/* $OpenBSD: dc.c,v 1.80 2005/01/15 05:24:11 brad Exp $ */ /* * Copyright (c) 1997, 1998, 1999 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/pci/if_dc.c,v 1.43 2001/01/19 23:55:07 wpaul Exp $ */ /* * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143 * series chips and several workalikes including the following: * * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com) * Macronix/Lite-On 82c115 PNIC II (www.macronix.com) * Lite-On 82c168/82c169 PNIC (www.litecom.com) * ASIX Electronics AX88140A (www.asix.com.tw) * ASIX Electronics AX88141 (www.asix.com.tw) * ADMtek AL981 (www.admtek.com.tw) * ADMtek AN983 (www.admtek.com.tw) * Davicom DM9100, DM9102, DM9102A (www.davicom8.com) * Accton EN1217, EN2242 (www.accton.com) * Xircom X3201 (www.xircom.com) * * Datasheets for the 21143 are available at developer.intel.com. * Datasheets for the clone parts can be found at their respective sites. * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.) * The PNIC II is essentially a Macronix 98715A chip; the only difference * worth noting is that its multicast hash table is only 128 bits wide * instead of 512. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The Intel 21143 is the successor to the DEC 21140. It is basically * the same as the 21140 but with a few new features. The 21143 supports * three kinds of media attachments: * * o MII port, for 10Mbps and 100Mbps support and NWAY * autonegotiation provided by an external PHY. * o SYM port, for symbol mode 100Mbps support. * o 10baseT port. * o AUI/BNC port. * * The 100Mbps SYM port and 10baseT port can be used together in * combination with the internal NWAY support to create a 10/100 * autosensing configuration. * * Note that not all tulip workalikes are handled in this driver: we only * deal with those which are relatively well behaved. The Winbond is * handled separately due to its different register offsets and the * special handling needed for its various bugs. The PNIC is handled * here, but I'm not thrilled about it. * * All of the workalike chips use some form of MII transceiver support * with the exception of the Macronix chips, which also have a SYM port. * The ASIX AX88140A is also documented to have a SYM port, but all * the cards I've seen use an MII transceiver, probably because the * AX88140A doesn't support internal NWAY. */ #include "bpfilter.h" #include "vlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include int dc_intr(void *); void dc_shutdown(void *); struct dc_type *dc_devtype(void *); int dc_newbuf(struct dc_softc *, int, struct mbuf *); int dc_encap(struct dc_softc *, struct mbuf *, u_int32_t *); int dc_coal(struct dc_softc *, struct mbuf **); void dc_pnic_rx_bug_war(struct dc_softc *, int); int dc_rx_resync(struct dc_softc *); void dc_rxeof(struct dc_softc *); void dc_txeof(struct dc_softc *); void dc_tick(void *); void dc_tx_underrun(struct dc_softc *); void dc_start(struct ifnet *); int dc_ioctl(struct ifnet *, u_long, caddr_t); void dc_init(void *); void dc_stop(struct dc_softc *); void dc_watchdog(struct ifnet *); int dc_ifmedia_upd(struct ifnet *); void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *); void dc_delay(struct dc_softc *); void dc_eeprom_width(struct dc_softc *); void dc_eeprom_idle(struct dc_softc *); void dc_eeprom_putbyte(struct dc_softc *, int); void dc_eeprom_getword(struct dc_softc *, int, u_int16_t *); void dc_eeprom_getword_pnic(struct dc_softc *, int, u_int16_t *); void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int); void dc_mii_writebit(struct dc_softc *, int); int dc_mii_readbit(struct dc_softc *); void dc_mii_sync(struct dc_softc *); void dc_mii_send(struct dc_softc *, u_int32_t, int); int dc_mii_readreg(struct dc_softc *, struct dc_mii_frame *); int dc_mii_writereg(struct dc_softc *, struct dc_mii_frame *); int dc_miibus_readreg(struct device *, int, int); void dc_miibus_writereg(struct device *, int, int, int); void dc_miibus_statchg(struct device *); void dc_setcfg(struct dc_softc *, int); u_int32_t dc_crc_le(struct dc_softc *, caddr_t); u_int32_t dc_crc_be(caddr_t); void dc_setfilt_21143(struct dc_softc *); void dc_setfilt_asix(struct dc_softc *); void dc_setfilt_admtek(struct dc_softc *); void dc_setfilt_xircom(struct dc_softc *); void dc_setfilt(struct dc_softc *); void dc_reset(struct dc_softc *); int dc_list_rx_init(struct dc_softc *); int dc_list_tx_init(struct dc_softc *); void dc_read_srom(struct dc_softc *, int); void dc_parse_21143_srom(struct dc_softc *); void dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *); void dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *); void dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *); void dc_apply_fixup(struct dc_softc *, int); #define DC_SETBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x)) #define DC_CLRBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x)) #define SIO_SET(x) DC_SETBIT(sc, DC_SIO, (x)) #define SIO_CLR(x) DC_CLRBIT(sc, DC_SIO, (x)) void dc_delay(sc) struct dc_softc *sc; { int idx; for (idx = (300 / 33) + 1; idx > 0; idx--) CSR_READ_4(sc, DC_BUSCTL); } void dc_eeprom_width(sc) struct dc_softc *sc; { int i; /* Force EEPROM to idle state. */ dc_eeprom_idle(sc); /* Enter EEPROM access mode. */ CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ); dc_delay(sc); DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS); dc_delay(sc); for (i = 3; i--;) { if (6 & (1 << i)) DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN); else DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); } for (i = 1; i <= 12; i++) { DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) { DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); break; } DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); } /* Turn off EEPROM access mode. */ dc_eeprom_idle(sc); if (i < 4 || i > 12) sc->dc_romwidth = 6; else sc->dc_romwidth = i; /* Enter EEPROM access mode. */ CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ); dc_delay(sc); DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS); dc_delay(sc); /* Turn off EEPROM access mode. */ dc_eeprom_idle(sc); } void dc_eeprom_idle(sc) struct dc_softc *sc; { int i; CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ); dc_delay(sc); DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS); dc_delay(sc); for (i = 0; i < 25; i++) { DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); } DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS); dc_delay(sc); CSR_WRITE_4(sc, DC_SIO, 0x00000000); } /* * Send a read command and address to the EEPROM, check for ACK. */ void dc_eeprom_putbyte(sc, addr) struct dc_softc *sc; int addr; { int d, i; d = DC_EECMD_READ >> 6; for (i = 3; i--; ) { if (d & (1 << i)) DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN); else DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); } /* * Feed in each bit and strobe the clock. */ for (i = sc->dc_romwidth; i--;) { if (addr & (1 << i)) { SIO_SET(DC_SIO_EE_DATAIN); } else { SIO_CLR(DC_SIO_EE_DATAIN); } dc_delay(sc); SIO_SET(DC_SIO_EE_CLK); dc_delay(sc); SIO_CLR(DC_SIO_EE_CLK); dc_delay(sc); } } /* * Read a word of data stored in the EEPROM at address 'addr.' * The PNIC 82c168/82c169 has its own non-standard way to read * the EEPROM. */ void dc_eeprom_getword_pnic(sc, addr, dest) struct dc_softc *sc; int addr; u_int16_t *dest; { int i; u_int32_t r; CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr); for (i = 0; i < DC_TIMEOUT; i++) { DELAY(1); r = CSR_READ_4(sc, DC_SIO); if (!(r & DC_PN_SIOCTL_BUSY)) { *dest = (u_int16_t)(r & 0xFFFF); return; } } } /* * Read a word of data stored in the EEPROM at address 'addr.' */ void dc_eeprom_getword(sc, addr, dest) struct dc_softc *sc; int addr; u_int16_t *dest; { int i; u_int16_t word = 0; /* Force EEPROM to idle state. */ dc_eeprom_idle(sc); /* Enter EEPROM access mode. */ CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ); dc_delay(sc); DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS); dc_delay(sc); /* * Send address of word we want to read. */ dc_eeprom_putbyte(sc, addr); /* * Start reading bits from EEPROM. */ for (i = 0x8000; i; i >>= 1) { SIO_SET(DC_SIO_EE_CLK); dc_delay(sc); if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT) word |= i; dc_delay(sc); SIO_CLR(DC_SIO_EE_CLK); dc_delay(sc); } /* Turn off EEPROM access mode. */ dc_eeprom_idle(sc); *dest = word; } /* * Read a sequence of words from the EEPROM. */ void dc_read_eeprom(sc, dest, off, cnt, swap) struct dc_softc *sc; caddr_t dest; int off, cnt, swap; { int i; u_int16_t word = 0, *ptr; for (i = 0; i < cnt; i++) { if (DC_IS_PNIC(sc)) dc_eeprom_getword_pnic(sc, off + i, &word); else dc_eeprom_getword(sc, off + i, &word); ptr = (u_int16_t *)(dest + (i * 2)); if (swap) *ptr = betoh16(word); else *ptr = letoh16(word); } } /* * The following two routines are taken from the Macronix 98713 * Application Notes pp.19-21. */ /* * Write a bit to the MII bus. */ void dc_mii_writebit(sc, bit) struct dc_softc *sc; int bit; { if (bit) CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT); else CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE); DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK); DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK); } /* * Read a bit from the MII bus. */ int dc_mii_readbit(sc) struct dc_softc *sc; { CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR); CSR_READ_4(sc, DC_SIO); DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK); DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK); if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN) return (1); return (0); } /* * Sync the PHYs by setting data bit and strobing the clock 32 times. */ void dc_mii_sync(sc) struct dc_softc *sc; { int i; CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE); for (i = 0; i < 32; i++) dc_mii_writebit(sc, 1); } /* * Clock a series of bits through the MII. */ void dc_mii_send(sc, bits, cnt) struct dc_softc *sc; u_int32_t bits; int cnt; { int i; for (i = (0x1 << (cnt - 1)); i; i >>= 1) dc_mii_writebit(sc, bits & i); } /* * Read an PHY register through the MII. */ int dc_mii_readreg(sc, frame) struct dc_softc *sc; struct dc_mii_frame *frame; { int i, ack, s; s = splimp(); /* * Set up frame for RX. */ frame->mii_stdelim = DC_MII_STARTDELIM; frame->mii_opcode = DC_MII_READOP; frame->mii_turnaround = 0; frame->mii_data = 0; /* * Sync the PHYs. */ dc_mii_sync(sc); /* * Send command/address info. */ dc_mii_send(sc, frame->mii_stdelim, 2); dc_mii_send(sc, frame->mii_opcode, 2); dc_mii_send(sc, frame->mii_phyaddr, 5); dc_mii_send(sc, frame->mii_regaddr, 5); #ifdef notdef /* Idle bit */ dc_mii_writebit(sc, 1); dc_mii_writebit(sc, 0); #endif /* Check for ack */ ack = dc_mii_readbit(sc); /* * Now try reading data bits. If the ack failed, we still * need to clock through 16 cycles to keep the PHY(s) in sync. */ if (ack) { for(i = 0; i < 16; i++) { dc_mii_readbit(sc); } goto fail; } for (i = 0x8000; i; i >>= 1) { if (dc_mii_readbit(sc)) frame->mii_data |= i; } fail: dc_mii_writebit(sc, 0); dc_mii_writebit(sc, 0); splx(s); if (ack) return (1); return (0); } /* * Write to a PHY register through the MII. */ int dc_mii_writereg(sc, frame) struct dc_softc *sc; struct dc_mii_frame *frame; { int s; s = splimp(); /* * Set up frame for TX. */ frame->mii_stdelim = DC_MII_STARTDELIM; frame->mii_opcode = DC_MII_WRITEOP; frame->mii_turnaround = DC_MII_TURNAROUND; /* * Sync the PHYs. */ dc_mii_sync(sc); dc_mii_send(sc, frame->mii_stdelim, 2); dc_mii_send(sc, frame->mii_opcode, 2); dc_mii_send(sc, frame->mii_phyaddr, 5); dc_mii_send(sc, frame->mii_regaddr, 5); dc_mii_send(sc, frame->mii_turnaround, 2); dc_mii_send(sc, frame->mii_data, 16); /* Idle bit. */ dc_mii_writebit(sc, 0); dc_mii_writebit(sc, 0); splx(s); return (0); } int dc_miibus_readreg(self, phy, reg) struct device *self; int phy, reg; { struct dc_mii_frame frame; struct dc_softc *sc = (struct dc_softc *)self; int i, rval, phy_reg; /* * Note: both the AL981 and AN983 have internal PHYs, * however the AL981 provides direct access to the PHY * registers while the AN983 uses a serial MII interface. * The AN983's MII interface is also buggy in that you * can read from any MII address (0 to 31), but only address 1 * behaves normally. To deal with both cases, we pretend * that the PHY is at MII address 1. */ if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR) return (0); /* * Note: the ukphy probs of the RS7112 report a PHY at * MII address 0 (possibly HomePNA?) and 1 (ethernet) * so we only respond to correct one. */ if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR) return (0); if (sc->dc_pmode != DC_PMODE_MII) { if (phy == (MII_NPHY - 1)) { switch(reg) { case MII_BMSR: /* * Fake something to make the probe * code think there's a PHY here. */ return (BMSR_MEDIAMASK); break; case MII_PHYIDR1: if (DC_IS_PNIC(sc)) return (PCI_VENDOR_LITEON); return (PCI_VENDOR_DEC); break; case MII_PHYIDR2: if (DC_IS_PNIC(sc)) return (PCI_PRODUCT_LITEON_PNIC); return (PCI_PRODUCT_DEC_21142); break; default: return (0); break; } } else return (0); } if (DC_IS_PNIC(sc)) { CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ | (phy << 23) | (reg << 18)); for (i = 0; i < DC_TIMEOUT; i++) { DELAY(1); rval = CSR_READ_4(sc, DC_PN_MII); if (!(rval & DC_PN_MII_BUSY)) { rval &= 0xFFFF; return (rval == 0xFFFF ? 0 : rval); } } return (0); } if (DC_IS_COMET(sc)) { switch(reg) { case MII_BMCR: phy_reg = DC_AL_BMCR; break; case MII_BMSR: phy_reg = DC_AL_BMSR; break; case MII_PHYIDR1: phy_reg = DC_AL_VENID; break; case MII_PHYIDR2: phy_reg = DC_AL_DEVID; break; case MII_ANAR: phy_reg = DC_AL_ANAR; break; case MII_ANLPAR: phy_reg = DC_AL_LPAR; break; case MII_ANER: phy_reg = DC_AL_ANER; break; default: printf("%s: phy_read: bad phy register %x\n", sc->sc_dev.dv_xname, reg); return (0); break; } rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF; if (rval == 0xFFFF) return (0); return (rval); } bzero(&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; if (sc->dc_type == DC_TYPE_98713) { phy_reg = CSR_READ_4(sc, DC_NETCFG); CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL); } dc_mii_readreg(sc, &frame); if (sc->dc_type == DC_TYPE_98713) CSR_WRITE_4(sc, DC_NETCFG, phy_reg); return (frame.mii_data); } void dc_miibus_writereg(self, phy, reg, data) struct device *self; int phy, reg, data; { struct dc_softc *sc = (struct dc_softc *)self; struct dc_mii_frame frame; int i, phy_reg; bzero((char *)&frame, sizeof(frame)); if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR) return; if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR) return; if (DC_IS_PNIC(sc)) { CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE | (phy << 23) | (reg << 10) | data); for (i = 0; i < DC_TIMEOUT; i++) { if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY)) break; } return; } if (DC_IS_COMET(sc)) { switch(reg) { case MII_BMCR: phy_reg = DC_AL_BMCR; break; case MII_BMSR: phy_reg = DC_AL_BMSR; break; case MII_PHYIDR1: phy_reg = DC_AL_VENID; break; case MII_PHYIDR2: phy_reg = DC_AL_DEVID; break; case MII_ANAR: phy_reg = DC_AL_ANAR; break; case MII_ANLPAR: phy_reg = DC_AL_LPAR; break; case MII_ANER: phy_reg = DC_AL_ANER; break; default: printf("%s: phy_write: bad phy register %x\n", sc->sc_dev.dv_xname, reg); return; break; } CSR_WRITE_4(sc, phy_reg, data); return; } frame.mii_phyaddr = phy; frame.mii_regaddr = reg; frame.mii_data = data; if (sc->dc_type == DC_TYPE_98713) { phy_reg = CSR_READ_4(sc, DC_NETCFG); CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL); } dc_mii_writereg(sc, &frame); if (sc->dc_type == DC_TYPE_98713) CSR_WRITE_4(sc, DC_NETCFG, phy_reg); } void dc_miibus_statchg(self) struct device *self; { struct dc_softc *sc = (struct dc_softc *)self; struct mii_data *mii; struct ifmedia *ifm; if (DC_IS_ADMTEK(sc)) return; mii = &sc->sc_mii; ifm = &mii->mii_media; if (DC_IS_DAVICOM(sc) && IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) { dc_setcfg(sc, ifm->ifm_media); sc->dc_if_media = ifm->ifm_media; } else { dc_setcfg(sc, mii->mii_media_active); sc->dc_if_media = mii->mii_media_active; } } #define DC_BITS_512 9 #define DC_BITS_128 7 #define DC_BITS_64 6 u_int32_t dc_crc_le(sc, addr) struct dc_softc *sc; caddr_t addr; { u_int32_t crc; /* Compute CRC for the address value. */ crc = ether_crc32_le(addr, ETHER_ADDR_LEN); /* * The hash table on the PNIC II and the MX98715AEC-C/D/E * chips is only 128 bits wide. */ if (sc->dc_flags & DC_128BIT_HASH) return (crc & ((1 << DC_BITS_128) - 1)); /* The hash table on the MX98715BEC is only 64 bits wide. */ if (sc->dc_flags & DC_64BIT_HASH) return (crc & ((1 << DC_BITS_64) - 1)); /* Xircom's hash filtering table is different (read: weird) */ /* Xircom uses the LEAST significant bits */ if (DC_IS_XIRCOM(sc)) { if ((crc & 0x180) == 0x180) return (crc & 0x0F) + (crc & 0x70)*3 + (14 << 4); else return (crc & 0x1F) + ((crc>>1) & 0xF0)*3 + (12 << 4); } return (crc & ((1 << DC_BITS_512) - 1)); } /* * Calculate CRC of a multicast group address, return the lower 6 bits. */ #define dc_crc_be(addr) ((ether_crc32_be(addr,ETHER_ADDR_LEN) >> 26) \ & 0x0000003F) /* * 21143-style RX filter setup routine. Filter programming is done by * downloading a special setup frame into the TX engine. 