/* $OpenBSD: dc.c,v 1.8 2000/08/02 19:01:06 aaron Exp $ */ /* * Copyright (c) 1997, 1998, 1999 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/pci/if_dc.c,v 1.19 2000/08/01 19:34:13 wpaul Exp $ */ /* * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143 * series chips and several workalikes including the following: * * Macronix 98713/98715/98725 PMAC (www.macronix.com) * Macronix/Lite-On 82c115 PNIC II (www.macronix.com) * Lite-On 82c168/82c169 PNIC (www.litecom.com) * ASIX Electronics AX88140A (www.asix.com.tw) * ASIX Electronics AX88141 (www.asix.com.tw) * ADMtek AL981 (www.admtek.com.tw) * ADMtek AN983 (www.admtek.com.tw) * Davicom DM9100, DM9102 (www.davicom8.com) * * Datasheets for the 21143 are available at developer.intel.com. * Datasheets for the clone parts can be found at their respective sites. * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.) * The PNIC II is essentially a Macronix 98715A chip; the only difference * worth noting is that its multicast hash table is only 128 bits wide * instead of 512. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The Intel 21143 is the successor to the DEC 21140. It is basically * the same as the 21140 but with a few new features. The 21143 supports * three kinds of media attachments: * * o MII port, for 10Mbps and 100Mbps support and NWAY * autonegotiation provided by an external PHY. * o SYM port, for symbol mode 100Mbps support. * o 10baseT port. * o AUI/BNC port. * * The 100Mbps SYM port and 10baseT port can be used together in * combination with the internal NWAY support to create a 10/100 * autosensing configuration. * * Knowing which media is available on a given card is tough: you're * supposed to go slogging through the EEPROM looking for media * description structures. Unfortunately, some card vendors that use * the 21143 don't obey the DEC SROM spec correctly, which means that * what you find in the EEPROM may not agree with reality. Fortunately, * the 21143 provides us a way to get around this issue: lurking in * PCI configuration space is the Configuration Wake-Up Command Register. * This register is loaded with a value from the EEPROM when wake on LAN * mode is enabled; this value tells us quite clearly what kind of media * is attached to the NIC. The main purpose of this register is to tell * the NIC what media to scan when in wake on LAN mode, however by * forcibly enabling wake on LAN mode, we can use to learn what kind of * media a given NIC has available and adapt ourselves accordingly. * * Of course, if the media description blocks in the EEPROM are bogus. * what are the odds that the CWUC aren't bogus as well, right? Well, * the CWUC value is more likely to be correct since wake on LAN mode * won't work correctly without it, and wake on LAN is a big selling * point these days. It's also harder to screw up a single byte than * a whole media descriptor block. * * Note that not all tulip workalikes are handled in this driver: we only * deal with those which are relatively well behaved. The Winbond is * handled separately due to its different register offsets and the * special handling needed for its various bugs. The PNIC is handled * here, but I'm not thrilled about it. * * All of the workalike chips use some form of MII transceiver support * with the exception of the Macronix chips, which also have a SYM port. * The ASIX AX88140A is also documented to have a SYM port, but all * the cards I've seen use an MII transceiver, probably because the * AX88140A doesn't support internal NWAY. */ #include "bpfilter.h" #include "vlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #include #if NBPFILTER > 0 #include #endif #include /* for vtophys */ #include /* for vtophys */ #include #include #include #include #include #define DC_USEIOSPACE #include int dc_intr __P((void *)); void dc_shutdown __P((void *)); struct dc_type *dc_devtype __P((void *)); int dc_newbuf __P((struct dc_softc *, int, struct mbuf *)); int dc_encap __P((struct dc_softc *, struct mbuf *, u_int32_t *)); int dc_coal __P((struct dc_softc *, struct mbuf **)); void dc_pnic_rx_bug_war __P((struct dc_softc *, int)); int dc_rx_resync __P((struct dc_softc *)); void dc_rxeof __P((struct dc_softc *)); void dc_txeof __P((struct dc_softc *)); void dc_tick __P((void *)); void dc_start __P((struct ifnet *)); int dc_ioctl __P((struct ifnet *, u_long, caddr_t)); void dc_init __P((void *)); void dc_stop __P((struct dc_softc *)); void dc_watchdog __P((struct ifnet *)); int dc_ifmedia_upd __P((struct ifnet *)); void dc_ifmedia_sts __P((struct ifnet *, struct ifmediareq *)); void dc_delay __P((struct dc_softc *)); void dc_eeprom_width __P((struct dc_softc *)); void dc_eeprom_idle __P((struct dc_softc *)); void dc_eeprom_putbyte __P((struct dc_softc *, int)); void dc_eeprom_getword __P((struct dc_softc *, int, u_int16_t *)); void dc_eeprom_getword_pnic __P((struct dc_softc *, int, u_int16_t *)); void dc_read_eeprom __P((struct dc_softc *, caddr_t, int, int, int)); void dc_mii_writebit __P((struct dc_softc *, int)); int dc_mii_readbit __P((struct dc_softc *)); void dc_mii_sync __P((struct dc_softc *)); void dc_mii_send __P((struct dc_softc *, u_int32_t, int)); int dc_mii_readreg __P((struct dc_softc *, struct dc_mii_frame *)); int dc_mii_writereg __P((struct dc_softc *, struct dc_mii_frame *)); int dc_miibus_readreg __P((struct device *, int, int)); void dc_miibus_writereg __P((struct device *, int, int, int)); void dc_miibus_statchg __P((struct device *)); void dc_setcfg __P((struct dc_softc *, int)); u_int32_t dc_crc_le __P((struct dc_softc *, caddr_t)); u_int32_t dc_crc_be __P((caddr_t)); void dc_setfilt_21143 __P((struct dc_softc *)); void dc_setfilt_asix __P((struct dc_softc *)); void dc_setfilt_admtek __P((struct dc_softc *)); void dc_setfilt __P((struct dc_softc *)); void dc_reset __P((struct dc_softc *)); int dc_list_rx_init __P((struct dc_softc *)); int dc_list_tx_init __P((struct dc_softc *)); #define DC_SETBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x)) #define DC_CLRBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x)) #define SIO_SET(x) DC_SETBIT(sc, DC_SIO, (x)) #define SIO_CLR(x) DC_CLRBIT(sc, DC_SIO, (x)) void dc_delay(sc) struct dc_softc *sc; { int idx; for (idx = (300 / 33) + 1; idx > 0; idx--) CSR_READ_4(sc, DC_BUSCTL); } void dc_eeprom_width(sc) struct dc_softc *sc; { int i; /* Force EEPROM to idle state. */ dc_eeprom_idle(sc); /* Enter EEPROM access mode. */ CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ); dc_delay(sc); DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS); dc_delay(sc); for (i = 3; i--;) { if (6 & (1 << i)) DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN); else DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); } for (i = 1; i <= 12; i++) { DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) { DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); break; } DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); } /* Turn off EEPROM access mode. */ dc_eeprom_idle(sc); if (i < 4 || i > 12) sc->dc_romwidth = 6; else sc->dc_romwidth = i; /* Enter EEPROM access