/* $OpenBSD: fxp.c,v 1.83 2006/12/13 17:13:01 deraadt Exp $ */ /* $NetBSD: if_fxp.c,v 1.2 1997/06/05 02:01:55 thorpej Exp $ */ /* * Copyright (c) 1995, David Greenman * All rights reserved. * * Modifications to support NetBSD: * Copyright (c) 1997 Jason R. Thorpe. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Id: if_fxp.c,v 1.55 1998/08/04 08:53:12 dg Exp */ /* * Intel EtherExpress Pro/100B PCI Fast Ethernet driver */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #endif #ifdef IPX #include #include #endif #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include #include /* * NOTE! On the Alpha, we have an alignment constraint. The * card DMAs the packet immediately following the RFA. However, * the first thing in the packet is a 14-byte Ethernet header. * This means that the packet is misaligned. To compensate, * we actually offset the RFA 2 bytes into the cluster. This * aligns the packet after the Ethernet header at a 32-bit * boundary. HOWEVER! This means that the RFA is misaligned! */ #define RFA_ALIGNMENT_FUDGE (2 + sizeof(bus_dmamap_t *)) /* * Inline function to copy a 16-bit aligned 32-bit quantity. */ static __inline void fxp_lwcopy(volatile u_int32_t *, volatile u_int32_t *); static __inline void fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst) { volatile u_int16_t *a = (u_int16_t *)src; volatile u_int16_t *b = (u_int16_t *)dst; b[0] = a[0]; b[1] = a[1]; } /* * Template for default configuration parameters. * See struct fxp_cb_config for the bit definitions. * Note, cb_command is filled in later. */ static u_char fxp_cb_config_template[] = { 0x0, 0x0, /* cb_status */ 0x0, 0x0, /* cb_command */ 0xff, 0xff, 0xff, 0xff, /* link_addr */ 0x16, /* 0 Byte count. */ 0x08, /* 1 Fifo limit */ 0x00, /* 2 Adaptive ifs */ 0x00, /* 3 ctrl0 */ 0x00, /* 4 rx_dma_bytecount */ 0x80, /* 5 tx_dma_bytecount */ 0xb2, /* 6 ctrl 1*/ 0x03, /* 7 ctrl 2*/ 0x01, /* 8 mediatype */ 0x00, /* 9 void2 */ 0x26, /* 10 ctrl3 */ 0x00, /* 11 linear priority */ 0x60, /* 12 interfrm_spacing */ 0x00, /* 13 void31 */ 0xf2, /* 14 void32 */ 0x48, /* 15 promiscuous */ 0x00, /* 16 void41 */ 0x40, /* 17 void42 */ 0xf3, /* 18 stripping */ 0x00, /* 19 fdx_pin */ 0x3f, /* 20 multi_ia */ 0x05 /* 21 mc_all */ }; void fxp_eeprom_shiftin(struct fxp_softc *, int, int); void fxp_eeprom_putword(struct fxp_softc *, int, u_int16_t); void fxp_write_eeprom(struct fxp_softc *, u_short *, int, int); int fxp_mediachange(struct ifnet *); void fxp_mediastatus(struct ifnet *, struct ifmediareq *); void fxp_scb_wait(struct fxp_softc *); void fxp_start(struct ifnet *); int fxp_ioctl(struct ifnet *, u_long, caddr_t); void fxp_init(void *); void fxp_load_ucode(struct fxp_softc *); void fxp_stop(struct fxp_softc *, int); void fxp_watchdog(struct ifnet *); int fxp_add_rfabuf(struct fxp_softc *, struct mbuf *); int fxp_mdi_read(struct device *, int, int); void fxp_mdi_write(struct device *, int, int, int); void fxp_autosize_eeprom(struct fxp_softc *); void fxp_statchg(struct device *); void fxp_read_eeprom(struct fxp_softc *, u_int16_t *, int, int); void fxp_stats_update(void *); void fxp_mc_setup(struct fxp_softc *, int); void fxp_scb_cmd(struct fxp_softc *, u_int8_t); /* * Set initial transmit threshold at 64 (512 bytes). This is * increased by 64 (512 bytes) at a time, to maximum of 192 * (1536 bytes), if an underrun occurs. */ static int tx_threshold = 64; /* * Interrupts coalescing code params */ int fxp_int_delay = FXP_INT_DELAY; int fxp_bundle_max = FXP_BUNDLE_MAX; int fxp_min_size_mask = FXP_MIN_SIZE_MASK; /* * TxCB list index mask. This is used to do list wrap-around. */ #define FXP_TXCB_MASK (FXP_NTXCB - 1) /* * Maximum number of seconds that the receiver can be idle before we * assume it's dead and attempt to reset it by reprogramming the * multicast filter. This is part of a work-around for a bug in the * NIC. See fxp_stats_update(). */ #define FXP_MAX_RX_IDLE 15 /* * Wait for the previous command to be accepted (but not necessarily * completed). */ void fxp_scb_wait(struct fxp_softc *sc) { int i = 10000; while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i) DELAY(2); if (i == 0) printf("%s: warning: SCB timed out\n", sc->sc_dev.dv_xname); } void fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length) { u_int16_t reg; int x; /* * Shift in data. */ for (x = 1 << (length - 1); x; x >>= 1) { if (data & x) reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; else reg = FXP_EEPROM_EECS; CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); DELAY(1); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); DELAY(1); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); DELAY(1); } } void fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data) { int i; /* * Erase/write enable. */ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); fxp_eeprom_shiftin(sc, 0x4, 3); fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); DELAY(1); /* * Shift in write opcode, address, data. */ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3); fxp_eeprom_shiftin(sc, offset, sc->eeprom_size); fxp_eeprom_shiftin(sc, data, 16); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); DELAY(1); /* * Wait for EEPROM to finish up. */ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); DELAY(1); for (i = 0; i < 1000; i++) { if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) break; DELAY(50); } CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); DELAY(1); /* * Erase/write disable. */ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); fxp_eeprom_shiftin(sc, 0x4, 3); fxp_eeprom_shiftin(sc, 0, sc->eeprom_size); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); DELAY(1); } void fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) { int i; for (i = 0; i < words; i++) fxp_eeprom_putword(sc, offset + i, data[i]); } /************************************************************* * Operating