21143, Macronix, * PNIC, PNIC II and Davicom chips are programmed this way. * * We always program the chip using 'hash perfect' mode, i.e. one perfect * address (our node address) and a 512-bit hash filter for multicast * frames. We also sneak the broadcast address into the hash filter since * we need that too. */ void dc_setfilt_21143(sc) struct dc_softc *sc; { struct dc_desc *sframe; u_int32_t h, *sp; struct arpcom *ac = &sc->sc_arpcom; struct ether_multi *enm; struct ether_multistep step; struct ifnet *ifp; int i; ifp = &sc->sc_arpcom.ac_if; i = sc->dc_cdata.dc_tx_prod; DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT); sc->dc_cdata.dc_tx_cnt++; sframe = &sc->dc_ldata->dc_tx_list[i]; sp = &sc->dc_ldata->dc_sbuf[0]; bzero((char *)sp, DC_SFRAME_LEN); sframe->dc_data = htole32(sc->sc_listmap->dm_segs[0].ds_addr + offsetof(struct dc_list_data, dc_sbuf)); sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT); sc->dc_cdata.dc_tx_chain[i].sd_mbuf = (struct mbuf *)&sc->dc_ldata->dc_sbuf[0]; /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); else DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); allmulti: if (ifp->if_flags & IFF_ALLMULTI) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); else { DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { ifp->if_flags |= IFF_ALLMULTI; goto allmulti; } h = dc_crc_le(sc, enm->enm_addrlo); sp[h >> 4] |= htole32(1 << (h & 0xF)); ETHER_NEXT_MULTI(step, enm); } } if (ifp->if_flags & IFF_BROADCAST) { h = dc_crc_le(sc, (caddr_t)ðerbroadcastaddr); sp[h >> 4] |= htole32(1 << (h & 0xF)); } /* Set our MAC address */ sp[39] = DC_SP_FIELD(sc->sc_arpcom.ac_enaddr, 0); sp[40] = DC_SP_FIELD(sc->sc_arpcom.ac_enaddr, 1); sp[41] = DC_SP_FIELD(sc->sc_arpcom.ac_enaddr, 2); bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap, offsetof(struct dc_list_data, dc_sbuf[0]), sizeof(struct dc_list_data) - offsetof(struct dc_list_data, dc_sbuf[0]), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); sframe->dc_status = htole32(DC_TXSTAT_OWN); bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap, offsetof(struct dc_list_data, dc_tx_list[i]), sizeof(struct dc_desc), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); /* * The PNIC takes an exceedingly long time to process its * setup frame; wait 10ms after posting the setup frame * before proceeding, just so it has time to swallow its * medicine. */ DELAY(10000); ifp->if_timer = 5; } void dc_setfilt_admtek(sc) struct dc_softc *sc; { struct ifnet *ifp; struct arpcom *ac = &sc->sc_arpcom; struct ether_multi *enm; struct ether_multistep step; int h = 0; u_int32_t hashes[2] = { 0, 0 }; ifp = &sc->sc_arpcom.ac_if; /* Init our MAC address */ CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->sc_arpcom.ac_enaddr[0])); CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->sc_arpcom.ac_enaddr[4])); /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); else DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); allmulti: if (ifp->if_flags & IFF_ALLMULTI) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); else DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); /* first, zot all the existing hash bits */ CSR_WRITE_4(sc, DC_AL_MAR0, 0); CSR_WRITE_4(sc, DC_AL_MAR1, 0); /* * If we're already in promisc or allmulti mode, we * don't have to bother programming the multicast filter. */ if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI)) return; /* now program new ones */ ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { ifp->if_flags |= IFF_ALLMULTI; goto allmulti; } if (DC_IS_CENTAUR(sc)) h = dc_crc_le(sc, enm->enm_addrlo); else h = dc_crc_be(enm->enm_addrlo); if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); ETHER_NEXT_MULTI(step, enm); } CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]); CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]); } void dc_setfilt_asix(sc) struct dc_softc *sc; { struct ifnet *ifp; struct arpcom *ac = &sc->sc_arpcom; struct ether_multi *enm; struct ether_multistep step; int h = 0; u_int32_t hashes[2] = { 0, 0 }; ifp = &sc->sc_arpcom.ac_if; /* Init our MAC address */ CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0); CSR_WRITE_4(sc, DC_AX_FILTDATA, *(u_int32_t *)(&sc->sc_arpcom.ac_enaddr[0])); CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1); CSR_WRITE_4(sc, DC_AX_FILTDATA, *(u_int32_t *)(&sc->sc_arpcom.ac_enaddr[4])); /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); else DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); if (ifp->if_flags & IFF_ALLMULTI) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); else DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); /* * The ASIX chip has a special bit to enable reception * of broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD); else DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD); /* first, zot all the existing hash bits */ CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0); CSR_WRITE_4(sc, DC_AX_FILTDATA, 0); CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1); CSR_WRITE_4(sc, DC_AX_FILTDATA, 0); /* * If we're already in promisc or allmulti mode, we * don't have to bother programming the multicast filter. */ if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI)) return; /* now program new ones */ ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { h = dc_crc_be(enm->enm_addrlo); if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); ETHER_NEXT_MULTI(step, enm); } CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0); CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]); CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1); CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]); } void dc_setfilt_xircom(sc) struct dc_softc *sc; { struct dc_desc *sframe; struct arpcom *ac = &sc->sc_arpcom; struct ether_multi *enm; struct ether_multistep step; u_int32_t h, *sp; struct ifnet *ifp; int i; ifp = &sc->sc_arpcom.ac_if; DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)); i = sc->dc_cdata.dc_tx_prod; DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT); sc->dc_cdata.dc_tx_cnt++; sframe = &sc->dc_ldata->dc_tx_list[i]; sp = &sc->dc_ldata->dc_sbuf[0]; bzero((char *)sp, DC_SFRAME_LEN); sframe->dc_data = htole32(sc->sc_listmap->dm_segs[0].ds_addr + offsetof(struct dc_list_data, dc_sbuf)); sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT); sc->dc_cdata.dc_tx_chain[i].sd_mbuf = (struct mbuf *)&sc->dc_ldata->dc_sbuf[0]; /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); else DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); if (ifp->if_flags & IFF_ALLMULTI) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); else DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); /* now program new ones */ ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { h = dc_crc_le(sc, enm->enm_addrlo); sp[h >> 4] |= htole32(1 << (h & 0xF)); ETHER_NEXT_MULTI(step, enm); } if (ifp->if_flags & IFF_BROADCAST) { h = dc_crc_le(sc, (caddr_t)ðerbroadcastaddr); sp[h >> 4] |= htole32(1 << (h & 0xF)); } /* Set our MAC address */ sp[0] = DC_SP_FIELD(sc->sc_arpcom.ac_enaddr, 0); sp[1] = DC_SP_FIELD(sc->sc_arpcom.ac_enaddr, 1); sp[2] = DC_SP_FIELD(sc->sc_arpcom.ac_enaddr, 2); DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON); DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON); ifp->if_flags |= IFF_RUNNING; sframe->dc_status = htole32(DC_TXSTAT_OWN); CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); /* * wait some time... */ DELAY(1000); ifp->if_timer = 5; } void dc_setfilt(sc) struct dc_softc *sc; { if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) || DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc)) dc_setfilt_21143(sc); if (DC_IS_ASIX(sc)) dc_setfilt_asix(sc); if (DC_IS_ADMTEK(sc)) dc_setfilt_admtek(sc); if (DC_IS_XIRCOM(sc)) dc_setfilt_xircom(sc); } /* * In order to fiddle with the * 'full-duplex' and '100Mbps' bits in the netconfig register, we * first have to put the transmit and/or receive logic in the idle state. */ void dc_setcfg(sc, media) struct dc_softc *sc; int media; { int i, restart = 0; u_int32_t isr; if (IFM_SUBTYPE(media) == IFM_NONE) return; if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) { restart = 1; DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)); for (i = 0; i < DC_TIMEOUT; i++) { isr = CSR_READ_4(sc, DC_ISR); if (isr & DC_ISR_TX_IDLE && ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED || (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT)) break; DELAY(10); } if (i == DC_TIMEOUT) printf("%s: failed to force tx and " "rx to idle state\n", sc->sc_dev.dv_xname); } if (IFM_SUBTYPE(media) == IFM_100_TX) { DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL); DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT); if (sc->dc_pmode == DC_PMODE_MII) { int watchdogreg; if (DC_IS_INTEL(sc)) { /* there's a write enable bit here that reads as 1 */ watchdogreg = CSR_READ_4(sc, DC_WATCHDOG); watchdogreg &= ~DC_WDOG_CTLWREN; watchdogreg |= DC_WDOG_JABBERDIS; CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg); } else { DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS); } DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS| DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER)); if (sc->dc_type == DC_TYPE_98713) DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS| DC_NETCFG_SCRAMBLER)); if (!DC_IS_DAVICOM(sc)) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF); if (DC_IS_INTEL(sc)) dc_apply_fixup(sc, IFM_AUTO); } else { if (DC_IS_PNIC(sc)) { DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL); DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP); DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL); } DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS); DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER); if (DC_IS_INTEL(sc)) dc_apply_fixup(sc, (media & IFM_GMASK) == IFM_FDX ? IFM_100_TX|IFM_FDX : IFM_100_TX); } } if (IFM_SUBTYPE(media) == IFM_10_T) { DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL); DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT); if (sc->dc_pmode == DC_PMODE_MII) { int watchdogreg; if (DC_IS_INTEL(sc)) { /* there's a write enable bit here that reads as 1 */ watchdogreg = CSR_READ_4(sc, DC_WATCHDOG); watchdogreg &= ~DC_WDOG_CTLWREN; watchdogreg |= DC_WDOG_JABBERDIS; CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg); } else { DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS); } DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS| DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER)); if (sc->dc_type == DC_TYPE_98713) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS); if (!DC_IS_DAVICOM(sc)) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF); if (DC_IS_INTEL(sc)) dc_apply_fixup(sc, IFM_AUTO); } else { if (DC_IS_PNIC(sc)) { DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL); DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP); DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL); } DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS); DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER); if (DC_IS_INTEL(sc)) { DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET); DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF); if ((media & IFM_GMASK) == IFM_FDX) DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D); else DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F); DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET); DC_CLRBIT(sc, DC_10BTCTRL, DC_TCTL_AUTONEGENBL); dc_apply_fixup(sc, (media & IFM_GMASK) == IFM_FDX ? IFM_10_T|IFM_FDX : IFM_10_T); DELAY(20000); } } } /* * If this is a Davicom DM9102A card with a DM9801 HomePNA * PHY and we want HomePNA mode, set the portsel bit to turn * on the external MII port. */ if (DC_IS_DAVICOM(sc)) { if (IFM_SUBTYPE(media) == IFM_HPNA_1) { DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); sc->dc_link = 1; } else { DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); } } if ((media & IFM_GMASK) == IFM_FDX) { DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX); if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc)) DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX); } else { DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX); if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc)) DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX); } if (restart) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON); } void dc_reset(sc) struct dc_softc *sc; { int i; DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET); for (i = 0; i < DC_TIMEOUT; i++) { DELAY(10); if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET)) break; } if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc) || DC_IS_CONEXANT(sc)) { DELAY(10000); DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET); i = 0; } if (i == DC_TIMEOUT) printf("%s: reset never completed!\n", sc->sc_dev.dv_xname); /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); CSR_WRITE_4(sc, DC_IMR, 0x00000000); CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000); CSR_WRITE_4(sc, DC_NETCFG, 0x00000000); /* * Bring the SIA out of reset. In some cases, it looks * like failing to unreset the SIA soon enough gets it * into a state where it will never come out of reset * until we reset the whole chip again. */ if (DC_IS_INTEL(sc)) { DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET); CSR_WRITE_4(sc, DC_10BTCTRL, 0); CSR_WRITE_4(sc, DC_WATCHDOG, 0); } if (sc->dc_type == DC_TYPE_21145) dc_setcfg(sc, IFM_10_T); } void dc_apply_fixup(sc, media) struct dc_softc *sc; int media; { struct dc_mediainfo *m; u_int8_t *p; int i; u_int32_t reg; m = sc->dc_mi; while (m != NULL) { if (m->dc_media == media) break; m = m->dc_next; } if (m == NULL) return; for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) { reg = (p[0] | (p[1] << 8)) << 16; CSR_WRITE_4(sc, DC_WATCHDOG, reg); } for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) { reg = (p[0] | (p[1] << 8)) << 16; CSR_WRITE_4(sc, DC_WATCHDOG, reg); } } void dc_decode_leaf_sia(sc, l) struct dc_softc *sc; struct dc_eblock_sia *l; { struct dc_mediainfo *m; m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT); if (m == NULL) return; bzero(m, sizeof(struct dc_mediainfo)); switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) { case DC_SIA_CODE_10BT: m->dc_media = IFM_10_T; break; case DC_SIA_CODE_10BT_FDX: m->dc_media = IFM_10_T|IFM_FDX; break; case DC_SIA_CODE_10B2: m->dc_media = IFM_10_2; break; case DC_SIA_CODE_10B5: m->dc_media = IFM_10_5; break; default: break; } /* * We need to ignore CSR13, CSR14, CSR15 for SIA mode. * Things apparently already work for cards that do * supply Media Specific Data. */ if (l->dc_sia_code & DC_SIA_CODE_EXT) { m->dc_gp_len = 2; m->dc_gp_ptr = (u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl; } else { m->dc_gp_len = 2; m->dc_gp_ptr = (u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl; } m->dc_next = sc->dc_mi; sc->dc_mi = m; sc->dc_pmode = DC_PMODE_SIA; } void dc_decode_leaf_sym(sc, l) struct dc_softc *sc; struct dc_eblock_sym *l; { struct dc_mediainfo *m; m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT); if (m == NULL) return; bzero(m, sizeof(struct dc_mediainfo)); if (l->dc_sym_code == DC_SYM_CODE_100BT) m->dc_media = IFM_100_TX; if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX) m->dc_media = IFM_100_TX|IFM_FDX; m->dc_gp_len = 2; m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl; m->dc_next = sc->dc_mi; sc->dc_mi = m; sc->dc_pmode = DC_PMODE_SYM; } void dc_decode_leaf_mii(sc, l) struct dc_softc *sc; struct dc_eblock_mii *l; { u_int8_t *p; struct dc_mediainfo *m; m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT); if (m == NULL) return; bzero(m, sizeof(struct dc_mediainfo)); /* We abuse IFM_AUTO to represent MII. */ m->dc_media = IFM_AUTO; m->dc_gp_len = l->dc_gpr_len; p = (u_int8_t *)l; p += sizeof(struct dc_eblock_mii); m->dc_gp_ptr = p; p += 2 * l->dc_gpr_len; m->dc_reset_len = *p; p++; m->dc_reset_ptr = p; m->dc_next = sc->dc_mi; sc->dc_mi = m; } void dc_read_srom(sc, bits) struct dc_softc *sc; int bits; { int size; size = 2 << bits; sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT); if (sc->dc_srom == NULL) return; dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0); } void dc_parse_21143_srom(sc) struct dc_softc *sc; { struct dc_leaf_hdr *lhdr; struct dc_eblock_hdr *hdr; int i, loff; char *ptr; int have_mii; have_mii = 0; loff = sc->dc_srom[27]; lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]); ptr = (char *)lhdr; ptr += sizeof(struct dc_leaf_hdr) - 1; /* * Look if we got a MII media block. */ for (i = 0; i < lhdr->dc_mcnt; i++) { hdr = (struct dc_eblock_hdr *)ptr; if (hdr->dc_type == DC_EBLOCK_MII) have_mii++; ptr += (hdr->dc_len & 0x7F); ptr++; } /* * Do the same thing again. Only use SIA and SYM media * blocks if no MII media block is available. */ ptr = (char *)lhdr; ptr += sizeof(struct dc_leaf_hdr) - 1; for (i = 0; i < lhdr->dc_mcnt; i++) { hdr = (struct dc_eblock_hdr *)ptr; switch(hdr->dc_type) { case DC_EBLOCK_MII: dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr); break; case DC_EBLOCK_SIA: if (! have_mii) dc_decode_leaf_sia(sc, (struct dc_eblock_sia *)hdr); break; case DC_EBLOCK_SYM: if (! have_mii) dc_decode_leaf_sym(sc, (struct dc_eblock_sym *)hdr); break; default: /* Don't care. Yet. */ break; } ptr += (hdr->dc_len & 0x7F); ptr++; } } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ void dc_attach(sc) struct dc_softc *sc; { struct ifnet *ifp; int mac_offset, tmp, i; /* * Get station address from the EEPROM. */ if (sc->sc_hasmac) goto hasmac; switch(sc->dc_type) { case DC_TYPE_98713: case DC_TYPE_98713A: case DC_TYPE_987x5: case DC_TYPE_PNICII: dc_read_eeprom(sc, (caddr_t)&mac_offset, (DC_EE_NODEADDR_OFFSET / 2), 1, 0); dc_read_eeprom(sc, (caddr_t)&sc->sc_arpcom.ac_enaddr, (mac_offset / 2), 3, 0); break; case DC_TYPE_PNIC: dc_read_eeprom(sc, (caddr_t)&sc->sc_arpcom.ac_enaddr, 0, 3, 1); break; case DC_TYPE_DM9102: case DC_TYPE_21143: case DC_TYPE_21145: case DC_TYPE_ASIX: dc_read_eeprom(sc, (caddr_t)&sc->sc_arpcom.ac_enaddr, DC_EE_NODEADDR, 3, 0); break; case DC_TYPE_AL981: case DC_TYPE_AN983: *(u_int32_t *)(&sc->sc_arpcom.ac_enaddr[0]) = CSR_READ_4(sc, DC_AL_PAR0); *(u_int16_t *)(&sc->sc_arpcom.ac_enaddr[4]) = CSR_READ_4(sc, DC_AL_PAR1); break; case DC_TYPE_XIRCOM: break; case DC_TYPE_CONEXANT: bcopy(&sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN); break; default: dc_read_eeprom(sc, (caddr_t)&sc->sc_arpcom.ac_enaddr, DC_EE_NODEADDR, 3, 0); break; } hasmac: if (bus_dmamem_alloc(sc->sc_dmat, sizeof(struct dc_list_data), PAGE_SIZE, 0, sc->sc_listseg, 1, &sc->sc_listnseg, BUS_DMA_NOWAIT) != 0) { printf(": can't