/* $OpenBSD: ath.c,v 1.28 2005/05/27 09:53:55 reyk Exp $ */ /* $NetBSD: ath.c,v 1.37 2004/08/18 21:59:39 dyoung Exp $ */ /*- * Copyright (c) 2002-2004 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any * redistribution must be conditioned upon including a substantially * similar Disclaimer requirement for further binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGES. */ /* * Driver for the Atheros Wireless LAN controller. * * This software is derived from work of Atsushi Onoe; his contribution * is greatly appreciated. It has been modified for OpenBSD to use an * open source HAL instead of the original binary-only HAL. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #ifdef INET #include #include #endif #include #include #include #include int ath_init(struct ifnet *); int ath_init1(struct ath_softc *); int ath_intr1(struct ath_softc *); void ath_stop(struct ifnet *); void ath_start(struct ifnet *); void ath_reset(struct ath_softc *); int ath_media_change(struct ifnet *); void ath_watchdog(struct ifnet *); int ath_ioctl(struct ifnet *, u_long, caddr_t); void ath_fatal_proc(void *, int); void ath_rxorn_proc(void *, int); void ath_bmiss_proc(void *, int); u_int ath_chan2flags(struct ieee80211com *, struct ieee80211_channel *); int ath_initkeytable(struct ath_softc *); void ath_mcastfilter_accum(caddr_t, u_int32_t (*)[2]); void ath_mcastfilter_compute(struct ath_softc *, u_int32_t (*)[2]); u_int32_t ath_calcrxfilter(struct ath_softc *); void ath_mode_init(struct ath_softc *); int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); void ath_beacon_proc(void *, int); void ath_beacon_free(struct ath_softc *); void ath_beacon_config(struct ath_softc *); int ath_desc_alloc(struct ath_softc *); void ath_desc_free(struct ath_softc *); struct ieee80211_node *ath_node_alloc(struct ieee80211com *); struct mbuf *ath_getmbuf(int, int, u_int); void ath_node_free(struct ieee80211com *, struct ieee80211_node *); void ath_node_copy(struct ieee80211com *, struct ieee80211_node *, const struct ieee80211_node *); u_int8_t ath_node_getrssi(struct ieee80211com *, struct ieee80211_node *); int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); void ath_rx_proc(void *, int); int ath_tx_start(struct ath_softc *, struct ieee80211_node *, struct ath_buf *, struct mbuf *); void ath_tx_proc(void *, int); int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); void ath_draintxq(struct ath_softc *); void ath_stoprecv(struct ath_softc *); int ath_startrecv(struct ath_softc *); void ath_next_scan(void *); void ath_calibrate(void *); HAL_LED_STATE ath_state_to_led(enum ieee80211_state); int ath_newstate(struct ieee80211com *, enum ieee80211_state, int); void ath_newassoc(struct ieee80211com *, struct ieee80211_node *, int); int ath_getchannels(struct ath_softc *, u_int cc, HAL_BOOL outdoor, HAL_BOOL xchanmode); int ath_rate_setup(struct ath_softc *sc, u_int mode); void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); void ath_rate_ctl_reset(struct ath_softc *, enum ieee80211_state); void ath_rate_ctl(void *, struct ieee80211_node *); void ath_recv_mgmt(struct ieee80211com *, struct mbuf *, struct ieee80211_node *, int, int, u_int32_t); int ath_enable(struct ath_softc *); void ath_disable(struct ath_softc *); void ath_power(int, void *); int ath_gpio_attach(struct ath_softc *); int ath_gpio_pin_read(void *, int); void ath_gpio_pin_write(void *, int, int); void ath_gpio_pin_ctl(void *, int, int); #ifdef AR_DEBUG void ath_printrxbuf(struct ath_buf *, int); void ath_printtxbuf(struct ath_buf *, int); int ath_debug = ATH_DEBUG_ANY; #endif int ath_dwelltime = 200; /* 5 channels/second */ int ath_calinterval = 30; /* calibrate every 30 secs */ int ath_outdoor = AH_TRUE; /* outdoor operation */ int ath_xchanmode = AH_TRUE; /* enable extended channels */ int ath_countrycode = CTRY_DEFAULT; /* country code */ int ath_regdomain = DMN_DEFAULT; /* regulatory domain */ struct cfdriver ath_cd = { NULL, "ath", DV_IFNET }; #if 0 int ath_activate(struct device *self, enum devact act) { struct ath_softc *sc = (struct ath_softc *)self; int rv = 0, s; s = splnet(); switch (act) { case DVACT_ACTIVATE: rv = EOPNOTSUPP; break; case DVACT_DEACTIVATE: if_deactivate(&sc->sc_ic.ic_if); break; } splx(s); return rv; } #endif int ath_enable(struct ath_softc *sc) { if (ATH_IS_ENABLED(sc) == 0) { if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) { printf("%s: device enable failed\n", sc->sc_dev.dv_xname); return (EIO); } sc->sc_flags |= ATH_ENABLED; } return (0); } void ath_disable(struct ath_softc *sc) { if (!ATH_IS_ENABLED(sc)) return; if (sc->sc_disable != NULL) (*sc->sc_disable)(sc); sc->sc_flags &= ~ATH_ENABLED; } int ath_attach(u_int16_t devid, struct ath_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct ath_hal *ah; HAL_STATUS status; HAL_TXQ_INFO qinfo; int error = 0; DPRINTF(ATH_DEBUG_ANY, ("%s: devid 0x%x\n", __func__, devid)); bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status); if (ah == NULL) { if_printf(ifp, "unable to attach hardware; HAL status %d\n", status); error = ENXIO; goto bad; } if (ah->ah_abi != HAL_ABI_VERSION) { if_printf(ifp, "HAL ABI mismatch detected (0x%x != 0x%x)\n", ah->ah_abi, HAL_ABI_VERSION); error = ENXIO; goto bad; } if_printf(ifp, "AR%s %u.%u phy %u.%u", ar5k_printver(AR5K_VERSION_VER, ah->ah_macVersion), ah->ah_macVersion, ah->ah_macRev, ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); printf(" rf%s %u.%u", ar5k_printver(AR5K_VERSION_RAD, ah->ah_analog5GhzRev), ah->ah_analog5GhzRev >> 4, ah->ah_analog5GhzRev & 0xf); if (ah->ah_analog2GhzRev != 0) { printf(" rf%s %u.%u", ar5k_printver(AR5K_VERSION_RAD, ah->ah_analog2GhzRev), ah->ah_analog2GhzRev >> 4, ah->ah_analog2GhzRev & 0xf); } sc->sc_ah = ah; sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ /* * Collect the channel list using the default country * code and including outdoor channels. The 802.11 layer * is resposible for filtering this list based on settings * like the phy mode. */ error = ath_getchannels(sc, ath_countrycode, ath_outdoor, ath_xchanmode); if (error != 0) goto bad; /* * Copy these back; they are set as a side effect * of constructing the channel list. */ ath_hal_get_regdomain(ah, &ath_regdomain); ath_hal_getcountrycode(ah, &ath_countrycode); /* * Setup rate tables for all potential media types. */ ath_rate_setup(sc, IEEE80211_MODE_11A); ath_rate_setup(sc, IEEE80211_MODE_11B); ath_rate_setup(sc, IEEE80211_MODE_11G); ath_rate_setup(sc, IEEE80211_MODE_TURBO); error = ath_desc_alloc(sc); if (error != 0) { if_printf(ifp, "failed to allocate descriptors: %d\n", error); goto bad; } timeout_set(&sc->sc_scan_to, ath_next_scan, sc); timeout_set(&sc->sc_cal_to, ath_calibrate, sc); #ifdef __FreeBSD__ ATH_TXBUF_LOCK_INIT(sc); ATH_TXQ_LOCK_INIT(sc); #endif ATH_TASK_INIT(&sc->sc_txtask, ath_tx_proc, sc); ATH_TASK_INIT(&sc->sc_rxtask, ath_rx_proc, sc); ATH_TASK_INIT(&sc->sc_rxorntask, ath_rxorn_proc, sc); ATH_TASK_INIT(&sc->sc_fataltask, ath_fatal_proc, sc); ATH_TASK_INIT(&sc->sc_bmisstask, ath_bmiss_proc, sc); ATH_TASK_INIT(&sc->sc_swbatask, ath_beacon_proc, sc); /* * For now just pre-allocate one data queue and one * beacon queue. Note that the HAL handles resetting * them at the needed time. Eventually we'll want to * allocate more tx queues for splitting management * frames and for QOS support. */ sc->sc_bhalq = ath_hal_setup_tx_queue(ah,HAL_TX_QUEUE_BEACON,NULL); if (sc->sc_bhalq == (u_int) -1) { if_printf(ifp, "unable to setup a beacon xmit queue!\n"); goto bad2; } bzero(&qinfo, sizeof(qinfo)); qinfo.tqi_subtype = HAL_WME_AC_BE; sc->sc_txhalq = ath_hal_setup_tx_queue(ah, HAL_TX_QUEUE_DATA, &qinfo); if (sc->sc_txhalq == (u_int) -1) { if_printf(ifp, "unable to setup a data xmit queue!\n"); goto bad2; } ifp->if_softc = sc; ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS; ifp->if_start = ath_start; ifp->if_watchdog = ath_watchdog; ifp->if_ioctl = ath_ioctl; #ifndef __OpenBSD__ ifp->if_init = ath_init; ifp->if_stop = ath_stop; /* XXX */ #endif IFQ_SET_MAXLEN(&ifp->if_snd, ATH_TXBUF * ATH_TXDESC); IFQ_SET_READY(&ifp->if_snd); ic->ic_softc = sc; ic->ic_newassoc = ath_newassoc; /* XXX not right but it's not used anywhere important */ ic->ic_phytype = IEEE80211_T_OFDM; ic->ic_opmode = IEEE80211_M_STA; ic->ic_caps = IEEE80211_C_WEP /* wep supported */ | IEEE80211_C_PMGT /* power management */ | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ | IEEE80211_C_HOSTAP /* hostap mode */ | IEEE80211_C_MONITOR /* monitor mode */ | IEEE80211_C_SHPREAMBLE; /* short preamble supported */ /* * Not all chips have the VEOL support we want to use with * IBSS beacon; check here for it. */ sc->sc_has_veol = ath_hal_has_veol(ah); /* get mac address from hardware */ ath_hal_get_lladdr(ah, ic->ic_myaddr); if_attach(ifp); /* call MI attach routine. */ ieee80211_ifattach(ifp); /* override default methods */ ic->ic_node_alloc = ath_node_alloc; sc->sc_node_free = ic->ic_node_free; ic->ic_node_free = ath_node_free; sc->sc_node_copy = ic->ic_node_copy; ic->ic_node_copy = ath_node_copy; ic->ic_node_getrssi = ath_node_getrssi; sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = ath_newstate; sc->sc_recv_mgmt = ic->ic_recv_mgmt; ic->ic_recv_mgmt = ath_recv_mgmt; bcopy(etherbroadcastaddr, sc->sc_broadcast_addr, IEEE80211_ADDR_LEN); /* complete initialization */ ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status); #if NBPFILTER > 0 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); sc->sc_rxtap_len = sizeof(sc->sc_rxtapu); bzero(&sc->sc_rxtapu, sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof(sc->sc_txtapu); bzero(&sc->sc_txtapu, sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT); #endif sc->sc_flags |= ATH_ATTACHED; /* * Make sure the interface is shutdown during reboot. */ sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc); if (sc->sc_sdhook == NULL) { printf("%s: WARNING: unable to establish shutdown hook\n", sc->sc_dev.dv_xname); } sc->sc_powerhook = powerhook_establish(ath_power, sc); if (sc->sc_powerhook == NULL) { printf("%s: WARNING: unable to establish power hook\n", sc->sc_dev.dv_xname); } printf(", %s, address %s\n", ieee80211_regdomain2name(ath_regdomain), ether_sprintf(ic->ic_myaddr)); if (ath_gpio_attach(sc) == 0) sc->sc_flags |= ATH_GPIO; return 0; bad2: ath_desc_free(sc); bad: if (ah) ath_hal_detach(ah); sc->sc_invalid = 1; return error; } int ath_detach(struct ath_softc *sc, int flags) { struct ifnet *ifp = &sc->sc_ic.ic_if; int s; config_detach_children(&sc->sc_dev, flags); if ((sc->sc_flags & ATH_ATTACHED) == 0) return (0); DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags)); s = splnet(); ath_stop(ifp); #if NBPFILTER > 0 bpfdetach(ifp); #endif ath_desc_free(sc); ath_hal_detach(sc->sc_ah); ieee80211_ifdetach(ifp); if_detach(ifp); splx(s); powerhook_disestablish(sc->sc_powerhook); shutdownhook_disestablish(sc->sc_sdhook); #ifdef __FreeBSD__ ATH_TXBUF_LOCK_DESTROY(sc); ATH_TXQ_LOCK_DESTROY(sc); #endif return 0; } void ath_power(int why, void *arg) { struct ath_softc *sc = arg; int s; DPRINTF(ATH_DEBUG_ANY, ("ath_power(%d)\n", why)); s = splnet(); switch (why) { case PWR_SUSPEND: case PWR_STANDBY: ath_suspend(sc, why); break; case PWR_RESUME: ath_resume(sc, why); break; #if !defined(__OpenBSD__) case PWR_SOFTSUSPEND: case PWR_SOFTSTANDBY: case PWR_SOFTRESUME: break; #endif } splx(s); } void ath_suspend(struct ath_softc *sc, int why) { struct ifnet *ifp = &sc->sc_ic.ic_if; DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags)); ath_stop(ifp); if (sc->sc_power != NULL) (*sc->sc_power)(sc, why); } void ath_resume(struct ath_softc *sc, int why) { struct ifnet *ifp = &sc->sc_ic.ic_if; DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags)); if (ifp->if_flags & IFF_UP) { ath_init(ifp); #if 0 (void)ath_intr(sc); #endif if (sc->sc_power != NULL) (*sc->sc_power)(sc, why); if (ifp->if_flags & IFF_RUNNING) ath_start(ifp); } } void ath_shutdown(void *arg) { struct ath_softc *sc = arg; ath_stop(&sc->sc_ic.ic_if); } int ath_intr(void *arg) { return ath_intr1((struct ath_softc *)arg); } int ath_intr1(struct ath_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct ath_hal *ah = sc->sc_ah; HAL_INT status; if (sc->sc_invalid) { /* * The hardware is not ready/present, don't touch anything. * Note this can happen early on if the IRQ is shared. */ DPRINTF(ATH_DEBUG_ANY, ("%s: invalid; ignored\n", __func__)); return 0; } if (!ath_hal_is_intr_pending(ah)) /* shared irq, not for us */ return 0; if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) { DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n", __func__, ifp->if_flags)); ath_hal_get_isr(ah, &status); /* clear ISR */ ath_hal_set_intr(ah, 0); /* disable further intr's */ return 1; /* XXX */ } ath_hal_get_isr(ah, &status); /* NB: clears ISR too */ DPRINTF(ATH_DEBUG_INTR, ("%s: status 0x%x\n", __func__, status)); status &= sc->sc_imask; /* discard unasked for bits */ if (status & HAL_INT_FATAL) { sc->sc_stats.ast_hardware++; ath_hal_set_intr(ah, 0); /* disable intr's until reset */ ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask); } else if (status & HAL_INT_RXORN) { sc->sc_stats.ast_rxorn++; ath_hal_set_intr(ah, 0); /* disable intr's until reset */ ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask); } else { if (status & HAL_INT_RXEOL) { /* * NB: the hardware should re-read the link when * RXE bit is written, but it doesn't work at * least on older hardware revs. */ sc->sc_stats.ast_rxeol++; sc->sc_rxlink = NULL; } if (status & HAL_INT_TXURN) { sc->sc_stats.ast_txurn++; /* bump tx trigger level */ ath_hal_update_tx_triglevel(ah, AH_TRUE); } if (status & HAL_INT_RX) ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask); if (status & HAL_INT_TX) ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_txtask); if (status & HAL_INT_SWBA) ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_swbatask); if (status & HAL_INT_BMISS) { sc->sc_stats.ast_bmiss++; ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask); } } return 1; } void ath_fatal_proc(void *arg, int pending) { struct ath_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; if_printf(ifp, "hardware error; resetting\n"); ath_reset(sc); } void ath_rxorn_proc(void *arg, int pending) { struct ath_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; if_printf(ifp, "rx FIFO overrun; resetting\n"); ath_reset(sc); } void ath_bmiss_proc(void *arg, int pending) { struct ath_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; DPRINTF(ATH_DEBUG_ANY, ("%s: pending %u\n", __func__, pending)); if (ic->ic_opmode != IEEE80211_M_STA) return; if (ic->ic_state == IEEE80211_S_RUN) { /* * Rather than go directly to scan state, try to * reassociate first. If that fails then the state * machine will drop us into scanning after timing * out waiting for a probe response. */ ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1); } } u_int ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan) { enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan); switch (mode) { case IEEE80211_MODE_AUTO: return 0; case IEEE80211_MODE_11A: return CHANNEL_A; case IEEE80211_MODE_11B: return CHANNEL_B; case IEEE80211_MODE_11G: return CHANNEL_PUREG; case IEEE80211_MODE_TURBO: return CHANNEL_T; default: panic("%s: unsupported mode %d\n", __func__, mode); return 0; } } int ath_init(struct ifnet *ifp) { return ath_init1((struct ath_softc *)ifp->if_softc); } int ath_init1(struct ath_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct ieee80211_node *ni; enum ieee80211_phymode mode; struct ath_hal *ah = sc->sc_ah; HAL_STATUS status; HAL_CHANNEL hchan; int error = 0, s; DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n", __func__, ifp->if_flags)); if ((error = ath_enable(sc)) != 0) return error; s = splnet(); /* * Stop anything previously setup. This is safe * whether this is the first time through or not. */ ath_stop(ifp); /* * The basic interface to setting the hardware in a good * state is ``reset''. On return the hardware is known to * be powered up and with interrupts disabled. This must * be followed by initialization of the appropriate bits * and then setup of the interrupt mask. */ hchan.channel = ic->ic_ibss_chan->ic_freq; hchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan); if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_FALSE, &status)) { if_printf(ifp, "unable to reset hardware; hal status %u\n", status); error = EIO; goto done; } /* * Setup the hardware after reset: the key cache * is filled as needed and the receive engine is * set going. Frame transmit is handled entirely * in the frame output path; there's nothing to do * here except setup the interrupt mask. */ if (ic->ic_flags & IEEE80211_F_WEPON) { if ((error = ath_initkeytable(sc)) != 0) { if_printf(ifp, "unable to initialize the key cache\n"); goto done; } } if ((error = ath_startrecv(sc)) != 0) { if_printf(ifp, "unable to start recv logic\n"); goto done; } /* * Enable interrupts. */ sc->sc_imask = HAL_INT_RX | HAL_INT_TX | HAL_INT_RXEOL | HAL_INT_RXORN | HAL_INT_FATAL | HAL_INT_GLOBAL; ath_hal_set_intr(ah, sc->sc_imask); ifp->if_flags |= IFF_RUNNING; ic->ic_state = IEEE80211_S_INIT; /* * The hardware should be ready to go now so it's safe * to kick the 802.11 state machine as it's likely to * immediately call back to us to send mgmt frames. */ ni = ic->ic_bss; ni->ni_chan = ic->ic_ibss_chan; mode = ieee80211_chan2mode(ic, ni->ni_chan); if (mode != sc->sc_curmode) ath_setcurmode(sc, mode); if (ic->ic_opmode != IEEE80211_M_MONITOR) { ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); } else { ieee80211_new_state(ic, IEEE80211_S_RUN, -1); } done: splx(s); return error; } void ath_stop(struct ifnet *ifp) { struct ieee80211com *ic = (struct ieee80211com *) ifp; struct ath_softc *sc = ifp->if_softc; struct ath_hal *ah = sc->sc_ah; int s; DPRINTF(ATH_DEBUG_ANY, ("%s: invalid %u if_flags 0x%x\n", __func__, sc->sc_invalid, ifp->if_flags)); s = splnet(); if (ifp->if_flags & IFF_RUNNING) { /* * Shutdown the hardware and driver: * disable interrupts * turn off timers * clear transmit machinery * clear receive machinery * drain and release tx queues * reclaim beacon resources * reset 802.11 state machine * power down hardware * * Note that some of this work is not possible if the * hardware is gone (invalid). */ ifp->if_flags &= ~IFF_RUNNING; ifp->if_timer = 0; if (!sc->sc_invalid) ath_hal_set_intr(ah, 0); ath_draintxq(sc); if (!sc->sc_invalid) { ath_stoprecv(sc); } else { sc->sc_rxlink = NULL; } IFQ_PURGE(&ifp->if_snd); ath_beacon_free(sc); ieee80211_new_state(ic, IEEE80211_S_INIT, -1); if (!sc->sc_invalid) { ath_hal_set_power(ah, HAL_PM_FULL_SLEEP, 0); } ath_disable(sc); } splx(s); } /* * Reset the hardware w/o losing operational state. This is * basically a more efficient way of doing ath_stop, ath_init, * followed by state transitions to the current 802.11 * operational state. Used to recover from errors rx overrun * and to reset the hardware when rf gain settings must be reset. */ void ath_reset(struct ath_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct ath_hal *ah = sc->sc_ah; struct ieee80211_channel *c; HAL_STATUS status; HAL_CHANNEL hchan; /* * Convert to a HAL channel description with the flags * constrained to reflect the current operating mode. */ c = ic->ic_ibss_chan; hchan.channel = c->ic_freq; hchan.channelFlags = ath_chan2flags(ic, c); ath_hal_set_intr(ah, 0); /* disable interrupts */ ath_draintxq(sc); /* stop xmit side */ ath_stoprecv(sc); /* stop recv side */ /* NB: indicate channel change so we do a full reset */ if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) { if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", __func__, status); } /* In case channel changed, save as a node channel */ ic->ic_bss->ni_chan = ic->ic_ibss_chan; ath_hal_set_intr(ah, sc->sc_imask); if (ath_startrecv(sc) != 0) /* restart recv */ if_printf(ifp, "%s: unable to start recv logic\n", __func__); ath_start(ifp); /* restart xmit */ if (ic->ic_state == IEEE80211_S_RUN) ath_beacon_config(sc); /* restart beacons */ } void ath_start(struct