system-specific autoconfiguration glue *************************************************************/ void fxp_shutdown(void *); void fxp_power(int, void *); struct cfdriver fxp_cd = { NULL, "fxp", DV_IFNET }; /* * Device shutdown routine. Called at system shutdown after sync. The * main purpose of this routine is to shut off receiver DMA so that * kernel memory doesn't get clobbered during warmboot. */ void fxp_shutdown(void *sc) { fxp_stop((struct fxp_softc *) sc, 0); } /* * Power handler routine. Called when the system is transitioning * into/out of power save modes. As with fxp_shutdown, the main * purpose of this routine is to shut off receiver DMA so it doesn't * clobber kernel memory at the wrong time. */ void fxp_power(int why, void *arg) { struct fxp_softc *sc = arg; struct ifnet *ifp; int s; s = splnet(); if (why != PWR_RESUME) fxp_stop(sc, 0); else { ifp = &sc->sc_arpcom.ac_if; if (ifp->if_flags & IFF_UP) fxp_init(sc); } splx(s); } /************************************************************* * End of operating system-specific autoconfiguration glue *************************************************************/ /* * Do generic parts of attach. */ int fxp_attach(struct fxp_softc *sc, const char *intrstr) { struct ifnet *ifp; struct mbuf *m; bus_dmamap_t rxmap; u_int16_t data; u_int8_t enaddr[6]; int i, err; /* * Reset to a stable state. */ CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET); DELAY(10); if (bus_dmamem_alloc(sc->sc_dmat, sizeof(struct fxp_ctrl), PAGE_SIZE, 0, &sc->sc_cb_seg, 1, &sc->sc_cb_nseg, BUS_DMA_NOWAIT)) goto fail; if (bus_dmamem_map(sc->sc_dmat, &sc->sc_cb_seg, sc->sc_cb_nseg, sizeof(struct fxp_ctrl), (caddr_t *)&sc->sc_ctrl, BUS_DMA_NOWAIT)) { bus_dmamem_free(sc->sc_dmat, &sc->sc_cb_seg, sc->sc_cb_nseg); goto fail; } if (bus_dmamap_create(sc->sc_dmat, sizeof(struct fxp_ctrl), 1, sizeof(struct fxp_ctrl), 0, BUS_DMA_NOWAIT, &sc->tx_cb_map)) { bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_ctrl, sizeof(struct fxp_ctrl)); bus_dmamem_free(sc->sc_dmat, &sc->sc_cb_seg, sc->sc_cb_nseg); goto fail; } if (bus_dmamap_load(sc->sc_dmat, sc->tx_cb_map, (caddr_t)sc->sc_ctrl, sizeof(struct fxp_ctrl), NULL, BUS_DMA_NOWAIT)) { bus_dmamap_destroy(sc->sc_dmat, sc->tx_cb_map); bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_ctrl, sizeof(struct fxp_ctrl)); bus_dmamem_free(sc->sc_dmat, &sc->sc_cb_seg, sc->sc_cb_nseg); } for (i = 0; i < FXP_NTXCB; i++) { if ((err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, FXP_NTXSEG, MCLBYTES, 0, 0, &sc->txs[i].tx_map)) != 0) { printf("%s: unable to create tx dma map %d, error %d\n", sc->sc_dev.dv_xname, i, err); goto fail; } sc->txs[i].tx_mbuf = NULL; sc->txs[i].tx_cb = sc->sc_ctrl->tx_cb + i; sc->txs[i].tx_off = offsetof(struct fxp_ctrl, tx_cb[i]); sc->txs[i].tx_next = &sc->txs[(i + 1) & FXP_TXCB_MASK]; } bzero(sc->sc_ctrl, sizeof(struct fxp_ctrl)); /* * Pre-allocate some receive buffers. */ sc->sc_rxfree = 0; for (i = 0; i < FXP_NRFABUFS_MIN; i++) { if ((err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) { printf("%s: unable to create rx dma map %d, error %d\n", sc->sc_dev.dv_xname, i, err); goto fail; } sc->rx_bufs++; } for (i = 0; i < FXP_NRFABUFS_MIN; i++) if (fxp_add_rfabuf(sc, NULL) != 0) goto fail; /* * Find out how large of an SEEPROM we have. */ fxp_autosize_eeprom(sc); /* * Get info about the primary PHY */ fxp_read_eeprom(sc, (u_int16_t *)&data, 6, 1); sc->phy_primary_addr = data & 0xff; sc->phy_primary_device = (data >> 8) & 0x3f; sc->phy_10Mbps_only = data >> 15; /* * Only 82558 and newer cards can do this. */ if (sc->sc_revision >= FXP_REV_82558_A4) { sc->sc_int_delay = fxp_int_delay; sc->sc_bundle_max = fxp_bundle_max; sc->sc_min_size_mask = fxp_min_size_mask; } /* * Read MAC address. */ fxp_read_eeprom(sc, (u_int16_t *)enaddr, 0, 3); ifp = &sc->sc_arpcom.ac_if; bcopy(enaddr, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN); bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = fxp_ioctl; ifp->if_start = fxp_start; ifp->if_watchdog = fxp_watchdog; IFQ_SET_MAXLEN(&ifp->if_snd, FXP_NTXCB - 1); IFQ_SET_READY(&ifp->if_snd); ifp->if_capabilities = IFCAP_VLAN_MTU; printf(": %s, address %s\n", intrstr, ether_sprintf(sc->sc_arpcom.ac_enaddr)); if (sc->sc_flags & FXPF_DISABLE_STANDBY) { fxp_read_eeprom(sc, &data, 10, 1); if (data & 0x02) { /* STB enable */ u_int16_t cksum; int i; printf("%s: Disabling dynamic standby mode in EEPROM", sc->sc_dev.dv_xname); data &= ~0x02; fxp_write_eeprom(sc, &data, 10, 1); printf(", New ID 0x%x", data); cksum = 0; for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) { fxp_read_eeprom(sc, &data, i, 1); cksum += data; } i = (1 << sc->eeprom_size) - 1; cksum = 0xBABA - cksum; fxp_read_eeprom(sc, &data, i, 1); fxp_write_eeprom(sc, &cksum, i, 1); printf(", cksum @ 0x%x: 0x%x -> 0x%x\n", i, data, cksum); } } /* Receiver lock-up workaround detection. */ fxp_read_eeprom(sc, &data, 3, 1); if ((data & 0x03) != 0x03) sc->sc_flags |= FXPF_RECV_WORKAROUND; /* * Initialize our media structures and probe the MII. */ sc->sc_mii.mii_ifp = ifp; sc->sc_mii.mii_readreg = fxp_mdi_read; sc->sc_mii.mii_writereg = fxp_mdi_write; sc->sc_mii.mii_statchg = fxp_statchg; ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_mediachange, fxp_mediastatus); mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, MIIF_NOISOLATE); /* If no phy found, just use auto mode */ if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL); printf("%s: no phy found, using manual mode\n", sc->sc_dev.dv_xname); } if (ifmedia_match(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0)) ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL); else if (ifmedia_match(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0)) ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); else ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T); /* * Attach the interface. */ if_attach(ifp); ether_ifattach(ifp); /* * Add shutdown hook so that DMA is disabled prior to reboot. Not * doing so could allow DMA to corrupt kernel memory during the * reboot before the driver initializes. */ sc->sc_sdhook = shutdownhook_establish(fxp_shutdown, sc); /* * Add suspend hook, for similiar reasons.. */ sc->sc_powerhook = powerhook_establish(fxp_power, sc); /* * Initialize timeout for statistics update. */ timeout_set(&sc->stats_update_to, fxp_stats_update, sc); return (0); fail: printf("%s: Failed to malloc memory\n", sc->sc_dev.dv_xname); if (sc->tx_cb_map != NULL) { bus_dmamap_unload(sc->sc_dmat, sc->tx_cb_map); bus_dmamap_destroy(sc->sc_dmat, sc->tx_cb_map); bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_ctrl, sizeof(struct fxp_cb_tx) * FXP_NTXCB); bus_dmamem_free(sc->sc_dmat, &sc->sc_cb_seg, sc->sc_cb_nseg); } m = sc->rfa_headm; while (m != NULL) { rxmap = *((bus_dmamap_t *)m->m_ext.ext_buf); bus_dmamap_unload(sc->sc_dmat, rxmap); FXP_RXMAP_PUT(sc, rxmap); m = m_free(m); } return (ENOMEM); } int fxp_detach(struct fxp_softc *sc) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; /* Unhook our tick handler. */ timeout_del(&sc->stats_update_to); /* Detach any PHYs we might have. */ if (LIST_FIRST(&sc->sc_mii.mii_phys) != NULL) mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY); /* Delete any remaining media. */ ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY); ether_ifdetach(ifp); if_detach(ifp); if (sc->sc_sdhook != NULL) shutdownhook_disestablish(sc->sc_sdhook); if (sc->sc_powerhook != NULL) powerhook_disestablish(sc->sc_powerhook); return (0); } /* * From NetBSD: * * Figure out EEPROM size. * * 559's can have either 64-word or 256-word EEPROMs, the 558 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet * talks about the existence of 16 to 256 word EEPROMs. * * The only known sizes are 64 and 256, where the 256 version is used * by CardBus cards to store CIS information. * * The address is shifted in msb-to-lsb, and after the last * address-bit the EEPROM is supposed to output a `dummy zero' bit, * after which follows the actual data. We try to detect this zero, by * probing the data-out bit in the EEPROM control register just after * having shifted in a bit. If the bit is zero, we assume we've * shifted enough address bits. The data-out should be tri-state, * before this, which should translate to a logical one. * * Other ways to do this would be to try to read a register with known * contents with a varying number of address bits, but no such * register seem to be available. The high bits of register 10 are 01 * on the 558 and 559, but apparently not on the 557. * * The Linux driver computes a checksum on the EEPROM data, but the * value of this checksum is not very well documented. */ void fxp_autosize_eeprom(struct fxp_softc *sc) { u_int16_t reg; int x; CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); /* * Shift in read opcode. */ for (x = 3; x > 0; x--) { if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) { reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; } else { reg = FXP_EEPROM_EECS; } CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); DELAY(4); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); DELAY(4); } /* * Shift in address. * Wait for the dummy zero following a correct address shift. */ for (x = 1; x <= 8; x++) { CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS | FXP_EEPROM_EESK); DELAY(4); if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) == 0) break; CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); DELAY(4); } CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); DELAY(4); sc->eeprom_size = x; } /* * Read from the serial EEPROM. Basically, you manually shift in * the read opcode (one bit at a time) and then shift in the address, * and then you shift out the data (all of this one bit at a time). * The word size is 16 bits, so you have to provide the address for * every 16 bits of data. */ void fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) { u_int16_t reg; int i, x; for (i = 0; i < words; i++) { CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); /* * Shift in read opcode. */ for (x = 3; x > 0; x--) { if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) { reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; } else { reg = FXP_EEPROM_EECS; } CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); DELAY(4); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); DELAY(4); } /* * Shift in address. */ for (x = sc->eeprom_size; x > 0; x--) { if ((i + offset) & (1 << (x - 1))) { reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; } else { reg = FXP_EEPROM_EECS; } CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); DELAY(4); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); DELAY(4); } reg = FXP_EEPROM_EECS; data[i] = 0; /* * Shift out data. */ for (x = 16; x > 0; x--) { CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); DELAY(4); if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) data[i] |= (1 << (x - 1)); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); DELAY(4); } data[i] = letoh16(data[i]); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); DELAY(4); } } /* * Start packet transmission on the interface. */ void fxp_start(struct ifnet *ifp) { struct fxp_softc *sc = ifp->if_softc; struct fxp_txsw *txs = sc->sc_cbt_prod; struct fxp_cb_tx *txc; struct mbuf *m0, *m = NULL; int cnt = sc->sc_cbt_cnt, seg; if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING) return; while (1) { if (cnt >= (FXP_NTXCB - 2)) { ifp->if_flags |= IFF_OACTIVE; break; } txs = txs->tx_next; IFQ_POLL(&ifp->if_snd, m0); if (m0 == NULL) break; if (bus_dmamap_load_mbuf(sc->sc_dmat, txs->tx_map, m0, BUS_DMA_NOWAIT) != 0) { MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) break; if (m0->m_pkthdr.len > MHLEN) { MCLGET(m, M_DONTWAIT); if (!