alloc list mem\n"); goto fail; } if (bus_dmamem_map(sc->sc_dmat, sc->sc_listseg, sc->sc_listnseg, sizeof(struct dc_list_data), &sc->sc_listkva, BUS_DMA_NOWAIT) != 0) { printf(": can't map list mem\n"); goto fail; } if (bus_dmamap_create(sc->sc_dmat, sizeof(struct dc_list_data), 1, sizeof(struct dc_list_data), 0, BUS_DMA_NOWAIT, &sc->sc_listmap) != 0) { printf(": can't alloc list map\n"); goto fail; } if (bus_dmamap_load(sc->sc_dmat, sc->sc_listmap, sc->sc_listkva, sizeof(struct dc_list_data), NULL, BUS_DMA_NOWAIT) != 0) { printf(": can't load list map\n"); goto fail; } sc->dc_ldata = (struct dc_list_data *)sc->sc_listkva; bzero(sc->dc_ldata, sizeof(struct dc_list_data)); for (i = 0; i < DC_RX_LIST_CNT; i++) { if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->dc_cdata.dc_rx_chain[i].sd_map) != 0) { printf(": can't create rx map\n"); return; } } if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->sc_rx_sparemap) != 0) { printf(": can't create rx spare map\n"); return; } for (i = 0; i < DC_TX_LIST_CNT; i++) { if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, DC_TX_LIST_CNT - 5, MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->dc_cdata.dc_tx_chain[i].sd_map) != 0) { printf(": can't create tx map\n"); return; } } if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, DC_TX_LIST_CNT - 5, MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->sc_tx_sparemap) != 0) { printf(": can't create tx spare map\n"); return; } /* * A 21143 or clone chip was detected. Inform the world. */ printf(" address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr)); ifp = &sc->sc_arpcom.ac_if; ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = dc_ioctl; ifp->if_start = dc_start; ifp->if_watchdog = dc_watchdog; ifp->if_baudrate = 10000000; IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1); IFQ_SET_READY(&ifp->if_snd); bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); #if NVLAN > 0 ifp->if_capabilities = IFCAP_VLAN_MTU; #endif /* Do MII setup. If this is a 21143, check for a PHY on the * MII bus after applying any necessary fixups to twiddle the * GPIO bits. If we don't end up finding a PHY, restore the * old selection (SIA only or SIA/SYM) and attach the dcphy * driver instead. */ if (DC_IS_INTEL(sc)) { dc_apply_fixup(sc, IFM_AUTO); tmp = sc->dc_pmode; sc->dc_pmode = DC_PMODE_MII; } sc->sc_mii.mii_ifp = ifp; sc->sc_mii.mii_readreg = dc_miibus_readreg; sc->sc_mii.mii_writereg = dc_miibus_writereg; sc->sc_mii.mii_statchg = dc_miibus_statchg; ifmedia_init(&sc->sc_mii.mii_media, 0, dc_ifmedia_upd, dc_ifmedia_sts); mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (DC_IS_INTEL(sc)) { if (LIST_EMPTY(&sc->sc_mii.mii_phys)) { sc->dc_pmode = tmp; if (sc->dc_pmode != DC_PMODE_SIA) sc->dc_pmode = DC_PMODE_SYM; sc->dc_flags |= DC_21143_NWAY; if (sc->dc_flags & DC_MOMENCO_BOTCH) sc->dc_pmode = DC_PMODE_MII; mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); } else { /* we have a PHY, so we must clear this bit */ sc->dc_flags &= ~DC_TULIP_LEDS; } } if (LIST_EMPTY(&sc->sc_mii.mii_phys)) { ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); printf("%s: MII without any PHY!\n", sc->sc_dev.dv_xname); } else if (sc->dc_type == DC_TYPE_21145) { ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T); } else ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); if (DC_IS_DAVICOM(sc) && sc->dc_revision >= DC_REVISION_DM9102A) ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_HPNA_1,0,NULL); if (DC_IS_XIRCOM(sc)) { /* * setup General Purpose Port mode and data so the tulip * can talk to the MII. */ CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN | DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT); DELAY(10); CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN | DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT); DELAY(10); } if (DC_IS_ADMTEK(sc)) { /* * Set automatic TX underrun recovery for the ADMtek chips */ DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR); } /* * Call MI attach routines. */ if_attach(ifp); ether_ifattach(ifp); sc->sc_dhook = shutdownhook_establish(dc_shutdown, sc); fail: return; } int dc_detach(sc) struct dc_softc *sc; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; if (LIST_FIRST(&sc->sc_mii.mii_phys) != NULL) mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY); if (sc->dc_srom) free(sc->dc_srom, M_DEVBUF); timeout_del(&sc->dc_tick_tmo); ether_ifdetach(ifp); if_detach(ifp); shutdownhook_disestablish(sc->sc_dhook); return (0); } /* * Initialize the transmit descriptors. */ int dc_list_tx_init(sc) struct dc_softc *sc; { struct dc_chain_data *cd; struct dc_list_data *ld; int i; bus_addr_t next; cd = &sc->dc_cdata; ld = sc->dc_ldata; for (i = 0; i < DC_TX_LIST_CNT; i++) { next = sc->sc_listmap->dm_segs[0].ds_addr; if (i == (DC_TX_LIST_CNT - 1)) next += offsetof(struct dc_list_data, dc_tx_list[0]); else next += offsetof(struct dc_list_data, dc_tx_list[i + 1]); cd->dc_tx_chain[i].sd_mbuf = NULL; ld->dc_tx_list[i].dc_data = htole32(0); ld->dc_tx_list[i].dc_ctl = htole32(0); ld->dc_tx_list[i].dc_next = htole32(next); } cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0; return (0); } /* * Initialize the RX descriptors and allocate mbufs for them. Note that * we arrange the descriptors in a closed ring, so that the last descriptor * points back to the first. */ int dc_list_rx_init(sc) struct dc_softc *sc; { struct dc_chain_data *cd; struct dc_list_data *ld; int i; bus_addr_t next; cd = &sc->dc_cdata; ld = sc->dc_ldata; for (i = 0; i < DC_RX_LIST_CNT; i++) { if (dc_newbuf(sc, i, NULL) == ENOBUFS) return (ENOBUFS); next = sc->sc_listmap->dm_segs[0].ds_addr; if (i == (DC_RX_LIST_CNT - 1)) next += offsetof(struct dc_list_data, dc_rx_list[0]); else next += offsetof(struct dc_list_data, dc_rx_list[i + 1]); ld->dc_rx_list[i].dc_next = htole32(next); } cd->dc_rx_prod = 0; return (0); } /* * Initialize an RX descriptor and attach an MBUF cluster. */ int dc_newbuf(sc, i, m) struct dc_softc *sc; int i; struct mbuf *m; { struct mbuf *m_new = NULL; struct dc_desc *c; bus_dmamap_t map; c = &sc->dc_ldata->dc_rx_list[i]; if (m == NULL) { MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { printf("%s: no memory for rx list " "-- packet dropped!\n", sc->sc_dev.dv_xname); return (ENOBUFS); } MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { printf("%s: no memory for rx list " "-- packet dropped!\n", sc->sc_dev.dv_xname); m_freem(m_new); return (ENOBUFS); } m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; if (bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_rx_sparemap, m_new, BUS_DMA_NOWAIT) != 0) { printf("%s: rx load failed\n", sc->sc_dev.dv_xname); m_freem(m_new); return (ENOBUFS); } map = sc->dc_cdata.dc_rx_chain[i].sd_map; sc->dc_cdata.dc_rx_chain[i].sd_map = sc->sc_rx_sparemap; sc->sc_rx_sparemap = map; } else { m_new = m; m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; m_new->m_data = m_new->m_ext.ext_buf; } m_adj(m_new, sizeof(u_int64_t)); /* * If this is a PNIC chip, zero the buffer. This is part * of the workaround for the receive bug in the 82c168 and * 82c169 chips. */ if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) bzero((char *)mtod(m_new, char *), m_new->m_len); bus_dmamap_sync(sc->sc_dmat, sc->dc_cdata.dc_rx_chain[i].sd_map, 0, sc->dc_cdata.dc_rx_chain[i].sd_map->dm_mapsize, BUS_DMASYNC_PREREAD); sc->dc_cdata.dc_rx_chain[i].sd_mbuf = m_new; c->dc_data = htole32( sc->dc_cdata.dc_rx_chain[i].sd_map->dm_segs[0].ds_addr + sizeof(u_int64_t)); c->dc_ctl = htole32(DC_RXCTL_RLINK | ETHER_MAX_DIX_LEN); c->dc_status = htole32(DC_RXSTAT_OWN); bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap, offsetof(struct dc_list_data, dc_rx_list[i]), sizeof(struct dc_desc), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); } /* * Grrrrr. * The PNIC chip has a terrible bug in it that manifests itself during * periods of heavy activity. The exact mode of failure if difficult to * pinpoint: sometimes it only happens in promiscuous mode, sometimes it * will happen on slow machines. The bug is that sometimes instead of * uploading one complete frame during reception, it uploads what looks * like the entire contents of its FIFO memory. The frame we want is at * the end of the whole mess, but we never know exactly how much data has * been uploaded, so salvaging the frame is hard. * * There is only one way to do it reliably, and it's disgusting. * Here's what we know: * * - We know there will always be somewhere between one and three extra * descriptors uploaded. * * - We know the desired received frame will always be at the end of the * total data upload. * * - We know the size of the desired received frame because it will be * provided in the length field of the status word in the last descriptor. * * Here's what we do: * * - When we allocate buffers for the receive ring, we bzero() them. * This means that we know that the buffer contents should be all * zeros, except for data uploaded by the chip. * * - We