/* $OpenBSD: athn.c,v 1.93 2016/04/13 10:49:26 mpi Exp $ */ /*- * Copyright (c) 2009 Damien Bergamini * Copyright (c) 2008-2010 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Driver for Atheros 802.11a/g/n chipsets. */ #include "athn_usb.h" #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include /* uintptr_t */ #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #ifdef ATHN_DEBUG int athn_debug = 0; #endif void athn_radiotap_attach(struct athn_softc *); void athn_get_chanlist(struct athn_softc *); const char * athn_get_mac_name(struct athn_softc *); const char * athn_get_rf_name(struct athn_softc *); void athn_led_init(struct athn_softc *); void athn_set_led(struct athn_softc *, int); void athn_btcoex_init(struct athn_softc *); void athn_btcoex_enable(struct athn_softc *); void athn_btcoex_disable(struct athn_softc *); void athn_set_rxfilter(struct athn_softc *, uint32_t); void athn_get_chipid(struct athn_softc *); int athn_reset_power_on(struct athn_softc *); int athn_reset(struct athn_softc *, int); void athn_init_pll(struct athn_softc *, const struct ieee80211_channel *); int athn_set_power_awake(struct athn_softc *); void athn_set_power_sleep(struct athn_softc *); void athn_write_serdes(struct athn_softc *, const struct athn_serdes *); void athn_config_pcie(struct athn_softc *); void athn_config_nonpcie(struct athn_softc *); int athn_set_chan(struct athn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); int athn_switch_chan(struct athn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); void athn_get_delta_slope(uint32_t, uint32_t *, uint32_t *); void athn_reset_key(struct athn_softc *, int); int athn_set_key(struct ieee80211com *, struct ieee80211_node *, struct ieee80211_key *); void athn_delete_key(struct ieee80211com *, struct ieee80211_node *, struct ieee80211_key *); void athn_iter_func(void *, struct ieee80211_node *); void athn_calib_to(void *); int athn_init_calib(struct athn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); uint8_t athn_chan2fbin(struct ieee80211_channel *); int athn_interpolate(int, int, int, int, int); void athn_get_pier_ival(uint8_t, const uint8_t *, int, int *, int *); void athn_init_dma(struct athn_softc *); void athn_rx_start(struct athn_softc *); void athn_inc_tx_trigger_level(struct athn_softc *); int athn_stop_rx_dma(struct athn_softc *); int athn_rx_abort(struct athn_softc *); void athn_tx_reclaim(struct athn_softc *, int); int athn_tx_pending(struct athn_softc *, int); void athn_stop_tx_dma(struct athn_softc *, int); int athn_txtime(struct athn_softc *, int, int, u_int); void athn_set_sta_timers(struct athn_softc *); void athn_set_hostap_timers(struct athn_softc *); void athn_set_opmode(struct athn_softc *); void athn_set_bss(struct athn_softc *, struct ieee80211_node *); void athn_enable_interrupts(struct athn_softc *); void athn_disable_interrupts(struct athn_softc *); void athn_init_qos(struct athn_softc *); int athn_hw_reset(struct athn_softc *, struct ieee80211_channel *, struct ieee80211_channel *, int); struct ieee80211_node *athn_node_alloc(struct ieee80211com *); void athn_newassoc(struct ieee80211com *, struct ieee80211_node *, int); int athn_media_change(struct ifnet *); void athn_next_scan(void *); int athn_newstate(struct ieee80211com *, enum ieee80211_state, int); void athn_updateedca(struct ieee80211com *); int athn_clock_rate(struct athn_softc *); void athn_updateslot(struct ieee80211com *); void athn_start(struct ifnet *); void athn_watchdog(struct ifnet *); void athn_set_multi(struct athn_softc *); int athn_ioctl(struct ifnet *, u_long, caddr_t); int athn_init(struct ifnet *); void athn_stop(struct ifnet *, int); void athn_init_tx_queues(struct athn_softc *); int32_t athn_ani_get_rssi(struct athn_softc *); void athn_ani_ofdm_err_trigger(struct athn_softc *); void athn_ani_cck_err_trigger(struct athn_softc *); void athn_ani_lower_immunity(struct athn_softc *); void athn_ani_restart(struct athn_softc *); void athn_ani_monitor(struct athn_softc *); /* Extern functions. */ int ar5416_attach(struct athn_softc *); int ar9280_attach(struct athn_softc *); int ar9285_attach(struct athn_softc *); int ar9287_attach(struct athn_softc *); int ar9380_attach(struct athn_softc *); int ar5416_init_calib(struct athn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); int ar9285_init_calib(struct athn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); int ar9003_init_calib(struct athn_softc *); void ar9285_pa_calib(struct athn_softc *); void ar9271_pa_calib(struct athn_softc *); void ar9287_1_3_enable_async_fifo(struct athn_softc *); void ar9287_1_3_setup_async_fifo(struct athn_softc *); void ar9003_reset_txsring(struct athn_softc *); struct cfdriver athn_cd = { NULL, "athn", DV_IFNET }; int athn_attach(struct athn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; int error; /* Read hardware revision. */ athn_get_chipid(sc); if ((error = athn_reset_power_on(sc)) != 0) { printf("%s: could not reset chip\n", sc->sc_dev.dv_xname); return (error); } if ((error = athn_set_power_awake(sc)) != 0) { printf("%s: could not wakeup chip\n", sc->sc_dev.dv_xname); return (error); } if (AR_SREV_5416(sc) || AR_SREV_9160(sc)) error = ar5416_attach(sc); else if (AR_SREV_9280(sc)) error = ar9280_attach(sc); else if (AR_SREV_9285(sc)) error = ar9285_attach(sc); #if NATHN_USB > 0 else if (AR_SREV_9271(sc)) error = ar9285_attach(sc); #endif else if (AR_SREV_9287(sc)) error = ar9287_attach(sc); else if (AR_SREV_9380(sc) || AR_SREV_9485(sc)) error = ar9380_attach(sc); else error = ENOTSUP; if (error != 0) { printf("%s: could not attach chip\n", sc->sc_dev.dv_xname); return (error); } /* We can put the chip in sleep state now. */ athn_set_power_sleep(sc); if (!(sc->flags & ATHN_FLAG_USB)) { error = sc->ops.dma_alloc(sc); if (error != 0) { printf("%s: could not allocate DMA resources\n", sc->sc_dev.dv_xname); return (error); } /* Steal one Tx buffer for beacons. */ sc->bcnbuf = SIMPLEQ_FIRST(&sc->txbufs); SIMPLEQ_REMOVE_HEAD(&sc->txbufs, bf_list); } if (sc->flags & ATHN_FLAG_RFSILENT) { DPRINTF(("found RF switch connected to GPIO pin %d\n", sc->rfsilent_pin)); } DPRINTF(("%d key cache entries\n", sc->kc_entries)); /* * In HostAP mode, the number of STAs that we can handle is * limited by the number of entries in the HW key cache. * TKIP keys consume 2 entries in the cache. */ ic->ic_max_nnodes = (sc->kc_entries / 2) - IEEE80211_WEP_NKID; if (ic->ic_max_nnodes > IEEE80211_CACHE_SIZE) ic->ic_max_nnodes = IEEE80211_CACHE_SIZE; DPRINTF(("using %s loop power control\n", (sc->flags & ATHN_FLAG_OLPC) ? "open" : "closed")); DPRINTF(("txchainmask=0x%x rxchainmask=0x%x\n", sc->txchainmask, sc->rxchainmask)); /* Count the number of bits set (in lowest 3 bits). */ sc->ntxchains = ((sc->txchainmask >> 2) & 1) + ((sc->txchainmask >> 1) & 1) + ((sc->txchainmask >> 0) & 1); sc->nrxchains = ((sc->rxchainmask >> 2) & 1) + ((sc->rxchainmask >> 1) & 1) + ((sc->rxchainmask >> 0) & 1); if (AR_SINGLE_CHIP(sc)) { printf("%s: %s rev %d (%dT%dR), ROM rev %d, address %s\n", sc->sc_dev.dv_xname, athn_get_mac_name(sc), sc->mac_rev, sc->ntxchains, sc->nrxchains, sc->eep_rev, ether_sprintf(ic->ic_myaddr)); } else { printf("%s: MAC %s rev %d, RF %s (%dT%dR), ROM rev %d, " "address %s\n", sc->sc_dev.dv_xname, athn_get_mac_name(sc), sc->mac_rev, athn_get_rf_name(sc), sc->ntxchains, sc->nrxchains, sc->eep_rev, ether_sprintf(ic->ic_myaddr)); } timeout_set(&sc->scan_to, athn_next_scan, sc); timeout_set(&sc->calib_to, athn_calib_to, sc); sc->amrr.amrr_min_success_threshold = 1; sc->amrr.amrr_max_success_threshold = 15; ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ ic->ic_state = IEEE80211_S_INIT; /* Set device capabilities. */ ic->ic_caps = IEEE80211_C_WEP | /* WEP. */ IEEE80211_C_RSN | /* WPA/RSN. */ #ifndef IEEE80211_STA_ONLY IEEE80211_C_HOSTAP | /* Host AP mode supported. */ IEEE80211_C_APPMGT | /* Host AP power saving supported. */ #endif IEEE80211_C_MONITOR | /* Monitor mode supported. */ IEEE80211_C_SHSLOT | /* Short slot time supported. */ IEEE80211_C_SHPREAMBLE | /* Short preamble supported. */ IEEE80211_C_PMGT; /* Power saving supported. */ if (sc->flags & ATHN_FLAG_11N) { int i, ntxstreams, nrxstreams; /* Set HT capabilities. */ ic->ic_htcaps = IEEE80211_HTCAP_SMPS_DIS | IEEE80211_HTCAP_CBW20_40 | IEEE80211_HTCAP_SGI40 | IEEE80211_HTCAP_DSSSCCK40; if (AR_SREV_9271(sc) || AR_SREV_9287_10_OR_LATER(sc)) ic->ic_htcaps |= IEEE80211_HTCAP_SGI20; if (AR_SREV_9380_10_OR_LATER(sc)) ic->ic_htcaps |= IEEE80211_HTCAP_LDPC; if (AR_SREV_9280_10_OR_LATER(sc)) { ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC; ic->ic_htcaps |= 1 << IEEE80211_HTCAP_RXSTBC_SHIFT; } ntxstreams = sc->ntxchains; nrxstreams = sc->nrxchains; if (!AR_SREV_9380_10_OR_LATER(sc)) { ntxstreams = MIN(ntxstreams, 2); nrxstreams = MIN(nrxstreams, 2); } /* Set supported HT rates. */ for (i = 0; i < nrxstreams; i++) ic->ic_sup_mcs[i] = 0xff; ic->ic_tx_mcs_set |= IEEE80211_TX_MCS_SET_DEFINED; if (ntxstreams != nrxstreams) { ic->ic_tx_mcs_set |= IEEE80211_TX_RX_MCS_NOT_EQUAL; ic->ic_tx_mcs_set |= (ntxstreams - 1) << 2; } } /* Set supported rates. */ if (sc->flags & ATHN_FLAG_11G) { ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; } if (sc->flags & ATHN_FLAG_11A) { ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a; } /* Get the list of authorized/supported channels. */ athn_get_chanlist(sc); /* IBSS channel undefined for now. */ ic->ic_ibss_chan = &ic->ic_channels[0]; ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = athn_ioctl; ifp->if_start = athn_start; ifp->if_watchdog = athn_watchdog; memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); if_attach(ifp); ieee80211_ifattach(ifp); ic->ic_node_alloc = athn_node_alloc; ic->ic_newassoc = athn_newassoc; ic->ic_updateslot = athn_updateslot; ic->ic_updateedca = athn_updateedca; #ifdef notyet ic->ic_set_key = athn_set_key; ic->ic_delete_key = athn_delete_key; #endif /* Override 802.11 state transition machine. */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = athn_newstate; ieee80211_media_init(ifp, athn_media_change, ieee80211_media_status); #if NBPFILTER > 0 athn_radiotap_attach(sc); #endif return (0); } void athn_detach(struct athn_softc *sc) { struct ifnet *ifp = &sc->sc_ic.ic_if; int qid; timeout_del(&sc->scan_to); timeout_del(&sc->calib_to); if (!(sc->flags & ATHN_FLAG_USB)) { for (qid = 0; qid < ATHN_QID_COUNT; qid++) athn_tx_reclaim(sc, qid); /* Free Tx/Rx DMA resources. */ sc->ops.dma_free(sc); } /* Free ROM copy. */ if (sc->eep != NULL) free(sc->eep, M_DEVBUF, 0); ieee80211_ifdetach(ifp); if_detach(ifp); } #if NBPFILTER > 0 /* * Attach the interface to 802.11 radiotap. */ void athn_radiotap_attach(struct athn_softc *sc) { bpfattach(&sc->sc_drvbpf, &sc->sc_ic.ic_if, DLT_IEEE802_11_RADIO, sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); sc->sc_rxtap_len = sizeof(sc->sc_rxtapu); sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(ATHN_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof(sc->sc_txtapu); sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(ATHN_TX_RADIOTAP_PRESENT); } #endif void athn_get_chanlist(struct athn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint8_t chan; int i; if (sc->flags & ATHN_FLAG_11G) { for (i = 1; i <= 14; i++) { chan = i; ic->ic_channels[chan].ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } } if (sc->flags & ATHN_FLAG_11A) { for (i = 0; i < nitems(athn_5ghz_chans); i++) { chan = athn_5ghz_chans[i]; ic->ic_channels[chan].ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A; } } } void athn_rx_start(struct athn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t rfilt; /* Setup Rx DMA descriptors. */ sc->ops.rx_enable(sc); /* Set Rx filter. */ rfilt = AR_RX_FILTER_UCAST | AR_RX_FILTER_BCAST | AR_RX_FILTER_MCAST; /* Want Compressed Block Ack Requests. */ rfilt |= AR_RX_FILTER_COMPR_BAR; rfilt |= AR_RX_FILTER_BEACON; if (ic->ic_opmode != IEEE80211_M_STA) { rfilt |= AR_RX_FILTER_PROBEREQ; if (ic->ic_opmode == IEEE80211_M_MONITOR) rfilt |= AR_RX_FILTER_PROM; #ifndef IEEE80211_STA_ONLY if (AR_SREV_9280_10_OR_LATER(sc) && ic->ic_opmode == IEEE80211_M_HOSTAP) rfilt |= AR_RX_FILTER_PSPOLL; #endif } athn_set_rxfilter(sc, rfilt); /* Set BSSID mask. */ AR_WRITE(sc, AR_BSSMSKL, 0xffffffff); AR_WRITE(sc, AR_BSSMSKU, 0xffff); athn_set_opmode(sc); /* Set multicast filter. */ AR_WRITE(sc, AR_MCAST_FIL0, 0xffffffff); AR_WRITE(sc, AR_MCAST_FIL1, 0xffffffff); AR_WRITE(sc, AR_FILT_OFDM, 0); AR_WRITE(sc, AR_FILT_CCK, 0); AR_WRITE(sc, AR_MIBC, 0); AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING); AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING); /* XXX ANI. */ AR_WRITE(sc, AR_PHY_ERR_1, 0); AR_WRITE(sc, AR_PHY_ERR_2, 0); /* Disable HW crypto for now. */ AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_ENCRYPT_DIS | AR_DIAG_DECRYPT_DIS); /* Start PCU Rx. */ AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT); AR_WRITE_BARRIER(sc); } void athn_set_rxfilter(struct athn_softc *sc, uint32_t rfilt) { AR_WRITE(sc, AR_RX_FILTER, rfilt); #ifdef notyet reg = AR_READ(sc, AR_PHY_ERR); reg &= (AR_PHY_ERR_RADAR | AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING); AR_WRITE(sc, AR_PHY_ERR, reg); if (reg != 0) AR_SETBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA); else AR_CLRBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA); #else AR_WRITE(sc, AR_PHY_ERR, 0); AR_CLRBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA); #endif AR_WRITE_BARRIER(sc); } int athn_intr(void *xsc) { struct athn_softc *sc = xsc; struct ifnet *ifp = &sc->sc_ic.ic_if; if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) return (0); return (sc->ops.intr(sc)); } void athn_get_chipid(struct athn_softc *sc) { uint32_t reg; reg = AR_READ(sc, AR_SREV); if (MS(reg, AR_SREV_ID) == 0xff) { sc->mac_ver = MS(reg, AR_SREV_VERSION2); sc->mac_rev = MS(reg, AR_SREV_REVISION2); if (!(reg & AR_SREV_TYPE2_HOST_MODE)) sc->flags |= ATHN_FLAG_PCIE; } else { sc->mac_ver = MS(reg, AR_SREV_VERSION); sc->mac_rev = MS(reg, AR_SREV_REVISION); if (sc->mac_ver == AR_SREV_VERSION_5416_PCIE) sc->flags |= ATHN_FLAG_PCIE; } } const char * athn_get_mac_name(struct athn_softc *sc) { switch (sc->mac_ver) { case AR_SREV_VERSION_5416_PCI: return ("AR5416"); case AR_SREV_VERSION_5416_PCIE: return ("AR5418"); case AR_SREV_VERSION_9160: return ("AR9160"); case AR_SREV_VERSION_9280: return ("AR9280"); case AR_SREV_VERSION_9285: return ("AR9285"); case AR_SREV_VERSION_9271: return ("AR9271"); case AR_SREV_VERSION_9287: return ("AR9287"); case AR_SREV_VERSION_9380: return ("AR9380"); case AR_SREV_VERSION_9485: return ("AR9485"); } return ("unknown"); } /* * Return RF chip name (not for single-chip solutions). */ const char * athn_get_rf_name(struct athn_softc *sc) { KASSERT(!AR_SINGLE_CHIP(sc)); switch (sc->rf_rev) { case AR_RAD5133_SREV_MAJOR: /* Dual-band 3T3R. */ return ("AR5133"); case AR_RAD2133_SREV_MAJOR: /* Single-band 3T3R. */ return ("AR2133"); case AR_RAD5122_SREV_MAJOR: /* Dual-band 2T2R. */ return ("AR5122"); case AR_RAD2122_SREV_MAJOR: /* Single-band 2T2R. */ return ("AR2122"); } return ("unknown"); } int athn_reset_power_on(struct athn_softc *sc) { int ntries; /* Set force wake. */ AR_WRITE(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); if (!AR_SREV_9380_10_OR_LATER(sc)) { /* Make sure no DMA is active by doing an AHB reset. */ AR_WRITE(sc, AR_RC, AR_RC_AHB); } /* RTC reset and clear. */ AR_WRITE(sc, AR_RTC_RESET, 0); AR_WRITE_BARRIER(sc); DELAY(2); if (!AR_SREV_9380_10_OR_LATER(sc)) AR_WRITE(sc, AR_RC, 0); AR_WRITE(sc, AR_RTC_RESET, 1); /* Poll until RTC is ON. */ for (ntries = 0; ntries < 1000; ntries++) { if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_ON) break; DELAY(10); } if (ntries == 1000) { DPRINTF(("RTC not waking up\n")); return (ETIMEDOUT); } return (athn_reset(sc, 0)); } int athn_reset(struct athn_softc *sc, int cold) { int ntries; /* Set force wake. */ AR_WRITE(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); if (AR_READ(sc, AR_INTR_SYNC_CAUSE) & (AR_INTR_SYNC_LOCAL_TIMEOUT | AR_INTR_SYNC_RADM_CPL_TIMEOUT)) { AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0); AR_WRITE(sc, AR_RC, AR_RC_HOSTIF | (!AR_SREV_9380_10_OR_LATER(sc) ? AR_RC_AHB : 0)); } else if (!AR_SREV_9380_10_OR_LATER(sc)) AR_WRITE(sc, AR_RC, AR_RC_AHB); AR_WRITE(sc, AR_RTC_RC, AR_RTC_RC_MAC_WARM | (cold ? AR_RTC_RC_MAC_COLD : 0)); AR_WRITE_BARRIER(sc); DELAY(50); AR_WRITE(sc, AR_RTC_RC, 0); for (ntries = 0; ntries < 1000; ntries++) { if (!