(m->m_flags & M_EXT)) { m_freem(m); break; } } m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t)); m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len; if (bus_dmamap_load_mbuf(sc->sc_dmat, txs->tx_map, m, BUS_DMA_NOWAIT) != 0) { m_freem(m); break; } } IFQ_DEQUEUE(&ifp->if_snd, m0); if (m != NULL) { m_freem(m0); m0 = m; m = NULL; } txs->tx_mbuf = m0; #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT); #endif FXP_MBUF_SYNC(sc, txs->tx_map, BUS_DMASYNC_PREWRITE); txc = txs->tx_cb; txc->tbd_number = txs->tx_map->dm_nsegs; txc->cb_status = 0; txc->cb_command = htole16(FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF); txc->tx_threshold = tx_threshold; for (seg = 0; seg < txs->tx_map->dm_nsegs; seg++) { txc->tbd[seg].tb_addr = htole32(txs->tx_map->dm_segs[seg].ds_addr); txc->tbd[seg].tb_size = htole32(txs->tx_map->dm_segs[seg].ds_len); } FXP_TXCB_SYNC(sc, txs, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); ++cnt; sc->sc_cbt_prod = txs; } if (cnt != sc->sc_cbt_cnt) { /* We enqueued at least one. */ ifp->if_timer = 5; txs = sc->sc_cbt_prod; txs = txs->tx_next; sc->sc_cbt_prod = txs; txs->tx_cb->cb_command = htole16(FXP_CB_COMMAND_I | FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S); FXP_TXCB_SYNC(sc, txs, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); FXP_TXCB_SYNC(sc, sc->sc_cbt_prev, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); sc->sc_cbt_prev->tx_cb->cb_command &= htole16(~(FXP_CB_COMMAND_S | FXP_CB_COMMAND_I)); FXP_TXCB_SYNC(sc, sc->sc_cbt_prev, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); sc->sc_cbt_prev = txs; fxp_scb_wait(sc); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME); sc->sc_cbt_cnt = cnt + 1; } } /* * Process interface interrupts. */ int fxp_intr(void *arg) { struct fxp_softc *sc = arg; struct ifnet *ifp = &sc->sc_arpcom.ac_if; u_int8_t statack; bus_dmamap_t rxmap; int claimed = 0; int rnr = 0; /* * If the interface isn't running, don't try to * service the interrupt.. just ack it and bail. */ if ((ifp->if_flags & IFF_RUNNING) == 0) { statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK); if (statack) { claimed = 1; CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack); } return claimed; } while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) { claimed = 1; rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ? 1 : 0; /* * First ACK all the interrupts in this pass. */ CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack); /* * Free any finished transmit mbuf chains. */ if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) { int txcnt = sc->sc_cbt_cnt; struct fxp_txsw *txs = sc->sc_cbt_cons; FXP_TXCB_SYNC(sc, txs, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); while ((txcnt > 0) && ((txs->tx_cb->cb_status & htole16(FXP_CB_STATUS_C)) || (txs->tx_cb->cb_command & htole16(FXP_CB_COMMAND_NOP)))) { if (txs->tx_mbuf != NULL) { FXP_MBUF_SYNC(sc, txs->tx_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, txs->tx_map); m_freem(txs->tx_mbuf); txs->tx_mbuf = NULL; } --txcnt; txs = txs->tx_next; FXP_TXCB_SYNC(sc, txs, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); } sc->sc_cbt_cons = txs; sc->sc_cbt_cnt = txcnt; ifp->if_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; if (!IFQ_IS_EMPTY(&ifp->if_snd)) { /* * Try to start more packets transmitting. */ fxp_start(ifp); } } /* * Process receiver interrupts. If a Receive Unit * not ready (RNR) condition exists, get whatever * packets we can and re-start the receiver. */ if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) { struct mbuf *m; u_int8_t *rfap; rcvloop: m = sc->rfa_headm; rfap = m->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE; rxmap = *((bus_dmamap_t *)m->m_ext.ext_buf); bus_dmamap_sync(sc->sc_dmat, rxmap, 0, MCLBYTES, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); if (*(u_int16_t *)(rfap + offsetof(struct fxp_rfa, rfa_status)) & htole16(FXP_RFA_STATUS_C)) { if (*(u_int16_t *)(rfap + offsetof(struct fxp_rfa, rfa_status)) & htole16(FXP_RFA_STATUS_RNR)) rnr = 1; /* * Remove first packet from the chain. */ sc->rfa_headm = m->m_next; m->m_next = NULL; /* * Add a new buffer to the receive chain. * If this fails, the old buffer is recycled * instead. */ if (fxp_add_rfabuf(sc, m) == 0) { u_int16_t total_len; total_len = htole16(*(u_int16_t *)(rfap + offsetof(struct fxp_rfa, actual_size))) & (MCLBYTES - 1); if (total_len < sizeof(struct ether_header)) { m_freem(m); goto rcvloop; } if (*(u_int16_t *)(rfap + offsetof(struct fxp_rfa, rfa_status)) & htole16(FXP_RFA_STATUS_CRC)) { m_freem(m); goto rcvloop; } m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = total_len; #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_IN); #endif /* NBPFILTER > 0 */ ether_input_mbuf(ifp, m); } goto rcvloop; } } if (rnr) { rxmap = *((bus_dmamap_t *) sc->rfa_headm->m_ext.ext_buf); fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE); fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); } } return (claimed); } /* * Update packet in/out/collision statistics. The i82557 doesn't * allow you to access these counters without doing a fairly * expensive DMA to get _all_ of the statistics it maintains, so * we do this operation here only once per second. The statistics * counters in the kernel are updated from the previous dump-stats * DMA and then a new dump-stats DMA is started. The on-chip * counters are zeroed when the DMA completes. If we can't start * the DMA immediately, we don't wait - we just prepare to read * them again next time. */ void fxp_stats_update(void *arg) { struct fxp_softc *sc = arg; struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct fxp_stats *sp = &sc->sc_ctrl->stats; int