mode. */ CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ); dc_delay(sc); DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS); dc_delay(sc); /* Turn off EEPROM access mode. */ dc_eeprom_idle(sc); } void dc_eeprom_idle(sc) struct dc_softc *sc; { register int i; CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ); dc_delay(sc); DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS); dc_delay(sc); for (i = 0; i < 25; i++) { DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); } DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS); dc_delay(sc); CSR_WRITE_4(sc, DC_SIO, 0x00000000); return; } /* * Send a read command and address to the EEPROM, check for ACK. */ void dc_eeprom_putbyte(sc, addr) struct dc_softc *sc; int addr; { register int d, i; /* * The AN983 has a 93C66 EEPROM on it instead of * a 93C46. It uses a different bit sequence for * specifying the "read" opcode. */ if (DC_IS_CENTAUR(sc)) d = DC_EECMD_READ >> 4; else d = DC_EECMD_READ >> 6; for (i = 3; i--; ) { if (d & (1 << i)) DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN); else DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); } /* * Feed in each bit and strobe the clock. */ for (i = sc->dc_romwidth; i--;) { if (addr & (1 << i)) { SIO_SET(DC_SIO_EE_DATAIN); } else { SIO_CLR(DC_SIO_EE_DATAIN); } dc_delay(sc); SIO_SET(DC_SIO_EE_CLK); dc_delay(sc); SIO_CLR(DC_SIO_EE_CLK); dc_delay(sc); } return; } /* * Read a word of data stored in the EEPROM at address 'addr.' * The PNIC 82c168/82c169 has its own non-standard way to read * the EEPROM. */ void dc_eeprom_getword_pnic(sc, addr, dest) struct dc_softc *sc; int addr; u_int16_t *dest; { register int i; u_int32_t r; CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr); for (i = 0; i < DC_TIMEOUT; i++) { DELAY(1); r = CSR_READ_4(sc, DC_SIO); if (!(r & DC_PN_SIOCTL_BUSY)) { *dest = (u_int16_t)(r & 0xFFFF); return; } } return; } /* * Read a word of data stored in the EEPROM at address 'addr.' */ void dc_eeprom_getword(sc, addr, dest) struct dc_softc *sc; int addr; u_int16_t *dest; { register int i; u_int16_t word = 0; /* Force EEPROM to idle state. */ dc_eeprom_idle(sc); /* Enter EEPROM access mode. */ CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ); dc_delay(sc); DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK); dc_delay(sc); DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS); dc_delay(sc); /* * Send address of word we want to read. */ dc_eeprom_putbyte(sc, addr); /* * Start reading bits from EEPROM. */ for (i = 0x8000; i; i >>= 1) { SIO_SET(DC_SIO_EE_CLK); dc_delay(sc); if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT) word |= i; dc_delay(sc); SIO_CLR(DC_SIO_EE_CLK); dc_delay(sc); } /* Turn off EEPROM access mode. */ dc_eeprom_idle(sc); *dest = word; return; } /* * Read a sequence of words from the EEPROM. */ void dc_read_eeprom(sc, dest, off, cnt, swap) struct dc_softc *sc; caddr_t dest; int off; int cnt; int swap; { int i; u_int16_t word = 0, *ptr; for (i = 0; i < cnt; i++) { if (DC_IS_PNIC(sc)) dc_eeprom_getword_pnic(sc, off + i, &word); else dc_eeprom_getword(sc, off + i, &word); ptr = (u_int16_t *)(dest + (i * 2)); if (swap) *ptr = ntohs(word); else *ptr = word; } return; } /* * The following two routines are taken from the Macronix 98713 * Application Notes pp.19-21. */ /* * Write a bit to the MII bus. */ void dc_mii_writebit(sc, bit) struct dc_softc *sc; int bit; { if (bit) CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT); else CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE); DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK); DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK); return; } /* * Read a bit from the MII bus. */ int dc_mii_readbit(sc) struct dc_softc *sc; { CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR); CSR_READ_4(sc, DC_SIO); DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK); DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK); if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN) return(1); return(0); } /* * Sync the PHYs by setting data bit and strobing the clock 32 times. */ void dc_mii_sync(sc) struct dc_softc *sc; { register int i; CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE); for (i = 0; i < 32; i++) dc_mii_writebit(sc, 1); return; } /* * Clock a series of bits through the MII. */ void dc_mii_send(sc, bits, cnt) struct dc_softc *sc; u_int32_t bits; int cnt; { int i; for (i = (0x1 << (cnt - 1)); i; i >>= 1) dc_mii_writebit(sc, bits & i); } /* * Read an PHY register through the MII. */ int dc_mii_readreg(sc, frame) struct dc_softc *sc; struct dc_mii_frame *frame; { int i, ack, s; s = splimp(); /* * Set up frame for RX. */ frame->mii_stdelim = DC_MII_STARTDELIM; frame->mii_opcode = DC_MII_READOP; frame->mii_turnaround = 0; frame->mii_data = 0; /* * Sync the PHYs. */ dc_mii_sync(sc); /* * Send command/address info. */ dc_mii_send(sc, frame->mii_stdelim, 2); dc_mii_send(sc, frame->mii_opcode, 2); dc_mii_send(sc, frame->mii_phyaddr, 5); dc_mii_send(sc, frame->mii_regaddr, 5); #ifdef notdef /* Idle bit */ dc_mii_writebit(sc, 1); dc_mii_writebit(sc, 0); #endif /* Check for ack */ ack = dc_mii_readbit(sc); /* * Now try reading data bits. If the ack failed, we still * need to clock through 16 cycles to keep the PHY(s) in sync. */ if (ack) { for(i = 0; i < 16; i++) { dc_mii_readbit(sc); } goto fail; } for (i = 0x8000; i; i >>= 1) { if (!ack) { if (dc_mii_readbit(sc)) frame->mii_data |= i; } } fail: dc_mii_writebit(sc, 0); dc_mii_writebit(sc, 0); splx(s); if (ack) return(1); return(0); } /* * Write to a PHY register through the MII. */ int dc_mii_writereg(sc, frame) struct dc_softc *sc; struct dc_mii_frame *frame; { int s; s = splimp(); /* * Set up frame for TX. */ frame->mii_stdelim = DC_MII_STARTDELIM; frame->mii_opcode = DC_MII_WRITEOP; frame->mii_turnaround = DC_MII_TURNAROUND; /* * Sync the PHYs. */ dc_mii_sync(sc); dc_mii_send(sc, frame->mii_stdelim, 2); dc_mii_send(sc, frame->mii_opcode, 2); dc_mii_send(sc, frame->mii_phyaddr, 5); dc_mii_send(sc, frame->mii_regaddr, 5); dc_mii_send(sc, frame->mii_turnaround, 2); dc_mii_send(sc, frame->mii_data, 16); /* Idle bit. */ dc_mii_writebit(sc, 0); dc_mii_writebit(sc, 0); splx(s); return(0); } int dc_miibus_readreg(self, phy, reg) struct device *self; int phy, reg; { struct dc_mii_frame frame; struct dc_softc *sc = (struct dc_softc *)self; int i, rval, phy_reg; bzero((char *)&frame, sizeof(frame)); /* * Note: both the AL981 and AN983 have internal PHYs, * however the AL981 provides direct access to the PHY * registers while the AN983 uses a serial MII interface. * The AN983's MII interface is also buggy in that you * can read from any MII address (0 to 31), but only address 1 * behaves normally. To deal with both cases, we pretend * that the PHY is at MII address 1. */ if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR) return(0); if (sc->dc_pmode == DC_PMODE_SYM) { if (phy == (MII_NPHY - 1)) { switch(reg) { case MII_BMSR: /* * Fake something to make the probe * code think there's a PHY here. */ return(BMSR_MEDIAMASK); break; case MII_PHYIDR1: if (DC_IS_PNIC(sc)) return(PCI_VENDOR_LITEON); return(PCI_VENDOR_DEC); break; case MII_PHYIDR2: if (DC_IS_PNIC(sc)) return(PCI_PRODUCT_LITEON_PNIC); return(PCI_PRODUCT_DEC_21142); break; default: return(0); break; } } else return(0); } if (DC_IS_PNIC(sc)) { CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ | (phy << 23) | (reg << 18)); for (i = 0; i < DC_TIMEOUT; i++) { DELAY(1); rval = CSR_READ_4(sc, DC_PN_MII); if (!