/* $OpenBSD: cac.c,v 1.6 2001/08/16 17:26:51 brad Exp $ */ /* $NetBSD: cac.c,v 1.15 2000/11/08 19:20:35 ad Exp $ */ /* * Copyright (c) 2000 Michael Shalayeff * All rights reserved. * * The SCSI emulation layer is derived from gdt(4) driver, * Copyright (c) 1999, 2000 Niklas Hallqvist. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Michael Shalayeff. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR OR HIS RELATIVES BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF MIND, USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 2000 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Andrew Doran. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Driver for Compaq array controllers. */ /* #define CAC_DEBUG */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct cfdriver cac_cd = { NULL, "cac", DV_DULL }; int cac_scsi_cmd __P((struct scsi_xfer *)); void cacminphys __P((struct buf *bp)); struct scsi_adapter cac_switch = { cac_scsi_cmd, cacminphys, 0, 0, }; struct scsi_device cac_dev = { NULL, NULL, NULL, NULL }; struct cac_ccb *cac_ccb_alloc(struct cac_softc *, int); void cac_ccb_done(struct cac_softc *, struct cac_ccb *); void cac_ccb_free(struct cac_softc *, struct cac_ccb *); int cac_ccb_poll(struct cac_softc *, struct cac_ccb *, int); int cac_ccb_start(struct cac_softc *, struct cac_ccb *); int cac_cmd(struct cac_softc *sc, int command, void *data, int datasize, int drive, int blkno, int flags, struct scsi_xfer *xs); int cac_get_dinfo __P((struct cac_softc *sc, int target)); int cac_flush __P((struct cac_softc *sc)); void cac_shutdown __P((void *)); void cac_copy_internal_data __P((struct scsi_xfer *xs, void *v, size_t size)); struct cac_ccb *cac_l0_completed(struct cac_softc *); int cac_l0_fifo_full(struct cac_softc *); void cac_l0_intr_enable(struct cac_softc *, int); int cac_l0_intr_pending(struct cac_softc *); void cac_l0_submit(struct cac_softc *, struct cac_ccb *); void *cac_sdh; /* shutdown hook */ const struct cac_linkage cac_l0 = { cac_l0_completed, cac_l0_fifo_full, cac_l0_intr_enable, cac_l0_intr_pending, cac_l0_submit }; /* * Initialise our interface to the controller. */ int cac_init(struct cac_softc *sc, int startfw) { struct cac_controller_info cinfo; int error, rseg, size, i; bus_dma_segment_t seg; struct cac_ccb *ccb; SIMPLEQ_INIT(&sc->sc_ccb_free); SIMPLEQ_INIT(&sc->sc_ccb_queue); size = sizeof(struct cac_ccb) * CAC_MAX_CCBS; if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) { printf("%s: unable to allocate CCBs, error = %d\n", sc->sc_dv.dv_xname, error); return (-1); } if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size, (caddr_t *)&sc->sc_ccbs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) { printf("%s: unable to map CCBs, error = %d\n", sc->sc_dv.dv_xname, error); return (-1); } if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) { printf("%s: unable to create CCB DMA map, error = %d\n", sc->sc_dv.dv_xname, error); return (-1); } if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_ccbs, size, NULL, BUS_DMA_NOWAIT)) != 0) { printf("%s: unable to load CCB DMA map, error = %d\n", sc->sc_dv.dv_xname, error); return (-1); } sc->sc_ccbs_paddr = sc->sc_dmamap->dm_segs[0].ds_addr; memset(sc->sc_ccbs, 0, size); ccb = (struct cac_ccb *)sc->sc_ccbs; for (i = 0; i < CAC_MAX_CCBS; i++, ccb++) { /* Create