/* $OpenBSD: dp8390.c,v 1.32 2006/09/17 18:03:06 brad Exp $ */ /* $NetBSD: dp8390.c,v 1.13 1998/07/05 06:49:11 jonathan Exp $ */ /* * Device driver for National Semiconductor DS8390/WD83C690 based ethernet * adapters. * * Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved. * * Copyright (C) 1993, David Greenman. This software may be used, modified, * copied, distributed, and sold, in both source and binary form provided that * the above copyright and these terms are retained. Under no circumstances is * the author responsible for the proper functioning of this software, nor does * the author assume any responsibility for damages incurred with its use. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #if NBPFILTER > 0 #include #endif #include #include #include #ifdef DEBUG #define __inline__ /* XXX for debugging porpoises */ #endif static __inline__ void dp8390_xmit(struct dp8390_softc *); static __inline__ void dp8390_read_hdr(struct dp8390_softc *, int, struct dp8390_ring *); static __inline__ int dp8390_ring_copy(struct dp8390_softc *, int, caddr_t, u_short); static __inline__ int dp8390_write_mbuf(struct dp8390_softc *, struct mbuf *, int); static int dp8390_test_mem(struct dp8390_softc *); int dp8390_enable(struct dp8390_softc *); void dp8390_disable(struct dp8390_softc *); int dp8390_debug = 0; /* * Standard media init routine for the dp8390. */ void dp8390_media_init(struct dp8390_softc *sc) { ifmedia_init(&sc->sc_media, 0, dp8390_mediachange, dp8390_mediastatus); ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL); } /* * Do bus-independent setup. */ int dp8390_config(sc) struct dp8390_softc *sc; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; int rv; rv = 1; if (!sc->test_mem) sc->test_mem = dp8390_test_mem; /* Allocate one xmit buffer if < 16k, two buffers otherwise. */ if ((sc->mem_size < 16384) || (sc->sc_flags & DP8390_NO_MULTI_BUFFERING)) sc->txb_cnt = 1; else if (sc->mem_size < 8192 * 3) sc->txb_cnt = 2; else sc->txb_cnt = 3; sc->tx_page_start = sc->mem_start >> ED_PAGE_SHIFT; sc->rec_page_start = sc->tx_page_start + sc->txb_cnt * ED_TXBUF_SIZE; sc->rec_page_stop = sc->tx_page_start + (sc->mem_size >> ED_PAGE_SHIFT); sc->mem_ring = sc->mem_start + (sc->rec_page_start << ED_PAGE_SHIFT); sc->mem_end = sc->mem_start + sc->mem_size; /* Now zero memory and verify that it is clear. */ if ((*sc->test_mem)(sc)) goto out; /* Set interface to stopped condition (reset). */ dp8390_stop(sc); /* Initialize ifnet structure. */ bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); ifp->if_softc = sc; ifp->if_start = dp8390_start; ifp->if_ioctl = dp8390_ioctl; if (!ifp->if_watchdog) ifp->if_watchdog = dp8390_watchdog; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST; IFQ_SET_READY(&ifp->if_snd); ifp->if_capabilities = IFCAP_VLAN_MTU; /* Print additional info when attached. */ printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr)); /* Initialize media goo. */ (*sc->sc_media_init)(sc); /* Attach the interface. */ if_attach(ifp); ether_ifattach(ifp); rv = 0; out: return (rv); } /* * Media change callback. */ int dp8390_mediachange(ifp) struct ifnet *ifp; { struct dp8390_softc *sc = ifp->if_softc; if (sc->sc_mediachange) return ((*sc->sc_mediachange)(sc)); return (EINVAL); } /* * Media status callback. */ void dp8390_mediastatus(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct dp8390_softc *sc = ifp->if_softc; if (sc->sc_enabled == 0) { ifmr->ifm_active = IFM_ETHER | IFM_NONE; ifmr->ifm_status = 0; return; } if (sc->sc_mediastatus) (*sc->sc_mediastatus)(sc, ifmr); } /* * Reset interface. */ void dp8390_reset(sc) struct dp8390_softc *sc; { int s; s = splnet(); dp8390_stop(sc); dp8390_init(sc); splx(s); } /* * Take interface offline. */ void dp8390_stop(sc) struct dp8390_softc *sc; { bus_space_tag_t regt = sc->sc_regt; bus_space_handle_t regh = sc->sc_regh; int n = 5000; /* Stop everything on the interface, and select page 0 registers. */ NIC_PUT(regt, regh, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP); /* * Wait for interface to enter stopped state, but limit # of checks to * 'n' (about 5ms). It shouldn't even take 5us on modern DS8390's, but * just in case it's an old one. */ while (((NIC_GET(regt, regh, ED_P0_ISR) & ED_ISR_RST) == 0) && --n) ; if (sc->stop_card != NULL) (*sc->stop_card)(sc); } /* * Device timeout/watchdog routine. Entered if the device neglects to generate * an interrupt after a transmit has been started on it. */ void dp8390_watchdog(ifp) struct ifnet *ifp; { struct dp8390_softc *sc = ifp->if_softc; log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname); ++sc->sc_arpcom.ac_if.if_oerrors; dp8390_reset(sc); } /* * Initialize device. */ void dp8390_init(sc) struct dp8390_softc *sc; { bus_space_tag_t regt = sc->sc_regt; bus_space_handle_t regh = sc->sc_regh; struct ifnet *ifp = &sc->sc_arpcom.ac_if; u_int8_t mcaf[8]; int i; /* * Initialize the NIC in the exact order outlined in the NS manual. * This init procedure is "mandatory"...don't change what or when * things happen. */ /* Reset transmitter flags. */ ifp->if_timer = 0; sc->txb_inuse = 0; sc->txb_new = 0; sc->txb_next_tx = 0; /* Set interface for page 0, remote DMA complete, stopped. */ NIC_PUT(regt, regh, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP); if (sc->dcr_reg & ED_DCR_LS) { NIC_PUT(regt, regh, ED_P0_DCR, sc->dcr_reg); } else { /* * Set FIFO threshold to 8, No auto-init Remote DMA, byte * order=80x86, byte-wide DMA xfers, */ NIC_PUT(regt, regh, ED_P0_DCR, ED_DCR_FT1 | ED_DCR_LS); } /* Clear remote byte count registers. */ NIC_PUT(regt, regh, ED_P0_RBCR0, 0); NIC_PUT(regt, regh, ED_P0_RBCR1, 0); /* Tell RCR to do nothing for now. */ NIC_PUT(regt, regh, ED_P0_RCR, ED_RCR_MON); /* Place NIC in internal loopback mode. */ NIC_PUT(regt, regh, ED_P0_TCR, ED_TCR_LB0); /* Set lower bits of byte addressable framing to 0. */ if (sc->is790) NIC_PUT(regt, regh, 0x09, 0); /* Initialize receive buffer ring. */ NIC_PUT(regt, regh, ED_P0_BNRY, sc->rec_page_start); NIC_PUT(regt, regh, ED_P0_PSTART, sc->rec_page_start); NIC_PUT(regt, regh, ED_P0_PSTOP, sc->rec_page_stop); /* * Enable the following interrupts: receive/transmit complete, * receive/transmit error, and Receiver OverWrite. * * Counter overflow and Remote DMA complete are *not* enabled. */ NIC_PUT(regt, regh, ED_P0_IMR, ED_IMR_PRXE | ED_IMR_PTXE | ED_IMR_RXEE | ED_IMR_TXEE | ED_IMR_OVWE); /* * Clear all interrupts. A '1' in each bit position clears the * corresponding flag. */ NIC_PUT(regt, regh, ED_P0_ISR, 0xff); /* Program command register for page 1. */ NIC_PUT(regt, regh, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STP); /* Copy out our station address. */ for (i = 0; i < ETHER_ADDR_LEN; ++i) NIC_PUT(regt, regh, ED_P1_PAR0 + i, sc->sc_arpcom.ac_enaddr[i]); /* Set multicast filter on chip. */ dp8390_getmcaf(&sc->sc_arpcom, mcaf); for (i = 0; i < 8; i++) NIC_PUT(regt, regh, ED_P1_MAR0 + i, mcaf[i]); /* * Set current page pointer to one page