(rval & DC_PN_MII_BUSY)) { rval &= 0xFFFF; return(rval == 0xFFFF ? 0 : rval); } } return(0); } if (DC_IS_COMET(sc)) { switch(reg) { case MII_BMCR: phy_reg = DC_AL_BMCR; break; case MII_BMSR: phy_reg = DC_AL_BMSR; break; case MII_PHYIDR1: phy_reg = DC_AL_VENID; break; case MII_PHYIDR2: phy_reg = DC_AL_DEVID; break; case MII_ANAR: phy_reg = DC_AL_ANAR; break; case MII_ANLPAR: phy_reg = DC_AL_LPAR; break; case MII_ANER: phy_reg = DC_AL_ANER; break; default: printf("dc%d: phy_read: bad phy register %x\n", sc->dc_unit, reg); return(0); break; } rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF; if (rval == 0xFFFF) return(0); return(rval); } frame.mii_phyaddr = phy; frame.mii_regaddr = reg; phy_reg = CSR_READ_4(sc, DC_NETCFG); CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL); dc_mii_readreg(sc, &frame); CSR_WRITE_4(sc, DC_NETCFG, phy_reg); return(frame.mii_data); } void dc_miibus_writereg(self, phy, reg, data) struct device *self; int phy, reg, data; { struct dc_softc *sc = (struct dc_softc *)self; struct dc_mii_frame frame; int i, phy_reg; bzero((char *)&frame, sizeof(frame)); if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR) return; if (DC_IS_PNIC(sc)) { CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE | (phy << 23) | (reg << 10) | data); for (i = 0; i < DC_TIMEOUT; i++) { if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY)) break; } return; } if (DC_IS_COMET(sc)) { switch(reg) { case MII_BMCR: phy_reg = DC_AL_BMCR; break; case MII_BMSR: phy_reg = DC_AL_BMSR; break; case MII_PHYIDR1: phy_reg = DC_AL_VENID; break; case MII_PHYIDR2: phy_reg = DC_AL_DEVID; break; case MII_ANAR: phy_reg = DC_AL_ANAR; break; case MII_ANLPAR: phy_reg = DC_AL_LPAR; break; case MII_ANER: phy_reg = DC_AL_ANER; break; default: printf("dc%d: phy_write: bad phy register %x\n", sc->dc_unit, reg); return; break; } CSR_WRITE_4(sc, phy_reg, data); return; } frame.mii_phyaddr = phy; frame.mii_regaddr = reg; frame.mii_data = data; phy_reg = CSR_READ_4(sc, DC_NETCFG); CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL); dc_mii_writereg(sc, &frame); CSR_WRITE_4(sc, DC_NETCFG, phy_reg); return; } void dc_miibus_statchg(self) struct device *self; { struct dc_softc *sc = (struct dc_softc *)self; struct mii_data *mii; struct ifmedia *ifm; if (DC_IS_ADMTEK(sc)) return; mii = &sc->sc_mii; ifm = &mii->mii_media; if (DC_IS_DAVICOM(sc) && IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) { dc_setcfg(sc, ifm->ifm_media); sc->dc_if_media = ifm->ifm_media; } else { dc_setcfg(sc, mii->mii_media_active); sc->dc_if_media = mii->mii_media_active; } return; } #define DC_POLY 0xEDB88320 #define DC_BITS_512 9 #define DC_BITS_128 7 #define DC_BITS_64 6 u_int32_t dc_crc_le(sc, addr) struct dc_softc *sc; caddr_t addr; { u_int32_t idx, bit, data, crc; /* Compute CRC for the address value. */ crc = 0xFFFFFFFF; /* initial value */ for (idx = 0; idx < 6; idx++) { for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) crc = (crc >> 1) ^ (((crc ^ data) & 1) ? DC_POLY : 0); } /* * The hash table on the PNIC II and the MX98715AEC-C/D/E * chips is only 128 bits wide. */ if (sc->dc_flags & DC_128BIT_HASH) return (crc & ((1 << DC_BITS_128) - 1)); /* The hash table on the MX98715BEC is only 64 bits wide. */ if (sc->dc_flags & DC_64BIT_HASH) return (crc & ((1 << DC_BITS_64) - 1)); return (crc & ((1 << DC_BITS_512) - 1)); } /* * Calculate CRC of a multicast group address, return the lower 6 bits. */ u_int32_t dc_crc_be(addr) caddr_t addr; { u_int32_t crc, carry; int i, j; u_int8_t c; /* Compute CRC for the address value. */ crc = 0xFFFFFFFF; /* initial value */ for (i = 0; i < 6; i++) { c = *(addr + i); for (j = 0; j < 8; j++) { carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01); crc <<= 1; c >>= 1; if (carry) crc = (crc ^ 0x04c11db6) | carry; } } /* return the filter bit position */ return((crc >> 26) & 0x0000003F); } /* * 21143-style RX filter setup routine. Filter programming is done by * downloading a special setup frame into the TX engine. 21143, Macronix, * PNIC, PNIC II and Davicom chips are programmed this way. * * We always program the chip using 'hash perfect' mode, i.e. one perfect * address (our node address) and a 512-bit hash filter for multicast * frames. We also sneak the broadcast address into the hash filter since * we need that too. */ void dc_setfilt_21143(sc) struct dc_softc *sc; { struct dc_desc *sframe; u_int32_t h, *sp; struct arpcom *ac = &sc->arpcom; struct ether_multi *enm; struct ether_multistep step; struct ifnet *ifp; int i; ifp = &sc->arpcom.ac_if; i = sc->dc_cdata.dc_tx_prod; DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT); sc->dc_cdata.dc_tx_cnt++; sframe = &sc->dc_ldata->dc_tx_list[i]; sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf; bzero((char *)sp, DC_SFRAME_LEN); sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf); sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT; sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf; /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); else DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); if (ifp->if_flags & IFF_ALLMULTI) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); else DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { h = dc_crc_le(sc, enm->enm_addrlo); sp[h >> 4] |= 1 << (h & 0xF); ETHER_NEXT_MULTI(step, enm); } if (ifp->if_flags & IFF_BROADCAST) { h = dc_crc_le(sc, (caddr_t)ðerbroadcastaddr); sp[h >> 4] |= 1 << (h & 0xF); } /* Set our MAC address */ sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0]; sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1]; sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2]; sframe->dc_status = DC_TXSTAT_OWN; CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); /* * The PNIC takes an exceedingly long time to process its * setup frame; wait 10ms after posting the setup frame * before proceeding, just so it has time to swallow its * medicine. */ DELAY(10000); ifp->if_timer = 5; return; } void dc_setfilt_admtek(sc) struct dc_softc *sc; { struct ifnet *ifp; struct arpcom *ac = &sc->arpcom; struct ether_multi *enm; struct ether_multistep step; int h = 0; u_int32_t hashes[2] = { 0, 0 }; ifp = &sc->arpcom.ac_if; /* Init our MAC address */ CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0])); CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4])); /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); else DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); if (ifp->if_flags & IFF_ALLMULTI) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); else DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); /* first, zot all the existing hash bits */ CSR_WRITE_4(sc, DC_AL_MAR0, 