(sc, fbin, &lopier, &hipier, nxpdgains, AR9287_PD_GAIN_ICEPTS, overlap, boundaries, pdadcs); delta = (eep->baseEepHeader.pwrTableOffset - AR_PWR_TABLE_OFFSET_DB) * 2; /* In half dB. */ if (delta != 0) { /* Shift the PDADC table to start at the new offset. */ /* XXX Our padding value differs from Linux. */ for (i = 0; i < AR_NUM_PDADC_VALUES; i++) pdadcs[i] = pdadcs[MIN(i + delta, AR_NUM_PDADC_VALUES - 1)]; } } void ar9287_olpc_get_pdgain(struct athn_softc *sc, struct ieee80211_channel *c, int chain, int8_t *pwr) { const struct ar9287_eeprom *eep = sc->eep; const struct ar_cal_data_per_freq_olpc *pierdata; const uint8_t *pierfreq; uint8_t fbin; int lo, hi, npiers; pierfreq = eep->calFreqPier2G; pierdata = (const struct ar_cal_data_per_freq_olpc *) eep->calPierData2G[chain]; npiers = AR9287_NUM_2G_CAL_PIERS; /* Find channel in ROM pier table. */ fbin = athn_chan2fbin(c); athn_get_pier_ival(fbin, pierfreq, npiers, &lo, &hi); #if 0 *pwr = athn_interpolate(fbin, pierfreq[lo], pierdata[lo].pwrPdg[0][0], pierfreq[hi], pierdata[hi].pwrPdg[0][0]); #else *pwr = (pierdata[lo].pwrPdg[0][0] + pierdata[hi].pwrPdg[0][0]) / 2; #endif } void ar9287_set_power_calib(struct athn_softc *sc, struct ieee80211_channel *c) { const struct ar9287_eeprom *eep = sc->eep; uint8_t boundaries[AR_PD_GAINS_IN_MASK]; uint8_t pdadcs[AR_NUM_PDADC_VALUES]; uint8_t xpdgains[AR9287_NUM_PD_GAINS]; int8_t txpower; uint8_t overlap; uint32_t reg, offset; int i, j, nxpdgains; if (sc->eep_rev < AR_EEP_MINOR_VER_2) { overlap = MS(AR_READ(sc, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP); } else overlap = eep->modalHeader.pdGainOverlap; if (sc->flags & ATHN_FLAG_OLPC) { /* XXX not here. */ sc->pdadc = ((const struct ar_cal_data_per_freq_olpc *) eep->calPierData2G[0])->vpdPdg[0][0]; } nxpdgains = 0; memset(xpdgains, 0, sizeof(xpdgains)); for (i = AR9287_PD_GAINS_IN_MASK - 1; i >= 0; i--) { if (nxpdgains >= AR9287_NUM_PD_GAINS) break; /* Can't happen. */ if (eep->modalHeader.xpdGain & (1 << i)) xpdgains[nxpdgains++] = i; } reg = AR_READ(sc, AR_PHY_TPCRG1); reg = RW(reg, AR_PHY_TPCRG1_NUM_PD_GAIN, nxpdgains - 1); reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_1, xpdgains[0]); reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_2, xpdgains[1]); AR_WRITE(sc, AR_PHY_TPCRG1, reg); AR_WRITE_BARRIER(sc); for (i = 0; i < AR9287_MAX_CHAINS; i++) { if (!(sc->txchainmask & (1 << i))) continue; offset = i * 0x1000; if (sc->flags & ATHN_FLAG_OLPC) { ar9287_olpc_get_pdgain(sc, c, i, &txpower); reg = AR_READ(sc, AR_PHY_TX_PWRCTRL6_0); reg = RW(reg, AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3); AR_WRITE(sc, AR_PHY_TX_PWRCTRL6_0, reg); reg = AR_READ(sc, AR_PHY_TX_PWRCTRL6_1); reg = RW(reg, AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3); AR_WRITE(sc, AR_PHY_TX_PWRCTRL6_1, reg); /* NB: txpower is in half dB. */ reg = AR_READ(sc, AR_PHY_CH0_TX_PWRCTRL11 + offset); reg = RW(reg, AR_PHY_TX_PWRCTRL_OLPC_PWR, txpower); AR_WRITE(sc, AR_PHY_CH0_TX_PWRCTRL11 + offset, reg); AR_WRITE_BARRIER(sc); continue; /* That's it for open loop mode. */ } /* Closed loop power control. */ ar9287_get_pdadcs(sc, c, i, nxpdgains, overlap, boundaries, pdadcs); /* Write boundaries. */ if (i == 0) { reg = SM(AR_PHY_TPCRG5_PD_GAIN_OVERLAP, overlap); reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1, boundaries[0]); reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2, boundaries[1]); reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3, boundaries[2]); reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4, boundaries[3]); AR_WRITE(sc, AR_PHY_TPCRG5 + offset, reg); } /* Write PDADC values. */ for (j = 0; j < AR_NUM_PDADC_VALUES; j += 4) { AR_WRITE(sc, AR_PHY_PDADC_TBL_BASE + offset + j, pdadcs[j + 0] << 0 | pdadcs[j + 1] << 8 | pdadcs[j + 2] << 16 | pdadcs[j + 3] << 24); } AR_WRITE_BARRIER(sc); } } void ar9287_set_txpower(struct athn_softc *sc, struct ieee80211_channel *c, struct ieee80211_channel *extc) { const struct ar9287_eeprom *eep = sc->eep; const struct ar9287_modal_eep_header *modal = &eep->modalHeader; uint8_t tpow_cck[4], tpow_ofdm[4]; uint8_t tpow_cck_ext[4], tpow_ofdm_ext[4]; uint8_t tpow_ht20[8], tpow_ht40[8]; uint8_t ht40inc; int16_t pwr = 0, max_ant_gain, power[ATHN_POWER_COUNT]; int i; ar9287_set_power_calib(sc, c); /* Compute transmit power reduction due to antenna gain. */ max_ant_gain = MAX(modal->antennaGainCh[0], modal->antennaGainCh[1]); /* XXX */ /* * Reduce scaled power by number of active chains to get per-chain * transmit power level. */ if (sc->ntxchains == 2) pwr -= AR_PWR_DECREASE_FOR_2_CHAIN; if (pwr < 0) pwr = 0; /* Get CCK target powers. */ ar5008_get_lg_tpow(sc, c, AR_CTL_11B, eep->calTargetPowerCck, AR9287_NUM_2G_CCK_TARGET_POWERS, tpow_cck); /* Get OFDM target powers. */ ar5008_get_lg_tpow(sc, c, AR_CTL_11G, eep->calTargetPower2G, AR9287_NUM_2G_20_TARGET_POWERS, tpow_ofdm); /* Get HT-20 target powers. */ ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT20, eep->calTargetPower2GHT20, AR9287_NUM_2G_20_TARGET_POWERS, tpow_ht20); if (extc != NULL) { /* Get HT-40 target powers. */ ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT40, eep->calTargetPower2GHT40, AR9287_NUM_2G_40_TARGET_POWERS, tpow_ht40); /* Get secondary channel CCK target powers. */ ar5008_get_lg_tpow(sc, extc, AR_CTL_11B, eep->calTargetPowerCck, AR9287_NUM_2G_CCK_TARGET_POWERS, tpow_cck_ext); /* Get secondary channel OFDM target powers. */ ar5008_get_lg_tpow(sc, extc, AR_CTL_11G, eep->calTargetPower2G, AR9287_NUM_2G_20_TARGET_POWERS, tpow_ofdm_ext); } memset(power, 0, sizeof(power)); /* Shuffle target powers accross transmit rates. */ power[ATHN_POWER_OFDM6 ] = power[ATHN_POWER_OFDM9 ] = power[ATHN_POWER_OFDM12 ] = power[ATHN_POWER_OFDM18 ] = power[ATHN_POWER_OFDM24 ] = tpow_ofdm[0]; power[ATHN_POWER_OFDM36 ] = tpow_ofdm[1]; power[ATHN_POWER_OFDM48 ] = tpow_ofdm[2]; power[ATHN_POWER_OFDM54 ] = tpow_ofdm[3]; power[ATHN_POWER_XR ] = tpow_ofdm[0]; power[ATHN_POWER_CCK1_LP ] = tpow_cck[0]; power[ATHN_POWER_CCK2_LP ] = power[ATHN_POWER_CCK2_SP ] = tpow_cck[1]; power[ATHN_POWER_CCK55_LP] = power[ATHN_POWER_CCK55_SP] = tpow_cck[2]; power[ATHN_POWER_CCK11_LP] = power[ATHN_POWER_CCK11_SP] = tpow_cck[3]; for (i = 0; i < nitems(tpow_ht20); i++) power[ATHN_POWER_HT20(i)] = tpow_ht20[i]; if (extc != NULL) { /* Correct PAR difference between HT40 and HT20/Legacy. */ if (sc->eep_rev >= AR_EEP_MINOR_VER_2) ht40inc = modal->ht40PowerIncForPdadc; else ht40inc = AR_HT40_POWER_INC_FOR_PDADC; for (i = 0; i < nitems(tpow_ht40); i++) power[ATHN_POWER_HT40(i)] = tpow_ht40[i] + ht40inc; power[ATHN_POWER_OFDM_DUP] = tpow_ht40[0]; power[ATHN_POWER_CCK_DUP ] = tpow_ht40[0]; power[ATHN_POWER_OFDM_EXT] = tpow_ofdm_ext[0]; if (IEEE80211_IS_CHAN_2GHZ(c)) power[ATHN_POWER_CCK_EXT] = tpow_cck_ext[0]; } for (i = 0; i < ATHN_POWER_COUNT; i++) { power[i] -= AR_PWR_TABLE_OFFSET_DB * 2; /* In half dB. */ if (power[i] > AR_MAX_RATE_POWER) power[i] = AR_MAX_RATE_POWER; } /* Commit transmit power values to hardware. */ ar5008_write_txpower(sc, power); } void ar9287_olpc_init(struct athn_softc *sc) { uint32_t reg; AR_SETBITS(sc, AR_PHY_TX_PWRCTRL9, AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL); reg = AR_READ(sc, AR9287_AN_TXPC0); reg = RW(reg, AR9287_AN_TXPC0_TXPCMODE, AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE); AR_WRITE(sc, AR9287_AN_TXPC0, reg); AR_WRITE_BARRIER(sc); DELAY(100); } void ar9287_olpc_temp_compensation(struct athn_softc *sc) { const struct ar9287_eeprom *eep = sc->eep; int8_t pdadc, slope, tcomp; uint32_t reg; reg = AR_READ(sc, AR_PHY_TX_PWRCTRL4); pdadc = MS(reg, AR_PHY_TX_PWRCTRL_PD_AVG_OUT); DPRINTFN(3, ("PD Avg Out=%d\n", pdadc)); if (sc->pdadc == 0 || pdadc == 0) return; /* No frames transmitted yet. */ /* Compute Tx gain temperature compensation. */ if (sc->eep_rev >= AR_EEP_MINOR_VER_2) slope = eep->baseEepHeader.tempSensSlope; else slope = 0; if (slope != 0) /* Prevents division by zero. */ tcomp = ((pdadc - sc->pdadc) * 4) / slope; else tcomp = 0; DPRINTFN(3, ("OLPC temp compensation=%d\n", tcomp)); /* Write compensation value for both Tx chains. */ reg = AR_READ(sc, AR_PHY_CH0_TX_PWRCTRL11); reg = RW(reg, AR_PHY_TX_PWRCTRL_OLPC_TEMP_COMP, tcomp); AR_WRITE(sc, AR_PHY_CH0_TX_PWRCTRL11, reg); reg = AR_READ(sc, AR_PHY_CH1_TX_PWRCTRL11); reg = RW(reg, AR_PHY_TX_PWRCTRL_OLPC_TEMP_COMP, tcomp); AR_WRITE(sc, AR_PHY_CH1_TX_PWRCTRL11, reg); AR_WRITE_BARRIER(sc); } void ar9287_1_3_enable_async_fifo(struct athn_softc *sc) { /* Enable ASYNC FIFO. */ AR_SETBITS(sc, AR_MAC_PCU_ASYNC_FIFO_REG3, AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL); AR_SETBITS(sc, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO); AR_CLRBITS(sc, AR_MAC_PCU_ASYNC_FIFO_REG3, AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET); AR_SETBITS(sc, AR_MAC_PCU_ASYNC_FIFO_REG3, AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET); AR_WRITE_BARRIER(sc); } void ar9287_1_3_setup_async_fifo(struct athn_softc *sc) { uint32_t reg; /* * MAC runs at 117MHz (instead of 88/44MHz) when ASYNC FIFO is * enabled, so the following counters have to be changed. */ AR_WRITE(sc, AR_D_GBL_IFS_SIFS, AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR); AR_WRITE(sc, AR_D_GBL_IFS_SLOT, AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR); AR_WRITE(sc, AR_D_GBL_IFS_EIFS, AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR); AR_WRITE(sc, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR); AR_WRITE(sc, AR_USEC, AR_USEC_ASYNC_FIFO_DUR); AR_SETBITS(sc, AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768); reg = AR_READ(sc, AR_AHB_MODE); reg = RW(reg, AR_AHB_CUSTOM_BURST, AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL); AR_WRITE(sc, AR_AHB_MODE, reg); AR_SETBITS(sc, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_ENABLE_AGGWEP); AR_WRITE_BARRIER(sc); }