after the boundary pointer, as * recommended in the National manual. */ sc->next_packet = sc->rec_page_start + 1; NIC_PUT(regt, regh, ED_P1_CURR, sc->next_packet); /* Program command register for page 0. */ NIC_PUT(regt, regh, ED_P1_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP); /* Accept broadcast and multicast packets by default. */ i = ED_RCR_AB | ED_RCR_AM | sc->rcr_proto; if (ifp->if_flags & IFF_PROMISC) { /* * Set promiscuous mode. Multicast filter was set earlier so * that we should receive all multicast packets. */ i |= ED_RCR_PRO | ED_RCR_AR | ED_RCR_SEP; } NIC_PUT(regt, regh, ED_P0_RCR, i); /* Take interface out of loopback. */ NIC_PUT(regt, regh, ED_P0_TCR, 0); /* Do any card-specific initialization, if applicable. */ if (sc->init_card) (*sc->init_card)(sc); /* Fire up the interface. */ NIC_PUT(regt, regh, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA); /* Set 'running' flag, and clear output active flag. */ ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; /* ...and attempt to start output. */ dp8390_start(ifp); } /* * This routine actually starts the transmission on the interface. */ static __inline__ void dp8390_xmit(sc) struct dp8390_softc *sc; { bus_space_tag_t regt = sc->sc_regt; bus_space_handle_t regh = sc->sc_regh; struct ifnet *ifp = &sc->sc_arpcom.ac_if; u_short len; #ifdef DIAGNOSTIC if ((sc->txb_next_tx + sc->txb_inuse) % sc->txb_cnt != sc->txb_new) panic("dp8390_xmit: desync, next_tx=%d inuse=%d cnt=%d new=%d", sc->txb_next_tx, sc->txb_inuse, sc->txb_cnt, sc->txb_new); if (sc->txb_inuse == 0) panic("dp8390_xmit: no packets to xmit"); #endif len = sc->txb_len[sc->txb_next_tx]; /* Set NIC for page 0 register access. */ NIC_PUT(regt, regh, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA); /* Set TX buffer start page. */ NIC_PUT(regt, regh, ED_P0_TPSR, sc->tx_page_start + sc->txb_next_tx * ED_TXBUF_SIZE); /* Set TX length. */ NIC_PUT(regt, regh, ED_P0_TBCR0, len); NIC_PUT(regt, regh, ED_P0_TBCR1, len >> 8); /* Set page 0, remote DMA complete, transmit packet, and *start*. */ NIC_PUT(regt, regh, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_TXP | ED_CR_STA); /* Point to next transmit buffer slot and wrap if necessary. */ if (++sc->txb_next_tx == sc->txb_cnt) sc->txb_next_tx = 0; /* Set a timer just in case we never hear from the board again. */ ifp->if_timer = 2; } /* * Start output on interface. * We make two assumptions here: * 1) that the current priority is set to splnet _before_ this code * is called *and* is returned to the appropriate priority after * return * 2) that the IFF_OACTIVE flag is checked before this code is called * (i.e. that the output part of the interface is idle) */ void dp8390_start(ifp) struct ifnet *ifp; { struct dp8390_softc *sc = ifp->if_softc; struct mbuf *m0; int buffer; int len; if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; outloop: /* See if there is room to put another packet in the buffer. */ if (sc->txb_inuse == sc->txb_cnt) { /* No room. Indicate this to the outside world and exit. */ ifp->if_flags |= IFF_OACTIVE; return; } IFQ_DEQUEUE(&ifp->if_snd, m0); if (m0 == 0) return; /* We need to use m->m_pkthdr.len, so require the header */ if ((m0->m_flags & M_PKTHDR) == 0) panic("dp8390_start: no header mbuf"); #if NBPFILTER > 0 /* Tap off here if there is a BPF listener. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT); #endif /* txb_new points to next open buffer slot. */ buffer = sc->mem_start + ((sc->txb_new * ED_TXBUF_SIZE) << ED_PAGE_SHIFT); if (sc->write_mbuf) len = (*sc->write_mbuf)(sc, m0, buffer); else len = dp8390_write_mbuf(sc, m0, buffer); m_freem(m0); sc->txb_len[sc->txb_new] = max(len, ETHER_MIN_LEN - ETHER_CRC_LEN); /* Point to next buffer slot and wrap if necessary. */ if (++sc->txb_new == sc->txb_cnt) sc->txb_new = 0; /* Start the first packet transmitting. */ if (sc->txb_inuse++ == 0) dp8390_xmit(sc); /* Loop back to the top to possibly buffer more packets. */ goto outloop; } /* * Ethernet interface receiver interrupt. */ void dp8390_rint(sc) struct dp8390_softc *sc; { bus_space_tag_t regt = sc->sc_regt; bus_space_handle_t regh = sc->sc_regh; struct dp8390_ring packet_hdr; int packet_ptr; u_short len; u_char boundary, current; u_char nlen; loop: /* Set NIC to page 1 registers to get 'current' pointer. */ NIC_PUT(regt, regh, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STA); /* * 'sc->next_packet' is the logical beginning of the ring-buffer - i.e. * it points to where new data has been buffered. The 'CURR' (current) * register points to the logical end of the ring-buffer - i.e. it * points to where additional new data will be added. We loop here * until the logical beginning equals the logical end (or in other * words, until the ring-buffer is empty). */ current = NIC_GET(regt, regh, ED_P1_CURR); if (sc->next_packet == current) return; /* Set NIC to page 0 registers to update boundary register. */ NIC_PUT(regt, regh, ED_P1_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA); do { /* Get pointer to this buffer's header structure. */ packet_ptr = sc->mem_ring + ((sc->next_packet - sc->rec_page_start) << ED_PAGE_SHIFT); if (sc->read_hdr) (*sc->read_hdr)(sc, packet_ptr, &packet_hdr); else dp8390_read_hdr(sc, packet_ptr, &packet_hdr); len = packet_hdr.count; /* * Try do deal with old, buggy chips that sometimes duplicate * the low byte of the length into the high byte. We do this * by simply ignoring the high byte of the length and always * recalculating it. * * NOTE: sc->next_packet is pointing at the current packet. */ if (packet_hdr.next_packet >= sc->next_packet) nlen = (packet_hdr.next_packet - sc->next_packet); else nlen = ((packet_hdr.next_packet - sc->rec_page_start) + (sc->rec_page_stop - sc->next_packet)); --nlen; if ((len & ED_PAGE_MASK) + sizeof(packet_hdr) > ED_PAGE_SIZE) --nlen; len = (len & ED_PAGE_MASK) | (nlen << ED_PAGE_SHIFT); #ifdef DIAGNOSTIC if (len != packet_hdr.count) { printf("%s: length does not match " "next packet pointer\n", sc->sc_dev.dv_xname); printf("%s: len %04x nlen %04x start %02x " "first %02x curr %02x next %02x stop %02x\n", sc->sc_dev.dv_xname, packet_hdr.count, len, sc->rec_page_start, sc->next_packet, current, packet_hdr.next_packet, sc->rec_page_stop); } #endif /* * Be fairly liberal about what we allow as a "reasonable" * length so that a [crufty] packet will make it to BPF (and * can thus be analyzed). Note that all that is really * important is that we have a length that will fit into one * mbuf cluster or less; the upper layer protocols can then * figure out the length from their own length field(s). */ if (len <= MCLBYTES && packet_hdr.next_packet >= sc->rec_page_start && packet_hdr.next_packet < sc->rec_page_stop) { /* Go get packet. */ dp8390_read(sc, packet_ptr + sizeof(struct dp8390_ring), len - sizeof(struct dp8390_ring)); } else { /* Really BAD. The ring pointers are corrupted. */ log(LOG_ERR, "%s: NIC memory corrupt - " "invalid packet length %d\n", sc->sc_dev.dv_xname, len); ++sc->sc_arpcom.ac_if.if_ierrors; dp8390_reset(sc); return; } /* Update next packet pointer. */ sc->next_packet = packet_hdr.next_packet; /* * Update NIC boundary pointer - being careful to keep it one * buffer behind (as recommended by NS databook). */ boundary = sc->next_packet - 1; if (boundary < sc->rec_page_start) boundary = sc->rec_page_stop - 1; NIC_PUT(regt, regh, ED_P0_BNRY, boundary); } while (sc->next_packet != current); goto loop; } /* Ethernet interface interrupt processor. */ int dp8390_intr(arg) void *arg; { struct dp8390_softc *sc = (struct dp8390_softc *)arg; bus_space_tag_t regt = sc->sc_regt; bus_space_handle_t regh = sc->sc_regh; struct ifnet *ifp = &sc->sc_arpcom.ac_if; u_char isr; if (sc->sc_enabled == 0) return (0); /* Set NIC to page 0 registers. */ NIC_PUT(regt, regh, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA); isr = NIC_GET(regt, regh, ED_P0_ISR); if (!isr) return (0); /* Loop until there are no more new interrupts. */ for (;;) { /* * Reset all the bits that we are 'acknowledging' by writing a * '1' to each bit position that was set. * (Writing a '1' *clears* the bit.) */ NIC_PUT(regt, regh, ED_P0_ISR, isr); /* Work around for AX88190 bug */ if ((sc->sc_flags & DP8390_DO_AX88190_WORKAROUND) != 0) while ((NIC_GET(regt, regh, ED_P0_ISR) & isr) != 0) { NIC_PUT(regt, regh, ED_P0_ISR, 0); NIC_PUT(regt, regh, ED_P0_ISR, isr); } /* * Handle transmitter interrupts. Handle these first because * the receiver will reset the board under some conditions. * * If the chip was reset while a packet was transmitting, it * may still deliver a TX interrupt. In this case, just ignore * the interrupt. */ if (isr & (ED_ISR_PTX | ED_ISR_TXE) && sc->txb_inuse != 0) { u_char collisions = NIC_GET(regt, regh, ED_P0_NCR) & 0x0f; /* * Check for transmit error. If a TX completed with an * error, we end up throwing the packet away. Really * the only error that is possible is excessive * collisions, and in this case it is best to allow the * automatic mechanisms of TCP to backoff the flow. Of * course, with UDP we're screwed, but this is expected * when a network is heavily loaded. */ if (isr & ED_ISR_TXE) { /* * Excessive collisions (16). */ if ((NIC_GET(regt, regh, ED_P0_TSR) & ED_TSR_ABT) && (collisions == 0)) { /* * When collisions total 16, the P0_NCR * will indicate 0, and the TSR_ABT is * set. */ collisions = 16; } /* Update output errors counter. */ ++ifp->if_oerrors; } else { /* Throw away the non-error status bits. */ (void)NIC_GET(regt, regh, ED_P0_TSR); /* * Update total number of successfully * transmitted packets. */ ++ifp->if_opackets; } /* Clear watchdog timer. */ ifp->if_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; /* * Add in total number of collisions on last * transmission. */ ifp->if_collisions += collisions; /* * Decrement buffer in-use count if not zero (can only * be zero if a transmitter interrupt occurred while not * actually transmitting). * If data is ready to transmit, start it transmitting, * otherwise defer until after handling receiver. */ if (--sc->txb_inuse != 0) dp8390_xmit(sc); } /* Handle receiver interrupts. */ if (isr & (ED_ISR_PRX | ED_ISR_RXE | ED_ISR_OVW)) { /* * Overwrite warning. In order to make sure that a * lockup of the local DMA hasn't occurred, we reset * and re-init the NIC. The NSC manual suggests only a * partial reset/re-init is necessary - but some chips * seem to want more. The DMA lockup has been seen * only with