(AR_READ(sc, AR_RTC_RC) & (AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD))) break; DELAY(10); } if (ntries == 1000) { DPRINTF(("RTC stuck in MAC reset\n")); return (ETIMEDOUT); } AR_WRITE(sc, AR_RC, 0); AR_WRITE_BARRIER(sc); return (0); } int athn_set_power_awake(struct athn_softc *sc) { int ntries, error; /* Do a Power-On-Reset if shutdown. */ if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) { if ((error = athn_reset_power_on(sc)) != 0) return (error); if (!AR_SREV_9380_10_OR_LATER(sc)) athn_init_pll(sc, NULL); } AR_SETBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); AR_WRITE_BARRIER(sc); DELAY(50); /* Give chip the chance to awake. */ /* Poll until RTC is ON. */ for (ntries = 0; ntries < 4000; ntries++) { if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_ON) break; DELAY(50); AR_SETBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); } if (ntries == 4000) { DPRINTF(("RTC not waking up\n")); return (ETIMEDOUT); } AR_CLRBITS(sc, AR_STA_ID1, AR_STA_ID1_PWR_SAV); AR_WRITE_BARRIER(sc); return (0); } void athn_set_power_sleep(struct athn_softc *sc) { AR_SETBITS(sc, AR_STA_ID1, AR_STA_ID1_PWR_SAV); /* Allow the MAC to go to sleep. */ AR_CLRBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); if (!AR_SREV_9380_10_OR_LATER(sc)) AR_WRITE(sc, AR_RC, AR_RC_AHB | AR_RC_HOSTIF); /* * NB: Clearing RTC_RESET_EN when setting the chip to sleep mode * results in high power consumption on AR5416 chipsets. */ if (!AR_SREV_5416(sc) && !AR_SREV_9271(sc)) AR_CLRBITS(sc, AR_RTC_RESET, AR_RTC_RESET_EN); AR_WRITE_BARRIER(sc); } void athn_init_pll(struct athn_softc *sc, const struct ieee80211_channel *c) { uint32_t pll; if (AR_SREV_9380_10_OR_LATER(sc)) { if (AR_SREV_9485(sc)) AR_WRITE(sc, AR_RTC_PLL_CONTROL2, 0x886666); pll = SM(AR_RTC_9160_PLL_REFDIV, 0x5); pll |= SM(AR_RTC_9160_PLL_DIV, 0x2c); } else if (AR_SREV_9280_10_OR_LATER(sc)) { pll = SM(AR_RTC_9160_PLL_REFDIV, 0x05); if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c)) { if (sc->flags & ATHN_FLAG_FAST_PLL_CLOCK) pll = 0x142c; else if (AR_SREV_9280_20(sc)) pll = 0x2850; else pll |= SM(AR_RTC_9160_PLL_DIV, 0x28); } else pll |= SM(AR_RTC_9160_PLL_DIV, 0x2c); } else if (AR_SREV_9160_10_OR_LATER(sc)) { pll = SM(AR_RTC_9160_PLL_REFDIV, 0x05); if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c)) pll |= SM(AR_RTC_9160_PLL_DIV, 0x50); else pll |= SM(AR_RTC_9160_PLL_DIV, 0x58); } else { pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2; if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c)) pll |= SM(AR_RTC_PLL_DIV, 0x0a); else pll |= SM(AR_RTC_PLL_DIV, 0x0b); } DPRINTFN(5, ("AR_RTC_PLL_CONTROL=0x%08x\n", pll)); AR_WRITE(sc, AR_RTC_PLL_CONTROL, pll); if (AR_SREV_9271(sc)) { /* Switch core clock to 117MHz. */ AR_WRITE_BARRIER(sc); DELAY(500); AR_WRITE(sc, 0x50050, 0x304); } AR_WRITE_BARRIER(sc); DELAY(100); AR_WRITE(sc, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK); AR_WRITE_BARRIER(sc); } void athn_write_serdes(struct athn_softc *sc, const struct athn_serdes *serdes) { int i; /* Write sequence to Serializer/Deserializer. */ for (i = 0; i < serdes->nvals; i++) AR_WRITE(sc, serdes->regs[i], serdes->vals[i]); AR_WRITE_BARRIER(sc); } void athn_config_pcie(struct athn_softc *sc) { /* Disable PLL when in L0s as well as receiver clock when in L1. */ athn_write_serdes(sc, sc->serdes); DELAY(1000); /* Allow forcing of PCIe core into L1 state. */ AR_SETBITS(sc, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA); #ifndef ATHN_PCIE_WAEN AR_WRITE(sc, AR_WA, sc->workaround); #else AR_WRITE(sc, AR_WA, ATHN_PCIE_WAEN); #endif AR_WRITE_BARRIER(sc); } /* * Serializer/Deserializer programming for non-PCIe devices. */ static const uint32_t ar_nonpcie_serdes_regs[] = { AR_PCIE_SERDES, AR_PCIE_SERDES, AR_PCIE_SERDES, AR_PCIE_SERDES, AR_PCIE_SERDES, AR_PCIE_SERDES, AR_PCIE_SERDES, AR_PCIE_SERDES, AR_PCIE_SERDES, AR_PCIE_SERDES2, }; static const uint32_t ar_nonpcie_serdes_vals[] = { 0x9248fc00, 0x24924924, 0x28000029, 0x57160824, 0x25980579, 0x00000000, 0x1aaabe40, 0xbe105554, 0x000e1007, 0x00000000 }; static const struct athn_serdes ar_nonpcie_serdes = { nitems(ar_nonpcie_serdes_vals), ar_nonpcie_serdes_regs, ar_nonpcie_serdes_vals }; void athn_config_nonpcie(struct athn_softc *sc) { athn_write_serdes(sc, &ar_nonpcie_serdes); } int athn_set_chan(struct athn_softc *sc, struct ieee80211_channel *c, struct ieee80211_channel *extc) { struct athn_ops *ops = &sc->ops; int error, qid; /* Check that Tx is stopped, otherwise RF Bus grant will not work. */ for (qid = 0; qid < ATHN_QID_COUNT; qid++) if (athn_tx_pending(sc, qid)) return (EBUSY); /* Request RF Bus grant. */ if ((error = ops->rf_bus_request(sc)) != 0) return (error); ops->set_phy(sc, c, extc); /* Change the synthesizer. */ if ((error = ops->set_synth(sc, c, extc)) != 0) return (error); sc->curchan = c; sc->curchanext = extc; /* Set transmit power values for new channel. */ ops->set_txpower(sc, c, extc); /* Release the RF Bus grant. */ ops->rf_bus_release(sc); /* Write delta slope coeffs for modes where OFDM may be used. */ if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11B) ops->set_delta_slope(sc, c, extc); ops->spur_mitigate(sc, c, extc); /* XXX Load noisefloor values and start calibration. */ return (0); } int athn_switch_chan(struct athn_softc *sc, struct ieee80211_channel *c, struct ieee80211_channel *extc) { int error, qid; /* Disable interrupts. */ athn_disable_interrupts(sc); /* Stop all Tx queues. */ for (qid = 0; qid < ATHN_QID_COUNT; qid++) athn_stop_tx_dma(sc, qid); for (qid = 0; qid < ATHN_QID_COUNT; qid++) athn_tx_reclaim(sc, qid); /* Stop Rx. */ AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT); AR_WRITE(sc, AR_MIBC, AR_MIBC_FMC); AR_WRITE(sc, AR_MIBC, AR_MIBC_CMC); AR_WRITE(sc, AR_FILT_OFDM, 0); AR_WRITE(sc, AR_FILT_CCK, 0); athn_set_rxfilter(sc, 0); error = athn_stop_rx_dma(sc); if (error != 0) goto reset; #ifdef notyet /* AR9280 needs a full reset. */ if (AR_SREV_9280(sc)) #endif goto reset; /* If band or bandwidth changes, we need to do a full reset. */ if (c->ic_flags != sc->curchan->ic_flags || ((extc != NULL) ^ (sc->curchanext != NULL))) { DPRINTFN(2, ("channel band switch\n")); goto reset; } error = athn_set_power_awake(sc); if (error != 0) goto reset; error = athn_set_chan(sc, c, extc); if (error != 0) { reset: /* Error found, try a full reset. */ DPRINTFN(3, ("needs a full reset\n")); error = athn_hw_reset(sc, c, extc, 0); if (error != 0) /* Hopeless case. */ return (error); } athn_rx_start(sc); /* Re-enable interrupts. */ athn_enable_interrupts(sc); return (0); } void athn_get_delta_slope(uint32_t coeff, uint32_t *exponent, uint32_t *mantissa) { #define COEFF_SCALE_SHIFT 24 uint32_t exp, man; /* exponent = 14 - floor(log2(coeff)) */ for (exp = 31; exp > 0; exp--) if (coeff & (1 << exp)) break; exp = 14 - (exp - COEFF_SCALE_SHIFT); /* mantissa = floor(coeff * 2^exponent + 0.5) */ man = coeff + (1 << (COEFF_SCALE_SHIFT - exp - 1)); *mantissa = man >> (COEFF_SCALE_SHIFT - exp); *exponent = exp - 16; #undef COEFF_SCALE_SHIFT } void athn_reset_key(struct athn_softc *sc, int entry) { /* * NB: Key cache registers access special memory area that requires * two 32-bit writes to actually update the values in the internal * memory. Consequently, writes must be grouped by pair. */ AR_WRITE(sc, AR_KEYTABLE_KEY0(entry), 0); AR_WRITE(sc, AR_KEYTABLE_KEY1(entry), 0); AR_WRITE(sc, AR_KEYTABLE_KEY2(entry), 0); AR_WRITE(sc, AR_KEYTABLE_KEY3(entry), 0); AR_WRITE(sc, AR_KEYTABLE_KEY4(entry), 0); AR_WRITE(sc, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR); AR_WRITE(sc, AR_KEYTABLE_MAC0(entry), 0); AR_WRITE(sc, AR_KEYTABLE_MAC1(entry), 0); AR_WRITE_BARRIER(sc); } int athn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, struct ieee80211_key *k) { struct athn_softc *sc = ic->ic_softc; const uint8_t *txmic, *rxmic, *key, *addr; uintptr_t entry, micentry; uint32_t type, lo, hi; switch (k->k_cipher) { case IEEE80211_CIPHER_WEP40: type = AR_KEYTABLE_TYPE_40; break; case IEEE80211_CIPHER_WEP104: type = AR_KEYTABLE_TYPE_104; break; case IEEE80211_CIPHER_TKIP: type = AR_KEYTABLE_TYPE_TKIP; break; case IEEE80211_CIPHER_CCMP: type = AR_KEYTABLE_TYPE_CCM; break; default: /* Fallback to software crypto for other ciphers. */ return (ieee80211_set_key(ic, ni, k)); } if (!(k->k_flags & IEEE80211_KEY_GROUP)) entry = IEEE80211_WEP_NKID + IEEE80211_AID(ni->ni_associd); else entry = k->k_id; k->k_priv = (void *)entry; /* NB: See note about key cache registers access above. */ key = k->k_key; if (type == AR_KEYTABLE_TYPE_TKIP) { #ifndef IEEE80211_STA_ONLY if (ic->ic_opmode == IEEE80211_M_HOSTAP) { txmic = &key[16]; rxmic = &key[24]; } else #endif { rxmic = &key[16]; txmic = &key[24]; } /* Tx+Rx MIC key is at entry + 64. */ micentry = entry + 64; AR_WRITE(sc, AR_KEYTABLE_KEY0(micentry), LE_READ_4(&rxmic[0])); AR_WRITE(sc, AR_KEYTABLE_KEY1(micentry), LE_READ_2(&txmic[2])); AR_WRITE(sc, AR_KEYTABLE_KEY2(micentry), LE_READ_4(&rxmic[4])); AR_WRITE(sc, AR_KEYTABLE_KEY3(micentry), LE_READ_2(&txmic[0])); AR_WRITE(sc, AR_KEYTABLE_KEY4(micentry), LE_READ_4(&txmic[4])); AR_WRITE(sc, AR_KEYTABLE_TYPE(micentry), AR_KEYTABLE_TYPE_CLR); } AR_WRITE(sc, AR_KEYTABLE_KEY0(entry), LE_READ_4(&key[ 0])); AR_WRITE(sc, AR_KEYTABLE_KEY1(entry), LE_READ_2(&key[ 4])); AR_WRITE(sc, AR_KEYTABLE_KEY2(entry), LE_READ_4(&key[ 6])); AR_WRITE(sc, AR_KEYTABLE_KEY3(entry), LE_READ_2(&key[10])); AR_WRITE(sc, AR_KEYTABLE_KEY4(entry), LE_READ_4(&key[12])); AR_WRITE(sc, AR_KEYTABLE_TYPE(entry), type); if (!