0); CSR_WRITE_4(sc, DC_AL_MAR1, 0); /* * If we're already in promisc or allmulti mode, we * don't have to bother programming the multicast filter. */ if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI)) return; /* now program new ones */ ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { h = dc_crc_be(enm->enm_addrlo); if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); ETHER_NEXT_MULTI(step, enm); } CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]); CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]); return; } void dc_setfilt_asix(sc) struct dc_softc *sc; { struct ifnet *ifp; struct arpcom *ac = &sc->arpcom; struct ether_multi *enm; struct ether_multistep step; int h = 0; u_int32_t hashes[2] = { 0, 0 }; ifp = &sc->arpcom.ac_if; /* Init our MAC address */ CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0); CSR_WRITE_4(sc, DC_AX_FILTDATA, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0])); CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1); CSR_WRITE_4(sc, DC_AX_FILTDATA, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4])); /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); else DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC); if (ifp->if_flags & IFF_ALLMULTI) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); else DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI); /* * The ASIX chip has a special bit to enable reception * of broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD); else DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD); /* first, zot all the existing hash bits */ CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0); CSR_WRITE_4(sc, DC_AX_FILTDATA, 0); CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1); CSR_WRITE_4(sc, DC_AX_FILTDATA, 0); /* * If we're already in promisc or allmulti mode, we * don't have to bother programming the multicast filter. */ if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI)) return; /* now program new ones */ ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { h = dc_crc_be(enm->enm_addrlo); if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); ETHER_NEXT_MULTI(step, enm); } CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0); CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]); CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1); CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]); return; } void dc_setfilt(sc) struct dc_softc *sc; { if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) || DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc)) dc_setfilt_21143(sc); if (DC_IS_ASIX(sc)) dc_setfilt_asix(sc); if (DC_IS_ADMTEK(sc)) dc_setfilt_admtek(sc); return; } /* * In order to fiddle with the * 'full-duplex' and '100Mbps' bits in the netconfig register, we * first have to put the transmit and/or receive logic in the idle state. */ void dc_setcfg(sc, media) struct dc_softc *sc; int media; { int i, restart = 0; u_int32_t isr; if (IFM_SUBTYPE(media) == IFM_NONE) return; if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) { restart = 1; DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)); for (i = 0; i < DC_TIMEOUT; i++) { DELAY(10); isr = CSR_READ_4(sc, DC_ISR); if (isr & DC_ISR_TX_IDLE || (isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED) break; } if (i == DC_TIMEOUT) printf("dc%d: failed to force tx and " "rx to idle state\n", sc->dc_unit); } if (IFM_SUBTYPE(media) == IFM_100_TX) { DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL); DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT); if (sc->dc_pmode == DC_PMODE_MII) { int watchdogreg; /* there's a write enable bit here that reads as 1 */ watchdogreg = CSR_READ_4(sc, DC_WATCHDOG); watchdogreg &= ~DC_WDOG_CTLWREN; watchdogreg |= DC_WDOG_JABBERDIS; CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg); DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS| DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER)); if (sc->dc_type == DC_TYPE_98713) DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS| DC_NETCFG_SCRAMBLER)); if (!DC_IS_DAVICOM(sc)) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF); } else { if (DC_IS_PNIC(sc)) { DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL); DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP); DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL); } DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS); DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER); } } if (IFM_SUBTYPE(media) == IFM_10_T) { DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL); DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT); if (sc->dc_pmode == DC_PMODE_MII) { int watchdogreg; /* there's a write enable bit here that reads as 1 */ watchdogreg = CSR_READ_4(sc, DC_WATCHDOG); watchdogreg &= ~DC_WDOG_CTLWREN; watchdogreg |= DC_WDOG_JABBERDIS; CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg); DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS| DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER)); if (sc->dc_type == DC_TYPE_98713) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS); if (!DC_IS_DAVICOM(sc)) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF); } else { if (DC_IS_PNIC(sc)) { DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL); DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP); DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL); } DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS); DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER); } } /* * If this is a Davicom DM9102A card with a DM9801 HomePNA * PHY and we want HomePNA mode, set the portsel bit to turn * on the external MII port. */ if (DC_IS_DAVICOM(sc)) { if (IFM_SUBTYPE(media) == IFM_HPNA_1) { DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); sc->dc_link = 1; } else { DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL); } } if ((media & IFM_GMASK) == IFM_FDX) { DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX); if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc)) DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX); } else { DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX); if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc)) DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX); } if (restart) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON); return; } void dc_reset(sc) struct dc_softc *sc; { register int i; DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET); for (i = 0; i < DC_TIMEOUT; i++) { DELAY(10); if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET)) break; } if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc)) { DELAY(10000); DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET); i = 0; } if (i == DC_TIMEOUT) printf("dc%d: reset never completed!