ifnet *ifp) { struct ath_softc *sc = ifp->if_softc; struct ath_hal *ah = sc->sc_ah; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; struct ath_buf *bf; struct mbuf *m; struct ieee80211_frame *wh; int s; if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING || sc->sc_invalid) return; for (;;) { /* * Grab a TX buffer and associated resources. */ s = splnet(); bf = TAILQ_FIRST(&sc->sc_txbuf); if (bf != NULL) TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); splx(s); if (bf == NULL) { DPRINTF(ATH_DEBUG_ANY, ("%s: out of xmit buffers\n", __func__)); sc->sc_stats.ast_tx_qstop++; ifp->if_flags |= IFF_OACTIVE; break; } /* * Poll the management queue for frames; they * have priority over normal data frames. */ IF_DEQUEUE(&ic->ic_mgtq, m); if (m == NULL) { /* * No data frames go out unless we're associated. */ if (ic->ic_state != IEEE80211_S_RUN) { DPRINTF(ATH_DEBUG_ANY, ("%s: ignore data packet, state %u\n", __func__, ic->ic_state)); sc->sc_stats.ast_tx_discard++; s = splnet(); TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); splx(s); break; } IFQ_DEQUEUE(&ifp->if_snd, m); if (m == NULL) { s = splnet(); TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); splx(s); break; } ifp->if_opackets++; #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif /* * Encapsulate the packet in prep for transmission. */ m = ieee80211_encap(ifp, m, &ni); if (m == NULL) { DPRINTF(ATH_DEBUG_ANY, ("%s: encapsulation failure\n", __func__)); sc->sc_stats.ast_tx_encap++; goto bad; } wh = mtod(m, struct ieee80211_frame *); } else { /* * Hack! The referenced node pointer is in the * rcvif field of the packet header. This is * placed there by ieee80211_mgmt_output because * we need to hold the reference with the frame * and there's no other way (other than packet * tags which we consider too expensive to use) * to pass it along. */ ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; m->m_pkthdr.rcvif = NULL; wh = mtod(m, struct ieee80211_frame *); if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == IEEE80211_FC0_SUBTYPE_PROBE_RESP) { /* fill time stamp */ u_int64_t tsf; u_int32_t *tstamp; tsf = ath_hal_get_tsf64(ah); /* XXX: adjust 100us delay to xmit */ tsf += 100; tstamp = (u_int32_t *)&wh[1]; tstamp[0] = htole32(tsf & 0xffffffff); tstamp[1] = htole32(tsf >> 32); } sc->sc_stats.ast_tx_mgmt++; } if (ath_tx_start(sc, ni, bf, m)) { bad: s = splnet(); TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); splx(s); ifp->if_oerrors++; if (ni != NULL) ieee80211_release_node(ic, ni); continue; } sc->sc_tx_timer = 5; ifp->if_timer = 1; } } int ath_media_change(struct ifnet *ifp) { int error; error = ieee80211_media_change(ifp); if (error == ENETRESET) { if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP)) ath_init(ifp); /* XXX lose error */ error = 0; } return error; } void ath_watchdog(struct ifnet *ifp) { struct ath_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; ifp->if_timer = 0; if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) return; if (sc->sc_tx_timer) { if (--sc->sc_tx_timer == 0) { if_printf(ifp, "device timeout\n"); ath_reset(sc); ifp->if_oerrors++; sc->sc_stats.ast_watchdog++; return; } ifp->if_timer = 1; } if (ic->ic_fixed_rate == -1) { /* * Run the rate control algorithm if we're not * locked at a fixed rate. */ if (ic->ic_opmode == IEEE80211_M_STA) { ath_rate_ctl(sc, ic->ic_bss); } else { ieee80211_iterate_nodes(ic, ath_rate_ctl, sc); } } ieee80211_watchdog(ifp); } int ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct ath_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ifreq *ifr = (struct ifreq *)data; struct ifaddr *ifa = (struct ifaddr *)data; int error = 0, s; s = splnet(); switch (cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; #ifdef INET if (ifa->ifa_addr->sa_family == AF_INET) { arp_ifinit(&ic->ic_ac, ifa); } #endif /* INET */ /* FALLTHROUGH */ case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING) { /* * To avoid rescanning another access point, * do not call ath_init() here. Instead, * only reflect promisc mode settings. */ ath_mode_init(sc); } else { /* * Beware of being called during detach to * reset promiscuous mode. In that case we * will still be marked UP but not RUNNING. * However trying to re-init the interface * is the wrong thing to do as we've already * torn down much of our state. There's * probably a better way to deal with this. */ if (!sc->sc_invalid) ath_init(ifp); /* XXX lose error */ } } else ath_stop(ifp); break; case SIOCADDMULTI: case SIOCDELMULTI: #ifdef __FreeBSD__ /* * The upper layer has already installed/removed * the multicast address(es), just recalculate the * multicast filter for the card. */ if (ifp->if_flags & IFF_RUNNING) ath_mode_init(sc); #endif error = (cmd == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->sc_ic.ic_ac) : ether_delmulti(ifr, &sc->sc_ic.ic_ac); if (error == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) ath_mode_init(sc); error = 0; } break; case SIOCGATHSTATS: error = copyout(&sc->sc_stats, ifr->ifr_data, sizeof (sc->sc_stats)); break; default: error = ieee80211_ioctl(ifp, cmd, data); if (error == ENETRESET) { if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP)) { struct ieee80211com *ic = &sc->sc_ic; if (ic->ic_opmode != IEEE80211_M_MONITOR) ath_init(ifp); /* XXX lose error */ else ath_reset(sc); } error = 0; } break; } splx(s); return error; } /* * Fill the hardware key cache with key entries. */ int ath_initkeytable(struct ath_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ath_hal *ah = sc->sc_ah; int i; /* XXX maybe should reset all keys when !WEPON */ for (i = 0; i < IEEE80211_WEP_NKID; i++) { struct ieee80211_wepkey *k = &ic->ic_nw_keys[i]; if (k->wk_len == 0) ath_hal_reset_key(ah, i); else { HAL_KEYVAL hk; bzero(&hk, sizeof(hk)); bcopy(k->wk_key, hk.wk_key, k->wk_len); /* * Pad the key to a supported key length. It * is always a good idea to use full-length * keys without padded zeros but this seems * to be the default behaviour used by many * implementations. */ if (k->wk_len <= AR5K_KEYVAL_LENGTH_40) hk.wk_len = AR5K_KEYVAL_LENGTH_40; else if (k->wk_len <= AR5K_KEYVAL_LENGTH_104) hk.wk_len = AR5K_KEYVAL_LENGTH_104; else if (k->wk_len <= AR5K_KEYVAL_LENGTH_128) hk.wk_len = AR5K_KEYVAL_LENGTH_128; else return (EINVAL); if (ath_hal_set_key(ah, i, &hk) != AH_TRUE) return (EINVAL); } } return (0); } void ath_mcastfilter_accum(caddr_t dl, u_int32_t (*mfilt)[2]) { u_int32_t val; u_int8_t pos; val = LE_READ_4(dl + 0); pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; val = LE_READ_4(dl + 3); pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; pos &= 0x3f; (*mfilt)[pos / 32] |= (1 << (pos % 32)); } void ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2]) { struct ifnet *ifp = &sc->sc_ic.ic_if; struct ether_multi *enm; struct ether_multistep estep; ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ac, enm); while (enm != NULL) { /* XXX Punt on ranges. */ if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) { (*mfilt)[0] = (*mfilt)[1] = ~((u_int32_t)0); ifp->if_flags |= IFF_ALLMULTI; return; } ath_mcastfilter_accum(enm->enm_addrlo, mfilt); ETHER_NEXT_MULTI(estep, enm); } ifp->if_flags &= ~IFF_ALLMULTI; } /* * Calculate the receive filter according to the * operating mode and state: * * o always accept unicast, broadcast, and multicast traffic * o maintain current state of phy error reception * o probe request frames are accepted only when operating in * hostap, adhoc, or monitor modes * o enable promiscuous mode according to the interface state * o accept beacons: * - when operating in adhoc mode so the 802.11 layer creates * node table entries for peers, * - when operating in station mode for collecting rssi data when * the station is otherwise quiet, or * - when scanning */ u_int32_t ath_calcrxfilter(struct ath_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ath_hal *ah = sc->sc_ah; struct ifnet *ifp = &ic->ic_if; u_int32_t rfilt; rfilt = (ath_hal_get_rx_filter(ah) & HAL_RX_FILTER_PHYERR) | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; if (ic->ic_opmode != IEEE80211_M_STA) rfilt |= HAL_RX_FILTER_PROBEREQ; if (ic->ic_opmode != IEEE80211_M_AHDEMO) rfilt |= HAL_RX_FILTER_BEACON; if (ifp->if_flags & IFF_PROMISC) rfilt |= HAL_RX_FILTER_PROM; return rfilt; } void ath_mode_init(struct ath_softc *sc) { struct ath_hal *ah = sc->sc_ah; u_int32_t rfilt, mfilt[2]; /* configure rx filter */ rfilt = ath_calcrxfilter(sc); ath_hal_set_rx_filter(ah, rfilt); /* configure operational mode */ ath_hal_set_opmode(ah); /* calculate and install multicast filter */ mfilt[0] = mfilt[1] = 0; ath_mcastfilter_compute(sc, &mfilt); ath_hal_set_mcast_filter(ah, mfilt[0], mfilt[1]); DPRINTF(ATH_DEBUG_MODE, ("%s: RX filter 0x%x, MC filter %08x:%08x\n", __func__, rfilt, mfilt[0], mfilt[1])); } struct mbuf * ath_getmbuf(int flags, int type, u_int pktlen) { struct mbuf *m; KASSERT(pktlen <= MCLBYTES, ("802.11 packet too large: %u", pktlen)); #ifdef __FreeBSD__ if (pktlen <= MHLEN) { MGETHDR(m, flags, type); } else { m = m_getcl(flags, type, M_PKTHDR); } #else MGETHDR(m, flags, type); if (m != NULL && pktlen > MHLEN) { MCLGET(m, flags); if ((m->m_flags & M_EXT) == 0) { m_free(m); m = NULL; } } #endif return m; } int ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct ath_hal *ah = sc->sc_ah; struct ath_buf *bf; struct ath_desc *ds; struct mbuf *m; int error; u_int8_t rate; const HAL_RATE_TABLE *rt; u_int flags; bf = sc->sc_bcbuf; if (bf->bf_m != NULL) { bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); m_freem(bf->bf_m); bf->bf_m = NULL; bf->bf_node = NULL; } /* * NB: the beacon data buffer must be 32-bit aligned; * we assume the mbuf routines will return us something * with this alignment (perhaps should assert). */ m = ieee80211_beacon_alloc(ic, ni); if (m == NULL) { DPRINTF(ATH_DEBUG_BEACON, ("%s: cannot get mbuf/cluster\n", __func__)); sc->sc_stats.ast_be_nombuf++; return ENOMEM; } DPRINTF(ATH_DEBUG_BEACON, ("%s: m %p len %u\n", __func__, m, m->m_len)); error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m, BUS_DMA_NOWAIT); if (error != 0) { m_freem(m); return error; } KASSERT(bf->bf_nseg == 1, ("%s: multi-segment packet; nseg %u", __func__, bf->bf_nseg)); bf->bf_m = m; /* setup descriptors */ ds = bf->bf_desc; bzero(ds, sizeof(struct ath_desc)); if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_has_veol) { ds->ds_link = bf->bf_daddr; /* link to self */ flags |= HAL_TXDESC_VEOL; } else { ds->ds_link = 0; } ds->ds_data = bf->bf_segs[0].ds_addr; DPRINTF(ATH_DEBUG_ANY, ("%s: segaddr %p seglen %u\n", __func__, (caddr_t)bf->bf_segs[0].ds_addr, (u_int)bf->bf_segs[0].ds_len)); /* * Calculate rate code. * XXX everything at min xmit rate */ rt = sc->sc_currates; KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) { rate = rt->info[0].rateCode | rt->info[0].shortPreamble; } else { rate = rt->info[0].rateCode; } flags = HAL_TXDESC_NOACK; if (ic->ic_opmode == IEEE80211_M_IBSS) flags |= HAL_TXDESC_VEOL; if (!ath_hal_setup_tx_desc(ah, ds , m->m_pkthdr.len + IEEE80211_CRC_LEN /* packet length */ , sizeof(struct ieee80211_frame) /* header length */ , HAL_PKT_TYPE_BEACON /* Atheros packet type */ , 60 /* txpower XXX */ , rate, 1 /* series 0 rate/tries */ , HAL_TXKEYIX_INVALID /* no encryption */ , 0 /* antenna mode */ , flags /* no ack for beacons */ , 0 /* rts/cts rate */ , 0 /* rts/cts duration */ )) { printf("%s: ath_hal_setup_tx_desc failed\n", __func__); return -1; } /* NB: beacon's BufLen must be a multiple of 4 bytes */ /* XXX verify mbuf data area covers this roundup */ if (!ath_hal_fill_tx_desc(ah, ds , roundup(bf->bf_segs[0].ds_len, 4) /* buffer length */ , AH_TRUE /* first segment */ , AH_TRUE /* last segment */ )) { printf("%s: ath_hal_fill_tx_desc failed\n", __func__); return -1; } /* XXX it is not appropriate to bus_dmamap_sync? -dcy */ return 0; } void ath_beacon_proc(void *arg, int pending) { struct ath_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; struct ath_buf *bf = sc->sc_bcbuf; struct ath_hal *ah = sc->sc_ah; DPRINTF(ATH_DEBUG_BEACON_PROC, ("%s: pending %u\n", __func__, pending)); if (ic->ic_opmode == IEEE80211_M_STA || bf == NULL || bf->bf_m == NULL) { DPRINTF(ATH_DEBUG_ANY, ("%s: ic_flags=%x bf=%p bf_m=%p\n", __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL)); return; } /* TODO: update beacon to reflect PS poll state */ if (!ath_hal_stop_tx_dma(ah, sc->sc_bhalq)) { DPRINTF(ATH_DEBUG_ANY, ("%s: beacon queue %u did not stop?\n", __func__, sc->sc_bhalq)); } bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); ath_hal_put_tx_buf(ah, sc->sc_bhalq, bf->bf_daddr); ath_hal_tx_start(ah, sc->sc_bhalq); DPRINTF(ATH_DEBUG_BEACON_PROC, ("%s: TXDP%u = %p (%p)\n", __func__, sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc)); } void ath_beacon_free(struct ath_softc *sc) { struct ath_buf *bf = sc->sc_bcbuf; if (bf->bf_m != NULL) { bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); m_freem(bf->bf_m); bf->bf_m = NULL; bf->bf_node = NULL; } } /* * Configure the beacon and sleep timers. * * When operating as an AP this resets the TSF and sets * up the hardware to notify us when we need to issue beacons. * * When operating in station mode this sets up the beacon * timers according to the timestamp of the last received * beacon and the current TSF, configures PCF and DTIM * handling, programs the sleep registers so the hardware * will wakeup in time to receive beacons, and configures * the beacon miss handling so we'll receive a BMISS * interrupt when we stop seeing beacons from the AP * we've associated with. */ void ath_beacon_config(struct ath_softc *sc) { #define MS_TO_TU(x) (((x) * 1000) / 1024) struct ath_hal *ah = sc->sc_ah; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = ic->ic_bss; u_int32_t nexttbtt, intval; nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) | (LE_READ_4(ni->ni_tstamp) >> 10); intval = MS_TO_TU(ni->ni_intval) & HAL_BEACON_PERIOD; if (nexttbtt == 0) { /* e.g. for ap mode */ nexttbtt = intval; } else if (intval) { nexttbtt = roundup(nexttbtt, intval); } DPRINTF(ATH_DEBUG_BEACON, ("%s: intval %u nexttbtt %u\n", __func__, ni->ni_intval, nexttbtt)); if (ic->ic_opmode == IEEE80211_M_STA) { HAL_BEACON_STATE bs; u_int32_t bmisstime; /* NB: no PCF support right now */ bzero(&bs, sizeof(bs)); bs.bs_intval = intval; bs.bs_nexttbtt = nexttbtt; bs.bs_dtimperiod = bs.bs_intval; bs.bs_nextdtim = nexttbtt; /* * Calculate the number of consecutive beacons to miss * before taking a BMISS interrupt. The configuration * is specified in ms, so we need to convert that to * TU's and then calculate based on the beacon interval. * Note that we clamp the result to at most 10 beacons. */ bmisstime = MS_TO_TU(ic->ic_bmisstimeout); bs.bs_bmissthreshold = howmany(bmisstime, intval); if (bs.bs_bmissthreshold > 7) { bs.bs_bmissthreshold = 7; } else if (bs.bs_bmissthreshold <= 0) { bs.bs_bmissthreshold = 1; } /* * Calculate sleep duration. The configuration is * given in ms. We insure a multiple of the beacon * period is used. Also, if the sleep duration is * greater than the DTIM period then it makes senses * to make it a multiple of that. * * XXX fixed at 100ms */ bs.bs_sleepduration = roundup(MS_TO_TU(100), bs.bs_intval); if (bs.bs_sleepduration > bs.bs_dtimperiod) { bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); } DPRINTF(ATH_DEBUG_BEACON, ("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u" " sleep %u\n" , __func__ , bs.bs_intval , bs.bs_nexttbtt , bs.bs_dtimperiod , bs.bs_nextdtim , bs.bs_bmissthreshold , bs.bs_sleepduration )); ath_hal_set_intr(ah, 0); ath_hal_set_beacon_timers(ah, &bs, 0/*XXX*/, 0, 0); sc->sc_imask |= HAL_INT_BMISS; ath_hal_set_intr(ah, sc->sc_imask); } else { ath_hal_set_intr(ah, 0); if (nexttbtt == intval) intval |= HAL_BEACON_RESET_TSF; if (ic->ic_opmode == IEEE80211_M_IBSS) { /* * In IBSS mode enable the beacon timers but ony * enable SWBA interrupts if we need to moanually * prepare beacon frames. Otherwise we use a * self-linked tx descriptor and let the hardware * deal with things. */ intval |= HAL_BEACON_ENA; if (!sc->sc_has_veol) sc->sc_imask |= HAL_INT_SWBA; } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) { /* * In AP mode we enable the beacon timers and * SWBA interrupts to prepare beacon frames. */ intval |= HAL_BEACON_ENA; sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ } ath_hal_init_beacon(ah, nexttbtt, intval); ath_hal_set_intr(ah, sc->sc_imask); /* * When using a self-linked beacon descriptor in IBBS * mode load it once here. */ if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_has_veol) ath_beacon_proc(sc, 0); } } int ath_desc_alloc(struct ath_softc *sc) { int i, bsize, error = -1; struct ath_desc *ds; struct ath_buf *bf; /* allocate descriptors */ sc->sc_desc_len = sizeof(struct ath_desc) * (ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1); if ((error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_desc_len, PAGE_SIZE, 0, &sc->sc_dseg, 1, &sc->sc_dnseg, 0)) != 0) { printf("%s: unable to allocate control data, error = %d\n", sc->sc_dev.dv_xname, error); goto fail0; } if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg, sc->sc_desc_len, (caddr_t *)&sc->sc_desc, BUS_DMA_COHERENT)) != 0) { printf("%s: unable to map control data, error = %d\n", sc->sc_dev.dv_xname, error); goto fail1; } if ((error = bus_dmamap_create(sc->sc_dmat, sc->sc_desc_len, 1, sc->sc_desc_len, 0, 0, &sc->sc_ddmamap)) != 0) { printf("%s: unable to create control data DMA map, " "error = %d\n", sc->sc_dev.dv_xname, error); goto fail2; } if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap, sc->sc_desc, sc->sc_desc_len, NULL, 0)) != 0) { printf("%s: unable to load control data DMA map, error = %d\n", sc->sc_dev.dv_xname, error); goto fail3; } ds = sc->sc_desc; sc->sc_desc_paddr = sc->sc_ddmamap->dm_segs[0].ds_addr; DPRINTF(ATH_DEBUG_XMIT_DESC|ATH_DEBUG_RECV_DESC, ("ath_desc_alloc: DMA map: %p (%lu) -> %p (%lu)\n", ds, (u_long)sc->sc_desc_len, (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len)); /* allocate buffers */ bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1); bf = malloc(bsize, M_DEVBUF, M_NOWAIT); if (bf == NULL) { printf("%s: unable to allocate Tx/Rx buffers\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail3; } bzero(bf, bsize); sc->sc_bufptr = bf; TAILQ_INIT(&sc->sc_rxbuf); for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) { bf->bf_desc = ds; bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc); if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) { printf("%s: unable to create Rx dmamap, error = %d\n", sc->sc_dev.dv_xname, error); goto fail4; } TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); } TAILQ_INIT(&sc->sc_txbuf); for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) { bf->bf_desc = ds; bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc); if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ATH_TXDESC, MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) { printf("%s: unable to create Tx dmamap, error = %d\n", sc->sc_dev.dv_xname, error); goto fail5; } TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); } TAILQ_INIT(&sc->sc_txq); /* beacon buffer */ bf->bf_desc = ds; bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc); if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) { printf("%s: unable to create beacon dmamap, error = %d\n", sc->sc_dev.dv_xname, error); goto fail5; } sc->sc_bcbuf = bf; return 0; fail5: for (i = ATH_RXBUF; i < ATH_RXBUF + ATH_TXBUF; i++) { if (sc->sc_bufptr[i].bf_dmamap == NULL) continue; bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap); } fail4: for (i = 0; i < ATH_RXBUF; i++) { if (sc->sc_bufptr[i].bf_dmamap == NULL) continue; bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap); } fail3: bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap); fail2: bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap); sc->sc_ddmamap = NULL; fail1: bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_desc, sc->sc_desc_len); fail0: bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg); return error; } void ath_desc_free(struct ath_softc *sc) { struct ath_buf *bf; bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap); bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap); bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg); TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) { bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); m_freem(bf->bf_m); } TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list) bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { if (bf->bf_m) { bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); m_freem(bf->bf_m); bf->bf_m = NULL; } } if (sc->sc_bcbuf != NULL) { bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap); bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap); sc->sc_bcbuf = NULL; } TAILQ_INIT(&sc->sc_rxbuf); TAILQ_INIT(&sc->sc_txbuf); TAILQ_INIT(&sc->sc_txq); free(sc->sc_bufptr, M_DEVBUF); sc->sc_bufptr = NULL; } struct ieee80211_node * ath_node_alloc(struct ieee80211com *ic) { struct ath_node *an = malloc(sizeof(struct ath_node), M_DEVBUF, M_NOWAIT); if (an) { int i; bzero(an, sizeof(struct ath_node)); for (i = 0; i < ATH_RHIST_SIZE; i++) an->an_rx_hist[i].arh_ticks = ATH_RHIST_NOTIME; an->an_rx_hist_next = ATH_RHIST_SIZE-1; return &an->an_node; } else return NULL; } void ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni) { struct ath_softc *sc = ic->ic_if.if_softc; struct ath_buf *bf; TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) { if (bf->bf_node == ni) bf->bf_node = NULL; } (*sc->sc_node_free)(ic, ni); } void ath_node_copy(struct ieee80211com *ic, struct ieee80211_node *dst, const struct ieee80211_node *src) { struct ath_softc *sc = ic->ic_if.if_softc; bcopy(&src[1], &dst[1], sizeof(struct ath_node) - sizeof(struct ieee80211_node)); (*sc->sc_node_copy)(ic, dst, src); } u_int8_t ath_node_getrssi(struct ieee80211com *ic, struct ieee80211_node *ni) { struct ath_node *an = ATH_NODE(ni); int i, now, nsamples, rssi; /* * Calculate the average over the last second of sampled data. */ now = ATH_TICKS(); nsamples = 0; rssi = 0; i = an->an_rx_hist_next; do { struct ath_recv_hist *rh = &an->an_rx_hist[i]; if (rh->arh_ticks == ATH_RHIST_NOTIME) goto done; if (now - rh->arh_ticks > hz) goto done; rssi += rh->arh_rssi; nsamples++; if (i == 0) { i = ATH_RHIST_SIZE-1; } else { i--; } } while (i != an->an_rx_hist_next); done: /* * Return either the average or the last known * value if there is no recent data. */ return (nsamples ? rssi / nsamples : an->an_rx_hist[i].arh_rssi); } int ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) { struct ath_hal *ah = sc->sc_ah; int error; struct mbuf *m; struct ath_desc *ds; m = bf->bf_m; if (m == NULL) { /* * NB: by assigning a page to the rx dma buffer we * implicitly satisfy the Atheros requirement that * this buffer be cache-line-aligned and sized to be * multiple of the cache line size. Not doing this * causes weird stuff to happen (for the 5210 at least). */ m = ath_getmbuf(M_DONTWAIT, MT_DATA, MCLBYTES); if (m == NULL) { DPRINTF(ATH_DEBUG_ANY, ("%s: no mbuf/cluster\n", __func__)); sc->sc_stats.ast_rx_nombuf++; return ENOMEM; } bf->bf_m = m; m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m, BUS_DMA_NOWAIT); if (error != 0) { DPRINTF(ATH_DEBUG_ANY, ("%s: ath_bus_dmamap_load_mbuf failed;" " error %d\n", __func__, error)); sc->sc_stats.ast_rx_busdma++; return error; } KASSERT(bf->bf_nseg == 1, ("ath_rxbuf_init: multi-segment packet; nseg %u", bf->bf_nseg)); } bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); /* * Setup descriptors. For receive we always terminate * the descriptor list with a self-linked entry so we'll * not get overrun under high load (as can happen with a * 5212 when ANI processing enables PHY errors). * * To insure the last descriptor is self-linked we create * each descriptor as self-linked and add it to the end. As * each additional descriptor is added the previous self-linked * entry is ``fixed'' naturally. This should be safe even * if DMA is happening. When processing RX interrupts we * never remove/process the last, self-linked, entry on the * descriptor list. This insures the hardware always has * someplace to write a new frame. */ ds = bf->bf_desc; bzero(ds, sizeof(struct ath_desc)); ds->ds_link = bf->bf_daddr; /* link to self */ ds->ds_data = bf->bf_segs[0].ds_addr; ath_hal_setup_rx_desc(ah, ds , m->m_len /* buffer size */ , 0 ); if (sc->sc_rxlink != NULL) *sc->sc_rxlink = bf->bf_daddr; sc->sc_rxlink = &ds->ds_link; return 0; } void ath_rx_proc(void *arg, int npending) { #define PA2DESC(_sc, _pa) \ ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \ ((_pa) - (_sc)->sc_desc_paddr))) struct ath_softc *sc = arg; struct ath_buf *bf; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct ath_hal *ah = sc->sc_ah; struct ath_desc *ds; struct mbuf *m; struct ieee80211_frame *wh, whbuf; struct ieee80211_node *ni; struct ath_node *an; struct ath_recv_hist *rh; int len; u_int phyerr; HAL_STATUS status; DPRINTF(ATH_DEBUG_RX_PROC, ("%s: pending %u\n", __func__, npending)); do { bf = TAILQ_FIRST(&sc->sc_rxbuf); if (bf == NULL) { /* NB: shouldn't happen */ if_printf(ifp, "ath_rx_proc: no buffer!\n"); break; } ds = bf->bf_desc; if (ds->ds_link == bf->bf_daddr) { /* NB: never process the self-linked entry at the end */ break; } m = bf->bf_m; if (m == NULL) { /* NB: shouldn't happen */ if_printf(ifp, "ath_rx_proc: no mbuf!\n"); continue; } /* XXX sync descriptor memory */ /* * Must provide the virtual address of the current * descriptor, the physical address, and the virtual * address of the next descriptor in the h/w chain. * This allows the HAL to look ahead to see if the * hardware is done with a descriptor by checking the * done bit in the following descriptor and the address * of the current descriptor the DMA engine is working * on. All this is necessary because of our use of * a self-linked list to avoid rx overruns. */ status = ath_hal_proc_rx_desc(ah, ds, bf->bf_daddr, PA2DESC(sc, ds->ds_link)); #ifdef AR_DEBUG if (ath_debug & ATH_DEBUG_RECV_DESC) ath_printrxbuf(bf, status == HAL_OK); #endif if (status == HAL_EINPROGRESS) break; TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list); if (ds->ds_rxstat.rs_more) { /* * Frame spans multiple descriptors; this * cannot happen yet as we don't support * jumbograms. If not in monitor mode, * discard the frame. */ /* * Enable this if you want to see error * frames in Monitor mode. */ #ifdef ERROR_FRAMES if (ic->ic_opmode != IEEE80211_M_MONITOR) { /* XXX statistic */ goto rx_next; } #endif /* fall thru for monitor mode handling... */ } else if (ds->ds_rxstat.rs_status != 0) { if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC) sc->sc_stats.ast_rx_crcerr++; if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO) sc->sc_stats.ast_rx_fifoerr++; if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) sc->sc_stats.ast_rx_badcrypt++; if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) { sc->sc_stats.ast_rx_phyerr++; phyerr = ds->ds_rxstat.rs_phyerr & 0x1f; sc->sc_stats.ast_rx_phy[phyerr]++; } /* * reject error frames, we normally don't want * to see them in monitor mode. */ if ((ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT ) || (ds->ds_rxstat.rs_status & HAL_RXERR_PHY)) goto rx_next; /* * In monitor mode, allow through packets that * cannot be decrypted */ if ((ds->ds_rxstat.rs_status & ~HAL_RXERR_DECRYPT) || sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR) goto rx_next; } len = ds->ds_rxstat.rs_datalen; if (len < IEEE80211_MIN_LEN) { DPRINTF(ATH_DEBUG_RECV, ("%s: short packet %d\n", __func__, len)); sc->sc_stats.ast_rx_tooshort++; goto rx_next; } bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); bf->bf_m = NULL; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = len; #if NBPFILTER > 0 if (sc->sc_drvbpf) { struct mbuf mb; sc->sc_rxtap.wr_rate = sc->sc_hwmap[ds->ds_rxstat.rs_rate] & IEEE80211_RATE_VAL; sc->sc_rxtap.wr_antsignal = ds->ds_rxstat.rs_rssi; sc->sc_rxtap.wr_antenna = ds->ds_rxstat.rs_antenna; M_DUP_PKTHDR(&mb, m); mb.m_data = (caddr_t)&sc->sc_rxtap; mb.m_len = sc->sc_rxtap_len; mb.m_next = m; mb.m_pkthdr.len += mb.m_len; bpf_mtap(sc->sc_drvbpf, &mb); } #endif m_adj(m, -IEEE80211_CRC_LEN); wh = mtod(m, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_WEP) { /* * WEP is decrypted by hardware. Clear WEP bit * and trim WEP header for ieee80211_input(). */ wh->i_fc[1] &= ~IEEE80211_FC1_WEP; bcopy(wh, &whbuf, sizeof(whbuf)); m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN); wh = mtod(m, struct ieee80211_frame *); bcopy(&whbuf, wh, sizeof(whbuf)); /* * Also trim WEP ICV from the tail. */ m_adj(m, -IEEE80211_WEP_CRCLEN); /* * The header has probably moved. */ wh = mtod(m, struct ieee80211_frame *); } /* * Locate the node for sender, track state, and * then pass this node (referenced) up to the 802.11 * layer for its use. */ ni = ieee80211_find_rxnode(ic, wh); /* * Record driver-specific state. */ an = ATH_NODE(ni); if (++(an->an_rx_hist_next) == ATH_RHIST_SIZE) an->an_rx_hist_next = 0; rh = &an->an_rx_hist[an->an_rx_hist_next]; rh->arh_ticks = ATH_TICKS(); rh->arh_rssi = ds->ds_rxstat.rs_rssi; rh->arh_antenna = ds->ds_rxstat.rs_antenna; /* * Send frame up for processing. */ ieee80211_input(ifp, m, ni, ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp); /* * The frame may have caused the node to be marked for * reclamation (e.g. in response to a DEAUTH message) * so use release_node here instead of unref_node. */ ieee80211_release_node(ic, ni); rx_next: TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); } while (ath_rxbuf_init(sc, bf) == 0); ath_hal_set_rx_signal(ah); /* rx signal state monitoring */ ath_hal_start_rx(ah); /* in case of RXEOL */ if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd)) ath_start(ifp); #undef PA2DESC } /* * XXX Size of an ACK control frame in bytes. */ #define IEEE80211_ACK_SIZE (2+2+IEEE80211_ADDR_LEN+4) int ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0) { struct