early rev chips - Methinks this bug was * fixed in later revs. -DG */ if (isr & ED_ISR_OVW) { ++ifp->if_ierrors; #ifdef DEBUG log(LOG_WARNING, "%s: warning - receiver " "ring buffer overrun\n", sc->sc_dev.dv_xname); #endif /* Stop/reset/re-init NIC. */ dp8390_reset(sc); } else { /* * Receiver Error. One or more of: CRC error, * frame alignment error FIFO overrun, or * missed packet. */ if (isr & ED_ISR_RXE) { ++ifp->if_ierrors; #ifdef DEBUG if (dp8390_debug) { printf("%s: receive error %x\n", sc->sc_dev.dv_xname, NIC_GET(regt, regh, ED_P0_RSR)); } #endif } /* * Go get the packet(s) * XXX - Doing this on an error is dubious * because there shouldn't be any data to get * (we've configured the interface to not * accept packets with errors). */ if (sc->recv_int) (*sc->recv_int)(sc); else dp8390_rint(sc); } } /* * If it looks like the transmitter can take more data, attempt * to start output on the interface. This is done after * handling the receiver to give the receiver priority. */ dp8390_start(ifp); /* * Return NIC CR to standard state: page 0, remote DMA * complete, start (toggling the TXP bit off, even if was just * set in the transmit routine, is *okay* - it is 'edge' * triggered from low to high). */ NIC_PUT(regt, regh, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA); /* * If the Network Talley Counters overflow, read them to reset * them. It appears that old 8390's won't clear the ISR flag * otherwise - resulting in an infinite loop. */ if (isr & ED_ISR_CNT) { (void)NIC_GET(regt, regh, ED_P0_CNTR0); (void)NIC_GET(regt, regh, ED_P0_CNTR1); (void)NIC_GET(regt, regh, ED_P0_CNTR2); } isr = NIC_GET(regt, regh, ED_P0_ISR); if (!isr) return (1); } } /* * Process an ioctl request. This code needs some work - it looks pretty ugly. */ int dp8390_ioctl(ifp, cmd, data) struct ifnet *ifp; u_long cmd; caddr_t data; { struct dp8390_softc *sc = ifp->if_softc; struct ifaddr *ifa = (struct ifaddr *) data; struct ifreq *ifr = (struct ifreq *) data; int s, error = 0; s = splnet(); switch (cmd) { case SIOCSIFADDR: if ((error = dp8390_enable(sc)) != 0) break; ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: dp8390_init(sc); arp_ifinit(&sc->sc_arpcom, ifa); break; #endif default: dp8390_init(sc); break; } break; case SIOCSIFMTU: if (ifr->ifr_mtu > ETHERMTU || ifr->ifr_mtu < ETHERMIN) { error = EINVAL; } else if (ifp->if_mtu != ifr->ifr_mtu) { ifp->if_mtu = ifr->ifr_mtu; } break; case SIOCSIFFLAGS: if ((ifp->if_flags & IFF_UP) == 0 && (ifp->if_flags & IFF_RUNNING) != 0) { /* * If interface is marked down and it is running, then * stop it. */ dp8390_stop(sc); ifp->if_flags &= ~IFF_RUNNING; dp8390_disable(sc); } else if ((ifp->if_flags & IFF_UP) != 0 && (ifp->if_flags & IFF_RUNNING) == 0) { /* * If interface is marked up and it is stopped, then * start it. */ if ((error = dp8390_enable(sc)) != 0) break; dp8390_init(sc); } else if ((ifp->if_flags & IFF_UP) != 0) { /* * Reset the interface to pick up changes in any other * flags that affect hardware registers. */ dp8390_stop(sc); dp8390_init(sc); } break; case SIOCADDMULTI: case SIOCDELMULTI: if (sc->sc_enabled == 0) { error = EIO; break; } /* Update our multicast list. */ error = (cmd == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->sc_arpcom) : ether_delmulti(ifr, &sc->sc_arpcom); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware filter * accordingly. */ if (ifp->if_flags & IFF_RUNNING) { dp8390_stop(sc); /* XXX for ds_setmcaf? */ dp8390_init(sc); } error = 