also force the PNIC chip to upload frames that include the * ethernet CRC at the end. * * - We gather all of the bogus frame data into a single buffer. * * - We then position a pointer at the end of this buffer and scan * backwards until we encounter the first non-zero byte of data. * This is the end of the received frame. We know we will encounter * some data at the end of the frame because the CRC will always be * there, so even if the sender transmits a packet of all zeros, * we won't be fooled. * * - We know the size of the actual received frame, so we subtract * that value from the current pointer location. This brings us * to the start of the actual received packet. * * - We copy this into an mbuf and pass it on, along with the actual * frame length. * * The performance hit is tremendous, but it beats dropping frames all * the time. */ #define DC_WHOLEFRAME (DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG) void dc_pnic_rx_bug_war(sc, idx) struct dc_softc *sc; int idx; { struct dc_desc *cur_rx; struct dc_desc *c = NULL; struct mbuf *m = NULL; unsigned char *ptr; int i, total_len; u_int32_t rxstat = 0; i = sc->dc_pnic_rx_bug_save; cur_rx = &sc->dc_ldata->dc_rx_list[idx]; ptr = sc->dc_pnic_rx_buf; bzero(ptr, ETHER_MAX_DIX_LEN * 5); /* Copy all the bytes from the bogus buffers. */ while (1) { c = &sc->dc_ldata->dc_rx_list[i]; rxstat = letoh32(c->dc_status); m = sc->dc_cdata.dc_rx_chain[i].sd_mbuf; bcopy(mtod(m, char *), ptr, ETHER_MAX_DIX_LEN); ptr += ETHER_MAX_DIX_LEN; /* If this is the last buffer, break out. */ if (i == idx || rxstat & DC_RXSTAT_LASTFRAG) break; dc_newbuf(sc, i, m); DC_INC(i, DC_RX_LIST_CNT); } /* Find the length of the actual receive frame. */ total_len = DC_RXBYTES(rxstat); /* Scan backwards until we hit a non-zero byte. */ while(*ptr == 0x00) ptr--; /* Round off. */ if ((unsigned long)(ptr) & 0x3) ptr -= 1; /* Now find the start of the frame. */ ptr -= total_len; if (ptr < sc->dc_pnic_rx_buf) ptr = sc->dc_pnic_rx_buf; /* * Now copy the salvaged frame to the last mbuf and fake up * the status word to make it look like a successful * frame reception. */ dc_newbuf(sc, i, m); bcopy(ptr, mtod(m, char *), total_len); cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG); } /* * This routine searches the RX ring for dirty descriptors in the * event that the rxeof routine falls out of sync with the chip's * current descriptor pointer. This may happen sometimes as a result * of a "no RX buffer available" condition that happens when the chip * consumes all of the RX buffers before the driver has a chance to * process the RX ring. This routine may need to be called more than * once to bring the driver back in sync with the chip, however we * should still be getting RX DONE interrupts to drive the search * for new packets in the RX ring, so we should catch up eventually. */ int dc_rx_resync(sc) struct dc_softc *sc; { u_int32_t stat; int i, pos, offset; pos = sc->dc_cdata.dc_rx_prod; for (i = 0; i < DC_RX_LIST_CNT; i++) { offset = offsetof(struct dc_list_data, dc_rx_list[pos]); bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap, offset, sizeof(struct dc_desc), BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); stat = sc->dc_ldata->dc_rx_list[pos].dc_status; if (!(stat & htole32(DC_RXSTAT_OWN))) break; DC_INC(pos, DC_RX_LIST_CNT); } /* If the ring really is empty, then just return. */ if (i == DC_RX_LIST_CNT) return (0); /* We've fallen behind the chip: catch it. */ sc->dc_cdata.dc_rx_prod = pos; return (EAGAIN); } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ void dc_rxeof(sc) struct dc_softc *sc; { struct mbuf *m; struct ifnet *ifp; struct dc_desc *cur_rx; int i, offset, total_len = 0; u_int32_t rxstat; ifp = &sc->sc_arpcom.ac_if; i = sc->dc_cdata.dc_rx_prod; for(;;) { struct mbuf *m0 = NULL; offset = offsetof(struct dc_list_data, dc_rx_list[i]); bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap, offset, sizeof(struct dc_desc), BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); cur_rx = &sc->dc_ldata->dc_rx_list[i]; rxstat = letoh32(cur_rx->dc_status); if (rxstat & DC_RXSTAT_OWN) break; m = sc->dc_cdata.dc_rx_chain[i].sd_mbuf; total_len = DC_RXBYTES(rxstat); bus_dmamap_sync(sc->sc_dmat, sc->dc_cdata.dc_rx_chain[i].sd_map, 0, sc->dc_cdata.dc_rx_chain[i].sd_map->dm_mapsize, BUS_DMASYNC_POSTREAD); if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) { if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) { if (rxstat & DC_RXSTAT_FIRSTFRAG) sc->dc_pnic_rx_bug_save = i; if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) { DC_INC(i, DC_RX_LIST_CNT); continue; } dc_pnic_rx_bug_war(sc, i); rxstat = letoh32(cur_rx->dc_status); total_len = DC_RXBYTES(rxstat); } } sc->dc_cdata.dc_rx_chain[i].sd_mbuf = NULL; /* * If an error occurs, update stats, clear the * status word and leave the mbuf cluster in place: * it should simply get re-used next time this descriptor * comes up in the ring. */ if (rxstat & DC_RXSTAT_RXERR #if NVLAN > 0 /* * If VLANs are enabled, allow frames up to 4 bytes * longer than the MTU. This should really check if * the giant packet has a vlan tag */ && ((rxstat & (DC_RXSTAT_GIANT|DC_RXSTAT_LASTFRAG)) == 0 && total_len <= ifp->if_mtu + 4) #endif ) { ifp->if_ierrors++; if (rxstat & DC_RXSTAT_COLLSEEN) ifp->if_collisions++; dc_newbuf(sc, i, m); if (rxstat & DC_RXSTAT_CRCERR) { DC_INC(i, DC_RX_LIST_CNT); continue; } else { dc_init(sc); return; } } /* No errors; receive the packet. */ total_len -= ETHER_CRC_LEN; m->m_pkthdr.rcvif = ifp; m0 = m_devget(mtod(m, char *) - ETHER_ALIGN, total_len + ETHER_ALIGN, 0, ifp, NULL); dc_newbuf(sc, i, m); DC_INC(i, DC_RX_LIST_CNT); if (m0 == NULL) { ifp->if_ierrors++; continue; } m_adj(m0, ETHER_ALIGN); m = m0; ifp->if_ipackets++; #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif ether_input_mbuf(ifp, m); } sc->dc_cdata.dc_rx_prod = i; } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ void dc_txeof(sc) struct dc_softc *sc; { struct dc_desc *cur_tx = NULL; struct ifnet *ifp; int idx, offset; ifp = &sc->sc_arpcom.ac_if; /* * Go through our tx list and free mbufs for those * frames that have been transmitted. */ idx = sc->dc_cdata.dc_tx_cons; while(idx != sc->dc_cdata.dc_tx_prod) { u_int32_t txstat; offset = offsetof(struct dc_list_data, dc_tx_list[idx]); bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap, offset, sizeof(struct dc_desc), BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); cur_tx = &sc->dc_ldata->dc_tx_list[idx]; txstat = letoh32(cur_tx->dc_status); if (txstat & DC_TXSTAT_OWN) break; if (!(cur_tx->dc_ctl & htole32(DC_TXCTL_LASTFRAG)) || cur_tx->dc_ctl & htole32(DC_TXCTL_SETUP)) { if (cur_tx->dc_ctl & htole32(DC_TXCTL_SETUP)) { /* * Yes, the PNIC is so brain damaged * that it will sometimes generate a TX * underrun error while DMAing the RX * filter setup frame. If we detect this, * we have to send the setup frame again, * or else the filter won't be programmed * correctly. */ if (DC_IS_PNIC(sc)) { if (txstat & DC_TXSTAT_ERRSUM) dc_setfilt(sc); } sc->dc_cdata.dc_tx_chain[idx].sd_mbuf = NULL; } sc->dc_cdata.dc_tx_cnt--; DC_INC(idx, DC_TX_LIST_CNT); continue; } if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) { /* * XXX: Why does my Xircom taunt me so? * For some reason it likes setting the CARRLOST flag * even when the carrier is there. wtf?! * Who knows, but Conexant chips have the * same problem. Maybe they took lessons * from Xircom. */ if (/*sc->dc_type == DC_TYPE_21143 &&*/ sc->dc_pmode == DC_PMODE_MII && ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM| DC_TXSTAT_NOCARRIER))) txstat &= ~DC_TXSTAT_ERRSUM; } else { if (/*sc->dc_type == DC_TYPE_21143 &&*/ sc->dc_pmode == DC_PMODE_MII && ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM| DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST))) txstat &= ~DC_TXSTAT_ERRSUM; } if (txstat & DC_TXSTAT_ERRSUM) { ifp->if_oerrors++; if (txstat & DC_TXSTAT_EXCESSCOLL) ifp->if_collisions++; if (txstat & DC_TXSTAT_LATECOLL) ifp->if_collisions++; if (!(txstat & DC_TXSTAT_UNDERRUN)) { dc_init(sc); return; } } ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3; ifp->if_opackets++; if (sc->dc_cdata.dc_tx_chain[idx].sd_map->dm_nsegs != 0) { bus_dmamap_t map = sc->dc_cdata.dc_tx_chain[idx].sd_map; bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, map); } if (sc->dc_cdata.dc_tx_chain[idx].sd_mbuf != NULL) { m_freem(sc->dc_cdata.dc_tx_chain[idx].sd_mbuf); sc->dc_cdata.dc_tx_chain[idx].sd_mbuf = NULL; } bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap, offset, sizeof(struct dc_desc), BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); sc->dc_cdata.dc_tx_cnt--; DC_INC(idx, DC_TX_LIST_CNT); } if (idx != sc->dc_cdata.dc_tx_cons) { /* some buffers have been freed */ sc->dc_cdata.dc_tx_cons = idx; ifp->if_flags &= ~IFF_OACTIVE; } ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5; } void dc_tick(xsc) void *xsc; { struct dc_softc *sc = (struct dc_softc *)xsc; struct mii_data *mii; struct ifnet *ifp; int s; u_int32_t r; s = splimp(); ifp = &sc->sc_arpcom.ac_if; mii = &sc->sc_mii; if (sc->dc_flags & DC_REDUCED_MII_POLL) { if (sc->dc_flags & DC_21143_NWAY) { r = CSR_READ_4(sc, DC_10BTSTAT); if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX && (r & DC_TSTAT_LS100)) { sc->dc_link = 0; mii_mediachg(mii); } if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T && (r & DC_TSTAT_LS10)) { sc->dc_link = 0; mii_mediachg(mii); } if (sc->dc_link == 0) mii_tick(mii); } else { r = CSR_READ_4(sc, DC_ISR); if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT && sc->dc_cdata.dc_tx_cnt == 0) { mii_tick(mii); if (!