\n", sc->dc_unit); /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); CSR_WRITE_4(sc, DC_IMR, 0x00000000); CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000); CSR_WRITE_4(sc, DC_NETCFG, 0x00000000); /* * Bring the SIA out of reset. In some cases, it looks * like failing to unreset the SIA soon enough gets it * into a state where it will never come out of reset * until we reset the whole chip again. */ if (DC_IS_INTEL(sc)) DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET); return; } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ void dc_attach_common(sc) struct dc_softc *sc; { struct ifnet *ifp; int mac_offset; dc_eeprom_width(sc); /* * Get station address from the EEPROM. */ switch(sc->dc_type) { case DC_TYPE_98713: case DC_TYPE_98713A: case DC_TYPE_987x5: case DC_TYPE_PNICII: dc_read_eeprom(sc, (caddr_t)&mac_offset, (DC_EE_NODEADDR_OFFSET / 2), 1, 0); dc_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, (mac_offset / 2), 3, 0); break; case DC_TYPE_PNIC: dc_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, 0, 3, 1); break; case DC_TYPE_DM9102: case DC_TYPE_21143: case DC_TYPE_ASIX: dc_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, DC_EE_NODEADDR, 3, 0); break; case DC_TYPE_AL981: case DC_TYPE_AN983: dc_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, DC_AL_EE_NODEADDR, 3, 0); break; default: dc_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, DC_EE_NODEADDR, 3, 0); break; } /* * A 21143 or clone chip was detected. Inform the world. */ printf(" address %s\n", ether_sprintf(sc->arpcom.ac_enaddr)); sc->dc_ldata_ptr = malloc(sizeof(struct dc_list_data), M_DEVBUF, M_NOWAIT); if (sc->dc_ldata_ptr == NULL) { printf("%s: no memory for list buffers!\n", sc->dc_unit); goto fail; } sc->dc_ldata = (struct dc_list_data *)sc->dc_ldata_ptr; bzero(sc->dc_ldata, sizeof(struct dc_list_data)); ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = dc_ioctl; ifp->if_output = ether_output; ifp->if_start = dc_start; ifp->if_watchdog = dc_watchdog; ifp->if_baudrate = 10000000; ifp->if_snd.ifq_maxlen = DC_TX_LIST_CNT - 1; bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); sc->sc_mii.mii_ifp = ifp; sc->sc_mii.mii_readreg = dc_miibus_readreg; sc->sc_mii.mii_writereg = dc_miibus_writereg; sc->sc_mii.mii_statchg = dc_miibus_statchg; ifmedia_init(&sc->sc_mii.mii_media, 0, dc_ifmedia_upd, dc_ifmedia_sts); mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff); if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); } else ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); if (DC_IS_DAVICOM(sc) && sc->dc_revision >= DC_REVISION_DM9102A) ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_HPNA_1,0,NULL); /* if (error && DC_IS_INTEL(sc)) { sc->dc_pmode = DC_PMODE_SYM; sc->dc_flags |= DC_21143_NWAY; mii_phy_probe(dev, &sc->dc_miibus, dc_ifmedia_upd, dc_ifmedia_sts); error = 0; } if (error) { printf("dc%d: MII without any PHY!\n", sc->dc_unit); bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand); bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq); bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res); error = ENXIO; goto fail; } */ /* * Call MI attach routines. */ if_attach(ifp); ether_ifattach(ifp); #if NBPFILTER > 0 bpfattach(&sc->arpcom.ac_if.if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header)); #endif shutdownhook_establish(dc_shutdown, sc); fail: return; } /* * Initialize the transmit descriptors. */ int dc_list_tx_init(sc) struct dc_softc *sc; { struct dc_chain_data *cd; struct dc_list_data *ld; int i; cd = &sc->dc_cdata; ld = sc->dc_ldata; for (i = 0; i < DC_TX_LIST_CNT; i++) { if (i == (DC_TX_LIST_CNT - 1)) { ld->dc_tx_list[i].dc_next = vtophys(&ld->dc_tx_list[0]); } else { ld->dc_tx_list[i].dc_next = vtophys(&ld->dc_tx_list[i + 1]); } cd->dc_tx_chain[i] = NULL; ld->dc_tx_list[i].dc_data = 0; ld->dc_tx_list[i].dc_ctl = 0; } cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0; return(0); } /* * Initialize the RX descriptors and allocate mbufs for them. Note that * we arrange the descriptors in a closed ring, so that the last descriptor * points back to the first. */ int dc_list_rx_init(sc) struct dc_softc *sc; { struct dc_chain_data *cd; struct dc_list_data *ld; int i; cd = &sc->dc_cdata; ld = sc->dc_ldata; for (i = 0; i < DC_RX_LIST_CNT; i++) { if (dc_newbuf(sc, i, NULL) == ENOBUFS) return(ENOBUFS); if (i == (DC_RX_LIST_CNT - 1)) { ld->dc_rx_list[i].dc_next = vtophys(&ld->dc_rx_list[0]); } else { ld->dc_rx_list[i].dc_next = vtophys(&ld->dc_rx_list[i + 1]); } } cd->dc_rx_prod = 0; return(0); } /* * Initialize an RX descriptor and attach an MBUF cluster. */ int dc_newbuf(sc, i, m) struct dc_softc *sc; int i; struct mbuf *m; { struct mbuf *m_new = NULL; struct dc_desc *c; c = &sc->dc_ldata->dc_rx_list[i]; if (m == NULL) { MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { printf("dc%d: no memory for rx list " "-- packet dropped!\n", sc->dc_unit); return(ENOBUFS); } MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { printf("dc%d: no memory for rx list " "-- packet dropped!\n", sc->dc_unit); m_freem(m_new); return(ENOBUFS); } m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; } else { m_new = m; m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; m_new->m_data = m_new->m_ext.ext_buf; } m_adj(m_new, sizeof(u_int64_t)); /* * If this is a PNIC chip, zero the buffer. This is part * of the workaround for the receive bug in the 82c168 and * 82c169 chips. */ if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) bzero((char *)mtod(m_new, char *), m_new->m_len); sc->dc_cdata.dc_rx_chain[i] = m_new; c->dc_data = vtophys(mtod(m_new, caddr_t)); c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN; c->dc_status = DC_RXSTAT_OWN; return(0); } /* * Grrrrr. * The PNIC chip has a terrible bug in it that manifests itself during * periods of heavy activity. The exact mode of failure if difficult to * pinpoint: sometimes it only happens in promiscuous mode, sometimes it * will happen on slow machines. The bug is that sometimes instead of * uploading one complete frame during reception, it uploads what looks * like the entire contents of its FIFO memory. The frame we want is at * the end of the whole mess, but we never know exactly how much data has * been uploaded, so salvaging the frame is hard. * * There is only one way to do it reliably, and it's disgusting. * Here's what we know: * * - We know there will always be somewhere between one and three extra * descriptors uploaded. * * - We know the desired received frame will always be at the end of the * total data upload. * * - We know the size of the desired received frame because it will be * provided in the length field of the status word in the last descriptor. * * Here's what we do: * * - When we allocate buffers for the receive ring, we bzero() them. * This means that we know that the buffer contents should be all * zeros, except for data uploaded by the chip. * * - We also force the PNIC chip to upload frames that include the * ethernet CRC at the end. * * - We gather all of the bogus frame data into a single buffer. * * - We then position a pointer at the end of this buffer and scan * backwards until we encounter the first non-zero byte of data. * This is the end of the received frame. We know we will encounter * some data at the end of the frame because the CRC will always be * there, so even if the sender transmits a packet of all zeros, * we