the DMA map for this CCB's data */ error = bus_dmamap_create(sc->sc_dmat, CAC_MAX_XFER, CAC_SG_SIZE, CAC_MAX_XFER, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ccb->ccb_dmamap_xfer); if (error) { printf("%s: can't create ccb dmamap (%d)\n", sc->sc_dv.dv_xname, error); break; } ccb->ccb_flags = 0; ccb->ccb_paddr = sc->sc_ccbs_paddr + i * sizeof(struct cac_ccb); SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_free, ccb, ccb_chain); } /* Start firmware background tasks, if needed. */ if (startfw) { if (cac_cmd(sc, CAC_CMD_START_FIRMWARE, &cinfo, sizeof(cinfo), 0, 0, CAC_CCB_DATA_IN, NULL)) { printf("%s: CAC_CMD_START_FIRMWARE failed\n", sc->sc_dv.dv_xname); return (-1); } } if (cac_cmd(sc, CAC_CMD_GET_CTRL_INFO, &cinfo, sizeof(cinfo), 0, 0, CAC_CCB_DATA_IN, NULL)) { printf("%s: CAC_CMD_GET_CTRL_INFO failed\n", sc->sc_dv.dv_xname); return (-1); } if (!cinfo.num_drvs) { printf("%s: no volumes defined\n", sc->sc_dv.dv_xname); return (-1); } sc->sc_nunits = cinfo.num_drvs; sc->sc_dinfos = malloc(cinfo.num_drvs * sizeof(struct cac_drive_info), M_DEVBUF, M_NOWAIT); if (sc->sc_dinfos == NULL) { printf("%s: cannot allocate memory for drive_info\n", sc->sc_dv.dv_xname); return (-1); } bzero(sc->sc_dinfos, cinfo.num_drvs * sizeof(struct cac_drive_info)); sc->sc_link.adapter_softc = sc; sc->sc_link.adapter = &cac_switch; sc->sc_link.adapter_target = cinfo.num_drvs; sc->sc_link.adapter_buswidth = cinfo.num_drvs; sc->sc_link.device = &cac_dev; sc->sc_link.openings = CAC_MAX_CCBS / sc->sc_nunits; if (sc->sc_link.openings < 4 ) sc->sc_link.openings = 4; config_found(&sc->sc_dv, &sc->sc_link, scsiprint); /* Set our `shutdownhook' before we start any device activity. */ if (cac_sdh == NULL) cac_sdh = shutdownhook_establish(cac_shutdown, NULL); (*sc->sc_cl->cl_intr_enable)(sc, 1); return (0); } int cac_flush(sc) struct cac_softc *sc; { u_int8_t buf[512]; memset(buf, 0, sizeof(buf)); buf[0] = 1; return cac_cmd(sc, CAC_CMD_FLUSH_CACHE, buf, sizeof(buf), 0, 0, CAC_CCB_DATA_OUT, NULL); } /* * Shut down all `cac' controllers. */ void cac_shutdown(void *cookie) { extern struct cfdriver cac_cd; struct cac_softc *sc; int i; for (i = 0; i < cac_cd.cd_ndevs; i++) { if ((sc = (struct cac_softc *)device_lookup(&cac_cd, i)) == NULL) continue; cac_flush(sc); } } /* * Handle an interrupt from the controller: process finished CCBs and * dequeue any waiting CCBs. */ int cac_intr(v) void *v; { struct cac_softc *sc = v; struct cac_ccb *ccb; int ret = 0; if (!(sc->sc_cl->cl_intr_pending)(sc)) return 0; while ((ccb = (*sc->sc_cl->cl_completed)(sc)) != NULL) { ret++; cac_ccb_done(sc, ccb); cac_ccb_start(sc, NULL); } return (ret); } /* * Execute a [polled] command. */ int cac_cmd(struct cac_softc *sc, int command, void *data, int datasize, int drive, int blkno, int flags, struct scsi_xfer *xs) { struct cac_ccb *ccb; struct cac_sgb *sgb; int i, rv, size, nsegs; #ifdef CAC_DEBUG printf("cac_cmd op=%x drv=%d blk=%d data=%p[%x] fl=%x xs=%p ", command, drive, blkno, data, datasize, flags, xs); #endif if ((ccb = cac_ccb_alloc(sc, 0)) == NULL) { printf("%s: unable to alloc CCB", sc->sc_dv.dv_xname); return (ENOMEM); } if ((flags & (CAC_CCB_DATA_IN | CAC_CCB_DATA_OUT)) != 0) { bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer, (void *)data, datasize, NULL, BUS_DMA_NOWAIT); bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, (flags & CAC_CCB_DATA_IN) != 0 ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE); sgb = ccb->ccb_seg; nsegs = min(ccb->ccb_dmamap_xfer->dm_nsegs, CAC_SG_SIZE); size = 0; for (i = 0; i < nsegs; i++, sgb++) { size += ccb->ccb_dmamap_xfer->dm_segs[i].ds_len; sgb->length = htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len); sgb->addr = htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr); } } else { size = datasize; nsegs = 0; } ccb->ccb_hdr.drive = drive; ccb->ccb_hdr.size = htole16((sizeof(struct cac_req) + sizeof(struct cac_sgb) * CAC_SG_SIZE) >> 2); ccb->ccb_req.bcount = htole16(howmany(size, DEV_BSIZE)); ccb->ccb_req.command = command; ccb->ccb_req.sgcount = nsegs; ccb->ccb_req.blkno = htole32(blkno); ccb->ccb_flags = flags; ccb->ccb_datasize = size; ccb->ccb_xs = xs; if (!xs || xs->flags & SCSI_POLL) { int s; s = splbio(); /* Synchronous commands musn't wait. */ if ((*sc->sc_cl->cl_fifo_full)(sc)) { cac_ccb_free(sc, ccb); rv = -1; } else { ccb->ccb_flags |= CAC_CCB_ACTIVE; (*sc->sc_cl->cl_submit)(sc, ccb); rv = cac_ccb_poll(sc, ccb, 2000); } splx(s); } else rv = cac_ccb_start(sc, ccb); return (rv); } /* * Wait for the specified CCB to complete. Must be called at splbio. */ int cac_ccb_poll(struct cac_softc *sc, struct cac_ccb *wantccb, int timo) { struct cac_ccb *ccb; timo *= 10; do { for (; timo > 0; timo--) { if ((ccb = (*sc->sc_cl->cl_completed)(sc)) != NULL) break; DELAY(100); } if (timo <= 0) { printf("%s: timeout\n", sc->sc_dv.dv_xname); return (EBUSY); } cac_ccb_done(sc, ccb); } while (ccb != wantccb); return (0); } /* * Enqueue the specifed command (if any) and attempt to start all enqueued * commands. Must be called at splbio. */ int cac_ccb_start(struct cac_softc *sc, struct cac_ccb *ccb) { if (ccb != NULL) SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain); while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) { if ((*sc->sc_cl->cl_fifo_full)(sc)) return (EBUSY); SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb, ccb_chain); ccb->ccb_flags |= CAC_CCB_ACTIVE; (*sc->sc_cl->cl_submit)(sc, ccb); } return (0); } /* * Process a finished CCB. */ void cac_ccb_done(struct cac_softc *sc, struct cac_ccb *ccb) { struct scsi_xfer *xs = ccb->ccb_xs; int error = 0; if ((ccb->ccb_flags & CAC_CCB_ACTIVE) == 0) { #ifdef CAC_DEBUG printf("%s: CCB not active, xs=%p\n", sc->sc_dv.dv_xname, xs); #endif if (xs) { xs->error = XS_DRIVER_STUFFUP; scsi_done(xs); } return; } ccb->ccb_flags &= ~CAC_CCB_ACTIVE; if ((ccb->ccb_flags & (CAC_CCB_DATA_IN | CAC_CCB_DATA_OUT)) != 0) { bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, ccb->ccb_flags & CAC_CCB_DATA_IN ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer); } if ((ccb->ccb_req.error & CAC_RET_SOFT_ERROR) != 0) printf("%s: soft error; corrected\n", sc->sc_dv.dv_xname); if ((ccb->ccb_req.error & CAC_RET_HARD_ERROR) != 0) { error = 1; printf("%s: hard error\n", sc->sc_dv.dv_xname); } if ((ccb->ccb_req.error & CAC_RET_CMD_REJECTED) != 0) { error = 1; printf("%s: invalid request\n", sc->sc_dv.dv_xname); } if (xs) { if (error) xs->error = XS_DRIVER_STUFFUP; else { xs->resid = 0; xs->flags |= ITSDONE; } scsi_done(xs); } cac_ccb_free(sc, ccb); } /* * Allocate a CCB. */ struct cac_ccb * cac_ccb_alloc(struct