/* $OpenBSD: atwvar.h,v 1.10 2005/12/09 03:46:42 jsg Exp $ */ /* $NetBSD: atwvar.h,v 1.13 2004/07/23 07:07:55 dyoung Exp $ */ /* * Copyright (c) 2003, 2004 The NetBSD Foundation, Inc. All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by David Young. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY David Young AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL David Young * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _DEV_IC_ATWVAR_H_ #define _DEV_IC_ATWVAR_H_ #include #include #include /* * Some misc. statics, useful for debugging. */ struct atw_stats { u_long ts_tx_tuf; /* transmit underflow errors */ u_long ts_tx_tro; /* transmit jabber timeouts */ u_long ts_tx_trt; /* retry count exceeded */ u_long ts_tx_tlt; /* lifetime exceeded */ u_long ts_tx_sofbr; /* packet size mismatch */ }; /* * Transmit descriptor list size. This is arbitrary, but allocate * enough descriptors for 64 pending transmissions and 16 segments * per packet. Since a descriptor holds 2 buffer addresses, that's * 8 descriptors per packet. This MUST work out to a power of 2. */ #define ATW_NTXSEGS 16 #define ATW_TXQUEUELEN 64 #define ATW_NTXDESC (ATW_TXQUEUELEN * ATW_NTXSEGS) #define ATW_NTXDESC_MASK (ATW_NTXDESC - 1) #define ATW_NEXTTX(x) ((x + 1) & ATW_NTXDESC_MASK) /* * Receive descriptor list size. We have one Rx buffer per incoming * packet, so this logic is a little simpler. */ #define ATW_NRXDESC 64 #define ATW_NRXDESC_MASK (ATW_NRXDESC - 1) #define ATW_NEXTRX(x) ((x + 1) & ATW_NRXDESC_MASK) /* * Control structures are DMA'd to the ADM8211 chip. We allocate them in * a single clump that maps to a single DMA segment to make several things * easier. */ struct atw_control_data { /* * The transmit descriptors. */ struct atw_txdesc acd_txdescs[ATW_NTXDESC]; /* * The receive descriptors. */ struct atw_rxdesc acd_rxdescs[ATW_NRXDESC]; }; #define ATW_CDOFF(x) offsetof(struct atw_control_data, x) #define ATW_CDTXOFF(x) ATW_CDOFF(acd_txdescs[(x)]) #define ATW_CDRXOFF(x) ATW_CDOFF(acd_rxdescs[(x)]) /* * Software state for transmit jobs. */ struct atw_txsoft { struct mbuf *txs_mbuf; /* head of our mbuf chain */ bus_dmamap_t txs_dmamap; /* our DMA map */ int txs_firstdesc; /* first descriptor in packet */ int txs_lastdesc; /* last descriptor in packet */ int txs_ndescs; /* number of descriptors */ SIMPLEQ_ENTRY(atw_txsoft) txs_q; }; SIMPLEQ_HEAD(atw_txsq, atw_txsoft); /* * Software state for receive jobs. */ struct atw_rxsoft { struct mbuf *rxs_mbuf; /* head of our mbuf chain */ bus_dmamap_t rxs_dmamap; /* our DMA map */ }; /* * Table which describes the transmit threshold mode. We generally * start at index 0. Whenever we get a transmit underrun, we increment * our index, falling back if we encounter the NULL terminator. */ struct atw_txthresh_tab { u_int32_t txth_opmode; /* OPMODE bits */ const char *txth_name; /* name of mode */ }; #define ATW_TXTHRESH_TAB_LO_RATE { \ { ATW_NAR_TR_L64, "64 bytes" }, \ { ATW_NAR_TR_L160, "160 bytes" }, \ { ATW_NAR_TR_L192, "192 bytes" }, \ { ATW_NAR_SF, "store and forward" }, \ { 0, NULL }, \ } #define ATW_TXTHRESH_TAB_HI_RATE { \ { ATW_NAR_TR_H96, "96 bytes" }, \ { ATW_NAR_TR_H288, "288 bytes" }, \ { ATW_NAR_TR_H544, "544 bytes" }, \ { ATW_NAR_SF, "store and forward" }, \ { 0, NULL }, \ } enum atw_rftype { ATW_RFTYPE_INTERSIL = 0, ATW_RFTYPE_RFMD = 1, ATW_RFTYPE_MARVEL = 2 }; enum atw_bbptype { ATW_BBPTYPE_INTERSIL = 0, ATW_BBPTYPE_RFMD = 1, ATW_BBPTYPE_MARVEL = 2, ATW_C_BBPTYPE_RFMD = 5 }; /* Radio capture format for ADMtek. */ #define ATW_RX_RADIOTAP_PRESENT \ ((1 << IEEE80211_RADIOTAP_FLAGS) | (1 << IEEE80211_RADIOTAP_RATE) | \ (1 << IEEE80211_RADIOTAP_CHANNEL) | \ (1 << IEEE80211_RADIOTAP_DB_ANTSIGNAL)) struct atw_rx_radiotap_header { struct ieee80211_radiotap_header ar_ihdr; u_int8_t ar_flags; u_int8_t ar_rate; u_int16_t ar_chan_freq; u_int16_t ar_chan_flags; u_int8_t ar_antsignal; } __attribute__((__packed__)); #define ATW_TX_RADIOTAP_PRESENT ((1 << IEEE80211_RADIOTAP_FLAGS) | \ (1 << IEEE80211_RADIOTAP_RATE) | \ (1 << IEEE80211_RADIOTAP_CHANNEL)) struct atw_tx_radiotap_header { struct ieee80211_radiotap_header at_ihdr; u_int8_t at_flags; u_int8_t at_rate; u_int16_t at_chan_freq; u_int16_t at_chan_flags; } __attribute__((__packed__)); enum atw_revision { ATW_REVISION_AB = 0x11, /* ADM8211A */ ATW_REVISION_AF = 0x15, /* ADM8211A? */ ATW_REVISION_BA = 0x20, /* ADM8211B */ ATW_REVISION_CA = 0x30 /* ADM8211C/CR */ }; struct atw_softc { struct device sc_dev; struct ieee80211com sc_ic; int (*sc_enable)(struct atw_softc *); void (*sc_disable)(struct atw_softc *); void (*sc_power)(struct atw_softc *, int); int (*sc_newstate)(struct ieee80211com *, enum ieee80211_state, int); void (*sc_recv_mgmt)(struct ieee80211com *, struct mbuf *, struct ieee80211_node *, int, int, u_int32_t); struct ieee80211_node *(*sc_node_alloc)(struct ieee80211com *); void (*sc_node_free)(struct ieee80211com *, struct ieee80211_node *); struct atw_stats sc_stats; /* debugging stats */ int sc_tx_timer; int sc_rescan_timer; bus_space_tag_t sc_st; /* bus space tag */ bus_space_handle_t sc_sh; /* bus space handle */ bus_dma_tag_t sc_dmat; /* bus dma tag */ void *sc_sdhook; /* shutdown hook */ void *sc_powerhook; /* power management hook */ u_int32_t sc_cacheline; /* cache line size */ u_int32_t sc_maxburst; /* maximum burst length */ const struct atw_txthresh_tab *sc_txth; int sc_txthresh; /* current tx threshold */ u_int sc_cur_chan; /* current channel */ int sc_flags; u_int16_t *sc_srom; u_int16_t sc_sromsz; caddr_t sc_radiobpf; bus_dma_segment_t sc_cdseg; /* control data memory */ int sc_cdnseg; /* number of segments */ bus_dmamap_t sc_cddmamap; /* control data DMA map */ #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr /* * Software state for transmit and receive descriptors. */ struct atw_txsoft sc_txsoft[ATW_TXQUEUELEN]; struct atw_rxsoft sc_rxsoft[ATW_NRXDESC]; /* * Control data structures. */ struct atw_control_data *sc_control_data; #define sc_txdescs sc_control_data->acd_txdescs #define sc_rxdescs sc_control_data->acd_rxdescs #define sc_setup_desc sc_control_data->acd_setup_desc int sc_txfree; /* number of free Tx descriptors */ int sc_txnext; /* next ready Tx descriptor */ int sc_ntxsegs; /* number