0; } break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd); break; default: error = EINVAL; break; } splx(s); return (error); } /* * Retrieve packet from buffer memory and send to the next level up via * ether_input(). If there is a BPF listener, give a copy to BPF, too. */ void dp8390_read(sc, buf, len) struct dp8390_softc *sc; int buf; u_short len; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct mbuf *m; /* Pull packet off interface. */ m = dp8390_get(sc, buf, len); if (m == 0) { ifp->if_ierrors++; return; } ifp->if_ipackets++; #if NBPFILTER > 0 /* * Check if there's a BPF listener on this interface. * If so, hand off the raw packet to bpf. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_IN); #endif ether_input_mbuf(ifp, m); } /* * Supporting routines. */ /* * Compute the multicast address filter from the list of multicast addresses we * need to listen to. */ void dp8390_getmcaf(ec, af) struct arpcom *ec; u_int8_t *af; { struct ifnet *ifp = &ec->ac_if; struct ether_multi *enm; u_int32_t crc; int i; struct ether_multistep step; /* * Set up multicast address filter by passing all multicast addresses * through a crc generator, and then using the high order 6 bits as an * index into the 64 bit logical address filter. The high order bit * selects the word, while the rest of the bits select the bit within * the word. */ if (ifp->if_flags & IFF_PROMISC) { ifp->if_flags |= IFF_ALLMULTI; for (i = 0; i < 8; i++) af[i] = 0xff; return; } for (i = 0; i < 8; i++) af[i] = 0; ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { if (bcmp(enm->enm_addrlo, enm->enm_addrhi, sizeof(enm->enm_addrlo)) != 0) { /* * We must listen to a range of multicast addresses. * For now, just accept all multicasts, rather than * trying to set only those filter bits needed to match * the range. (At this time, the only use of address * ranges is for IP multicast routing, for which the * range is big enough to require all bits set.) */ ifp->if_flags |= IFF_ALLMULTI; for (i = 0; i < 8; i++) af[i] = 0xff; return; } /* Just want the 6 most significant bits. */ crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26; /* Turn on the corresponding bit in the filter. */ af[crc >> 3] |= 1 << (crc & 0x7); ETHER_NEXT_MULTI(step, enm); } ifp->if_flags &= ~IFF_ALLMULTI; } /* * Copy data from receive buffer to end of mbuf chain allocate additional mbufs * as needed. Return pointer to last mbuf in chain. * sc = dp8390 info (softc) * src = pointer in dp8390 ring buffer * dst = pointer to last mbuf in mbuf chain to copy to * amount = amount of data to copy */ struct mbuf * dp8390_get(sc, src, total_len) struct dp8390_softc *sc; int src; u_short total_len; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct mbuf *top, **mp, *m; u_short len; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == 0) return 0; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = total_len; len = MHLEN; top = 0; mp = ⊤ while (total_len > 0) { if (top) { MGET(m, M_DONTWAIT, MT_DATA); if (m == 0) { m_freem(top); return 0; } len = MLEN; } if (total_len >= MINCLSIZE) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); m_freem(top); return 0; } len = MCLBYTES; } /* * Make sure the data after the Ethernet header is aligned. */ if (top == NULL) { caddr_t newdata = (caddr_t) ALIGN(m->m_data + sizeof(struct ether_header)) - sizeof(struct ether_header); len -= newdata - m->m_data; m->m_data = newdata; } m->m_len = len = min(total_len, len); if (sc->ring_copy) src = (*sc->ring_copy)(sc, src, mtod(m, caddr_t), len); else src = dp8390_ring_copy(sc, src, mtod(m, caddr_t), len); total_len -= len; *mp = m; mp = &m->m_next; } return top; } /* * Default driver support functions. * * NOTE: all support functions assume 8-bit shared memory. */ /* * Zero NIC buffer memory and verify that it is clear. */ static int dp8390_test_mem(sc) struct dp8390_softc *sc; { bus_space_tag_t buft = sc->sc_buft; bus_space_handle_t bufh = sc->sc_bufh; int i; bus_space_set_region_1(buft, bufh, sc->mem_start, 0, sc->mem_size); for (i = 0; i < sc->mem_size; ++i) { if (bus_space_read_1(buft, bufh, sc->mem_start + i)) { printf(": failed to clear NIC buffer at offset %x - " "check configuration\n", (sc->mem_start + i)); return 1; } } return 0; } /* * Read a packet header from the ring, given the source offset. */ static __inline__ void dp8390_read_hdr(sc, src, hdrp) struct dp8390_softc *sc; int src; struct dp8390_ring *hdrp; { bus_space_tag_t buft = sc->sc_buft; bus_space_handle_t bufh = sc->sc_bufh; /* * The byte count includes a 4 byte header that was added by * the NIC. */ hdrp->rsr = bus_space_read_1(buft, bufh, src); hdrp->next_packet = bus_space_read_1(buft, bufh, src + 1); hdrp->count = bus_space_read_1(buft, bufh, src + 2) | (bus_space_read_1(buft, bufh, src + 3) << 8); } /* * Copy `amount' bytes from a packet in the ring buffer to a linear * destination buffer, given a source offset and destination address. * Takes into account ring-wrap. */ static __inline__ int dp8390_ring_copy(sc, src, dst, amount) struct dp8390_softc *sc; int src; caddr_t dst; u_short amount; { bus_space_tag_t buft = sc->sc_buft; bus_space_handle_t bufh = sc->sc_bufh; u_short tmp_amount; /* Does copy wrap to lower addr in ring buffer? */ if (src + amount > sc->mem_end) { tmp_amount = sc->mem_end - src; /* Copy amount up to end of NIC memory. */ bus_space_read_region_1(buft, bufh, src, dst, tmp_amount); amount -= tmp_amount; src = sc->mem_ring; dst += tmp_amount; } bus_space_read_region_1(buft, bufh, src, dst, amount); return (src + amount); } /* * Copy a packet from an mbuf to the transmit buffer on the card. * * Currently uses an extra buffer/extra memory copy, unless the whole * packet fits in one mbuf. */ static __inline__ int dp8390_write_mbuf(sc, m, buf) struct dp8390_softc *sc; struct mbuf *m; int buf; { bus_space_tag_t buft = sc->sc_buft; bus_space_handle_t bufh = sc->sc_bufh; u_char *data; int len, totlen = 0; for (; m ; m = m->m_next) { data = mtod(m, u_char *); len = m->m_len; if (len > 0) { bus_space_write_region_1(buft, bufh, buf, data, len); totlen += len; buf += len; } } return (totlen); } /* * Enable power on the interface. */ int dp8390_enable(sc) struct dp8390_softc *sc; { if (sc->sc_enabled == 0 && sc->sc_enable != NULL) { if ((*sc->sc_enable)(sc) != 0) { printf("%s: device enable failed\n", sc->sc_dev.dv_xname); return (EIO); } } sc->sc_enabled = 1; return (0); } /* * Disable power on the interface. */ void dp8390_disable(sc) struct dp8390_softc *sc; { if (sc->sc_enabled != 0 && sc->sc_disable != NULL) { (*sc->sc_disable)(sc); sc->sc_enabled = 0; } } int dp8390_detach(sc, flags) struct dp8390_softc *sc; int flags; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; /* dp8390_disable() checks sc->sc_enabled */ dp8390_disable(sc); if (sc->sc_media_fini != NULL) (*sc->sc_media_fini)(sc); /* Delete all reamining media. */ ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY); ether_ifdetach(ifp); if_detach(ifp); return (0); }