won't be fooled. * * - We know the size of the actual received frame, so we subtract * that value from the current pointer location. This brings us * to the start of the actual received packet. * * - We copy this into an mbuf and pass it on, along with the actual * frame length. * * The performance hit is tremendous, but it beats dropping frames all * the time. */ #define DC_WHOLEFRAME (DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG) void dc_pnic_rx_bug_war(sc, idx) struct dc_softc *sc; int idx; { struct dc_desc *cur_rx; struct dc_desc *c = NULL; struct mbuf *m = NULL; unsigned char *ptr; int i, total_len; u_int32_t rxstat = 0; i = sc->dc_pnic_rx_bug_save; cur_rx = &sc->dc_ldata->dc_rx_list[idx]; ptr = sc->dc_pnic_rx_buf; bzero(ptr, sizeof(DC_RXLEN * 5)); /* Copy all the bytes from the bogus buffers. */ while (1) { c = &sc->dc_ldata->dc_rx_list[i]; rxstat = c->dc_status; m = sc->dc_cdata.dc_rx_chain[i]; bcopy(mtod(m, char *), ptr, DC_RXLEN); ptr += DC_RXLEN; /* If this is the last buffer, break out. */ if (i == idx || rxstat & DC_RXSTAT_LASTFRAG) break; dc_newbuf(sc, i, m); DC_INC(i, DC_RX_LIST_CNT); } /* Find the length of the actual receive frame. */ total_len = DC_RXBYTES(rxstat); /* Scan backwards until we hit a non-zero byte. */ while(*ptr == 0x00) ptr--; /* Round off. */ if ((unsigned long)(ptr) & 0x3) ptr -= 1; /* Now find the start of the frame. */ ptr -= total_len; if (ptr < sc->dc_pnic_rx_buf) ptr = sc->dc_pnic_rx_buf; /* * Now copy the salvaged frame to the last mbuf and fake up * the status word to make it look like a successful * frame reception. */ dc_newbuf(sc, i, m); bcopy(ptr, mtod(m, char *), total_len); cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG; return; } /* * This routine searches the RX ring for dirty descriptors in the * event that the rxeof routine falls out of sync with the chip's * current descriptor pointer. This may happen sometimes as a result * of a "no RX buffer available" condition that happens when the chip * consumes all of the RX buffers before the driver has a chance to * process the RX ring. This routine may need to be called more than * once to bring the driver back in sync with the chip, however we * should still be getting RX DONE interrupts to drive the search * for new packets in the RX ring, so we should catch up eventually. */ int dc_rx_resync(sc) struct dc_softc *sc; { int i, pos; struct dc_desc *cur_rx; pos = sc->dc_cdata.dc_rx_prod; for (i = 0; i < DC_RX_LIST_CNT; i++) { cur_rx = &sc->dc_ldata->dc_rx_list[pos]; if (!(cur_rx->dc_status & DC_RXSTAT_OWN)) break; DC_INC(pos, DC_RX_LIST_CNT); } /* If the ring really is empty, then just return. */ if (i == DC_RX_LIST_CNT) return(0); /* We've fallen behing the chip: catch it. */ sc->dc_cdata.dc_rx_prod = pos; return(EAGAIN); } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ void dc_rxeof(sc) struct dc_softc *sc; { struct ether_header *eh; struct mbuf *m; struct ifnet *ifp; struct dc_desc *cur_rx; int i, total_len = 0; u_int32_t rxstat; ifp = &sc->arpcom.ac_if; i = sc->dc_cdata.dc_rx_prod; while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) { struct mbuf *m0 = NULL; cur_rx = &sc->dc_ldata->dc_rx_list[i]; rxstat = cur_rx->dc_status; m = sc->dc_cdata.dc_rx_chain[i]; total_len = DC_RXBYTES(rxstat); if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) { if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) { if (rxstat & DC_RXSTAT_FIRSTFRAG) sc->dc_pnic_rx_bug_save = i; if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) { DC_INC(i, DC_RX_LIST_CNT); continue; } dc_pnic_rx_bug_war(sc, i); rxstat = cur_rx->dc_status; total_len = DC_RXBYTES(rxstat); } } sc->dc_cdata.dc_rx_chain[i] = NULL; /* * If an error occurs, update stats, clear the * status word and leave the mbuf cluster in place: * it should simply get re-used next time this descriptor * comes up in the ring. */ if (rxstat & DC_RXSTAT_RXERR #if NVLAN > 0 /* * If VLANs are enabled, allow frames up to 4 bytes * longer than the MTU. This should really check if * the giant packet has a vlan tag */ && ((rxstat & (DC_RXSTAT_GIANT|DC_RXSTAT_LASTFRAG)) == 0 && total_len <= ifp->if_mtu + 4) #endif ) { ifp->if_ierrors++; if (rxstat & DC_RXSTAT_COLLSEEN) ifp->if_collisions++; dc_newbuf(sc, i, m); if (rxstat & DC_RXSTAT_CRCERR) { DC_INC(i, DC_RX_LIST_CNT); continue; } else { dc_init(sc); return; } } /* No errors; receive the packet. */ total_len -= ETHER_CRC_LEN; m0 = m_devget(mtod(m, char *) - ETHER_ALIGN, total_len + ETHER_ALIGN, 0, ifp, NULL); dc_newbuf(sc, i, m); DC_INC(i, DC_RX_LIST_CNT); if (m0 == NULL) { ifp->if_ierrors++; continue; } m_adj(m0, ETHER_ALIGN); m = m0; ifp->if_ipackets++; eh = mtod(m, struct ether_header *); #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif /* Remove header from mbuf and pass it on. */ m_adj(m, sizeof(struct ether_header)); ether_input(ifp, eh, m); } sc->dc_cdata.dc_rx_prod = i; return; } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ void dc_txeof(sc) struct dc_softc *sc; { struct dc_desc *cur_tx = NULL; struct ifnet *ifp; int idx; ifp = &sc->arpcom.ac_if; /* Clear the timeout timer. */ ifp->if_timer = 0; /* * Go through our tx list and free mbufs for those * frames that have been transmitted. */ idx = sc->dc_cdata.dc_tx_cons; while(idx != sc->dc_cdata.dc_tx_prod) { u_int32_t txstat; cur_tx = &sc->dc_ldata->dc_tx_list[idx]; txstat = cur_tx->dc_status; if (txstat & DC_TXSTAT_OWN) break; if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) || cur_tx->dc_ctl & DC_TXCTL_SETUP) { sc->dc_cdata.dc_tx_cnt--; if (cur_tx->dc_ctl & DC_TXCTL_SETUP) { /* * Yes, the PNIC is so brain damaged * that it will sometimes generate a TX * underrun error while DMAing the RX * filter setup frame. If we detect this, * we have to send the setup frame again, * or else the filter won't be programmed * correctly. */ if (DC_IS_PNIC(sc)) { if (txstat & DC_TXSTAT_ERRSUM) dc_setfilt(sc); } sc->dc_cdata.dc_tx_chain[idx] = NULL; } DC_INC(idx, DC_TX_LIST_CNT); continue; } if (/*sc->dc_type == DC_TYPE_21143 &&*/ sc->dc_pmode == DC_PMODE_MII && ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM| DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST))) txstat &= ~DC_TXSTAT_ERRSUM; if (txstat & DC_TXSTAT_ERRSUM) { ifp->if_oerrors++; if (txstat & DC_TXSTAT_EXCESSCOLL) ifp->if_collisions++; if (txstat & DC_TXSTAT_LATECOLL) ifp->if_collisions++; if (!(txstat & DC_TXSTAT_UNDERRUN)) { dc_init(sc); return; } } ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3; ifp->if_opackets++; if (sc->dc_cdata.dc_tx_chain[idx] != NULL) { m_freem(sc->dc_cdata.dc_tx_chain[idx]); sc->dc_cdata.dc_tx_chain[idx] = NULL; } sc->dc_cdata.dc_tx_cnt--; DC_INC(idx, DC_TX_LIST_CNT); } sc->dc_cdata.dc_tx_cons = idx; if (cur_tx != NULL) ifp->if_flags &= ~IFF_OACTIVE; return; } void dc_tick(xsc) void *xsc; { struct dc_softc *sc = (struct dc_softc *)xsc; struct mii_data *mii; struct ifnet *ifp; int s; u_int32_t r; s = splimp(); ifp = &sc->arpcom.ac_if; mii = &sc->sc_mii; if (sc->dc_flags & DC_REDUCED_MII_POLL) { if (sc->dc_flags & DC_21143_NWAY) { r = CSR_READ_4(sc, DC_10BTSTAT); if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX && (r & DC_TSTAT_LS100)) { sc->dc_link = 0; mii_mediachg(mii); } if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T && (r & DC_TSTAT_LS10)) { sc->dc_link = 0; mii_mediachg(mii); } if (sc->dc_link == 0) mii_tick(mii); } else { r = CSR_READ_4(sc, DC_ISR); if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT && sc->dc_cdata.dc_tx_cnt == 0) mii_tick(mii); if (!