of transmit segs per pkt */ struct atw_txsq sc_txfreeq; /* free Tx descsofts */ struct atw_txsq sc_txdirtyq; /* dirty Tx descsofts */ int sc_rxptr; /* next ready RX descriptor/descsoft */ u_int32_t sc_busmode; /* copy of ATW_PAR */ u_int32_t sc_opmode; /* copy of ATW_NAR */ u_int32_t sc_inten; /* copy of ATW_IER */ u_int32_t sc_wepctl; /* copy of ATW_WEPCTL */ u_int32_t sc_rxint_mask; /* mask of Rx interrupts we want */ u_int32_t sc_txint_mask; /* mask of Tx interrupts we want */ u_int32_t sc_linkint_mask;/* link-state interrupts mask */ enum atw_rftype sc_rftype; enum atw_bbptype sc_bbptype; u_int32_t sc_synctl_rd; u_int32_t sc_synctl_wr; u_int32_t sc_bbpctl_rd; u_int32_t sc_bbpctl_wr; void (*sc_recv_beacon)(struct ieee80211com *, struct mbuf *, int, u_int32_t); void (*sc_recv_prresp)(struct ieee80211com *, struct mbuf *, int, u_int32_t); /* ADM8211 state variables. */ u_int8_t sc_sram[ATW_SRAM_MAXSIZE]; u_int sc_sramlen; u_int8_t sc_bssid[IEEE80211_ADDR_LEN]; u_int8_t sc_rev; u_int8_t sc_rf3000_options1; u_int8_t sc_rf3000_options2; struct timeval sc_last_beacon; struct timeout sc_scan_to; union { struct atw_rx_radiotap_header tap; u_int8_t pad[64]; } sc_rxtapu; union { struct atw_tx_radiotap_header tap; u_int8_t pad[64]; } sc_txtapu; }; #define sc_rxtap sc_rxtapu.tap #define sc_txtap sc_txtapu.tap #define sc_if sc_ic.ic_if /* XXX this is fragile. try not to introduce any u_int32_t's. */ struct atw_frame { /*00*/ u_int8_t atw_dst[IEEE80211_ADDR_LEN]; /*06*/ u_int8_t atw_rate; /* TX rate in 100Kbps */ /*07*/ u_int8_t atw_service; /* 0 */ /*08*/ u_int16_t atw_paylen; /* payload length */ /*0a*/ u_int8_t atw_fc[2]; /* 802.11 Frame * Control */ /* 802.11 PLCP Length for first & last fragment */ /*0c*/ u_int16_t atw_tail_plcplen; /*0e*/ u_int16_t atw_head_plcplen; /* 802.11 Duration for first & last fragment */ /*10*/ u_int16_t atw_tail_dur; /*12*/ u_int16_t atw_head_dur; /*14*/ u_int8_t atw_addr4[IEEE80211_ADDR_LEN]; union { struct { /*1a*/ u_int16_t hdrctl; /*transmission control*/ /*1c*/ u_int16_t fragthr;/* fragmentation threshold * [0:11], zero [12:15]. */ /*1e*/ u_int8_t fragnum;/* fragment number [4:7], * zero [0:3]. */ /*1f*/ u_int8_t rtylmt; /* retry limit */ /*20*/ u_int8_t wepkey0[4];/* ??? */ /*24*/ u_int8_t wepkey1[4];/* ??? */ /*28*/ u_int8_t wepkey2[4];/* ??? */ /*2c*/ u_int8_t wepkey3[4];/* ??? */ /*30*/ u_int8_t keyid; /*31*/ u_int8_t reserved0[7]; } s1; struct { u_int8_t pad[6]; struct ieee80211_frame ihdr; } s2; } u; } __attribute__((__packed__)); #define atw_hdrctl u.s1.hdrctl #define atw_fragthr u.s1.fragthr #define atw_fragnum u.s1.fragnum #define atw_rtylmt u.s1.rtylmt #define atw_keyid u.s1.keyid #define atw_ihdr u.s2.ihdr #define ATW_HDRCTL_SHORT_PREAMBLE BIT(0) /* use short preamble */ #define ATW_HDRCTL_RTSCTS BIT(4) /* send RTS */ #define ATW_HDRCTL_WEP BIT(5) #define ATW_HDRCTL_UNKNOWN1 BIT(15) /* MAC adds FCS? */ #define ATW_HDRCTL_UNKNOWN2 BIT(8) #define ATW_FRAGTHR_FRAGTHR_MASK BITS(0, 11) #define ATW_FRAGNUM_FRAGNUM_MASK BITS(4, 7) /* Values for sc_flags. */ #define ATWF_MRL 0x00000010 /* memory read line okay */ #define ATWF_MRM 