(k->k_flags & IEEE80211_KEY_GROUP)) { addr = ni->ni_macaddr; lo = LE_READ_4(&addr[0]); hi = LE_READ_2(&addr[4]); lo = lo >> 1 | hi << 31; hi = hi >> 1; } else lo = hi = 0; AR_WRITE(sc, AR_KEYTABLE_MAC0(entry), lo); AR_WRITE(sc, AR_KEYTABLE_MAC1(entry), hi | AR_KEYTABLE_VALID); AR_WRITE_BARRIER(sc); return (0); } void athn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni, struct ieee80211_key *k) { struct athn_softc *sc = ic->ic_softc; uintptr_t entry; switch (k->k_cipher) { case IEEE80211_CIPHER_WEP40: case IEEE80211_CIPHER_WEP104: case IEEE80211_CIPHER_CCMP: entry = (uintptr_t)k->k_priv; athn_reset_key(sc, entry); break; case IEEE80211_CIPHER_TKIP: entry = (uintptr_t)k->k_priv; athn_reset_key(sc, entry); athn_reset_key(sc, entry + 64); break; default: /* Fallback to software crypto for other ciphers. */ ieee80211_delete_key(ic, ni, k); } } void athn_led_init(struct athn_softc *sc) { struct athn_ops *ops = &sc->ops; ops->gpio_config_output(sc, sc->led_pin, AR_GPIO_OUTPUT_MUX_AS_OUTPUT); /* LED off, active low. */ athn_set_led(sc, 0); } void athn_set_led(struct athn_softc *sc, int on) { struct athn_ops *ops = &sc->ops; sc->led_state = on; ops->gpio_write(sc, sc->led_pin, !sc->led_state); } #ifdef ATHN_BT_COEXISTENCE void athn_btcoex_init(struct athn_softc *sc) { struct athn_ops *ops = &sc->ops; uint32_t reg; if (sc->flags & ATHN_FLAG_BTCOEX2WIRE) { /* Connect bt_active to baseband. */ AR_CLRBITS(sc, sc->gpio_input_en_off, AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF | AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF); AR_SETBITS(sc, sc->gpio_input_en_off, AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB); reg = AR_READ(sc, AR_GPIO_INPUT_MUX1); reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_ACTIVE, AR_GPIO_BTACTIVE_PIN); AR_WRITE(sc, AR_GPIO_INPUT_MUX1, reg); AR_WRITE_BARRIER(sc); ops->gpio_config_input(sc, AR_GPIO_BTACTIVE_PIN); } else { /* 3-wire. */ AR_SETBITS(sc, sc->gpio_input_en_off, AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_BB | AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB); reg = AR_READ(sc, AR_GPIO_INPUT_MUX1); reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_ACTIVE, AR_GPIO_BTACTIVE_PIN); reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_PRIORITY, AR_GPIO_BTPRIORITY_PIN); AR_WRITE(sc, AR_GPIO_INPUT_MUX1, reg); AR_WRITE_BARRIER(sc); ops->gpio_config_input(sc, AR_GPIO_BTACTIVE_PIN); ops->gpio_config_input(sc, AR_GPIO_BTPRIORITY_PIN); } } void athn_btcoex_enable(struct athn_softc *sc) { struct athn_ops *ops = &sc->ops; uint32_t reg; if (sc->flags & ATHN_FLAG_BTCOEX3WIRE) { AR_WRITE(sc, AR_BT_COEX_MODE, SM(AR_BT_MODE, AR_BT_MODE_SLOTTED) | SM(AR_BT_PRIORITY_TIME, 2) | SM(AR_BT_FIRST_SLOT_TIME, 5) | SM(AR_BT_QCU_THRESH, ATHN_QID_AC_BE) | AR_BT_TXSTATE_EXTEND | AR_BT_TX_FRAME_EXTEND | AR_BT_QUIET | AR_BT_RX_CLEAR_POLARITY); AR_WRITE(sc, AR_BT_COEX_WEIGHT, SM(AR_BTCOEX_BT_WGHT, AR_STOMP_LOW_BT_WGHT) | SM(AR_BTCOEX_WL_WGHT, AR_STOMP_LOW_WL_WGHT)); AR_WRITE(sc, AR_BT_COEX_MODE2, SM(AR_BT_BCN_MISS_THRESH, 50) | AR_BT_HOLD_RX_CLEAR | AR_BT_DISABLE_BT_ANT); AR_SETBITS(sc, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE); AR_CLRBITS(sc, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX); AR_WRITE_BARRIER(sc); ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN, AR_GPIO_OUTPUT_MUX_AS_RX_CLEAR_EXTERNAL); } else { /* 2-wire. */ ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN, AR_GPIO_OUTPUT_MUX_AS_TX_FRAME); } reg = AR_READ(sc, AR_GPIO_PDPU); reg &= ~(0x3 << (AR_GPIO_WLANACTIVE_PIN * 2)); reg |= 0x2 << (AR_GPIO_WLANACTIVE_PIN * 2); AR_WRITE(sc, AR_GPIO_PDPU, reg); AR_WRITE_BARRIER(sc); /* Disable PCIe Active State Power Management (ASPM). */ if (sc->sc_disable_aspm != NULL) sc->sc_disable_aspm(sc); /* XXX Start periodic timer. */ } void athn_btcoex_disable(struct athn_softc *sc) { struct athn_ops *ops = &sc->ops; ops->gpio_write(sc, AR_GPIO_WLANACTIVE_PIN, 0); ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN, AR_GPIO_OUTPUT_MUX_AS_OUTPUT); if (sc->flags & ATHN_FLAG_BTCOEX3WIRE) { AR_WRITE(sc, AR_BT_COEX_MODE, SM(AR_BT_MODE, AR_BT_MODE_DISABLED) | AR_BT_QUIET); AR_WRITE(sc, AR_BT_COEX_WEIGHT, 0); AR_WRITE(sc, AR_BT_COEX_MODE2, 0); /* XXX Stop periodic timer. */ } AR_WRITE_BARRIER(sc); /* XXX Restore ASPM setting? */ } #endif void athn_iter_func(void *arg, struct ieee80211_node *ni) { struct athn_softc *sc = arg; struct athn_node *an = (struct athn_node *)ni; ieee80211_amrr_choose(&sc->amrr, ni, &an->amn); } void athn_calib_to(void *arg) { extern int ticks; struct athn_softc *sc = arg; struct athn_ops *ops = &sc->ops; struct ieee80211com *ic = &sc->sc_ic; int s; s = splnet(); /* Do periodic (every 4 minutes) PA calibration. */ if (AR_SREV_9285_11_OR_LATER(sc) && !AR_SREV_9380_10_OR_LATER(sc) && (ticks - (sc->pa_calib_ticks + 240 * hz)) >= 0) { sc->pa_calib_ticks = ticks; if (AR_SREV_9271(sc)) ar9271_pa_calib(sc); else ar9285_pa_calib(sc); } /* Do periodic (every 30 seconds) temperature compensation. */ if ((sc->flags & ATHN_FLAG_OLPC) && ticks >= sc->olpc_ticks + 30 * hz) { sc->olpc_ticks = ticks; ops->olpc_temp_compensation(sc); } #ifdef notyet /* XXX ANI. */ athn_ani_monitor(sc); ops->next_calib(sc); #endif if (ic->ic_fixed_rate == -1) { if (ic->ic_opmode == IEEE80211_M_STA) athn_iter_func(sc, ic->ic_bss); else ieee80211_iterate_nodes(ic, athn_iter_func, sc); } timeout_add_msec(&sc->calib_to, 500); splx(s); } int athn_init_calib(struct athn_softc *sc, struct ieee80211_channel *c, struct ieee80211_channel *extc) { struct athn_ops *ops = &sc->ops; int error; if (AR_SREV_9380_10_OR_LATER(sc)) error = ar9003_init_calib(sc); else if (AR_SREV_9285_10_OR_LATER(sc)) error = ar9285_init_calib(sc, c, extc); else error = ar5416_init_calib(sc, c, extc); if (error != 0) return (error); if (!AR_SREV_9380_10_OR_LATER(sc)) { /* Do PA calibration. */ if (AR_SREV_9285_11_OR_LATER(sc)) { extern int ticks; sc->pa_calib_ticks = ticks; if (AR_SREV_9271(sc)) ar9271_pa_calib(sc); else ar9285_pa_calib(sc); } /* Do noisefloor calibration. */ ops->noisefloor_calib(sc); } if (AR_SREV_9160_10_OR_LATER(sc)) { /* Support IQ calibration. */ sc->sup_calib_mask = ATHN_CAL_IQ; if (AR_SREV_9380_10_OR_LATER(sc)) { /* Support temperature compensation calibration. */ sc->sup_calib_mask |= ATHN_CAL_TEMP; } else if (IEEE80211_IS_CHAN_5GHZ(c) || extc != NULL) { /* * ADC gain calibration causes uplink throughput * drops in HT40 mode on AR9287. */ if (!AR_SREV_9287(sc)) { /* Support ADC gain calibration. */ sc->sup_calib_mask |= ATHN_CAL_ADC_GAIN; } /* Support ADC DC offset calibration. */ sc->sup_calib_mask |= ATHN_CAL_ADC_DC; } } return (0); } /* * Adaptive noise immunity. */ int32_t athn_ani_get_rssi(struct athn_softc *sc) { return (0); /* XXX */ } void athn_ani_ofdm_err_trigger(struct athn_softc *sc) { struct athn_ani *ani = &sc->ani; struct athn_ops *ops = &sc->ops; int32_t rssi; /* First, raise noise immunity level, up to max. */ if (ani->noise_immunity_level < 4) { ani->noise_immunity_level++; ops->set_noise_immunity_level(sc, ani->noise_immunity_level); return; } /* Then, raise our spur immunity level, up to max. */ if (ani->spur_immunity_level < 7) { ani->spur_immunity_level++; ops->set_spur_immunity_level(sc, ani->spur_immunity_level); return; } #ifndef IEEE80211_STA_ONLY if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) { if (ani->firstep_level < 2) { ani->firstep_level++; ops->set_firstep_level(sc, ani->firstep_level); } return; } #endif rssi = athn_ani_get_rssi(sc); if (rssi > ATHN_ANI_RSSI_THR_HIGH) { /* * Beacon RSSI is high, turn off OFDM weak signal detection * or raise first step level as last resort. */ if (ani->ofdm_weak_signal) { ani->ofdm_weak_signal = 0; ops->disable_ofdm_weak_signal(sc); ani->spur_immunity_level = 0; ops->set_spur_immunity_level(sc, 0); } else if (ani->firstep_level < 2) { ani->firstep_level++; ops->set_firstep_level(sc, ani->firstep_level); } } else if (rssi > ATHN_ANI_RSSI_THR_LOW) { /* * Beacon RSSI is in mid range, we need OFDM weak signal * detection but we can raise first step level. */ if (!ani->ofdm_weak_signal) { ani->ofdm_weak_signal = 1; ops->enable_ofdm_weak_signal(sc); } if (ani->firstep_level < 2) { ani->firstep_level++; ops->set_firstep_level(sc, ani->firstep_level); } } else if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) { /* * Beacon RSSI is low, if in b/g mode, turn off OFDM weak * signal detection and zero first step level to maximize * CCK sensitivity. */ if (ani->ofdm_weak_signal) { ani->ofdm_weak_signal = 0; ops->disable_ofdm_weak_signal(sc); } if (ani->firstep_level > 0) { ani->firstep_level = 0; ops->set_firstep_level(sc, 0); } } } void athn_ani_cck_err_trigger(struct athn_softc *sc) { struct athn_ani *ani = &sc->ani; struct athn_ops *ops = &sc->ops; int32_t rssi; /* Raise noise immunity level, up to max. */ if (ani->noise_immunity_level < 4) { ani->noise_immunity_level++; ops->set_noise_immunity_level(sc, ani->noise_immunity_level); return; } #ifndef IEEE80211_STA_ONLY if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) { if (ani->firstep_level < 2) { ani->firstep_level++; ops->set_firstep_level(sc, ani->firstep_level); } return; } #endif rssi = athn_ani_get_rssi(sc); if (rssi > ATHN_ANI_RSSI_THR_LOW) { /* * Beacon RSSI is in mid or high range, raise first step * level. */ if (ani->firstep_level < 2) { ani->firstep_level++; ops->set_firstep_level(sc, ani->firstep_level); } } else if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) { /* * Beacon RSSI is low, zero first step level to maximize * CCK sensitivity. */ if (ani->firstep_level > 0) { ani->firstep_level = 0; ops->set_firstep_level(sc, 0); } } } void athn_ani_lower_immunity(struct athn_softc *sc) { struct athn_ani *ani = &sc->ani; struct athn_ops *ops = &sc->ops; int32_t rssi; #ifndef IEEE80211_STA_ONLY if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) { if (ani->firstep_level > 0) { ani->firstep_level--; ops->set_firstep_level(sc, ani->firstep_level); } return; } #endif rssi = athn_ani_get_rssi(sc); if (rssi > ATHN_ANI_RSSI_THR_HIGH) { /* * Beacon RSSI is high, leave OFDM weak signal detection * off or it may oscillate. */ } else if (rssi > ATHN_ANI_RSSI_THR_LOW) { /* * Beacon RSSI is in mid range, turn on OFDM weak signal * detection or lower first step level. */ if (!ani->ofdm_weak_signal) { ani->ofdm_weak_signal = 1; ops->enable_ofdm_weak_signal(sc); return; } if (ani->firstep_level > 0) { ani->firstep_level--; ops->set_firstep_level(sc, ani->firstep_level); return; } } else { /* Beacon RSSI is low, lower first step level. */ if (ani->firstep_level > 0) { ani->firstep_level--; ops->set_firstep_level(sc, ani->firstep_level); return; } } /* * Lower spur immunity level down to zero, or if all else fails, * lower noise immunity level down to zero. */ if (ani->spur_immunity_level > 0) { ani->spur_immunity_level--; ops->set_spur_immunity_level(sc, ani->spur_immunity_level); } else if (ani->noise_immunity_level > 0) { ani->noise_immunity_level--; ops->set_noise_immunity_level(sc, ani->noise_immunity_level); } } void athn_ani_restart(struct athn_softc *sc) { struct athn_ani *ani = &sc->ani; AR_WRITE(sc, AR_PHY_ERR_1, 0); AR_WRITE(sc, AR_PHY_ERR_2, 0); AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING); AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING); AR_WRITE_BARRIER(sc); ani->listen_time = 0; ani->ofdm_phy_err_count = 0; ani->cck_phy_err_count = 0; } void athn_ani_monitor(struct athn_softc *sc) { struct athn_ani *ani = &sc->ani; uint32_t cyccnt, txfcnt, rxfcnt, phy1, phy2; int32_t cycdelta, txfdelta, rxfdelta; int32_t listen_time; txfcnt = AR_READ(sc, AR_TFCNT); /* Tx frame count. */ rxfcnt = AR_READ(sc, AR_RFCNT); /* Rx frame count. */ cyccnt = AR_READ(sc, AR_CCCNT); /* Cycle count. */ if (ani->cyccnt != 0 && ani->cyccnt <= cyccnt) { cycdelta = cyccnt - ani->cyccnt; txfdelta = txfcnt - ani->txfcnt; rxfdelta = rxfcnt - ani->rxfcnt; listen_time = (cycdelta - txfdelta - rxfdelta) / (athn_clock_rate(sc) * 1000); } else listen_time = 0; ani->cyccnt = cyccnt; ani->txfcnt = txfcnt; ani->rxfcnt = rxfcnt; if (listen_time < 0) { athn_ani_restart(sc); return; } ani->listen_time += listen_time; phy1 = AR_READ(sc, AR_PHY_ERR_1); phy2 = AR_READ(sc, AR_PHY_ERR_2); if (phy1 < ani->ofdm_phy_err_base) { AR_WRITE(sc, AR_PHY_ERR_1, ani->ofdm_phy_err_base); AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING); } if (phy2 < ani->cck_phy_err_base) { AR_WRITE(sc, AR_PHY_ERR_2, ani->cck_phy_err_base); AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING); } if (phy1 < ani->ofdm_phy_err_base || phy2 < ani->cck_phy_err_base) { AR_WRITE_BARRIER(sc); return; } ani->ofdm_phy_err_count = phy1 - ani->ofdm_phy_err_base; ani->cck_phy_err_count = phy2 - ani->cck_phy_err_base; if (ani->listen_time > 5 * ATHN_ANI_PERIOD) { /* Check to see if we need to lower immunity. */ if (ani->ofdm_phy_err_count <= ani->listen_time * ani->ofdm_trig_low / 1000 && ani->cck_phy_err_count <= ani->listen_time * ani->cck_trig_low / 1000) athn_ani_lower_immunity(sc); athn_ani_restart(sc); } else if (ani->listen_time > ATHN_ANI_PERIOD) { /* Check to see if we need to raise immunity. */ if (ani->ofdm_phy_err_count > ani->listen_time * ani->ofdm_trig_high / 1000) { athn_ani_ofdm_err_trigger(sc); athn_ani_restart(sc); } else if (ani->cck_phy_err_count > ani->listen_time * ani->cck_trig_high / 1000) { athn_ani_cck_err_trigger(sc); athn_ani_restart(sc); } } } uint8_t athn_chan2fbin(struct ieee80211_channel *c) { if (IEEE80211_IS_CHAN_2GHZ(c)) return (c->ic_freq - 2300); else return ((c->ic_freq - 4800) / 5); } int athn_interpolate(int x, int x1, int y1, int x2, int y2) { if (x1 == x2) /* Prevents division by zero. */ return (y1); /* Linear interpolation. */ return (y1 + ((x - x1) * (y2 - y1)) / (x2 - x1)); } void athn_get_pier_ival(uint8_t fbin, const uint8_t *pierfreq, int npiers, int *lo, int *hi) { int i; for (i = 0; i < npiers; i++) if (pierfreq[i] == AR_BCHAN_UNUSED || pierfreq[i] > fbin) break; *hi = i; *lo = *hi - 1; if (*lo == -1) *lo = *hi; else if (*hi == npiers || pierfreq[*hi] == AR_BCHAN_UNUSED) *hi = *lo; } void athn_init_dma(struct athn_softc *sc) { uint32_t reg; if (!AR_SREV_9380_10_OR_LATER(sc)) { /* Set AHB not to do cacheline prefetches. */ AR_SETBITS(sc, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN); } reg = AR_READ(sc, AR_TXCFG); /* Let MAC DMA reads be in 128-byte chunks. */ reg = RW(reg, AR_TXCFG_DMASZ, AR_DMASZ_128B); /* Set initial Tx trigger level. */ if (AR_SREV_9285(sc) || AR_SREV_9271(sc)) reg = RW(reg, AR_TXCFG_FTRIG, AR_TXCFG_FTRIG_256B); else if (!AR_SREV_9380_10_OR_LATER(sc)) reg = RW(reg, AR_TXCFG_FTRIG, AR_TXCFG_FTRIG_512B); AR_WRITE(sc, AR_TXCFG, reg); /* Let MAC DMA writes be in 128-byte chunks. */ reg = AR_READ(sc, AR_RXCFG); reg = RW(reg, AR_RXCFG_DMASZ, AR_DMASZ_128B); AR_WRITE(sc, AR_RXCFG, reg); /* Setup Rx FIFO threshold to hold off Tx activities. */ AR_WRITE(sc, AR_RXFIFO_CFG, 512); /* Reduce the number of entries in PCU TXBUF to avoid wrap around. */ if (AR_SREV_9285(sc)) { AR_WRITE(sc, AR_PCU_TXBUF_CTRL, AR9285_PCU_TXBUF_CTRL_USABLE_SIZE); } else if (!AR_SREV_9271(sc)) { AR_WRITE(sc, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE); } AR_WRITE_BARRIER(sc); /* Reset Tx status ring. */ if (AR_SREV_9380_10_OR_LATER(sc)) ar9003_reset_txsring(sc); } void athn_inc_tx_trigger_level(struct athn_softc *sc) { uint32_t reg, ftrig; reg = AR_READ(sc, AR_TXCFG); ftrig = MS(reg, AR_TXCFG_FTRIG); /* * NB: The AR9285 and all single-stream parts have an issue that * limits the size of the PCU Tx FIFO to 2KB instead of 4KB. */ if (ftrig == ((AR_SREV_9285(sc) || AR_SREV_9271(sc)) ? 0x1f : 0x3f)) return; /* Already at max. */ reg = RW(reg, AR_TXCFG_FTRIG, ftrig + 1); AR_WRITE(sc, AR_TXCFG, reg); AR_WRITE_BARRIER(sc); } int athn_stop_rx_dma(struct athn_softc *sc) { int ntries; AR_WRITE(sc, AR_CR, AR_CR_RXD); /* Wait for Rx enable bit to go low. */ for (ntries = 0; ntries < 100; ntries++) { if (!(AR_READ(sc, AR_CR) & AR_CR_RXE)) return (0); DELAY(100); } DPRINTF(("Rx DMA failed to stop\n")); return (ETIMEDOUT); } int athn_rx_abort(struct athn_softc *sc) { int ntries; AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT); for (ntries = 0; ntries < 1000; ntries++) { if (MS(AR_READ(sc, AR_OBS_BUS_1), AR_OBS_BUS_1_RX_STATE) == 0) return (0); DELAY(10); } DPRINTF(("Rx failed to go idle in 10ms\n")); AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT); AR_WRITE_BARRIER(sc); return (ETIMEDOUT); } void athn_tx_reclaim(struct athn_softc *sc, int qid) { struct athn_txq *txq = &sc->txq[qid]; struct athn_tx_buf *bf; /* Reclaim all buffers queued in the specified Tx queue. */ /* NB: Tx DMA must be stopped. */ while ((bf = SIMPLEQ_FIRST(&txq->head)) != NULL) { SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list); bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, bf->bf_map); m_freem(bf->bf_m); bf->bf_m = NULL; bf->bf_ni = NULL; /* Nodes already freed! */ /* Link Tx buffer back to global free list. */ SIMPLEQ_INSERT_TAIL(&sc->txbufs, bf, bf_list); } } int athn_tx_pending(struct athn_softc *sc, int qid) { return (MS(AR_READ(sc, AR_QSTS(qid)), AR_Q_STS_PEND_FR_CNT) != 0 || (AR_READ(sc, AR_Q_TXE) & (1 << qid)) != 0); } void athn_stop_tx_dma(struct athn_softc *sc, int qid) { uint32_t tsflo; int ntries, i; AR_WRITE(sc, AR_Q_TXD, 1 << qid); for (ntries = 0; ntries < 40; ntries++) { if (!athn_tx_pending(sc, qid)) break; DELAY(100); } if (ntries == 40) { for (i = 0; i < 2; i++) { tsflo = AR_READ(sc, AR_TSF_L32) / 1024; AR_WRITE(sc, AR_QUIET2, SM(AR_QUIET2_QUIET_DUR, 10)); AR_WRITE(sc, AR_QUIET_PERIOD, 100); AR_WRITE(sc, AR_NEXT_QUIET_TIMER, tsflo); AR_SETBITS(sc, AR_TIMER_MODE, AR_QUIET_TIMER_EN); if (AR_READ(sc, AR_TSF_L32) / 1024 == tsflo) break; } AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH); AR_WRITE_BARRIER(sc); DELAY(200); AR_CLRBITS(sc, AR_TIMER_MODE, AR_QUIET_TIMER_EN); AR_WRITE_BARRIER(sc); for (ntries = 0; ntries < 40; ntries++) { if (!athn_tx_pending(sc, qid)) break; DELAY(100); } AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH); } AR_WRITE(sc, AR_Q_TXD, 