cac_softc *sc, int nosleep) { struct cac_ccb *ccb; int s; s = splbio(); for (;;) { if ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_free)) != NULL) { SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_free, ccb, ccb_chain); break; } if (nosleep) { ccb = NULL; break; } tsleep(&sc->sc_ccb_free, PRIBIO, "cacccb", 0); } splx(s); return (ccb); } /* * Put a CCB onto the freelist. */ void cac_ccb_free(struct cac_softc *sc, struct cac_ccb *ccb) { int s; ccb->ccb_flags = 0; s = splbio(); SIMPLEQ_INSERT_HEAD(&sc->sc_ccb_free, ccb, ccb_chain); if (SIMPLEQ_NEXT(ccb, ccb_chain) == NULL) wakeup(&sc->sc_ccb_free); splx(s); } int cac_get_dinfo(sc, target) struct cac_softc *sc; int target; { if (sc->sc_dinfos[target].ncylinders) return (0); if (cac_cmd(sc, CAC_CMD_GET_LOG_DRV_INFO, &sc->sc_dinfos[target], sizeof(*sc->sc_dinfos), target, 0, CAC_CCB_DATA_IN, NULL)) { printf("%s: CMD_GET_LOG_DRV_INFO failed\n", sc->sc_dv.dv_xname); return (-1); } return (0); } void cacminphys(bp) struct buf *bp; { if (bp->b_bcount > CAC_MAX_XFER) bp->b_bcount = CAC_MAX_XFER; minphys(bp); } void cac_copy_internal_data(xs, v, size) struct scsi_xfer *xs; void *v; size_t size; { size_t copy_cnt; if (!xs->datalen) printf("uio move is not yet supported\n"); else { copy_cnt = MIN(size, xs->datalen); bcopy(v, xs->data, copy_cnt); } } int cac_scsi_cmd(xs) struct scsi_xfer *xs; { struct scsi_link *link = xs->sc_link; struct cac_softc *sc = link->adapter_softc; struct cac_drive_info *dinfo; struct scsi_inquiry_data inq; struct scsi_sense_data sd; struct { struct scsi_mode_header hd; struct scsi_blk_desc bd; union scsi_disk_pages dp; } mpd; struct scsi_read_cap_data rcd; u_int8_t target = link->target; u_int32_t blockno, blockcnt, size; struct scsi_rw *rw; struct scsi_rw_big *rwb; int op, flags, s; const char *p; if (target >= sc->sc_nunits || link->lun != 0) { xs->error = XS_DRIVER_STUFFUP; return (COMPLETE); } xs->error = XS_NOERROR; dinfo = &sc->sc_dinfos[target]; switch (xs->cmd->opcode) { case TEST_UNIT_READY: case START_STOP: #if 0 case VERIFY: #endif break; case REQUEST_SENSE: bzero(&sd, sizeof sd); sd.error_code = 0x70; sd.segment = 0; sd.flags = SKEY_NO_SENSE; *(u_int32_t*)sd.info = htole32(0); sd.extra_len = 0; cac_copy_internal_data(xs, &sd, sizeof sd); break; case INQUIRY: if (cac_get_dinfo(sc, target)) { xs->error = XS_DRIVER_STUFFUP; scsi_done(xs); return (COMPLETE); } bzero(&inq, sizeof inq); inq.device = T_DIRECT; inq.dev_qual2 = 0; inq.version = 2; inq.response_format = 2; inq.additional_length = 32; strcpy(inq.vendor, "Compaq "); switch (CAC_GET1(dinfo->mirror)) { case 0: p = "RAID0"; break; case 1: p = "RAID4"; break; case 2: p = "RAID1"; break; case 3: p = "RAID5"; break; default:p = ""; break; } sprintf(inq.product, "%s volume #%02d", p, target); strcpy(inq.revision, " "); cac_copy_internal_data(xs, &inq, sizeof inq); break; case MODE_SENSE: if (cac_get_dinfo(sc, target)) { xs->error = XS_DRIVER_STUFFUP; scsi_done(xs); return (COMPLETE); } bzero(&mpd, sizeof mpd); switch (((struct scsi_mode_sense *)xs->cmd)->page) { case 4: /* scsi_disk.h says this should be 0x16 */ mpd.dp.rigid_geometry.pg_length = 0x16; mpd.hd.data_length = sizeof mpd.hd + sizeof mpd.bd + mpd.dp.rigid_geometry.pg_length; mpd.hd.blk_desc_len = sizeof mpd.bd; /* XXX */ mpd.hd.dev_spec = 0; _lto3b(CAC_SECTOR_SIZE, mpd.bd.blklen); mpd.dp.rigid_geometry.pg_code = 4; _lto3b(CAC_GET2(dinfo->ncylinders), mpd.dp.rigid_geometry.ncyl); mpd.dp.rigid_geometry.nheads = CAC_GET1(dinfo->nheads); cac_copy_internal_data(xs, (u_int8_t *)&mpd, sizeof mpd); break; default: printf("%s: mode sense page %d not simulated\n", sc->sc_dv.dv_xname, ((struct scsi_mode_sense *)xs->cmd)->page); xs->error = XS_DRIVER_STUFFUP; return (TRY_AGAIN_LATER); } break; case READ_CAPACITY: if (cac_get_dinfo(sc, target)) { xs->error = XS_DRIVER_STUFFUP; scsi_done(xs); return (COMPLETE); } bzero(&rcd, sizeof rcd); _lto4b( CAC_GET2(dinfo->ncylinders) * CAC_GET1(dinfo->nheads) * CAC_GET1(dinfo->nsectors), rcd.addr); _lto4b(CAC_SECTOR_SIZE, rcd.length); cac_copy_internal_data(xs, &rcd, sizeof rcd); break; case PREVENT_ALLOW: return (COMPLETE); case SYNCHRONIZE_CACHE: s = splbio(); if (cac_flush(sc)) { splx(s); xs->error = XS_DRIVER_STUFFUP; scsi_done(xs); } else splx(s); return (COMPLETE); case READ_COMMAND: case READ_BIG: case WRITE_COMMAND: case WRITE_BIG: s = splbio(); flags = 0; if (xs->cmd->opcode != SYNCHRONIZE_CACHE) { /* A read or write operation. */ if (xs->cmdlen == 6) { rw = (struct scsi_rw *)xs->cmd; blockno = _3btol(rw->addr) & (SRW_TOPADDR << 16 | 0xffff); blockcnt = rw->length ? rw->length : 0x100; } else { rwb = (struct scsi_rw_big *)xs->cmd; blockno = _4btol(rwb->addr); blockcnt = _2btol(rwb->length); } size = CAC_GET2(dinfo->ncylinders) * CAC_GET1(dinfo->nheads) * CAC_GET1(dinfo->nsectors); if (blockno >= size || blockno + blockcnt > size) { splx(s); printf("%s: out of bounds %u-%u >= %u\n", sc->sc_dv.dv_xname, blockno, blockcnt, size); xs->error = XS_DRIVER_STUFFUP; scsi_done(xs); return (COMPLETE); } } switch (xs->cmd->opcode) { case READ_COMMAND: case READ_BIG: op = CAC_CMD_READ; flags = CAC_CCB_DATA_IN; break; case WRITE_COMMAND: case WRITE_BIG: op = CAC_CMD_WRITE; flags = CAC_CCB_DATA_OUT; break; } if (cac_cmd(sc, op, xs->data, blockcnt * DEV_BSIZE, target, blockno, flags, xs)) { splx(s); if (xs->flags & SCSI_POLL) { xs->error = XS_TIMEOUT; return (TRY_AGAIN_LATER); } else { xs->error = XS_DRIVER_STUFFUP; scsi_done(xs); return (COMPLETE); } } splx(s); if (xs->flags & SCSI_POLL) return (COMPLETE); else return (SUCCESSFULLY_QUEUED); default: xs->error = XS_DRIVER_STUFFUP; } return (COMPLETE); } /* * Board specific linkage shared between multiple bus types. */ int cac_l0_fifo_full(struct cac_softc *sc) { return (cac_inl(sc, CAC_REG_CMD_FIFO) == 0); } void cac_l0_submit(struct cac_softc *sc, struct cac_ccb *ccb) { #ifdef CAC_DEBUG printf("submit-%x ", ccb->ccb_paddr); #endif bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); cac_outl(sc, CAC_REG_CMD_FIFO, ccb->ccb_paddr); } struct cac_ccb * cac_l0_completed(sc) struct cac_softc *sc; { struct cac_ccb *ccb; paddr_t off; if (!(off = cac_inl(sc, CAC_REG_DONE_FIFO))) return NULL; #ifdef CAC_DEBUG printf("compl-%x ", off); #endif ccb = (struct cac_ccb *)(sc->sc_ccbs + ((off & ~3) - sc->sc_ccbs_paddr)); bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); return (ccb); } int cac_l0_intr_pending(struct cac_softc *sc) { return (cac_inl(sc, CAC_REG_INTR_PENDING)); } void cac_l0_intr_enable(struct cac_softc *sc, int state) { cac_outl(sc, CAC_REG_INTR_MASK, state ? CAC_INTR_ENABLE : CAC_INTR_DISABLE); }