(mii->mii_media_status & IFM_ACTIVE)) sc->dc_link = 0; } } else mii_tick(mii); /* * When the init routine completes, we expect to be able to send * packets right away, and in fact the network code will send a * gratuitous ARP the moment the init routine marks the interface * as running. However, even though the MAC may have been initialized, * there may be a delay of a few seconds before the PHY completes * autonegotiation and the link is brought up. Any transmissions * made during that delay will be lost. Dealing with this is tricky: * we can't just pause in the init routine while waiting for the * PHY to come ready since that would bring the whole system to * a screeching halt for several seconds. * * What we do here is prevent the TX start routine from sending * any packets until a link has been established. After the * interface has been initialized, the tick routine will poll * the state of the PHY until the IFM_ACTIVE flag is set. Until * that time, packets will stay in the send queue, and once the * link comes up, they will be flushed out to the wire. */ if (!sc->dc_link) { mii_pollstat(mii); if (mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { sc->dc_link++; if (ifp->if_snd.ifq_head != NULL) dc_start(ifp); } } if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link) timeout_add(&sc->dc_tick_tmo, hz / 10); else timeout_add(&sc->dc_tick_tmo, hz); splx(s); return; } int dc_intr(arg) void *arg; { struct dc_softc *sc; struct ifnet *ifp; u_int32_t status; int claimed = 0; sc = arg; ifp = &sc->arpcom.ac_if; /* Supress unwanted interrupts */ if (!(ifp->if_flags & IFF_UP)) { if (CSR_READ_4(sc, DC_ISR) & DC_INTRS) dc_stop(sc); return claimed; } /* Disable interrupts. */ CSR_WRITE_4(sc, DC_IMR, 0x00000000); while((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) { claimed = 1; CSR_WRITE_4(sc, DC_ISR, status); if ((status & DC_INTRS) == 0) { claimed = 0; break; } if (status & DC_ISR_RX_OK) { int curpkts; curpkts = ifp->if_ipackets; dc_rxeof(sc); if (curpkts == ifp->if_ipackets) { while(dc_rx_resync(sc)) dc_rxeof(sc); } } if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF)) dc_txeof(sc); if (status & DC_ISR_TX_IDLE) { dc_txeof(sc); if (sc->dc_cdata.dc_tx_cnt) { DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON); CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); } } if (status & DC_ISR_TX_UNDERRUN) { u_int32_t cfg; printf("dc%d: TX underrun -- ", sc->dc_unit); if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) dc_init(sc); cfg = CSR_READ_4(sc, DC_NETCFG); cfg &= ~DC_NETCFG_TX_THRESH; if (sc->dc_txthresh == DC_TXTHRESH_160BYTES) { printf("using store and forward mode\n"); DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD); } else if (sc->dc_flags & DC_TX_STORENFWD) { printf("resetting\n"); } else { sc->dc_txthresh += 0x4000; printf("increasing TX threshold\n"); CSR_WRITE_4(sc, DC_NETCFG, cfg); DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh); DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD); } } if ((status & DC_ISR_RX_WATDOGTIMEO) || (status & DC_ISR_RX_NOBUF)) { int curpkts; curpkts = ifp->if_ipackets; dc_rxeof(sc); if (curpkts == ifp->if_ipackets) { while(dc_rx_resync(sc)) dc_rxeof(sc); } } if (status & DC_ISR_BUS_ERR) { dc_reset(sc); dc_init(sc); } } /* Re-enable interrupts. */ CSR_WRITE_4(sc, DC_IMR, DC_INTRS); if (ifp->if_snd.ifq_head != NULL) dc_start(ifp); return (claimed); } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. */ int dc_encap(sc, m_head, txidx) struct dc_softc *sc; struct mbuf *m_head; u_int32_t *txidx; { struct dc_desc *f = NULL; struct mbuf *m; int frag, cur, cnt = 0; /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ m = m_head; cur = frag = *txidx; for (m = m_head; m != NULL; m = m->m_next) { if (m->m_len != 0) { if (sc->dc_flags & DC_TX_ADMTEK_WAR) { if (*txidx != sc->dc_cdata.dc_tx_prod && frag == (DC_TX_LIST_CNT - 1)) return(ENOBUFS); } if ((DC_TX_LIST_CNT - (sc->dc_cdata.dc_tx_cnt + cnt)) < 5) return(ENOBUFS); f = &sc->dc_ldata->dc_tx_list[frag]; f->dc_ctl = DC_TXCTL_TLINK | m->m_len; if (cnt == 0) { f->dc_status = 0; f->dc_ctl |= DC_TXCTL_FIRSTFRAG; } else f->dc_status = DC_TXSTAT_OWN; f->dc_data = vtophys(mtod(m, vm_offset_t)); cur = frag; DC_INC(frag, DC_TX_LIST_CNT); cnt++; } } if (m != NULL) return(ENOBUFS); sc->dc_cdata.dc_tx_cnt += cnt; sc->dc_cdata.dc_tx_chain[cur] = m_head; sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG; if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG) sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT; if (sc->dc_flags & DC_TX_INTR_ALWAYS) sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT; if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64) sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT; sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN; *txidx = frag; return(0); } /* * Coalesce an mbuf chain into a single mbuf cluster buffer. * Needed for some really badly behaved chips that just can't * do scatter/gather correctly. */ int dc_coal(sc, m_head) struct dc_softc *sc; struct mbuf **m_head; { struct mbuf *m_new, *m; m = *m_head; MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { printf("dc%d: no memory for tx list", sc->dc_unit); return(ENOBUFS); } if (m->m_pkthdr.len > MHLEN) { MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { m_freem(m_new); printf("dc%d: no memory for tx list", sc->dc_unit); return(ENOBUFS); } } m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, caddr_t)); m_new->m_pkthdr.len = m_new->m_len = m->m_pkthdr.len; m_freem(m); *m_head = m_new; return(0); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit lists. We also save a * copy of the pointers since the transmit list fragment pointers are * physical addresses. */ void dc_start(ifp) struct ifnet *ifp; { struct dc_softc *sc; struct mbuf *m_head = NULL; int idx; sc = ifp->if_softc; if (!sc->dc_link) return; if (ifp->if_flags & IFF_OACTIVE) return; idx = sc->dc_cdata.dc_tx_prod; while(sc->dc_cdata.dc_tx_chain[idx] == NULL) { IF_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; if (sc->dc_flags & DC_TX_COALESCE) { if (dc_coal(sc, &m_head)) { IF_PREPEND(&ifp->if_snd, m_head); ifp->if_flags |= IFF_OACTIVE; break; } } if (dc_encap(sc, m_head, &idx)) { IF_PREPEND(&ifp->if_snd, m_head); ifp->if_flags |= IFF_OACTIVE; break; } /* * If there's a BPF listener, bounce a copy of this frame * to him. */ #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m_head); #endif } /* Transmit */ sc->dc_cdata.dc_tx_prod = idx; if (!