(mii->mii_media_status & IFM_ACTIVE)) sc->dc_link = 0; } } } else mii_tick(mii); /* * When the init routine completes, we expect to be able to send * packets right away, and in fact the network code will send a * gratuitous ARP the moment the init routine marks the interface * as running. However, even though the MAC may have been initialized, * there may be a delay of a few seconds before the PHY completes * autonegotiation and the link is brought up. Any transmissions * made during that delay will be lost. Dealing with this is tricky: * we can't just pause in the init routine while waiting for the * PHY to come ready since that would bring the whole system to * a screeching halt for several seconds. * * What we do here is prevent the TX start routine from sending * any packets until a link has been established. After the * interface has been initialized, the tick routine will poll * the state of the PHY until the IFM_ACTIVE flag is set. Until * that time, packets will stay in the send queue, and once the * link comes up, they will be flushed out to the wire. */ if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { sc->dc_link++; if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) dc_start(ifp); } if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link) timeout_add(&sc->dc_tick_tmo, hz / 10); else timeout_add(&sc->dc_tick_tmo, hz); splx(s); } /* A transmit underrun has occurred. Back off the transmit threshold, * or switch to store and forward mode if we have to. */ void dc_tx_underrun(sc) struct dc_softc *sc; { u_int32_t isr; int i; if (DC_IS_DAVICOM(sc)) dc_init(sc); if (DC_IS_INTEL(sc)) { /* * The real 21143 requires that the transmitter be idle * in order to change the transmit threshold or store * and forward state. */ DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON); for (i = 0; i < DC_TIMEOUT; i++) { isr = CSR_READ_4(sc, DC_ISR); if (isr & DC_ISR_TX_IDLE) break; DELAY(10); } if (i == DC_TIMEOUT) { printf("%s: failed to force tx to idle state\n", sc->sc_dev.dv_xname); dc_init(sc); } } sc->dc_txthresh += DC_TXTHRESH_INC; if (sc->dc_txthresh > DC_TXTHRESH_MAX) { DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD); } else { DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH); DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh); } if (DC_IS_INTEL(sc)) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON); return; } int dc_intr(arg) void *arg; { struct dc_softc *sc; struct ifnet *ifp; u_int32_t status; int claimed = 0; sc = arg; if ( (CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0) return (0); ifp = &sc->sc_arpcom.ac_if; /* Suppress unwanted interrupts */ if (!(ifp->if_flags & IFF_UP)) { if (CSR_READ_4(sc, DC_ISR) & DC_INTRS) dc_stop(sc); return (claimed); } /* Disable interrupts. */ CSR_WRITE_4(sc, DC_IMR, 0x00000000); while(((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) && status != 0xFFFFFFFF) { claimed = 1; CSR_WRITE_4(sc, DC_ISR, status); if (status & DC_ISR_RX_OK) { int curpkts; curpkts = ifp->if_ipackets; dc_rxeof(sc); if (curpkts == ifp->if_ipackets) { while(dc_rx_resync(sc)) dc_rxeof(sc); } } if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF)) dc_txeof(sc); if (status & DC_ISR_TX_IDLE) { dc_txeof(sc); if (sc->dc_cdata.dc_tx_cnt) { DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON); CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); } } if (status & DC_ISR_TX_UNDERRUN) dc_tx_underrun(sc); if ((status & DC_ISR_RX_WATDOGTIMEO) || (status & DC_ISR_RX_NOBUF)) { int curpkts; curpkts = ifp->if_ipackets; dc_rxeof(sc); if (curpkts == ifp->if_ipackets) { while(dc_rx_resync(sc)) dc_rxeof(sc); } } if (status & DC_ISR_BUS_ERR) { dc_reset(sc); dc_init(sc); } } /* Re-enable interrupts. */ CSR_WRITE_4(sc, DC_IMR, DC_INTRS); if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) dc_start(ifp); return (claimed); } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. */ int dc_encap(sc, m_head, txidx) struct dc_softc *sc; struct mbuf *m_head; u_int32_t *txidx; { struct dc_desc *f = NULL; int frag, cur, cnt = 0, i; bus_dmamap_t map; /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ map = sc->sc_tx_sparemap; if (bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head, BUS_DMA_NOWAIT) != 0) return (ENOBUFS); cur = frag = *txidx; for (i = 0; i < map->dm_nsegs; i++) { if (sc->dc_flags & DC_TX_ADMTEK_WAR) { if (*txidx != sc->dc_cdata.dc_tx_prod && frag == (DC_TX_LIST_CNT - 1)) { bus_dmamap_unload(sc->sc_dmat, map); return (ENOBUFS); } } if ((DC_TX_LIST_CNT - (sc->dc_cdata.dc_tx_cnt + cnt)) < 5) { bus_dmamap_unload(sc->sc_dmat, map); return (ENOBUFS); } f = &sc->dc_ldata->dc_tx_list[frag]; f->dc_ctl = htole32(DC_TXCTL_TLINK | map->dm_segs[i].ds_len); if (cnt == 0) { f->dc_status = htole32(0); f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG); } else f->dc_status = htole32(DC_TXSTAT_OWN); f->dc_data = htole32(map->dm_segs[i].ds_addr); cur = frag; DC_INC(frag, DC_TX_LIST_CNT); cnt++; } sc->dc_cdata.dc_tx_cnt += cnt; sc->dc_cdata.dc_tx_chain[cur].sd_mbuf = m_head; sc->sc_tx_sparemap = sc->dc_cdata.dc_tx_chain[cur].sd_map; sc->dc_cdata.dc_tx_chain[cur].sd_map = map; sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG); if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG) sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= htole32(DC_TXCTL_FINT); if (sc->dc_flags & DC_TX_INTR_ALWAYS) sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT); if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64) sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT); #ifdef ALTQ else if ((sc->dc_flags & DC_TX_USE_TX_INTR) && TBR_IS_ENABLED(&sc->sc_arpcom.ac_if.if_snd)) sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT); #endif bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, BUS_DMASYNC_PREWRITE); sc->dc_ldata->dc_tx_list[*txidx].dc_status = htole32(DC_TXSTAT_OWN); bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap, offsetof(struct dc_list_data, dc_tx_list[*txidx]), sizeof(struct dc_desc) * cnt, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); *txidx = frag; return (0); } /* * Coalesce an mbuf chain into a single mbuf cluster buffer. * Needed for some really badly behaved chips that just can't * do scatter/gather correctly. */ int dc_coal(sc, m_head) struct dc_softc *sc; struct mbuf **m_head; { struct mbuf *m_new, *m; m = *m_head; MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { printf("%s: no memory for tx list", sc->sc_dev.dv_xname); return (ENOBUFS); } if (m->m_pkthdr.len > MHLEN) { MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { m_freem(m_new); printf("%s: no memory for tx list", sc->sc_dev.dv_xname); return (ENOBUFS); } } m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, caddr_t)); m_new->m_pkthdr.len = m_new->m_len = m->m_pkthdr.len; m_freem(m); *m_head = m_new; return (0); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit lists. We also save a * copy of the pointers since the transmit list fragment pointers are * physical addresses. */ void dc_start(ifp) struct ifnet *ifp; { struct dc_softc *sc; struct mbuf *m_head = NULL; int idx; sc = ifp->if_softc; if (!sc->dc_link) return; if (ifp->if_flags & IFF_OACTIVE) return; idx = sc->dc_cdata.dc_tx_prod; while(sc->dc_cdata.dc_tx_chain[idx].sd_mbuf == NULL) { IFQ_POLL(&ifp->if_snd, m_head); if (m_head == NULL) break; if (sc->dc_flags & DC_TX_COALESCE && (m_head->m_next != NULL || sc->dc_flags & DC_TX_ALIGN)) { #ifdef ALTQ /* note: dc_coal breaks the poll-and-dequeue rule. * if dc_coal fails, we lose the packet. */ #endif IFQ_DEQUEUE(&ifp->if_snd, m_head); if (dc_coal(sc, &m_head)) { ifp->if_flags |= IFF_OACTIVE; break; } } if (dc_encap(sc, m_head, &idx)) { ifp->if_flags |= IFF_OACTIVE; break; } /* now we are committed to transmit the packet */ if (sc->dc_flags & DC_TX_COALESCE) { /* if mbuf is coalesced, it is already dequeued */ } else IFQ_DEQUEUE(&ifp->if_snd, m_head); /* * If there's a BPF listener, bounce a copy of this frame * to him. */ #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m_head); #endif if (sc->dc_flags & DC_TX_ONE) { ifp->if_flags |= IFF_OACTIVE; break; } } if (idx == sc->dc_cdata.dc_tx_prod) return; /* Transmit */ sc->dc_cdata.dc_tx_prod = idx; if (!