0x00000020 /* memory read multi okay */ #define ATWF_MWI 0x00000040 /* memory write inval okay */ #define ATWF_SHORT_PREAMBLE 0x00000080 /* short preamble enabled */ #define ATWF_RTSCTS 0x00000100 /* RTS/CTS enabled */ #define ATWF_ATTACHED 0x00000800 /* attach has succeeded */ #define ATWF_ENABLED 0x00001000 /* chip is enabled */ #define ATW_IS_ENABLED(sc) ((sc)->sc_flags & ATWF_ENABLED) #define ATW_CDTXADDR(sc, x) ((sc)->sc_cddma + ATW_CDTXOFF((x))) #define ATW_CDRXADDR(sc, x) ((sc)->sc_cddma + ATW_CDRXOFF((x))) #define ATW_CDTXSYNC(sc, x, n, ops) \ do { \ int __x, __n; \ \ __x = (x); \ __n = (n); \ \ /* If it will wrap around, sync to the end of the ring. */ \ if ((__x + __n) > ATW_NTXDESC) { \ bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ ATW_CDTXOFF(__x), sizeof(struct atw_txdesc) * \ (ATW_NTXDESC - __x), (ops)); \ __n -= (ATW_NTXDESC - __x); \ __x = 0; \ } \ \ /* Now sync whatever is left. */ \ bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ ATW_CDTXOFF(__x), sizeof(struct atw_txdesc) * __n, (ops)); \ } while (0) #define ATW_CDRXSYNC(sc, x, ops) \ bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ ATW_CDRXOFF((x)), sizeof(struct atw_rxdesc), (ops)) /* * Note we rely on MCLBYTES being a power of two. Because the `length' * field is only 11 bits, we must subtract 1 from the length to avoid * having it truncated to 0! */ #define ATW_INIT_RXDESC(sc, x) \ do { \ struct atw_rxsoft *__rxs = &sc->sc_rxsoft[(x)]; \ struct atw_rxdesc *__rxd = &sc->sc_rxdescs[(x)]; \ struct mbuf *__m = __rxs->rxs_mbuf; \ \ __rxd->ar_buf1 = \ htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \ __rxd->ar_buf2 = /* for descriptor chaining */ \ htole32(ATW_CDRXADDR((sc), ATW_NEXTRX((x)))); \ __rxd->ar_ctl = \ htole32(LSHIFT(((__m->m_ext.ext_size - 1) & ~0x3U), \ ATW_RXCTL_RBS1_MASK) | \ 0 /* ATW_RXCTL_RCH */ | \ ((x) == (ATW_NRXDESC - 1) ? ATW_RXCTL_RER : 0)); \ __rxd->ar_stat = htole32(ATW_RXSTAT_OWN); \ \ ATW_CDRXSYNC((sc), (x), \ BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \ } while (0) /* country codes from ADM8211 SROM */ #define ATW_COUNTRY_FCC 0 /* USA 1-11 */ #define ATW_COUNTRY_IC 1 /* Canada 1-11 */ #define ATW_COUNTRY_ETSI 2 /* European Union (?) 1-13 */ #define ATW_COUNTRY_SPAIN 3 /* 10-11 */ #define ATW_COUNTRY_FRANCE 4 /* 10-13 */ #define ATW_COUNTRY_MKK 5 /* Japan: 14 */ #define ATW_COUNTRY_MKK2 6 /* Japan: 1-14 */ /* * register space access macros */ #define ATW_READ(sc, reg) \ bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg)) #define ATW_WRITE(sc, reg, val) \ bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val)) #define ATW_SET(sc, reg, mask) \ ATW_WRITE((sc), (reg), ATW_READ((sc), (reg)) | (mask)) #define ATW_CLR(sc, reg, mask) \ ATW_WRITE((sc), (reg), ATW_READ((sc), (reg)) & ~(mask)) #define ATW_ISSET(sc, reg, mask) \ (ATW_READ((sc), (reg)) & (mask)) void atw_attach(struct atw_softc *); int atw_detach(struct atw_softc *); int atw_activate(struct device *, enum devact); int atw_intr(void *arg); int atw_enable(struct atw_softc *); void atw_power(int, void *); void atw_shutdown(void *); #endif /* _DEV_IC_ATWVAR_H_ */