s; FXP_STATS_SYNC(sc, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); ifp->if_opackets += letoh32(sp->tx_good); ifp->if_collisions += letoh32(sp->tx_total_collisions); if (sp->rx_good) { ifp->if_ipackets += letoh32(sp->rx_good); sc->rx_idle_secs = 0; } else if (sc->sc_flags & FXPF_RECV_WORKAROUND) sc->rx_idle_secs++; ifp->if_ierrors += letoh32(sp->rx_crc_errors) + letoh32(sp->rx_alignment_errors) + letoh32(sp->rx_rnr_errors) + letoh32(sp->rx_overrun_errors); /* * If any transmit underruns occurred, bump up the transmit * threshold by another 512 bytes (64 * 8). */ if (sp->tx_underruns) { ifp->if_oerrors += letoh32(sp->tx_underruns); if (tx_threshold < 192) tx_threshold += 64; } s = splnet(); /* * If we haven't received any packets in FXP_MAX_RX_IDLE seconds, * then assume the receiver has locked up and attempt to clear * the condition by reprogramming the multicast filter. This is * a work-around for a bug in the 82557 where the receiver locks * up if it gets certain types of garbage in the synchronization * bits prior to the packet header. This bug is supposed to only * occur in 10Mbps mode, but has been seen to occur in 100Mbps * mode as well (perhaps due to a 10/100 speed transition). */ if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) { sc->rx_idle_secs = 0; fxp_init(sc); splx(s); return; } /* * If there is no pending command, start another stats * dump. Otherwise punt for now. */ FXP_STATS_SYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) { /* * Start another stats dump. */ fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET); } else { /* * A previous command is still waiting to be accepted. * Just zero our copy of the stats and wait for the * next timer event to update them. */ sp->tx_good = 0; sp->tx_underruns = 0; sp->tx_total_collisions = 0; sp->rx_good = 0; sp->rx_crc_errors = 0; sp->rx_alignment_errors = 0; sp->rx_rnr_errors = 0; sp->rx_overrun_errors = 0; } /* Tick the MII clock. */ mii_tick(&sc->sc_mii); splx(s); /* * Schedule another timeout one second from now. */ timeout_add(&sc->stats_update_to, hz); } /* * Stop the interface. Cancels the statistics updater and resets * the interface. */ void fxp_stop(struct fxp_softc *sc, int drain) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; int i; /* * Turn down interface (done early to avoid bad interactions * between panics, shutdown hooks, and the watchdog timer) */ ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); /* * Cancel stats updater. */ timeout_del(&sc->stats_update_to); mii_down(&sc->sc_mii); /* * Issue software reset. */ CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); DELAY(10); /* * Release any xmit buffers. */ for (i = 0; i < FXP_NTXCB; i++) { if (sc->txs[i].tx_mbuf != NULL) { bus_dmamap_unload(sc->sc_dmat, sc->txs[i].tx_map); m_freem(sc->txs[i].tx_mbuf); sc->txs[i].tx_mbuf = NULL; } } sc->sc_cbt_cnt = 0; if (drain) { bus_dmamap_t rxmap; struct mbuf *m; /* * Free all the receive buffers then reallocate/reinitialize */ m = sc->rfa_headm; while (m != NULL) { rxmap = *((bus_dmamap_t *)m->m_ext.ext_buf); bus_dmamap_unload(sc->sc_dmat, rxmap); FXP_RXMAP_PUT(sc, rxmap); m = m_free(m); sc->rx_bufs--; } sc->rfa_headm = NULL; sc->rfa_tailm = NULL; for (i = 0; i < FXP_NRFABUFS_MIN; i++) { if (fxp_add_rfabuf(sc, NULL) != 0) { /* * This "can't happen" - we're at splnet() * and we just freed all the buffers we need * above. */ panic("fxp_stop: no buffers!"); } sc->rx_bufs++; } } } /* * Watchdog/transmission transmit timeout handler. Called when a * transmission is started on the interface, but no interrupt is * received before the timeout. This usually indicates that the * card has wedged for some reason. */ void fxp_watchdog(struct ifnet *ifp) { struct fxp_softc *sc = ifp->if_softc; log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname); ifp->if_oerrors++; fxp_init(sc); } /* * Submit a command to the i82557. */ void fxp_scb_cmd(struct fxp_softc *sc, u_int8_t cmd) { CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd); } void fxp_init(void *xsc) { struct fxp_softc *sc = xsc; struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct fxp_cb_config *cbp; struct fxp_cb_ias *cb_ias; struct fxp_cb_tx *txp; bus_dmamap_t rxmap; int i, prm, save_bf, lrxen, allm, s, bufs; s = splnet(); /* * Cancel any pending I/O */ fxp_stop(sc, 0); /* * Initialize base of CBL and RFA memory. Loading with zero * sets it up for regular linear addressing. */ fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE); fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0); fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE); #ifndef SMALL_KERNEL fxp_load_ucode(sc); #endif /* Once through to set flags */ fxp_mc_setup(sc, 0); /* * In order to support receiving 802.1Q VLAN frames, we have to * enable "save bad frames", since they are 4 bytes larger than * the normal Ethernet maximum frame length. On i82558 and later, * we have a better mechanism for this. */ save_bf = 0; lrxen = 0; if (sc->sc_revision >= FXP_REV_82558_A4) lrxen = 1; else save_bf = 1; /* * Initialize base of dump-stats buffer. */ fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->tx_cb_map->dm_segs->ds_addr + offsetof(struct fxp_ctrl, stats)); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR); cbp = &sc->sc_ctrl->u.cfg; /* * This bcopy is kind of disgusting, but there are a bunch of must be * zero and must be one bits in this structure and this is the easiest * way to initialize them all to proper values. */ bcopy(fxp_cb_config_template, (void *)&cbp->cb_status, sizeof(fxp_cb_config_template)); prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0; allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0; #if 0 cbp->cb_status = 0; cbp->cb_command = FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL; cbp->link_addr = 0xffffffff; /* (no) next command */ cbp->byte_count = 22; /* (22) bytes to config */ cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */ cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */ cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */ cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */ cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */ cbp->dma_bce = 0; /* (disable) dma max counters */ cbp->late_scb = 0; /* (don't) defer SCB update */ cbp->tno_int = 0; /* (disable) tx not okay interrupt */ cbp->ci_int = 1; /* interrupt on CU idle */ cbp->save_bf = save_bf ? 