(sc->dc_flags & DC_TX_POLL)) CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; return; } void dc_init(xsc) void *xsc; { struct dc_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; struct mii_data *mii; int s; s = splimp(); mii = &sc->sc_mii; /* * Cancel pending I/O and free all RX/TX buffers. */ dc_stop(sc); dc_reset(sc); /* * Set cache alignment and burst length. */ if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc)) CSR_WRITE_4(sc, DC_BUSCTL, 0); else CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE); if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) { DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA); } else { DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG); } if (sc->dc_flags & DC_TX_POLL) DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1); switch(sc->dc_cachesize) { case 32: DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG); break; case 16: DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG); break; case 8: DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG); break; case 0: default: DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE); break; } if (sc->dc_flags & DC_TX_STORENFWD) DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD); else { if (sc->dc_txthresh == DC_TXTHRESH_160BYTES) { DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD); } else { DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD); DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh); } } DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC); DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF); if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) { /* * The app notes for the 98713 and 98715A say that * in order to have the chips operate properly, a magic * number must be written to CSR16. Macronix does not * document the meaning of these bits so there's no way * to know exactly what they do. The 98713 has a magic * number all its own; the rest all use a different one. */ DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000); if (sc->dc_type == DC_TYPE_98713) DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713); else DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715); } DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH); DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_72BYTES); /* Init circular RX list. */ if (dc_list_rx_init(sc) == ENOBUFS) { printf("dc%d: initialization failed: no " "memory for rx buffers\n", sc->dc_unit); dc_stop(sc); (void)splx(s); return; } /* * Init tx descriptors. */ dc_list_tx_init(sc); /* * Load the address of the RX list. */ CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0])); CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0])); /* * Enable interrupts. */ CSR_WRITE_4(sc, DC_IMR, DC_INTRS); CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF); /* Enable transmitter. */ DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON); /* * Load the RX/multicast filter. We do this sort of late * because the filter programming scheme on the 21143 and * some clones requires DMAing a setup frame via the TX * engine, and we need the transmitter enabled for that. */ dc_setfilt(sc); /* Enable receiver. */ DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON); CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF); mii_mediachg(mii); dc_setcfg(sc, sc->dc_if_media); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; (void)splx(s); timeout_set(&sc->dc_tick_tmo, dc_tick, sc); if (sc->dc_flags & DC_21143_NWAY) timeout_add(&sc->dc_tick_tmo, hz / 10); else timeout_add(&sc->dc_tick_tmo, hz); return; } /* * Set media options. */ int dc_ifmedia_upd(ifp) struct ifnet *ifp; { struct dc_softc *sc; struct mii_data *mii; struct ifmedia *ifm; sc = ifp->if_softc; mii = &sc->sc_mii; mii_mediachg(mii); ifm = &mii->mii_media; if (DC_IS_DAVICOM(sc) && IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) dc_setcfg(sc, ifm->ifm_media); else sc->dc_link = 0; return(0); } /* * Report current media status. */ void dc_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct dc_softc *sc; struct mii_data *mii; struct ifmedia *ifm; sc = ifp->if_softc; mii = &sc->sc_mii; mii_pollstat(mii); ifm = &mii->mii_media; if (DC_IS_DAVICOM(sc)) { if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) { ifmr->ifm_active = ifm->ifm_media; ifmr->ifm_status = 0; return; } } ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; return; } int dc_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct dc_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct ifaddr *ifa = (struct ifaddr *)data; struct mii_data *mii; int s, error = 0; s = splimp(); if ((error = ether_ioctl(ifp, &sc->arpcom, command, data)) > 0) { splx(s); return error; } switch(command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { case AF_INET: dc_init(sc); arp_ifinit(&sc->arpcom, ifa); break; default: dc_init(sc); break; } break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->dc_if_flags & IFF_PROMISC)) { dc_setfilt(sc); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->dc_if_flags & IFF_PROMISC) { dc_setfilt(sc); } else if (!(ifp->if_flags & IFF_RUNNING)) { sc->dc_txthresh = 0; dc_init(sc); } } else { if (ifp->if_flags & IFF_RUNNING) dc_stop(sc); } sc->dc_if_flags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: error = (command == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->arpcom) : ether_delmulti(ifr, &sc->arpcom); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware * filter accordingly. */ dc_setfilt(sc); error = 0; } break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = &sc->sc_mii; error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; default: error = EINVAL; break; } (void)splx(s); return(error); } void dc_watchdog(ifp) struct ifnet *ifp; { struct dc_softc *sc; sc = ifp->if_softc; ifp->if_oerrors++; printf("dc%d: watchdog timeout\n", sc->dc_unit); dc_stop(sc); dc_reset(sc); dc_init(sc); if (ifp->if_snd.ifq_head != NULL) dc_start(ifp); return; } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ void dc_stop(sc) struct dc_softc *sc; { register int i; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; ifp->if_timer = 0; timeout_del(&sc->dc_tick_tmo); DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON)); CSR_WRITE_4(sc, DC_IMR, 0x00000000); CSR_WRITE_4(sc, DC_TXADDR, 0x00000000); CSR_WRITE_4(sc, DC_RXADDR, 0x00000000); sc->dc_link = 0; /* * Free data in the RX lists. */ for (i = 0; i < DC_RX_LIST_CNT; i++) { if (sc->dc_cdata.dc_rx_chain[i] != NULL) { m_freem(sc->dc_cdata.dc_rx_chain[i]); sc->dc_cdata.dc_rx_chain[i] = NULL; } } bzero((char *)&sc->dc_ldata->dc_rx_list, sizeof(sc->dc_ldata->dc_rx_list)); /* * Free the TX list buffers. */ for (i = 0; i < DC_TX_LIST_CNT; i++) { if (sc->dc_cdata.dc_tx_chain[i] != NULL) { if (sc->dc_ldata->dc_tx_list[i].dc_ctl & DC_TXCTL_SETUP) { sc->dc_cdata.dc_tx_chain[i] = NULL; continue; } m_freem(sc->dc_cdata.dc_tx_chain[i]); sc->dc_cdata.dc_tx_chain[i] = NULL; } } bzero((char *)&sc->dc_ldata->dc_tx_list, sizeof(sc->dc_ldata->dc_tx_list)); ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); return; } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ void dc_shutdown(v) void *v; { struct dc_softc *sc = (struct dc_softc *)v; dc_stop(sc); } struct cfdriver dc_cd = { 0, "dc", DV_IFNET };