0); AR_WRITE_BARRIER(sc); } int athn_txtime(struct athn_softc *sc, int len, int ridx, u_int flags) { #define divround(a, b) (((a) + (b) - 1) / (b)) int txtime; /* XXX HT. */ if (athn_rates[ridx].phy == IEEE80211_T_OFDM) { txtime = divround(8 + 4 * len + 3, athn_rates[ridx].rate); /* SIFS is 10us for 11g but Signal Extension adds 6us. */ txtime = 16 + 4 + 4 * txtime + 16; } else { txtime = divround(16 * len, athn_rates[ridx].rate); if (ridx != ATHN_RIDX_CCK1 && (flags & IEEE80211_F_SHPREAMBLE)) txtime += 72 + 24; else txtime += 144 + 48; txtime += 10; /* 10us SIFS. */ } return (txtime); #undef divround } void athn_init_tx_queues(struct athn_softc *sc) { int qid; for (qid = 0; qid < ATHN_QID_COUNT; qid++) { SIMPLEQ_INIT(&sc->txq[qid].head); sc->txq[qid].lastds = NULL; sc->txq[qid].wait = NULL; sc->txq[qid].queued = 0; AR_WRITE(sc, AR_DRETRY_LIMIT(qid), SM(AR_D_RETRY_LIMIT_STA_SH, 32) | SM(AR_D_RETRY_LIMIT_STA_LG, 32) | SM(AR_D_RETRY_LIMIT_FR_SH, 10)); AR_WRITE(sc, AR_QMISC(qid), AR_Q_MISC_DCU_EARLY_TERM_REQ); AR_WRITE(sc, AR_DMISC(qid), SM(AR_D_MISC_BKOFF_THRESH, 2) | AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN); } /* Init beacon queue. */ AR_SETBITS(sc, AR_QMISC(ATHN_QID_BEACON), AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_BEACON_USE | AR_Q_MISC_CBR_INCR_DIS1); AR_SETBITS(sc, AR_DMISC(ATHN_QID_BEACON), SM(AR_D_MISC_ARB_LOCKOUT_CNTRL, AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL) | AR_D_MISC_BEACON_USE | AR_D_MISC_POST_FR_BKOFF_DIS); AR_WRITE(sc, AR_DLCL_IFS(ATHN_QID_BEACON), SM(AR_D_LCL_IFS_CWMIN, 0) | SM(AR_D_LCL_IFS_CWMAX, 0) | SM(AR_D_LCL_IFS_AIFS, 1)); /* Init CAB (Content After Beacon) queue. */ AR_SETBITS(sc, AR_QMISC(ATHN_QID_CAB), AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_CBR_INCR_DIS1 | AR_Q_MISC_CBR_INCR_DIS0); AR_SETBITS(sc, AR_DMISC(ATHN_QID_CAB), SM(AR_D_MISC_ARB_LOCKOUT_CNTRL, AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL)); /* Init PS-Poll queue. */ AR_SETBITS(sc, AR_QMISC(ATHN_QID_PSPOLL), AR_Q_MISC_CBR_INCR_DIS1); /* Init UAPSD queue. */ AR_SETBITS(sc, AR_DMISC(ATHN_QID_UAPSD), AR_D_MISC_POST_FR_BKOFF_DIS); if (AR_SREV_9380_10_OR_LATER(sc)) { /* Enable MAC descriptor CRC check. */ AR_WRITE(sc, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN); } /* Enable DESC interrupts for all Tx queues. */ AR_WRITE(sc, AR_IMR_S0, 0x00ff0000); /* Enable EOL interrupts for all Tx queues except UAPSD. */ AR_WRITE(sc, AR_IMR_S1, 0x00df0000); AR_WRITE_BARRIER(sc); } void athn_set_sta_timers(struct athn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t tsfhi, tsflo, tsftu, reg; uint32_t intval, next_tbtt, next_dtim; int dtim_period, dtim_count, rem_dtim_count; tsfhi = AR_READ(sc, AR_TSF_U32); tsflo = AR_READ(sc, AR_TSF_L32); tsftu = AR_TSF_TO_TU(tsfhi, tsflo) + AR_FUDGE; /* Beacon interval in TU. */ intval = ic->ic_bss->ni_intval; next_tbtt = roundup(tsftu, intval); #ifdef notyet dtim_period = ic->ic_dtim_period; if (dtim_period <= 0) #endif dtim_period = 1; /* Assume all TIMs are DTIMs. */ #ifdef notyet dtim_count = ic->ic_dtim_count; if (dtim_count >= dtim_period) /* Should not happen. */ #endif dtim_count = 0; /* Assume last TIM was a DTIM. */ /* Compute number of remaining TIMs until next DTIM. */ rem_dtim_count = 0; /* XXX */ next_dtim = next_tbtt + rem_dtim_count * intval; AR_WRITE(sc, AR_NEXT_TBTT_TIMER, next_tbtt * IEEE80211_DUR_TU); AR_WRITE(sc, AR_BEACON_PERIOD, intval * IEEE80211_DUR_TU); AR_WRITE(sc, AR_DMA_BEACON_PERIOD, intval * IEEE80211_DUR_TU); /* * Set the number of consecutive beacons to miss before raising * a BMISS interrupt to 10. */ reg = AR_READ(sc, AR_RSSI_THR); reg = RW(reg, AR_RSSI_THR_BM_THR, 10); AR_WRITE(sc, AR_RSSI_THR, reg); AR_WRITE(sc, AR_NEXT_DTIM, (next_dtim - AR_SLEEP_SLOP) * IEEE80211_DUR_TU); AR_WRITE(sc, AR_NEXT_TIM, (next_tbtt - AR_SLEEP_SLOP) * IEEE80211_DUR_TU); /* CAB timeout is in 1/8 TU. */ AR_WRITE(sc, AR_SLEEP1, SM(AR_SLEEP1_CAB_TIMEOUT, AR_CAB_TIMEOUT_VAL * 8) | AR_SLEEP1_ASSUME_DTIM); AR_WRITE(sc, AR_SLEEP2, SM(AR_SLEEP2_BEACON_TIMEOUT, AR_MIN_BEACON_TIMEOUT_VAL)); AR_WRITE(sc, AR_TIM_PERIOD, intval * IEEE80211_DUR_TU); AR_WRITE(sc, AR_DTIM_PERIOD, dtim_period * intval * IEEE80211_DUR_TU); AR_SETBITS(sc, AR_TIMER_MODE, AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | AR_DTIM_TIMER_EN); /* Set TSF out-of-range threshold (fixed at 16k us). */ AR_WRITE(sc, AR_TSFOOR_THRESHOLD, 0x4240); AR_WRITE_BARRIER(sc); } #ifndef IEEE80211_STA_ONLY void athn_set_hostap_timers(struct athn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t intval, next_tbtt; /* Beacon interval in TU. */ intval = ic->ic_bss->ni_intval; next_tbtt = intval; AR_WRITE(sc, AR_NEXT_TBTT_TIMER, next_tbtt * IEEE80211_DUR_TU); AR_WRITE(sc, AR_NEXT_DMA_BEACON_ALERT, (next_tbtt - AR_BEACON_DMA_DELAY) * IEEE80211_DUR_TU); AR_WRITE(sc, AR_NEXT_CFP, (next_tbtt - AR_SWBA_DELAY) * IEEE80211_DUR_TU); AR_WRITE(sc, AR_BEACON_PERIOD, intval * IEEE80211_DUR_TU); AR_WRITE(sc, AR_DMA_BEACON_PERIOD, intval * IEEE80211_DUR_TU); AR_WRITE(sc, AR_SWBA_PERIOD, intval * IEEE80211_DUR_TU); AR_WRITE(sc, AR_NDP_PERIOD, intval * IEEE80211_DUR_TU); AR_WRITE(sc, AR_TIMER_MODE, AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN); AR_WRITE_BARRIER(sc); } #endif void athn_set_opmode(struct athn_softc *sc) { uint32_t reg; switch (sc->sc_ic.ic_opmode) { #ifndef IEEE80211_STA_ONLY case IEEE80211_M_HOSTAP: reg = AR_READ(sc, AR_STA_ID1); reg &= ~AR_STA_ID1_ADHOC; reg |= AR_STA_ID1_STA_AP | AR_STA_ID1_KSRCH_MODE; AR_WRITE(sc, AR_STA_ID1, reg); AR_CLRBITS(sc, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); break; case IEEE80211_M_IBSS: case IEEE80211_M_AHDEMO: reg = AR_READ(sc, AR_STA_ID1); reg &= ~AR_STA_ID1_STA_AP; reg |= AR_STA_ID1_ADHOC | AR_STA_ID1_KSRCH_MODE; AR_WRITE(sc, AR_STA_ID1, reg); AR_SETBITS(sc, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); break; #endif default: reg = AR_READ(sc, AR_STA_ID1); reg &= ~(AR_STA_ID1_ADHOC | AR_STA_ID1_STA_AP); reg |= AR_STA_ID1_KSRCH_MODE; AR_WRITE(sc, AR_STA_ID1, reg); break; } AR_WRITE_BARRIER(sc); } void athn_set_bss(struct athn_softc *sc, struct ieee80211_node *ni) { const uint8_t *bssid = ni->ni_bssid; AR_WRITE(sc, AR_BSS_ID0, LE_READ_4(&bssid[0])); AR_WRITE(sc, AR_BSS_ID1, LE_READ_2(&bssid[4]) | SM(AR_BSS_ID1_AID, IEEE80211_AID(ni->ni_associd))); AR_WRITE_BARRIER(sc); } void athn_enable_interrupts(struct athn_softc *sc) { uint32_t mask2; athn_disable_interrupts(sc); /* XXX */ AR_WRITE(sc, AR_IMR, sc->imask); mask2 = AR_READ(sc, AR_IMR_S2); mask2 &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC | AR_IMR_S2_CABEND | AR_IMR_S2_CABTO | AR_IMR_S2_TSFOOR); mask2 |= AR_IMR_S2_GTT | AR_IMR_S2_CST; AR_WRITE(sc, AR_IMR_S2, mask2); AR_CLRBITS(sc, AR_IMR_S5, AR_IMR_S5_TIM_TIMER); AR_WRITE(sc, AR_IER, AR_IER_ENABLE); AR_WRITE(sc, AR_INTR_ASYNC_ENABLE, AR_INTR_MAC_IRQ); AR_WRITE(sc, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ); AR_WRITE(sc, AR_INTR_SYNC_ENABLE, sc->isync); AR_WRITE(sc, AR_INTR_SYNC_MASK, sc->isync); AR_WRITE_BARRIER(sc); } void athn_disable_interrupts(struct athn_softc *sc) { AR_WRITE(sc, AR_IER, 0); (void)AR_READ(sc, AR_IER); AR_WRITE(sc, AR_INTR_ASYNC_ENABLE, 0); (void)AR_READ(sc, AR_INTR_ASYNC_ENABLE); AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0); (void)AR_READ(sc, AR_INTR_SYNC_ENABLE); AR_WRITE(sc, AR_IMR, 0); AR_CLRBITS(sc, AR_IMR_S2, AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC | AR_IMR_S2_CABEND | AR_IMR_S2_CABTO | AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST); AR_CLRBITS(sc, AR_IMR_S5, AR_IMR_S5_TIM_TIMER); AR_WRITE_BARRIER(sc); } void athn_init_qos(struct athn_softc *sc) { /* Initialize QoS settings. */ AR_WRITE(sc, AR_MIC_QOS_CONTROL, 0x100aa); AR_WRITE(sc, AR_MIC_QOS_SELECT, 0x3210); AR_WRITE(sc, AR_QOS_NO_ACK, SM(AR_QOS_NO_ACK_TWO_BIT, 2) | SM(AR_QOS_NO_ACK_BIT_OFF, 5) | SM(AR_QOS_NO_ACK_BYTE_OFF, 0)); AR_WRITE(sc, AR_TXOP_X, AR_TXOP_X_VAL); /* Initialize TXOP for all TIDs. */ AR_WRITE(sc, AR_TXOP_0_3, 0xffffffff); AR_WRITE(sc, AR_TXOP_4_7, 0xffffffff); AR_WRITE(sc, AR_TXOP_8_11, 0xffffffff); AR_WRITE(sc, AR_TXOP_12_15, 0xffffffff); AR_WRITE_BARRIER(sc); } int athn_hw_reset(struct athn_softc *sc, struct ieee80211_channel *c, struct ieee80211_channel *extc, int init) { struct ieee80211com *ic = &sc->sc_ic; struct athn_ops *ops = &sc->ops; uint32_t reg, def_ant, sta_id1, cfg_led, tsflo, tsfhi; int i, error; /* XXX not if already awake */ if ((error = athn_set_power_awake(sc)) != 0) { printf("%s: could not wakeup chip\n", sc->sc_dev.dv_xname); return (error); } /* Preserve the antenna on a channel switch. */ if ((def_ant = AR_READ(sc, AR_DEF_ANTENNA)) == 0) def_ant = 1; /* Preserve other registers. */ sta_id1 = AR_READ(sc, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B; cfg_led = AR_READ(sc, AR_CFG_LED) & (AR_CFG_LED_ASSOC_CTL_M | AR_CFG_LED_MODE_SEL_M | AR_CFG_LED_BLINK_THRESH_SEL_M | AR_CFG_LED_BLINK_SLOW); /* Mark PHY as inactive. */ ops->disable_phy(sc); if (init && AR_SREV_9271(sc)) { AR_WRITE(sc, AR9271_RESET_POWER_DOWN_CONTROL, AR9271_RADIO_RF_RST); DELAY(50); } if (AR_SREV_9280(sc) && (sc->flags & ATHN_FLAG_OLPC)) { /* Save TSF before it gets cleared. */ tsfhi = AR_READ(sc, AR_TSF_U32); tsflo = AR_READ(sc, AR_TSF_L32); /* NB: RTC reset clears TSF. */ error = athn_reset_power_on(sc); } else error = athn_reset(sc, 0); if (error != 0) { printf("%s: could not reset chip (error=%d)\n", sc->sc_dev.dv_xname, error); return (error); } /* XXX not if already awake */ if ((error = athn_set_power_awake(sc)) != 0) { printf("%s: could not wakeup chip\n", sc->sc_dev.dv_xname); return (error); } athn_init_pll(sc, c); ops->set_rf_mode(sc, c); if (sc->flags & ATHN_FLAG_RFSILENT) { /* Check that the radio is not disabled by hardware switch. */ reg = ops->gpio_read(sc, sc->rfsilent_pin); if (sc->flags & ATHN_FLAG_RFSILENT_REVERSED) reg = !reg; if (!reg) { printf("%s: radio is disabled by hardware switch\n", sc->sc_dev.dv_xname); return (EPERM); } } if (init && AR_SREV_9271(sc)) { AR_WRITE(sc, AR9271_RESET_POWER_DOWN_CONTROL, AR9271_GATE_MAC_CTL); DELAY(50); } if (AR_SREV_9280(sc) && (sc->flags & ATHN_FLAG_OLPC)) { /* Restore TSF if it got cleared. */ AR_WRITE(sc, AR_TSF_L32, tsflo); AR_WRITE(sc, AR_TSF_U32, tsfhi); } if (AR_SREV_9280_10_OR_LATER(sc)) AR_SETBITS(sc, sc->gpio_input_en_off, AR_GPIO_JTAG_DISABLE); if (AR_SREV_9287_13_OR_LATER(sc) && !AR_SREV_9380_10_OR_LATER(sc)) ar9287_1_3_enable_async_fifo(sc); /* Write init values to hardware. */ ops->hw_init(sc, c, extc); /* * Only >=AR9280 2.0 parts are capable of encrypting unicast * management frames using CCMP. */ if (AR_SREV_9280_20_OR_LATER(sc)) { reg = AR_READ(sc, AR_AES_MUTE_MASK1); /* Do not mask the subtype field in management frames. */ reg = RW(reg, AR_AES_MUTE_MASK1_FC0_MGMT, 0xff); reg = RW(reg, AR_AES_MUTE_MASK1_FC1_MGMT, ~(IEEE80211_FC1_RETRY | IEEE80211_FC1_PWR_MGT | IEEE80211_FC1_MORE_DATA)); AR_WRITE(sc, AR_AES_MUTE_MASK1, reg); } else if (AR_SREV_9160_10_OR_LATER(sc)) { /* Disable hardware crypto for management frames. */ AR_CLRBITS(sc, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE); AR_SETBITS(sc, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT); } if (ic->ic_curmode != IEEE80211_MODE_11B) ops->set_delta_slope(sc, c, extc); ops->spur_mitigate(sc, c, extc); ops->init_from_rom(sc, c, extc); /* XXX */ AR_WRITE(sc, AR_STA_ID0, LE_READ_4(&ic->ic_myaddr[0])); AR_WRITE(sc, AR_STA_ID1, LE_READ_2(&ic->ic_myaddr[4]) | sta_id1 | AR_STA_ID1_RTS_USE_DEF | AR_STA_ID1_CRPT_MIC_ENABLE); athn_set_opmode(sc); AR_WRITE(sc, AR_BSSMSKL, 0xffffffff); AR_WRITE(sc, AR_BSSMSKU, 0xffff); /* Restore previous antenna. */ AR_WRITE(sc, AR_DEF_ANTENNA, def_ant); AR_WRITE(sc, AR_BSS_ID0, 0); AR_WRITE(sc, AR_BSS_ID1, 0); AR_WRITE(sc, AR_ISR, 0xffffffff); AR_WRITE(sc, AR_RSSI_THR, SM(AR_RSSI_THR_BM_THR, 7)); if ((error = ops->set_synth(sc, c, extc)) != 0) { printf("%s: could not set channel\n", sc->sc_dev.dv_xname); return (error); } sc->curchan = c; sc->curchanext = extc; for (i = 0; i < AR_NUM_DCU; i++) AR_WRITE(sc, AR_DQCUMASK(i), 1 << i); athn_init_tx_queues(sc); /* Initialize interrupt mask. */ sc->imask = AR_IMR_TXDESC | AR_IMR_TXEOL | AR_IMR_RXERR | AR_IMR_RXEOL | AR_IMR_RXORN | AR_IMR_RXMINTR | AR_IMR_RXINTM | AR_IMR_GENTMR | AR_IMR_BCNMISC; if (AR_SREV_9380_10_OR_LATER(sc)) sc->imask |= AR_IMR_RXERR | AR_IMR_HP_RXOK; #ifndef IEEE80211_STA_ONLY if (0 && ic->ic_opmode == IEEE80211_M_HOSTAP) sc->imask |= AR_IMR_MIB; #endif AR_WRITE(sc, AR_IMR, sc->imask); AR_SETBITS(sc, AR_IMR_S2, AR_IMR_S2_GTT); AR_WRITE(sc, AR_INTR_SYNC_CAUSE, 0xffffffff); sc->isync = AR_INTR_SYNC_DEFAULT; if (sc->flags & ATHN_FLAG_RFSILENT) sc->isync |= AR_INTR_SYNC_GPIO_PIN(sc->rfsilent_pin); AR_WRITE(sc, AR_INTR_SYNC_ENABLE, sc->isync); AR_WRITE(sc, AR_INTR_SYNC_MASK, 0); if (AR_SREV_9380_10_OR_LATER(sc)) { AR_WRITE(sc, AR_INTR_PRIO_ASYNC_ENABLE, 0); AR_WRITE(sc, AR_INTR_PRIO_ASYNC_MASK, 0); AR_WRITE(sc, AR_INTR_PRIO_SYNC_ENABLE, 0); AR_WRITE(sc, AR_INTR_PRIO_SYNC_MASK, 0); } athn_init_qos(sc); AR_SETBITS(sc, AR_PCU_MISC, AR_PCU_MIC_NEW_LOC_ENA); if (AR_SREV_9287_13_OR_LATER(sc) && !AR_SREV_9380_10_OR_LATER(sc)) ar9287_1_3_setup_async_fifo(sc); /* Disable sequence number generation in hardware. */ AR_SETBITS(sc, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM); athn_init_dma(sc); /* Program observation bus to see MAC interrupts. */ AR_WRITE(sc, sc->obs_off, 8); /* Setup Rx interrupt mitigation. */ AR_WRITE(sc, AR_RIMT, SM(AR_RIMT_FIRST, 2000) | SM(AR_RIMT_LAST, 500)); ops->init_baseband(sc); if ((error = athn_init_calib(sc, c, extc)) != 0) { printf("%s: could not initialize calibration\n", sc->sc_dev.dv_xname); return (error); } ops->set_rxchains(sc); AR_WRITE(sc, AR_CFG_LED, cfg_led | AR_CFG_SCLK_32KHZ); if (sc->flags & ATHN_FLAG_USB) { if (AR_SREV_9271(sc)) AR_WRITE(sc, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB); else AR_WRITE(sc, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); } #if BYTE_ORDER == BIG_ENDIAN else { /* Default is LE, turn on swapping for BE. */ AR_WRITE(sc, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); } #endif AR_WRITE_BARRIER(sc); return (0); } struct ieee80211_node * athn_node_alloc(struct ieee80211com *ic) { return (malloc(sizeof(struct athn_node), M_DEVBUF, M_NOWAIT | M_ZERO)); } void athn_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) { struct athn_softc *sc = ic->ic_softc; struct athn_node *an = (void *)ni; struct ieee80211_rateset *rs = &ni->ni_rates; uint8_t rate; int ridx, i, j; ieee80211_amrr_node_init(&sc->amrr, &an->amn); /* Start at lowest available bit-rate, AMRR will raise. */ ni->ni_txrate = 0; for (i = 0; i < rs->rs_nrates; i++) { rate = rs->rs_rates[i] & IEEE80211_RATE_VAL; /* Map 802.11 rate to HW rate index. */ for (ridx = 0; ridx <= ATHN_RIDX_MAX; ridx++) if (athn_rates[ridx].rate == rate) break; an->ridx[i] = ridx; DPRINTFN(2, ("rate %d index %d\n", rate, ridx)); /* Compute fallback rate for retries. */ an->fallback[i] = i; for (j = i - 1; j >= 0; j--) { if (athn_rates[an->ridx[j]].phy == athn_rates[an->ridx[i]].phy) { an->fallback[i] = j; break; } } DPRINTFN(2, ("%d fallbacks to %d\n", i, an->fallback[i])); } } int athn_media_change(struct ifnet *ifp) { struct athn_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; uint8_t rate, ridx; int error; error = ieee80211_media_change(ifp); if (error != ENETRESET) return (error); if (ic->ic_fixed_rate != -1) { rate = ic->ic_sup_rates[ic->ic_curmode]. rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL; /* Map 802.11 rate to HW rate index. */ for (ridx = 0; ridx <= ATHN_RIDX_MAX; ridx++) if (athn_rates[ridx].rate == rate) break; sc->fixed_ridx = ridx; } if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) { athn_stop(ifp, 0); error = athn_init(ifp); } return (error); } void athn_next_scan(void *arg) { struct athn_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; int s; s = splnet(); if (ic->ic_state == IEEE80211_S_SCAN) ieee80211_next_scan(&ic->ic_if); splx(s); } int athn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct ifnet *ifp = &ic->ic_if; struct athn_softc *sc = ifp->if_softc; uint32_t reg; int error; timeout_del(&sc->calib_to); switch (nstate) { case IEEE80211_S_INIT: athn_set_led(sc, 0); break; case IEEE80211_S_SCAN: /* Make the LED blink while scanning. */ athn_set_led(sc, !sc->led_state); error = athn_switch_chan(sc, ic->ic_bss->ni_chan, NULL); if (error != 0) return (error); timeout_add_msec(&sc->scan_to, 200); break; case IEEE80211_S_AUTH: athn_set_led(sc, 0); error = athn_switch_chan(sc, ic->ic_bss->ni_chan, NULL); if (error != 0) return (error); break; case IEEE80211_S_ASSOC: break; case IEEE80211_S_RUN: athn_set_led(sc, 1); if (ic->ic_opmode == IEEE80211_M_MONITOR) break; /* Fake a join to initialize the Tx rate. */ athn_newassoc(ic, ic->ic_bss, 1); athn_set_bss(sc, ic->ic_bss); athn_disable_interrupts(sc); #ifndef IEEE80211_STA_ONLY if (ic->ic_opmode == IEEE80211_M_HOSTAP) { athn_set_hostap_timers(sc); /* Enable software beacon alert interrupts. */ sc->imask |= AR_IMR_SWBA; } else #endif { athn_set_sta_timers(sc); /* Enable beacon miss interrupts. */ sc->imask |= AR_IMR_BMISS; /* Stop receiving beacons from other BSS. */ reg = AR_READ(sc, AR_RX_FILTER); reg = (reg & ~AR_RX_FILTER_BEACON) | AR_RX_FILTER_MYBEACON; AR_WRITE(sc, AR_RX_FILTER, reg); AR_WRITE_BARRIER(sc); } athn_enable_interrupts(sc); if (sc->sup_calib_mask != 0) { memset(&sc->calib, 0, sizeof(sc->calib)); sc->cur_calib_mask = sc->sup_calib_mask; /* ops->do_calib(sc); */ } /* XXX Start ANI. */ timeout_add_msec(&sc->calib_to, 500); break; } return (sc->sc_newstate(ic, nstate, arg)); } void athn_updateedca(struct ieee80211com *ic) { #define ATHN_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ struct athn_softc *sc = ic->ic_softc; const struct ieee80211_edca_ac_params *ac; int aci, qid; for (aci = 0; aci < EDCA_NUM_AC; aci++) { ac = &ic->ic_edca_ac[aci]; qid = athn_ac2qid[aci]; AR_WRITE(sc, AR_DLCL_IFS(qid), SM(AR_D_LCL_IFS_CWMIN, ATHN_EXP2(ac->ac_ecwmin)) | SM(AR_D_LCL_IFS_CWMAX, ATHN_EXP2(ac->ac_ecwmax)) | SM(AR_D_LCL_IFS_AIFS, ac->ac_aifsn)); if (ac->ac_txoplimit != 0) { AR_WRITE(sc, AR_DCHNTIME(qid), SM(AR_D_CHNTIME_DUR, IEEE80211_TXOP_TO_US(ac->ac_txoplimit)) | AR_D_CHNTIME_EN); } else AR_WRITE(sc, AR_DCHNTIME(qid), 0); } AR_WRITE_BARRIER(sc); #undef ATHN_EXP2 } int athn_clock_rate(struct athn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; int clockrate; /* MHz. */ if (ic->ic_curmode == IEEE80211_MODE_11A) { if (sc->flags & ATHN_FLAG_FAST_PLL_CLOCK) clockrate = AR_CLOCK_RATE_FAST_5GHZ_OFDM; else clockrate = AR_CLOCK_RATE_5GHZ_OFDM; } else if (ic->ic_curmode == IEEE80211_MODE_11B) { clockrate = AR_CLOCK_RATE_CCK; } else clockrate = AR_CLOCK_RATE_2GHZ_OFDM; if (sc->curchanext != NULL) clockrate *= 2; return (clockrate); } void athn_updateslot(struct ieee80211com *ic) { struct athn_softc *sc = ic->ic_softc; int slot; slot = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; AR_WRITE(sc, AR_D_GBL_IFS_SLOT, slot * athn_clock_rate(sc)); AR_WRITE_BARRIER(sc); } void athn_start(struct ifnet *ifp) { struct athn_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; struct mbuf *m; if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd)) return; for (;;) { if (SIMPLEQ_EMPTY(&sc->txbufs)) { ifq_set_oactive(&ifp->if_snd); break; } /* Send pending management frames first. */ m = mq_dequeue(&ic->ic_mgtq); if (m != NULL) { ni = m->m_pkthdr.ph_cookie; goto sendit; } if (ic->ic_state != IEEE80211_S_RUN) break; m = mq_dequeue(&ic->ic_pwrsaveq); if (m != NULL) { ni = m->m_pkthdr.ph_cookie; goto sendit; } if (ic->ic_state != IEEE80211_S_RUN) break; /* Encapsulate and send data frames. */ IFQ_DEQUEUE(&ifp->if_snd, m); if (m == NULL) break; #if NBPFILTER > 0 if (ifp->if_bpf != NULL) bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT); #endif if ((m = ieee80211_encap(ifp, m, &ni)) == NULL) continue; sendit: #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT); #endif if (sc->ops.tx(sc, m, ni, 0) != 0) { ieee80211_release_node(ic, ni); ifp->if_oerrors++; continue; } sc->sc_tx_timer = 5; ifp->if_timer = 1; } } void athn_watchdog(struct ifnet *ifp) { struct athn_softc *sc = ifp->if_softc; ifp->if_timer = 0; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { printf("%s: device timeout\n", sc->sc_dev.dv_xname); athn_stop(ifp, 1); (void)athn_init(ifp); ifp->if_oerrors++; return; } ifp->if_timer = 1; } ieee80211_watchdog(ifp); } void athn_set_multi(struct athn_softc *sc) { struct arpcom *ac = &sc->sc_ic.ic_ac; struct ifnet *ifp = &ac->ac_if; struct ether_multi *enm; struct ether_multistep step; const uint8_t *addr; uint32_t val, lo, hi; uint8_t bit; if (ac->ac_multirangecnt > 0) ifp->if_flags |= IFF_ALLMULTI; if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) { lo = hi = 0xffffffff; goto done; } lo = hi = 0; ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { addr = enm->enm_addrlo; /* Calculate the XOR value of all eight 6-bit words. */ val = addr[0] | addr[1] << 8 | addr[2] << 16; bit = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; val = addr[3] | addr[4] << 8 | addr[5] << 16; bit ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; bit &= 0x3f; if (bit < 32) lo |= 1 << bit; else hi |= 1 << (bit - 32); ETHER_NEXT_MULTI(step, enm); } done: AR_WRITE(sc, AR_MCAST_FIL0, lo); AR_WRITE(sc, AR_MCAST_FIL1, hi); AR_WRITE_BARRIER(sc); } int athn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct athn_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ifreq *ifr; int s, error = 0; s = splnet(); switch (cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; /* FALLTHROUGH */ case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if ((ifp->if_flags & IFF_RUNNING) && ((ifp->if_flags ^ sc->sc_if_flags) & (IFF_ALLMULTI | IFF_PROMISC)) != 0) { athn_set_multi(sc); } else if (!(ifp->if_flags & IFF_RUNNING)) error = athn_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) athn_stop(ifp, 1); } sc->sc_if_flags = ifp->if_flags; break; case SIOCADDMULTI: case SIOCDELMULTI: ifr = (struct ifreq *)data; error = (cmd == SIOCADDMULTI) ? ether_addmulti(ifr, &ic->ic_ac) : ether_delmulti(ifr, &ic->ic_ac); if (error == ENETRESET) { athn_set_multi(sc); error = 0; } break; case SIOCS80211CHANNEL: error = ieee80211_ioctl(ifp, cmd, data); if (error == ENETRESET && ic->ic_opmode == IEEE80211_M_MONITOR) { if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) athn_switch_chan(sc, ic->ic_ibss_chan, NULL); error = 0; } break; default: error = ieee80211_ioctl(ifp, cmd, data); } if (error == ENETRESET) { error = 0; if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) { athn_stop(ifp, 0); error = athn_init(ifp); } } splx(s); return (error); } int athn_init(struct ifnet *ifp) { struct athn_softc *sc = ifp->if_softc; struct athn_ops *ops = &sc->ops; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_channel *c, *extc; int i, error; c = ic->ic_bss->ni_chan = ic->ic_ibss_chan; extc = NULL; /* In case a new MAC address has been configured. */ IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); /* For CardBus, power on the socket. */ if (sc->sc_enable != NULL) { if ((error = sc->sc_enable(sc)) != 0) { printf("%s: could not enable device\n", sc->sc_dev.dv_xname); goto fail; } if ((error = athn_reset_power_on(sc)) != 0) { printf("%s: could not power on device\n", sc->sc_dev.dv_xname); goto fail; } } if (!(sc->flags & ATHN_FLAG_PCIE)) athn_config_nonpcie(sc); else athn_config_pcie(sc); /* Reset HW key cache entries. */ for (i = 0; i < sc->kc_entries; i++) athn_reset_key(sc, i); ops->enable_antenna_diversity(sc); #ifdef ATHN_BT_COEXISTENCE /* Configure bluetooth coexistence for combo chips. */ if (sc->flags & ATHN_FLAG_BTCOEX) athn_btcoex_init(sc); #endif /* Configure LED. */ athn_led_init(sc); /* Configure hardware radio switch. */ if (sc->flags & ATHN_FLAG_RFSILENT) ops->rfsilent_init(sc); if ((error = athn_hw_reset(sc, c, extc, 1)) != 0) { printf("%s: unable to reset hardware; reset status %d\n", sc->sc_dev.dv_xname, error); goto fail; } /* Enable Rx. */ athn_rx_start(sc); /* Enable interrupts. */ athn_enable_interrupts(sc); #ifdef ATHN_BT_COEXISTENCE /* Enable bluetooth coexistence for combo chips. */ if (sc->flags & ATHN_FLAG_BTCOEX) athn_btcoex_enable(sc); #endif ifq_clr_oactive(&ifp->if_snd); ifp->if_flags |= IFF_RUNNING; #ifdef notyet if (ic->ic_flags & IEEE80211_F_WEPON) { /* Configure WEP keys. */ for (i = 0; i < IEEE80211_WEP_NKID; i++) athn_set_key(ic, NULL, &ic->ic_nw_keys[i]); } #endif if (ic->ic_opmode == IEEE80211_M_MONITOR) ieee80211_new_state(ic, IEEE80211_S_RUN, -1); else ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); return (0); fail: athn_stop(ifp, 1); return (error); } void athn_stop(struct ifnet *ifp, int disable) { struct athn_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; int qid; ifp->if_timer = sc->sc_tx_timer = 0; ifp->if_flags &= ~IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); timeout_del(&sc->scan_to); /* In case we were scanning, release the scan "lock". */ ic->ic_scan_lock = IEEE80211_SCAN_UNLOCKED; ieee80211_new_state(ic, IEEE80211_S_INIT, -1); #ifdef ATHN_BT_COEXISTENCE /* Disable bluetooth coexistence for combo chips. */ if (sc->flags & ATHN_FLAG_BTCOEX) athn_btcoex_disable(sc); #endif /* Disable interrupts. */ athn_disable_interrupts(sc); /* Acknowledge interrupts (avoids interrupt storms). */ AR_WRITE(sc, AR_INTR_SYNC_CAUSE, 0xffffffff); AR_WRITE(sc, AR_INTR_SYNC_MASK, 0); for (qid = 0; qid < ATHN_QID_COUNT; qid++) athn_stop_tx_dma(sc, qid); /* XXX call athn_hw_reset if Tx still pending? */ for (qid = 0; qid < ATHN_QID_COUNT; qid++) athn_tx_reclaim(sc, qid); /* Stop Rx. */ AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT); AR_WRITE(sc, AR_MIBC, AR_MIBC_FMC); AR_WRITE(sc, AR_MIBC, AR_MIBC_CMC); AR_WRITE(sc, AR_FILT_OFDM, 0); AR_WRITE(sc, AR_FILT_CCK, 0); AR_WRITE_BARRIER(sc); athn_set_rxfilter(sc, 0); athn_stop_rx_dma(sc); athn_reset(sc, 0); athn_init_pll(sc, NULL); athn_set_power_awake(sc); athn_reset(sc, 1); athn_init_pll(sc, NULL); athn_set_power_sleep(sc); /* For CardBus, power down the socket. */ if (disable && sc->sc_disable != NULL) sc->sc_disable(sc); } void athn_suspend(struct athn_softc *sc) { struct ifnet *ifp = &sc->sc_ic.ic_if; if (ifp->if_flags & IFF_RUNNING) athn_stop(ifp, 1); } void athn_wakeup(struct athn_softc *sc) { struct ifnet *ifp = &sc->sc_ic.ic_if; if (ifp->if_flags & IFF_UP) athn_init(ifp); }