1 : prm; /* save bad frames */ cbp->disc_short_rx = !prm; /* discard short packets */ cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */ cbp->mediatype = !sc->phy_10Mbps_only; /* interface mode */ cbp->nsai = 1; /* (don't) disable source addr insert */ cbp->preamble_length = 2; /* (7 byte) preamble */ cbp->loopback = 0; /* (don't) loopback */ cbp->linear_priority = 0; /* (normal CSMA/CD operation) */ cbp->linear_pri_mode = 0; /* (wait after xmit only) */ cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */ cbp->promiscuous = prm; /* promiscuous mode */ cbp->bcast_disable = 0; /* (don't) disable broadcasts */ cbp->crscdt = 0; /* (CRS only) */ cbp->stripping = !prm; /* truncate rx packet to byte count */ cbp->padding = 1; /* (do) pad short tx packets */ cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */ cbp->long_rx = lrxen; /* (enable) long packets */ cbp->force_fdx = 0; /* (don't) force full duplex */ cbp->fdx_pin_en = 1; /* (enable) FDX# pin */ cbp->multi_ia = 0; /* (don't) accept multiple IAs */ cbp->mc_all = allm; #else cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL); if (allm) cbp->mc_all |= 0x08; /* accept all multicasts */ else cbp->mc_all &= ~0x08; /* reject all multicasts */ if (prm) { cbp->promiscuous |= 1; /* promiscuous mode */ cbp->ctrl2 &= ~0x01; /* save short packets */ cbp->stripping &= ~0x01; /* don't truncate rx packets */ } else { cbp->promiscuous &= ~1; /* no promiscuous mode */ cbp->ctrl2 |= 0x01; /* discard short packets */ cbp->stripping |= 0x01; /* truncate rx packets */ } if (prm || save_bf) cbp->ctrl1 |= 0x80; /* save bad frames */ else cbp->ctrl1 &= ~0x80; /* discard bad frames */ if (sc->sc_flags & FXPF_MWI_ENABLE) cbp->ctrl0 |= 0x01; /* enable PCI MWI command */ if(!sc->phy_10Mbps_only) /* interface mode */ cbp->mediatype |= 0x01; else cbp->mediatype &= ~0x01; if(lrxen) /* long packets */ cbp->stripping |= 0x08; else cbp->stripping &= ~0x08; cbp->tx_dma_bytecount = 0; /* (no) tx DMA max, dma_dce = 0 ??? */ cbp->ctrl1 |= 0x08; /* ci_int = 1 */ cbp->ctrl3 |= 0x08; /* nsai */ cbp->fifo_limit = 0x08; /* tx and rx fifo limit */ cbp->fdx_pin |= 0x80; /* Enable full duplex setting by pin */ #endif /* * Start the config command/DMA. */ fxp_scb_wait(sc); FXP_CFG_SYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->tx_cb_map->dm_segs->ds_addr + offsetof(struct fxp_ctrl, u.cfg)); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); /* ...and wait for it to complete. */ do { DELAY(1); FXP_CFG_SYNC(sc, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); } while ((cbp->cb_status & htole16(FXP_CB_STATUS_C)) == 0); /* * Now initialize the station address. */ cb_ias = &sc->sc_ctrl->u.ias; cb_ias->cb_status = htole16(0); cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL); cb_ias->link_addr = htole32(0xffffffff); bcopy(sc->sc_arpcom.ac_enaddr, (void *)cb_ias->macaddr, sizeof(sc->sc_arpcom.ac_enaddr)); /* * Start the IAS (Individual Address Setup) command/DMA. */ fxp_scb_wait(sc); FXP_IAS_SYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->tx_cb_map->dm_segs->ds_addr + offsetof(struct fxp_ctrl, u.ias)); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); /* ...and wait for it to complete. */ do { DELAY(1); FXP_IAS_SYNC(sc, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); } while (!(cb_ias->cb_status & htole16(FXP_CB_STATUS_C))); /* Again, this time really upload the multicast addresses */ fxp_mc_setup(sc, 1); /* * Initialize transmit control block (TxCB) list. */ bzero(sc->sc_ctrl->tx_cb, sizeof(struct fxp_cb_tx) * FXP_NTXCB); txp = sc->sc_ctrl->tx_cb; for (i = 0; i < FXP_NTXCB; i++) { txp[i].cb_command = htole16(FXP_CB_COMMAND_NOP); txp[i].link_addr = htole32(sc->tx_cb_map->dm_segs->ds_addr + offsetof(struct fxp_ctrl, tx_cb[(i + 1) & FXP_TXCB_MASK])); txp[i].tbd_array_addr =htole32(sc->tx_cb_map->dm_segs->ds_addr + offsetof(struct fxp_ctrl, tx_cb[i].tbd[0])); } /* * Set the suspend flag on the first TxCB and start the control * unit. It will execute the NOP and then suspend. */ sc->sc_cbt_prev = sc->sc_cbt_prod = sc->sc_cbt_cons = sc->txs; sc->sc_cbt_cnt = 1; sc->sc_ctrl->tx_cb[0].cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I); bus_dmamap_sync(sc->sc_dmat, sc->tx_cb_map, 0, sc->tx_cb_map->dm_mapsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->tx_cb_map->dm_segs->ds_addr + offsetof(struct fxp_ctrl, tx_cb[0])); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); /* * Initialize receiver buffer area - RFA. */ if (ifp->if_flags & IFF_UP) bufs = FXP_NRFABUFS_MAX; else bufs = FXP_NRFABUFS_MIN; if (sc->rx_bufs > bufs) { while (sc->rfa_headm != NULL && sc->rx_bufs-- > bufs) { rxmap = *((bus_dmamap_t *)sc->rfa_headm->m_ext.ext_buf); bus_dmamap_unload(sc->sc_dmat, rxmap); FXP_RXMAP_PUT(sc, rxmap); sc->rfa_headm = m_free(sc->rfa_headm); } } else if (sc->rx_bufs < bufs) { int err, tmp_rx_bufs = sc->rx_bufs; for (i = sc->rx_bufs; i < bufs; i++) { if ((err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) { printf("%s: unable to create rx dma map %d, " "error %d\n", sc->sc_dev.dv_xname, i, err); break; } sc->rx_bufs++; } for (i = tmp_rx_bufs; i < sc->rx_bufs; i++) if (fxp_add_rfabuf(sc, NULL) != 0) break; } fxp_scb_wait(sc); /* * Set current media. */ mii_mediachg(&sc->sc_mii); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; /* * Request a software generated