(sc->dc_flags & DC_TX_POLL)) CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } void dc_init(xsc) void *xsc; { struct dc_softc *sc = xsc; struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct mii_data *mii; int s; s = splimp(); mii = &sc->sc_mii; /* * Cancel pending I/O and free all RX/TX buffers. */ dc_stop(sc); dc_reset(sc); /* * Set cache alignment and burst length. */ if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc)) CSR_WRITE_4(sc, DC_BUSCTL, 0); else CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE); /* * Evenly share the bus between receive and transmit process. */ if (DC_IS_INTEL(sc)) DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION); if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) { DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA); } else { DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG); } if (sc->dc_flags & DC_TX_POLL) DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1); switch(sc->dc_cachesize) { case 32: DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG); break; case 16: DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG); break; case 8: DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG); break; case 0: default: DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE); break; } if (sc->dc_flags & DC_TX_STORENFWD) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD); else { if (sc->dc_txthresh > DC_TXTHRESH_MAX) { DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD); } else { DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD); DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh); } } DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC); DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF); if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) { /* * The app notes for the 98713 and 98715A say that * in order to have the chips operate properly, a magic * number must be written to CSR16. Macronix does not * document the meaning of these bits so there's no way * to know exactly what they do. The 98713 has a magic * number all its own; the rest all use a different one. */ DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000); if (sc->dc_type == DC_TYPE_98713) DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713); else DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715); } if (DC_IS_XIRCOM(sc)) { CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN | DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT); DELAY(10); CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN | DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT); DELAY(10); } DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH); DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN); /* Init circular RX list. */ if (dc_list_rx_init(sc) == ENOBUFS) { printf("%s: initialization failed: no " "memory for rx buffers\n", sc->sc_dev.dv_xname); dc_stop(sc); splx(s); return; } /* * Init tx descriptors. */ dc_list_tx_init(sc); /* * Sync down both lists initialized. */ bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap, 0, sc->sc_listmap->dm_mapsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* * Load the address of the RX list. */ CSR_WRITE_4(sc, DC_RXADDR, sc->sc_listmap->dm_segs[0].ds_addr + offsetof(struct dc_list_data, dc_rx_list[0])); CSR_WRITE_4(sc, DC_TXADDR, sc->sc_listmap->dm_segs[0].ds_addr + offsetof(struct dc_list_data, dc_tx_list[0])); /* * Enable interrupts. */ CSR_WRITE_4(sc, DC_IMR, DC_INTRS); CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF); /* Enable transmitter. */ DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON); /* * If this is an Intel 21143 and we're not using the * MII port, program the LED control pins so we get * link and activity indications. */ if (sc->dc_flags & DC_TULIP_LEDS) { CSR_WRITE_4(sc, DC_WATCHDOG, DC_WDOG_CTLWREN|DC_WDOG_LINK|DC_WDOG_ACTIVITY); CSR_WRITE_4(sc, DC_WATCHDOG, 0); } /* * Load the RX/multicast filter. We do this sort of late * because the filter programming scheme on the 21143 and * some clones requires DMAing a setup frame via the TX * engine, and we need the transmitter enabled for that. */ dc_setfilt(sc); /* Enable receiver. */ DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON); CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF); mii_mediachg(mii); dc_setcfg(sc, sc->dc_if_media); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; splx(s); timeout_set(&sc->dc_tick_tmo, dc_tick, sc); if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1) sc->dc_link = 1; else { if (sc->dc_flags & DC_21143_NWAY) timeout_add(&sc->dc_tick_tmo, hz / 10); else timeout_add(&sc->dc_tick_tmo, hz); } #ifdef SRM_MEDIA if(sc->dc_srm_media) { struct ifreq ifr; ifr.ifr_media = sc->dc_srm_media; ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA); sc->dc_srm_media = 0; } #endif } /* * Set media options. */ int dc_ifmedia_upd(ifp) struct ifnet *ifp; { struct dc_softc *sc; struct mii_data *mii; struct ifmedia *ifm; sc = ifp->if_softc; mii = &sc->sc_mii; mii_mediachg(mii); ifm = &mii->mii_media; if (DC_IS_DAVICOM(sc) && IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) dc_setcfg(sc, ifm->ifm_media); else sc->dc_link = 0; return (0); } /* * Report current media status. */ void dc_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct dc_softc *sc; struct mii_data *mii; struct ifmedia *ifm; sc = ifp->if_softc; mii = &sc->sc_mii; mii_pollstat(mii); ifm = &mii->mii_media; if (DC_IS_DAVICOM(sc)) { if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) { ifmr->ifm_active = ifm->ifm_media; ifmr->ifm_status = 0; return; } } ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; } int dc_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct dc_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct ifaddr *ifa = (struct ifaddr *)data; struct mii_data *mii; int s, error = 0; s = splimp(); if ((error = ether_ioctl(ifp, &sc->sc_arpcom, command, data)) > 0) { splx(s); return (error); } switch(command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { case AF_INET: dc_init(sc); arp_ifinit(&sc->sc_arpcom, ifa); break; default: dc_init(sc); break; } break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->dc_if_flags & IFF_PROMISC)) { dc_setfilt(sc); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->dc_if_flags & IFF_PROMISC) { dc_setfilt(sc); } else if (!(ifp->if_flags & IFF_RUNNING)) { sc->dc_txthresh = 0; dc_init(sc); } } else { if (ifp->if_flags & IFF_RUNNING) dc_stop(sc); } sc->dc_if_flags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: error = (command == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->sc_arpcom) : ether_delmulti(ifr, &sc->sc_arpcom); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware * filter accordingly. */ if (ifp->if_flags & IFF_RUNNING) dc_setfilt(sc); error = 0; } break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = &sc->sc_mii; error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); #ifdef SRM_MEDIA if (sc->dc_srm_media) sc->dc_srm_media = 0; #endif break; default: error = EINVAL; break; } splx(s); return (error); } void dc_watchdog(ifp) struct ifnet *ifp; { struct dc_softc *sc; sc = ifp->if_softc; ifp->if_oerrors++; printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname); dc_stop(sc); dc_reset(sc); dc_init(sc); if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) dc_start(ifp); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ void dc_stop(sc) struct dc_softc *sc; { struct ifnet *ifp; int i; ifp = &sc->sc_arpcom.ac_if; ifp->if_timer = 0; timeout_del(&sc->dc_tick_tmo); DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON)); CSR_WRITE_4(sc, DC_IMR, 0x00000000); CSR_WRITE_4(sc, DC_TXADDR, 0x00000000); CSR_WRITE_4(sc, DC_RXADDR, 0x00000000); sc->dc_link = 0; /* * Free data in the RX lists. */ for (i = 0; i < DC_RX_LIST_CNT; i++) { if (sc->dc_cdata.dc_rx_chain[i].sd_map->dm_nsegs != 0) { bus_dmamap_t map = sc->dc_cdata.dc_rx_chain[i].sd_map; bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, map); } if (sc->dc_cdata.dc_rx_chain[i].sd_mbuf != NULL) { m_freem(sc->dc_cdata.dc_rx_chain[i].sd_mbuf); sc->dc_cdata.dc_rx_chain[i].sd_mbuf = NULL; } } bzero((char *)&sc->dc_ldata->dc_rx_list, sizeof(sc->dc_ldata->dc_rx_list)); /* * Free the TX list buffers. */ for (i = 0; i < DC_TX_LIST_CNT; i++) { if (sc->dc_cdata.dc_tx_chain[i].sd_map->dm_nsegs != 0) { bus_dmamap_t map = sc->dc_cdata.dc_tx_chain[i].sd_map; bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, map); } if (sc->dc_cdata.dc_tx_chain[i].sd_mbuf != NULL) { if (sc->dc_ldata->dc_tx_list[i].dc_ctl & htole32(DC_TXCTL_SETUP)) { sc->dc_cdata.dc_tx_chain[i].sd_mbuf = NULL; continue; } m_freem(sc->dc_cdata.dc_tx_chain[i].sd_mbuf); sc->dc_cdata.dc_tx_chain[i].sd_mbuf = NULL; } } bzero((char *)&sc->dc_ldata->dc_tx_list, sizeof(sc->dc_ldata->dc_tx_list)); bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap, 0, sc->sc_listmap->dm_mapsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ void dc_shutdown(v) void *v; { struct dc_softc *sc = (struct dc_softc *)v; dc_stop(sc); } struct cfdriver dc_cd = { 0, "dc", DV_IFNET };