ieee80211com *ic = &sc->sc_ic; struct ath_hal *ah = sc->sc_ah; struct ifnet *ifp = &sc->sc_ic.ic_if; int i, error, iswep, hdrlen, pktlen, len, s; u_int8_t rix, cix, txrate, ctsrate; struct ath_desc *ds; struct mbuf *m; struct ieee80211_frame *wh; u_int32_t iv; u_int8_t *ivp; u_int8_t hdrbuf[sizeof(struct ieee80211_frame) + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN]; u_int subtype, flags, ctsduration, antenna; HAL_PKT_TYPE atype; const HAL_RATE_TABLE *rt; HAL_BOOL shortPreamble; struct ath_node *an; wh = mtod(m0, struct ieee80211_frame *); iswep = wh->i_fc[1] & IEEE80211_FC1_WEP; hdrlen = sizeof(struct ieee80211_frame); pktlen = m0->m_pkthdr.len; if (iswep) { bcopy(mtod(m0, caddr_t), hdrbuf, hdrlen); m_adj(m0, hdrlen); M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT); if (m0 == NULL) { sc->sc_stats.ast_tx_nombuf++; return ENOMEM; } ivp = hdrbuf + hdrlen; wh = mtod(m0, struct ieee80211_frame *); /* * XXX * IV must not duplicate during the lifetime of the key. * But no mechanism to renew keys is defined in IEEE 802.11 * for WEP. And the IV may be duplicated at other stations * because the session key itself is shared. So we use a * pseudo random IV for now, though it is not the right way. * * NB: Rather than use a strictly random IV we select a * random one to start and then increment the value for * each frame. This is an explicit tradeoff between * overhead and security. Given the basic insecurity of * WEP this seems worthwhile. */ /* * Skip 'bad' IVs from Fluhrer/Mantin/Shamir: * (B, 255, N) with 3 <= B < 16 and 0 <= N <= 255 */ iv = ic->ic_iv; if ((iv & 0xff00) == 0xff00) { int B = (iv & 0xff0000) >> 16; if (3 <= B && B < 16) iv = (B+1) << 16; } ic->ic_iv = iv + 1; /* * NB: Preserve byte order of IV for packet * sniffers; it doesn't matter otherwise. */ #if AH_BYTE_ORDER == AH_BIG_ENDIAN ivp[0] = iv >> 0; ivp[1] = iv >> 8; ivp[2] = iv >> 16; #else ivp[2] = iv >> 0; ivp[1] = iv >> 8; ivp[0] = iv >> 16; #endif ivp[3] = ic->ic_wep_txkey << 6; /* Key ID and pad */ bcopy(hdrbuf, mtod(m0, caddr_t), sizeof(hdrbuf)); /* * The length of hdrlen and pktlen must be increased for WEP */ len = IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_CRCLEN; hdrlen += len; pktlen += len; } pktlen += IEEE80211_CRC_LEN; /* * Load the DMA map so any coalescing is done. This * also calculates the number of descriptors we need. */ error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0, BUS_DMA_NOWAIT); /* * Discard null packets and check for packets that * require too many TX descriptors. We try to convert * the latter to a cluster. */ if (error == EFBIG) { /* too many desc's, linearize */ sc->sc_stats.ast_tx_linear++; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { sc->sc_stats.ast_tx_nombuf++; m_freem(m0); return ENOMEM; } M_DUP_PKTHDR(m, m0); MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { sc->sc_stats.ast_tx_nomcl++; m_freem(m0); m_free(m); return ENOMEM; } m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t)); m_freem(m0); m->m_len = m->m_pkthdr.len; m0 = m; error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0, BUS_DMA_NOWAIT); if (error != 0) { sc->sc_stats.ast_tx_busdma++; m_freem(m0); return error; } KASSERT(bf->bf_nseg == 1, ("ath_tx_start: packet not one segment; nseg %u", bf->bf_nseg)); } else if (error != 0) { sc->sc_stats.ast_tx_busdma++; m_freem(m0); return error; } else if (bf->bf_nseg == 0) { /* null packet, discard */ sc->sc_stats.ast_tx_nodata++; m_freem(m0); return EIO; } DPRINTF(ATH_DEBUG_XMIT, ("%s: m %p len %u\n", __func__, m0, pktlen)); bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); bf->bf_m = m0; bf->bf_node = ni; /* NB: held reference */ /* setup descriptors */ ds = bf->bf_desc; rt = sc->sc_currates; KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); /* * Calculate Atheros packet type from IEEE80211 packet header * and setup for rate calculations. */ atype = HAL_PKT_TYPE_NORMAL; /* default */ switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { case IEEE80211_FC0_TYPE_MGT: subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) { atype = HAL_PKT_TYPE_BEACON; } else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) { atype = HAL_PKT_TYPE_PROBE_RESP; } else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) { atype = HAL_PKT_TYPE_ATIM; } rix = 0; /* XXX lowest rate */ break; case IEEE80211_FC0_TYPE_CTL: subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL) atype = HAL_PKT_TYPE_PSPOLL; rix = 0; /* XXX lowest rate */ break; default: rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL]; if (rix == 0xff) { if_printf(ifp, "bogus xmit rate 0x%x\n", ni->ni_rates.rs_rates[ni->ni_txrate]); sc->sc_stats.ast_tx_badrate++; m_freem(m0); return EIO; } break; } /* * NB: the 802.11 layer marks whether or not we should * use short preamble based on the current mode and * negotiated parameters. */ if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) { txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble; shortPreamble = AH_TRUE; sc->sc_stats.ast_tx_shortpre++; } else { txrate = rt->info[rix].rateCode; shortPreamble = AH_FALSE; } /* * Calculate miscellaneous flags. */ flags = HAL_TXDESC_CLRDMASK; /* XXX needed for wep errors */ if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ sc->sc_stats.ast_tx_noack++; } else if (pktlen > ic->ic_rtsthreshold) { flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ sc->sc_stats.ast_tx_rts++; } /* * Calculate duration. This logically belongs in the 802.11 * layer but it lacks sufficient information to calculate it. */ if ((flags & HAL_TXDESC_NOACK) == 0 && (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { u_int16_t dur; /* * XXX not right with fragmentation. */ dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE, rix, shortPreamble); *((u_int16_t*) wh->i_dur) = htole16(dur); } /* * Calculate RTS/CTS rate and duration if needed. */ ctsduration = 0; if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) { /* * CTS transmit rate is derived from the transmit rate * by looking in the h/w rate table. We must also factor * in whether or not a short preamble is to be used. */ cix = rt->info[rix].controlRate; ctsrate = rt->info[cix].rateCode; if (shortPreamble) ctsrate |= rt->info[cix].shortPreamble; /* * Compute the transmit duration based on the size * of an ACK frame. We call into the HAL to do the * computation since it depends on the characteristics * of the actual PHY being used. */ if (flags & HAL_TXDESC_RTSENA) { /* SIFS + CTS */ ctsduration += ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE, cix, shortPreamble); } /* SIFS + data */ ctsduration += ath_hal_computetxtime(ah, rt, pktlen, rix, shortPreamble); if ((flags & HAL_TXDESC_NOACK) == 0) { /* SIFS + ACK */ ctsduration += ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE, cix, shortPreamble); } } else ctsrate = 0; /* * For now use the antenna on which the last good * frame was received on. We assume this field is * initialized to 0 which gives us ``auto'' or the * ``default'' antenna. */ an = (struct ath_node *) ni; if (an->an_tx_antenna) { antenna = an->an_tx_antenna; } else { antenna = an->an_rx_hist[an->an_rx_hist_next].arh_antenna; } #if NBPFILTER > 0 if (ic->ic_rawbpf) bpf_mtap(ic->ic_rawbpf, m0); if (sc->sc_drvbpf) { struct mbuf mb; sc->sc_txtap.wt_flags = 0; if (shortPreamble) sc->sc_txtap.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; if (iswep) sc->sc_txtap.wt_flags |= IEEE80211_RADIOTAP_F_WEP; sc->sc_txtap.wt_rate = ni->ni_rates.rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL; sc->sc_txtap.wt_txpower = 30; sc->sc_txtap.wt_antenna = antenna; M_DUP_PKTHDR(&mb, m0); mb.m_data = (caddr_t)&sc->sc_txtap; mb.m_len = sc->sc_txtap_len; mb.m_next = m0; mb.m_pkthdr.len += mb.m_len; bpf_mtap(sc->sc_drvbpf, &mb); } #endif /* * Formulate first tx descriptor with tx controls. */ /* XXX check return value? */ ath_hal_setup_tx_desc(ah, ds , pktlen /* packet length */ , hdrlen /* header length */ , atype /* Atheros packet type */ , 60 /* txpower XXX */ , txrate, 1+10 /* series 0 rate/tries */ , iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID , antenna /* antenna mode */ , flags /* flags */ , ctsrate /* rts/cts rate */ , ctsduration /* rts/cts duration */ ); #ifdef notyet ath_hal_setup_xtx_desc(ah, ds , AH_FALSE /* short preamble */ , 0, 0 /* series 1 rate/tries */ , 0, 0 /* series 2 rate/tries */ , 0, 0 /* series 3 rate/tries */ ); #endif /* * Fillin the remainder of the descriptor info. */ for (i = 0; i < bf->bf_nseg; i++, ds++) { ds->ds_data = bf->bf_segs[i].ds_addr; if (i == bf->bf_nseg - 1) { ds->ds_link = 0; } else { ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1); } ath_hal_fill_tx_desc(ah, ds , bf->bf_segs[i].ds_len /* segment length */ , i == 0 /* first segment */ , i == bf->bf_nseg - 1 /* last segment */ ); DPRINTF(ATH_DEBUG_XMIT, ("%s: %d: %08x %08x %08x %08x %08x %08x\n", __func__, i, ds->ds_link, ds->ds_data, ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1])); } /* * Insert the frame on the outbound list and * pass it on to the hardware. */ s = splnet(); TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list); if (sc->sc_txlink == NULL) { ath_hal_put_tx_buf(ah, sc->sc_txhalq, bf->bf_daddr); DPRINTF(ATH_DEBUG_XMIT, ("%s: TXDP0 = %p (%p)\n", __func__, (caddr_t)bf->bf_daddr, bf->bf_desc)); } else { *sc->sc_txlink = bf->bf_daddr; DPRINTF(ATH_DEBUG_XMIT, ("%s: link(%p)=%p (%p)\n", __func__, sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc)); } sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link; splx(s); ath_hal_tx_start(ah, sc->sc_txhalq); return 0; } void ath_tx_proc(void *arg, int npending) { struct ath_softc *sc = arg; struct ath_hal *ah = sc->sc_ah; struct ath_buf *bf; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct ath_desc *ds; struct ieee80211_node *ni; struct ath_node *an; int sr, lr, s; HAL_STATUS status; DPRINTF(ATH_DEBUG_TX_PROC, ("%s: pending %u tx queue %p, " "link %p\n", __func__, npending, (caddr_t)(u_intptr_t) ath_hal_get_tx_buf(sc->sc_ah, sc->sc_txhalq), sc->sc_txlink)); for (;;) { s = splnet(); bf = TAILQ_FIRST(&sc->sc_txq); if (bf == NULL) { sc->sc_txlink = NULL; splx(s); break; } /* only the last descriptor is needed */ ds = &bf->bf_desc[bf->bf_nseg - 1]; status = ath_hal_proc_tx_desc(ah, ds); #ifdef AR_DEBUG if (ath_debug & ATH_DEBUG_XMIT_DESC) ath_printtxbuf(bf, status == HAL_OK); #endif if (status == HAL_EINPROGRESS) { splx(s); break; } TAILQ_REMOVE(&sc->sc_txq, bf, bf_list); splx(s); ni = bf->bf_node; if (ni != NULL) { an = (struct ath_node *) ni; if (ds->ds_txstat.ts_status == 0) { an->an_tx_ok++; an->an_tx_antenna = ds->ds_txstat.ts_antenna; } else { an->an_tx_err++; ifp->if_oerrors++; if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY) sc->sc_stats.ast_tx_xretries++; if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO) sc->sc_stats.ast_tx_fifoerr++; if (ds->ds_txstat.ts_status & HAL_TXERR_FILT) sc->sc_stats.ast_tx_filtered++; an->an_tx_antenna = 0; /* invalidate */ } sr = ds->ds_txstat.ts_shortretry; lr = ds->ds_txstat.ts_longretry; sc->sc_stats.ast_tx_shortretry += sr; sc->sc_stats.ast_tx_longretry += lr; if (sr + lr) an->an_tx_retr++; /* * Reclaim reference to node. * * NB: the node may be reclaimed here if, for example * this is a DEAUTH message that was sent and the * node was timed out due to inactivity. */ ieee80211_release_node(ic, ni); } bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); m_freem(bf->bf_m); bf->bf_m = NULL; bf->bf_node = NULL; s = splnet(); TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); splx(s); } ifp->if_flags &= ~IFF_OACTIVE; sc->sc_tx_timer = 0; ath_start(ifp); } /* * Drain the transmit queue and reclaim resources. */ void ath_draintxq(struct ath_softc *sc) { struct ath_hal *ah = sc->sc_ah; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct ieee80211_node *ni; struct ath_buf *bf; int s; /* XXX return value */ if (!sc->sc_invalid) { /* don't touch the hardware if marked invalid */ (void) ath_hal_stop_tx_dma(ah, sc->sc_txhalq); DPRINTF(ATH_DEBUG_RESET, ("%s: tx queue %p, link %p\n", __func__, (caddr_t)(u_intptr_t) ath_hal_get_tx_buf(ah, sc->sc_txhalq), sc->sc_txlink)); (void) ath_hal_stop_tx_dma(ah, sc->sc_bhalq); DPRINTF(ATH_DEBUG_RESET, ("%s: beacon queue %p\n", __func__, (caddr_t)(u_intptr_t)ath_hal_get_tx_buf(ah, sc->sc_bhalq))); } for (;;) { s = splnet(); bf = TAILQ_FIRST(&sc->sc_txq); if (bf == NULL) { sc->sc_txlink = NULL; splx(s); break; } TAILQ_REMOVE(&sc->sc_txq, bf, bf_list); splx(s); #ifdef AR_DEBUG if (ath_debug & ATH_DEBUG_RESET) { ath_printtxbuf(bf, ath_hal_proc_tx_desc(ah, bf->bf_desc) == HAL_OK); } #endif /* AR_DEBUG */ bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); m_freem(bf->bf_m); bf->bf_m = NULL; ni = bf->bf_node; bf->bf_node = NULL; s = splnet(); if (ni != NULL) { /* * Reclaim node reference. */ ieee80211_release_node(ic, ni); } TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); splx(s); } ifp->if_flags &= ~IFF_OACTIVE; sc->sc_tx_timer = 0; } /* * Disable the receive h/w in preparation for a reset. */ void ath_stoprecv(struct ath_softc *sc) { #define PA2DESC(_sc, _pa) \ ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \ ((_pa) - (_sc)->sc_desc_paddr))) struct ath_hal *ah = sc->sc_ah; ath_hal_stop_pcu_recv(ah); /* disable PCU */ ath_hal_set_rx_filter(ah, 0); /* clear recv filter */ ath_hal_stop_rx_dma(ah); /* disable DMA engine */ #ifdef AR_DEBUG if (ath_debug & ATH_DEBUG_RESET) { struct ath_buf *bf; printf("%s: rx queue %p, link %p\n", __func__, (caddr_t)(u_intptr_t)ath_hal_get_rx_buf(ah), sc->sc_rxlink); TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { struct ath_desc *ds = bf->bf_desc; if (ath_hal_proc_rx_desc(ah, ds, bf->bf_daddr, PA2DESC(sc, ds->ds_link)) == HAL_OK) ath_printrxbuf(bf, 1); } } #endif sc->sc_rxlink = NULL; /* just in case */ #undef PA2DESC } /* * Enable the receive h/w following a reset. */ int ath_startrecv(struct ath_softc *sc) { struct ath_hal *ah = sc->sc_ah; struct ath_buf *bf; sc->sc_rxlink = NULL; TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { int error = ath_rxbuf_init(sc, bf); if (error != 0) { DPRINTF(ATH_DEBUG_RECV, ("%s: ath_rxbuf_init failed %d\n", __func__, error)); return error; } } bf = TAILQ_FIRST(&sc->sc_rxbuf); ath_hal_put_rx_buf(ah, bf->bf_daddr); ath_hal_start_rx(ah); /* enable recv descriptors */ ath_mode_init(sc); /* set filters, etc. */ ath_hal_start_rx_pcu(ah); /* re-enable PCU/DMA engine */ return 0; } /* * Set/change channels. If the channel is really being changed, * it's done by resetting the chip. To accomplish this we must * first cleanup any pending DMA, then restart stuff after a la * ath_init. */ int ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) { struct ath_hal *ah = sc->sc_ah; struct ieee80211com *ic = &sc->sc_ic; DPRINTF(ATH_DEBUG_ANY, ("%s: %u (%u MHz) -> %u (%u MHz)\n", __func__, ieee80211_chan2ieee(ic, ic->ic_ibss_chan), ic->ic_ibss_chan->ic_freq, ieee80211_chan2ieee(ic, chan), chan->ic_freq)); if (chan != ic->ic_ibss_chan) { HAL_STATUS status; HAL_CHANNEL hchan; enum ieee80211_phymode mode; /* * To switch channels clear any pending DMA operations; * wait long enough for the RX fifo to drain, reset the * hardware at the new frequency, and then re-enable * the relevant bits of the h/w. */ ath_hal_set_intr(ah, 0); /* disable interrupts */ ath_draintxq(sc); /* clear pending tx frames */ ath_stoprecv(sc); /* turn off frame recv */ /* * Convert to a HAL channel description with * the flags constrained to reflect the current * operating mode. */ hchan.channel = chan->ic_freq; hchan.channelFlags = ath_chan2flags(ic, chan); if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) { if_printf(&ic->ic_if, "ath_chan_set: unable to reset " "channel %u (%u Mhz)\n", ieee80211_chan2ieee(ic, chan), chan->ic_freq); return EIO; } /* * Re-enable rx framework. */ if (ath_startrecv(sc) != 0) { if_printf(&ic->ic_if, "ath_chan_set: unable to restart recv logic\n"); return EIO; } /* * Update BPF state. */ sc->sc_txtap.wt_chan_freq = sc->sc_rxtap.wr_chan_freq = htole16(chan->ic_freq); sc->sc_txtap.wt_chan_flags = sc->sc_rxtap.wr_chan_flags = htole16(chan->ic_flags); /* * Change channels and update the h/w rate map * if we're switching; e.g. 11a to 11b/g. */ ic->ic_ibss_chan = chan; mode = ieee80211_chan2mode(ic, chan); if (mode != sc->sc_curmode) ath_setcurmode(sc, mode); /* * Re-enable interrupts. */ ath_hal_set_intr(ah, sc->sc_imask); } return 0; } void ath_next_scan(void *arg) { struct ath_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; int s; /* don't call ath_start w/o network interrupts blocked */ s = splnet(); if (ic->ic_state == IEEE80211_S_SCAN) ieee80211_next_scan(ifp); splx(s); } /* * Periodically recalibrate the PHY to account * for temperature/environment changes. */ void ath_calibrate(void *arg) { struct ath_softc *sc = arg; struct ath_hal *ah = sc->sc_ah; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_channel *c; HAL_CHANNEL hchan; sc->sc_stats.ast_per_cal++; /* * Convert to a HAL channel description with the flags * constrained to reflect the current operating mode. */ c = ic->ic_ibss_chan; hchan.channel = c->ic_freq; hchan.channelFlags = ath_chan2flags(ic, c); DPRINTF(ATH_DEBUG_CALIBRATE, ("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags)); if (ath_hal_get_rf_gain(ah) == HAL_RFGAIN_NEED_CHANGE) { /* * Rfgain is out of bounds, reset the chip * to load new gain values. */ sc->sc_stats.ast_per_rfgain++; ath_reset(sc); } if (!ath_hal_calibrate(ah, &hchan)) { DPRINTF(ATH_DEBUG_ANY, ("%s: calibration of channel %u failed\n", __func__, c->ic_freq)); sc->sc_stats.ast_per_calfail++; } timeout_add(&sc->sc_cal_to, hz * ath_calinterval); } HAL_LED_STATE ath_state_to_led(enum ieee80211_state state) { switch (state) { case IEEE80211_S_INIT: return HAL_LED_INIT; case IEEE80211_S_SCAN: return HAL_LED_SCAN; case IEEE80211_S_AUTH: return HAL_LED_AUTH; case IEEE80211_S_ASSOC: return HAL_LED_ASSOC; case IEEE80211_S_RUN: return HAL_LED_RUN; default: panic("%s: unknown 802.11 state %d\n", __func__, state); return HAL_LED_INIT; } } int ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct ifnet *ifp = &ic->ic_if; struct ath_softc *sc = ifp->if_softc; struct ath_hal *ah = sc->sc_ah; struct ieee80211_node *ni; const u_int8_t *bssid; int i, error; u_int32_t rfilt; DPRINTF(ATH_DEBUG_ANY, ("%s: %s -> %s\n", __func__, ieee80211_state_name[ic->ic_state], ieee80211_state_name[nstate])); timeout_del(&sc->sc_scan_to); timeout_del(&sc->sc_cal_to); ath_hal_set_ledstate(ah, ath_state_to_led(nstate)); /* set LED */ if (nstate == IEEE80211_S_INIT) { sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); ath_hal_set_intr(ah, sc->sc_imask); return (*sc->sc_newstate)(ic, nstate, arg); } ni = ic->ic_bss; error = ath_chan_set(sc, ni->ni_chan); if (error != 0) goto bad; rfilt = ath_calcrxfilter(sc); if (nstate == IEEE80211_S_SCAN || ic->ic_opmode == IEEE80211_M_MONITOR) { bssid = sc->sc_broadcast_addr; } else { bssid = ni->ni_bssid; } ath_hal_set_rx_filter(ah, rfilt); DPRINTF(ATH_DEBUG_ANY, ("%s: RX filter 0x%x bssid %s\n", __func__, rfilt, ether_sprintf((u_char*)bssid))); if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA) { ath_hal_set_associd(ah, bssid, ni->ni_associd); } else { ath_hal_set_associd(ah, bssid, 0); } if (ic->ic_flags & IEEE80211_F_WEPON) { for (i = 0; i < IEEE80211_WEP_NKID; i++) { if (ath_hal_is_key_valid(ah, i)) ath_hal_set_key_lladdr(ah, i, bssid); } } if (ic->ic_opmode == IEEE80211_M_MONITOR) { /* nothing to do */ } else if (nstate == IEEE80211_S_RUN) { DPRINTF(ATH_DEBUG_ANY, ("%s(RUN): " "ic_flags=0x%08x iv=%d bssid=%s " "capinfo=0x%04x chan=%d\n", __func__, ic->ic_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), ni->ni_capinfo, ieee80211_chan2ieee(ic, ni->ni_chan))); /* * Allocate and setup the beacon frame for AP or adhoc mode. */ if (ic->ic_opmode == IEEE80211_M_HOSTAP || ic->ic_opmode == IEEE80211_M_IBSS) { error = ath_beacon_alloc(sc, ni); if (error != 0) goto bad; } /* * Configure the beacon and sleep timers. */ ath_beacon_config(sc); } else { sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); ath_hal_set_intr(ah, sc->sc_imask); } /* * Reset the rate control state. */ ath_rate_ctl_reset(sc, nstate); /* * Invoke the parent method to complete the work. */ error = (*sc->sc_newstate)(ic, nstate, arg); if (nstate == IEEE80211_S_RUN) { /* start periodic recalibration timer */ timeout_add(&sc->sc_cal_to, hz * ath_calinterval); } else if (nstate == IEEE80211_S_SCAN) { /* start ap/neighbor scan timer */ timeout_add(&sc->sc_scan_to, (hz * ath_dwelltime) / 1000); } bad: return error; } void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp) { struct ath_softc *sc = (struct ath_softc*)ic->ic_softc; struct ath_hal *ah = sc->sc_ah; (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp); switch (subtype) { case IEEE80211_FC0_SUBTYPE_PROBE_RESP: case IEEE80211_FC0_SUBTYPE_BEACON: if (ic->ic_opmode != IEEE80211_M_IBSS || ic->ic_state != IEEE80211_S_RUN) break; if (ieee80211_ibss_merge(ic, ni, ath_hal_get_tsf64(ah)) == ENETRESET) ath_hal_set_associd(ah, ic->ic_bss->ni_bssid, 0); break; default: break; } return; } /* * Setup driver-specific state for a newly associated node. * Note that we're called also on a re-associate, the isnew * param tells us if this is the first time or not. */ void ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) { if (ic->ic_opmode == IEEE80211_M_MONITOR) return; if (isnew) { struct ath_node *an = (struct ath_node *) ni; an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0; /* start with highest negotiated rate */ /* * XXX should do otherwise but only when * the rate control algorithm is better. */ KASSERT(ni->ni_rates.rs_nrates > 0, ("new association w/ no rates!")); ni->ni_txrate = ni->ni_rates.rs_nrates - 1; } } int ath_getchannels(struct ath_softc *sc, u_int cc, HAL_BOOL outdoor, HAL_BOOL xchanmode) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct ath_hal *ah = sc->sc_ah; HAL_CHANNEL *chans; int i, ix, nchan; sc->sc_nchan = 0; chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL), M_TEMP, M_NOWAIT); if (chans == NULL) { if_printf(ifp, "unable to allocate channel table\n"); return ENOMEM; } if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan, cc, HAL_MODE_ALL, outdoor, xchanmode)) { if_printf(ifp, "unable to collect channel list from hal\n"); free(chans, M_TEMP); return EINVAL; } /* * Convert HAL channels to ieee80211 ones and insert * them in the table according to their channel number. */ for (i = 0; i < nchan; i++) { HAL_CHANNEL *c = &chans[i]; ix = ath_hal_mhz2ieee(c->channel, c->channelFlags); if (ix > IEEE80211_CHAN_MAX) { if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n", ix, c->channel, c->channelFlags); continue; } DPRINTF(ATH_DEBUG_ANY, ("%s: HAL channel %d/%d freq %d flags %#04x idx %d\n", sc->sc_dev.dv_xname, i, nchan, c->channel, c->channelFlags, ix)); /* NB: flags are known to be compatible */ if (ic->ic_channels[ix].ic_freq == 0) { ic->ic_channels[ix].ic_freq = c->channel; ic->ic_channels[ix].ic_flags = c->channelFlags; } else { /* channels overlap; e.g. 11g and 11b */ ic->ic_channels[ix].ic_flags |= c->channelFlags; } /* count valid channels */ sc->sc_nchan++; } free(chans, M_TEMP); if (sc->sc_nchan < 1) { if_printf(ifp, "no valid channels for regdomain %s(%u)\n", ieee80211_regdomain2name(ath_regdomain), sc->sc_ah->ah_capabilities.cap_eeprom.ee_regdomain); return ENOENT; } /* set an initial channel */ ic->ic_ibss_chan = &ic->ic_channels[0]; return 0; } int ath_rate_setup(struct ath_softc *sc, u_int mode) { struct ath_hal *ah = sc->sc_ah; struct ieee80211com *ic = &sc->sc_ic; const HAL_RATE_TABLE *rt; struct ieee80211_rateset *rs; int i, maxrates; switch (mode) { case IEEE80211_MODE_11A: sc->sc_rates[mode] = ath_hal_get_rate_table(ah, HAL_MODE_11A); break; case IEEE80211_MODE_11B: sc->sc_rates[mode] = ath_hal_get_rate_table(ah, HAL_MODE_11B); break; case IEEE80211_MODE_11G: sc->sc_rates[mode] = ath_hal_get_rate_table(ah, HAL_MODE_11G); break; case IEEE80211_MODE_TURBO: sc->sc_rates[mode] = ath_hal_get_rate_table(ah, HAL_MODE_TURBO); break; default: DPRINTF(ATH_DEBUG_ANY, ("%s: invalid mode %u\n", __func__, mode)); return 0; } rt = sc->sc_rates[mode]; if (rt == NULL) return 0; if (rt->rateCount > IEEE80211_RATE_MAXSIZE) { DPRINTF(ATH_DEBUG_ANY, ("%s: rate table too small (%u > %u)\n", __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE)); maxrates = IEEE80211_RATE_MAXSIZE; } else { maxrates = rt->rateCount; } rs = &ic->ic_sup_rates[mode]; for (i = 0; i < maxrates; i++) rs->rs_rates[i] = rt->info[i].dot11Rate; rs->rs_nrates = maxrates; return 1; } void ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) { const HAL_RATE_TABLE *rt; int i; memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); rt = sc->sc_rates[mode]; KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); for (i = 0; i < rt->rateCount; i++) sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i; bzero(sc->sc_hwmap, sizeof(sc->sc_hwmap)); for (i = 0; i < 32; i++) sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate; sc->sc_currates = rt; sc->sc_curmode = mode; } /* * Reset the rate control state for each 802.11 state transition. */ void ath_rate_ctl_reset(struct ath_softc *sc, enum ieee80211_state state) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; struct ath_node *an; if (ic->ic_opmode != IEEE80211_M_STA) { /* * When operating as a station the node table holds * the AP's that were discovered during scanning. * For any other operating mode we want to reset the * tx rate state of each node. */ TAILQ_FOREACH(ni, &ic->ic_node, ni_list) { ni->ni_txrate = 0; /* use lowest rate */ an = (struct ath_node *) ni; an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0; } } /* * Reset local xmit state; this is really only meaningful * when operating in station or adhoc mode. */ ni = ic->ic_bss; an = (struct ath_node *) ni; an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0; if (state == IEEE80211_S_RUN && ic->ic_opmode != IEEE80211_M_MONITOR) { /* start with highest negotiated rate */ KASSERT(ni->ni_rates.rs_nrates > 0, ("transition to RUN state w/ no rates!")); ni->ni_txrate = ni->ni_rates.rs_nrates - 1; } else { /* use lowest rate */ ni->ni_txrate = 0; } } /* * Examine and potentially adjust the transmit rate. */ void ath_rate_ctl(void *arg, struct ieee80211_node *ni) { struct ath_softc *sc = arg; struct ath_node *an = (struct ath_node *) ni; struct ieee80211_rateset *rs = &ni->ni_rates; int mod = 0, orate, enough; /* * Rate control * XXX: very primitive version. */ sc->sc_stats.ast_rate_calls++; enough = (an->an_tx_ok + an->an_tx_err >= 10); /* no packet reached -> down */ if (an->an_tx_err > 0 && an->an_tx_ok == 0) mod = -1; /* all packets needs retry in average -> down */ if (enough && an->an_tx_ok < an->an_tx_retr) mod = -1; /* no error and less than 10% of packets needs retry -> up */ if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10) mod = 1; orate = ni->ni_txrate; switch (mod) { case 0: if (enough && an->an_tx_upper > 0) an->an_tx_upper--; break; case -1: if (ni->ni_txrate > 0) { ni->ni_txrate--; sc->sc_stats.ast_rate_drop++; } an->an_tx_upper = 0; break; case 1: if (++an->an_tx_upper < 2) break; an->an_tx_upper = 0; if (ni->ni_txrate + 1 < rs->rs_nrates) { ni->ni_txrate++; sc->sc_stats.ast_rate_raise++; } break; } if (ni->ni_txrate != orate) { DPRINTF(ATH_DEBUG_RATE, ("%s: %dM -> %dM (%d ok, %d err, %d retr)\n", __func__, (rs->rs_rates[orate] & IEEE80211_RATE_VAL) / 2, (rs->rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL) / 2, an->an_tx_ok, an->an_tx_err, an->an_tx_retr)); } if (ni->ni_txrate != orate || enough) an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0; } #ifdef AR_DEBUG void ath_printrxbuf(struct ath_buf *bf, int done) { struct ath_desc *ds; int i; for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n", i, ds, (struct ath_desc *)bf->bf_daddr + i, ds->ds_link, ds->ds_data, ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1], !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!'); } } void ath_printtxbuf(struct ath_buf *bf, int done) { struct ath_desc *ds; int i; for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { printf("T%d (%p %p) " "%08x %08x %08x %08x %08x %08x %08x %08x %c\n", i, ds, (struct ath_desc *)bf->bf_daddr + i, ds->ds_link, ds->ds_data, ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3], !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!'); } } #endif /* AR_DEBUG */ int ath_gpio_attach(struct ath_softc *sc) { struct ath_hal *ah = sc->sc_ah; struct gpiobus_attach_args gba; int i; if (ah->ah_gpio_npins < 1) return 0; /* Initialize gpio pins array */ for (i = 0; i < ah->ah_gpio_npins; i++) { sc->sc_gpio_pins[i].pin_num = i; sc->sc_gpio_pins[i].pin_caps = GPIO_PIN_INPUT | GPIO_PIN_OUTPUT; /* Set pin mode to input */ ath_hal_set_gpio_input(ah, i); sc->sc_gpio_pins[i].pin_flags = GPIO_PIN_INPUT; /* Get pin input */ sc->sc_gpio_pins[i].pin_state = ath_hal_get_gpio(ah, i) ? GPIO_PIN_HIGH : GPIO_PIN_LOW; } /* Create gpio controller tag */ sc->sc_gpio_gc.gp_cookie = sc; sc->sc_gpio_gc.gp_pin_read = ath_gpio_pin_read; sc->sc_gpio_gc.gp_pin_write = ath_gpio_pin_write; sc->sc_gpio_gc.gp_pin_ctl = ath_gpio_pin_ctl; gba.gba_name = "gpio"; gba.gba_gc = &sc->sc_gpio_gc; gba.gba_pins = sc->sc_gpio_pins; gba.gba_npins = ah->ah_gpio_npins; #ifdef notyet #if NGPIO > 0 if (config_found(&sc->sc_dev, &gba, gpiobus_print) == NULL) return (ENODEV); #endif #endif return (0); } int ath_gpio_pin_read(void *arg, int pin) { struct ath_softc *sc = arg; struct ath_hal *ah = sc->sc_ah; return (ath_hal_get_gpio(ah, pin) ? GPIO_PIN_HIGH : GPIO_PIN_LOW); } void ath_gpio_pin_write(void *arg, int pin, int value) { struct ath_softc *sc = arg; struct ath_hal *ah = sc->sc_ah; ath_hal_set_gpio(ah, pin, value ? GPIO_PIN_HIGH : GPIO_PIN_LOW); } void ath_gpio_pin_ctl(void *arg, int pin, int flags) { struct ath_softc *sc = arg; struct ath_hal *ah = sc->sc_ah; if (flags & GPIO_PIN_INPUT) { ath_hal_set_gpio_input(ah, pin); } else if (flags & GPIO_PIN_OUTPUT) { ath_hal_set_gpio_output(ah, pin); } }