interrupt that will be used to * (re)start the RU processing. If we direct the chip to start * receiving from the start of queue now, instead of letting the * interrupt handler first process all received packets, we run * the risk of having it overwrite mbuf clusters while they are * being processed or after they have been returned to the pool. */ CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI); splx(s); /* * Start stats updater. */ timeout_add(&sc->stats_update_to, hz); } /* * Change media according to request. */ int fxp_mediachange(struct ifnet *ifp) { struct fxp_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_mii; if (mii->mii_instance) { struct mii_softc *miisc; LIST_FOREACH(miisc, &mii->mii_phys, mii_list) mii_phy_reset(miisc); } mii_mediachg(&sc->sc_mii); return (0); } /* * Notify the world which media we're using. */ void fxp_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) { struct fxp_softc *sc = ifp->if_softc; mii_pollstat(&sc->sc_mii); ifmr->ifm_status = sc->sc_mii.mii_media_status; ifmr->ifm_active = sc->sc_mii.mii_media_active; } /* * Add a buffer to the end of the RFA buffer list. * Return 0 if successful, 1 for failure. A failure results in * adding the 'oldm' (if non-NULL) on to the end of the list - * tossing out its old contents and recycling it. * The RFA struct is stuck at the beginning of mbuf cluster and the * data pointer is fixed up to point just past it. */ int fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm) { u_int32_t v; struct mbuf *m; u_int8_t *rfap; bus_dmamap_t rxmap = NULL; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m != NULL) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); if (oldm == NULL) return 1; m = oldm; m->m_data = m->m_ext.ext_buf; } if (oldm == NULL) { rxmap = FXP_RXMAP_GET(sc); *((bus_dmamap_t *)m->m_ext.ext_buf) = rxmap; bus_dmamap_load(sc->sc_dmat, rxmap, m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT); } else if (oldm == m) rxmap = *((bus_dmamap_t *)oldm->m_ext.ext_buf); else { rxmap = *((bus_dmamap_t *)oldm->m_ext.ext_buf); bus_dmamap_unload(sc->sc_dmat, rxmap); bus_dmamap_load(sc->sc_dmat, rxmap, m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT); *mtod(m, bus_dmamap_t *) = rxmap; } } else { if (oldm == NULL) return 1; m = oldm; m->m_data = m->m_ext.ext_buf; rxmap = *mtod(m, bus_dmamap_t *); } /* * Move the data pointer up so that the incoming data packet * will be 32-bit aligned. */ m->m_data += RFA_ALIGNMENT_FUDGE; /* * Get a pointer to the base of the mbuf cluster and move * data start past it. */ rfap = m->m_data; m->m_data += sizeof(struct fxp_rfa); *(u_int16_t *)(rfap + offsetof(struct fxp_rfa, size)) = htole16(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE); /* * Initialize the rest of the RFA. Note that since the RFA * is misaligned, we cannot store values directly. Instead, * we use an optimized, inline copy. */ *(u_int16_t *)(rfap + offsetof(struct fxp_rfa, rfa_status)) = 0; *(u_int16_t *)(rfap + offsetof(struct fxp_rfa, rfa_control)) = htole16(FXP_RFA_CONTROL_EL); *(u_int16_t *)(rfap + offsetof(struct fxp_rfa, actual_size)) = 0; v = -1; fxp_lwcopy(&v, (u_int32_t *)(rfap + offsetof(struct fxp_rfa, link_addr))); fxp_lwcopy(&v, (u_int32_t *)(rfap + offsetof(struct fxp_rfa, rbd_addr))); bus_dmamap_sync(sc->sc_dmat, rxmap, 0, MCLBYTES, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* * If there are other buffers already on the list, attach this * one to the end by fixing up the tail to point to this one. */ if (sc->rfa_headm != NULL) { sc->rfa_tailm->m_next = m; v = htole32(rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE); rfap = sc->rfa_tailm->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE; fxp_lwcopy(&v, (u_int32_t *)(rfap + offsetof(struct fxp_rfa, link_addr))); *(u_int16_t *)(rfap + offsetof(struct fxp_rfa, rfa_control)) &= htole16((u_int16_t)~FXP_RFA_CONTROL_EL); /* XXX we only need to sync the control struct */ bus_dmamap_sync(sc->sc_dmat, *((bus_dmamap_t *)sc->rfa_tailm->m_ext.ext_buf), 0, MCLBYTES, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } else sc->rfa_headm = m; sc->rfa_tailm = m; return (m == oldm); } int fxp_mdi_read(struct device *self, int phy, int reg) { struct fxp_softc *sc = (struct fxp_softc *)self; int count = 10000; int value; CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21)); while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0 && count--) DELAY(10); if (count <= 0) printf("%s: fxp_mdi_read: timed out\n", sc->sc_dev.dv_xname); return (value & 0xffff); } void fxp_statchg(struct device *self) { /* Nothing to do. */ } void fxp_mdi_write(struct device *self, int phy, int reg, int value) { struct fxp_softc *sc = (struct fxp_softc *)self; int count = 10000; CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) | (value & 0xffff)); while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 && count--) DELAY(10); if (count <= 0) printf("%s: fxp_mdi_write: timed out\n", sc->sc_dev.dv_xname); } int fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct fxp_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; struct ifaddr *ifa = (struct ifaddr *)data; int s, error = 0; s = splnet(); if ((error = ether_ioctl(ifp, &sc->sc_arpcom, command, data)) > 0) { splx(s); return (error); } switch (command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: fxp_init(sc); arp_ifinit(&sc->sc_arpcom, ifa); break; #endif default: fxp_init(sc); break; } break; case SIOCSIFMTU: if (ifr->ifr_mtu > ETHERMTU || ifr->ifr_mtu < ETHERMIN) error = EINVAL; else if (ifp->if_mtu != ifr->ifr_mtu) ifp->if_mtu = ifr->ifr_mtu; break; case SIOCSIFFLAGS: /* * If interface is marked up and not running, then start it. * If it is marked down and running, stop it. * XXX If it's up then re-initialize it. This is so flags * such as IFF_PROMISC are handled. */ if (ifp->if_flags & IFF_UP) fxp_init(sc); else if (ifp->if_flags & IFF_RUNNING) fxp_stop(sc, 1); break; case SIOCADDMULTI: case SIOCDELMULTI: error = (command == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->sc_arpcom) : ether_delmulti(ifr, &sc->sc_arpcom); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware * filter accordingly. */ if (ifp->if_flags & IFF_RUNNING) fxp_init(sc); error = 0; } break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command); break; default: error = EINVAL; } splx(s); return (error); } /* * Program the multicast filter. * * We have an artificial restriction that the multicast setup command * must be the first command in the chain, so we take steps to ensure * this. By requiring this, it allows us to keep up the performance of * the pre-initialized command ring (esp. link pointers) by not actually * inserting the mcsetup command in the ring - i.e. its link pointer * points to the TxCB ring, but the mcsetup descriptor itself is not part * of it. We then can do 'CU_START' on the mcsetup descriptor and have it * lead into the regular TxCB ring when it completes. * * This function must be called at splnet. */ void fxp_mc_setup(struct fxp_softc *sc, int doit) { struct fxp_cb_mcs *mcsp = &sc->sc_ctrl->u.mcs; struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct ether_multistep step; struct ether_multi *enm; int nmcasts; /* * Initialize multicast setup descriptor. */ mcsp->cb_status = htole16(0); mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL); mcsp->link_addr = htole32(-1); nmcasts = 0; if (!(ifp->if_flags & IFF_ALLMULTI)) { ETHER_FIRST_MULTI(step, &sc->sc_arpcom, enm); while (enm != NULL) { if (nmcasts >= MAXMCADDR) { ifp->if_flags |= IFF_ALLMULTI; nmcasts = 0; break; } /* Punt on ranges. */ if (bcmp(enm->enm_addrlo, enm->enm_addrhi, sizeof(enm->enm_addrlo)) != 0) { ifp->if_flags |= IFF_ALLMULTI; nmcasts = 0; break; } bcopy(enm->enm_addrlo, (void *)&mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN); nmcasts++; ETHER_NEXT_MULTI(step, enm); } } if (doit == 0) return; mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN); /* * Wait until command unit is not active. This should never * be the case when nothing is queued, but make sure anyway. */ while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) != FXP_SCB_CUS_IDLE); /* * Start the multicast setup command. */ fxp_scb_wait(sc); FXP_MCS_SYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->tx_cb_map->dm_segs->ds_addr + offsetof(struct fxp_ctrl, u.mcs)); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); do { DELAY(1); FXP_MCS_SYNC(sc, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); } while (!(mcsp->cb_status & htole16(FXP_CB_STATUS_C))); } #ifndef SMALL_KERNEL #include struct ucode { u_int16_t revision; u_int16_t int_delay_offset; u_int16_t bundle_max_offset; u_int16_t min_size_mask_offset; const char *uname; } const ucode_table[] = { { FXP_REV_82558_A4, D101_CPUSAVER_DWORD, 0, 0, "fxp-d101a" }, { FXP_REV_82558_B0, D101_CPUSAVER_DWORD, 0, 0, "fxp-d101b0" }, { FXP_REV_82559_A0, D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD, D101M_CPUSAVER_MIN_SIZE_DWORD, "fxp-d101ma" }, { FXP_REV_82559S_A, D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD, D101S_CPUSAVER_MIN_SIZE_DWORD, "fxp-d101s" }, { FXP_REV_82550, D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD, D102_B_CPUSAVER_MIN_SIZE_DWORD, "fxp-d102" }, { FXP_REV_82550_C, D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD, D102_C_CPUSAVER_MIN_SIZE_DWORD, "fxp-d102c" }, { FXP_REV_82551_F, D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD, D102_E_CPUSAVER_MIN_SIZE_DWORD, "fxp-d102e" }, { FXP_REV_82551_10, D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD, D102_E_CPUSAVER_MIN_SIZE_DWORD, "fxp-d102e" }, { 0, 0, 0, 0, NULL } }; void fxp_load_ucode(struct fxp_softc *sc) { const struct ucode *uc; struct fxp_cb_ucode *cbp = &sc->sc_ctrl->u.code; int i, error; u_int32_t *ucode_buf; size_t ucode_len; if (sc->sc_flags & FXPF_UCODE) return; for (uc = ucode_table; uc->revision != 0; uc++) if (sc->sc_revision == uc->revision) break; if (uc->revision == NULL) return; /* no ucode for this chip is found */ error = loadfirmware(uc->uname, (u_char **)&ucode_buf, &ucode_len); if (error) { printf("%s: failed loadfirmware of file %s: errno %d\n", sc->sc_dev.dv_xname, uc->uname, error); sc->sc_flags |= FXPF_UCODE; return; } cbp->cb_status = 0; cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE|FXP_CB_COMMAND_EL); cbp->link_addr = 0xffffffff; /* (no) next command */ for (i = 0; i < (ucode_len / sizeof(u_int32_t)); i++) cbp->ucode[i] = ucode_buf[i]; if (uc->int_delay_offset) *((u_int16_t *)&cbp->ucode[uc->int_delay_offset]) = htole16(sc->sc_int_delay + sc->sc_int_delay / 2); if (uc->bundle_max_offset) *((u_int16_t *)&cbp->ucode[uc->bundle_max_offset]) = htole16(sc->sc_bundle_max); if (uc->min_size_mask_offset) *((u_int16_t *)&cbp->ucode[uc->min_size_mask_offset]) = htole16(sc->sc_min_size_mask); FXP_UCODE_SYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); /* * Download the ucode to the chip. */ fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->tx_cb_map->dm_segs->ds_addr + offsetof(struct fxp_ctrl, u.code)); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); /* ...and wait for it to complete. */ i = 10000; do { DELAY(2); FXP_UCODE_SYNC(sc, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); } while (((cbp->cb_status & htole16(FXP_CB_STATUS_C)) == 0) && --i); if (i == 0) { printf("%s: timeout loading microcode\n", sc->sc_dev.dv_xname); free(ucode_buf, M_DEVBUF); return; } #ifdef DEBUG printf("%s: microcode loaded, int_delay: %d usec", sc->sc_dev.dv_xname, sc->sc_int_delay); if (uc->bundle_max_offset) printf(", bundle_max %d\n", sc->sc_bundle_max); else printf("\n"); #endif free(ucode_buf, M_DEVBUF); sc->sc_flags |= FXPF_UCODE; } #endif /* SMALL_KERNEL */