/* $OpenBSD: gem.c,v 1.57 2006/03/25 22:41:43 djm Exp $ */ /* $NetBSD: gem.c,v 1.1 2001/09/16 00:11:43 eeh Exp $ */ /* * * Copyright (C) 2001 Eduardo Horvath. * All rights reserved. * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ /* * Driver for Sun GEM ethernet controllers. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #endif #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #define TRIES 10000 struct cfdriver gem_cd = { NULL, "gem", DV_IFNET }; void gem_start(struct ifnet *); void gem_stop(struct ifnet *, int); int gem_ioctl(struct ifnet *, u_long, caddr_t); void gem_tick(void *); void gem_watchdog(struct ifnet *); void gem_shutdown(void *); int gem_init(struct ifnet *); void gem_init_regs(struct gem_softc *); int gem_ringsize(int); int gem_meminit(struct gem_softc *); void gem_mifinit(struct gem_softc *); int gem_bitwait(struct gem_softc *, int, u_int32_t, u_int32_t); void gem_reset(struct gem_softc *); int gem_reset_rx(struct gem_softc *); int gem_reset_tx(struct gem_softc *); int gem_disable_rx(struct gem_softc *); int gem_disable_tx(struct gem_softc *); void gem_rxdrain(struct gem_softc *); int gem_add_rxbuf(struct gem_softc *, int idx); void gem_setladrf(struct gem_softc *); int gem_encap(struct gem_softc *, struct mbuf *, u_int32_t *); /* MII methods & callbacks */ int gem_mii_readreg(struct device *, int, int); void gem_mii_writereg(struct device *, int, int, int); void gem_mii_statchg(struct device *); int gem_mediachange(struct ifnet *); void gem_mediastatus(struct ifnet *, struct ifmediareq *); struct mbuf *gem_get(struct gem_softc *, int, int); int gem_eint(struct gem_softc *, u_int); int gem_rint(struct gem_softc *); int gem_tint(struct gem_softc *, u_int32_t); #ifdef GEM_DEBUG #define DPRINTF(sc, x) if ((sc)->sc_arpcom.ac_if.if_flags & IFF_DEBUG) \ printf x #else #define DPRINTF(sc, x) /* nothing */ #endif /* * gem_config: * * Attach a Gem interface to the system. */ void gem_config(sc) struct gem_softc *sc; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct mii_data *mii = &sc->sc_mii; struct mii_softc *child; int i, error; struct ifmedia_entry *ifm; bcopy(sc->sc_enaddr, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN); /* Make sure the chip is stopped. */ ifp->if_softc = sc; gem_reset(sc); /* * Allocate the control data structures, and create and load the * DMA map for it. */ if ((error = bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct gem_control_data), PAGE_SIZE, 0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) { printf("\n%s: unable to allocate control data, error = %d\n", sc->sc_dev.dv_xname, error); goto fail_0; } /* XXX should map this in with correct endianness */ if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg, sizeof(struct gem_control_data), (caddr_t *)&sc->sc_control_data, BUS_DMA_COHERENT)) != 0) { printf("\n%s: unable to map control data, error = %d\n", sc->sc_dev.dv_xname, error); goto fail_1; } if ((error = bus_dmamap_create(sc->sc_dmatag, sizeof(struct gem_control_data), 1, sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) { printf("\n%s: unable to create control data DMA map, " "error = %d\n", sc->sc_dev.dv_xname, error); goto fail_2; } if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap, sc->sc_control_data, sizeof(struct gem_control_data), NULL, 0)) != 0) { printf("\n%s: unable to load control data DMA map, error = %d\n", sc->sc_dev.dv_xname, error); goto fail_3; } /* * Create the receive buffer DMA maps. */ for (i = 0; i < GEM_NRXDESC; i++) { if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { printf("\n%s: unable to create rx DMA map %d, " "error = %d\n", sc->sc_dev.dv_xname, i, error); goto fail_5; } sc->sc_rxsoft[i].rxs_mbuf = NULL; } /* * Create the transmit buffer DMA maps. */ for (i = 0; i < GEM_NTXDESC; i++) { if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, GEM_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->sc_txd[i].sd_map)) != 0) { printf("\n%s: unable to create tx DMA map %d, " "error = %d\n", sc->sc_dev.dv_xname, i, error); goto fail_6; } sc->sc_txd[i].sd_mbuf = NULL; } /* * From this point forward, the attachment cannot fail. A failure * before this point releases all resources that may have been * allocated. */ /* Announce ourselves. */ printf(", address %s\n", ether_sprintf(sc->sc_enaddr)); /* Get RX FIFO size */ sc->sc_rxfifosize = 64 * bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_FIFO_SIZE); /* Initialize ifnet structure. */ strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, sizeof ifp->if_xname); ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST; ifp->if_start = gem_start; ifp->if_ioctl = gem_ioctl; ifp->if_watchdog = gem_watchdog; IFQ_SET_MAXLEN(&ifp->if_snd, GEM_NTXDESC - 1); IFQ_SET_READY(&ifp->if_snd); ifp->if_capabilities = IFCAP_VLAN_MTU; /* Initialize ifmedia structures and MII info */ mii->mii_ifp = ifp; mii->mii_readreg = gem_mii_readreg; mii->mii_writereg = gem_mii_writereg; mii->mii_statchg = gem_mii_statchg; ifmedia_init(&mii->mii_media, 0, gem_mediachange, gem_mediastatus); gem_mifinit(sc); if (sc->sc_tcvr == -1) mii_attach(&sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); else mii_attach(&sc->sc_dev, mii, 0xffffffff, sc->sc_tcvr, MII_OFFSET_ANY, 0); child = LIST_FIRST(&mii->mii_phys); if (child == NULL) { /* No PHY attached */ ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL); } else { /* * Walk along the list of attached MII devices and * establish an `MII instance' to `phy number' * mapping. We'll use this mapping in media change * requests to determine which phy to use to program * the MIF configuration register. */ for (; child != NULL; child = LIST_NEXT(child, mii_list)) { /* * Note: we support just two PHYs: the built-in * internal device and an external on the MII * connector. */ if (child->mii_phy > 1 || child->mii_inst > 1) { printf("%s: cannot accommodate MII device %s" " at phy %d, instance %d\n", sc->sc_dev.dv_xname, child->mii_dev.dv_xname, child->mii_phy, child->mii_inst); continue; } sc->sc_phys[child->mii_inst] = child->mii_phy; } /* * Now select and activate the PHY we will use. * * The order of preference is External (MDI1), * Internal (MDI0), Serial Link (no MII). */ if (sc->sc_phys[1]) { #ifdef GEM_DEBUG printf("using external phy\n"); #endif sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL; } else { #ifdef GEM_DEBUG printf("using internal phy\n"); #endif sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL; } bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG, sc->sc_mif_config); /* * XXX - we can really do the following ONLY if the * phy indeed has the auto negotiation capability!! */ ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO); } /* * If we support GigE media, we support jumbo frames too. * Unless we are Apple. */ TAILQ_FOREACH(ifm, &sc->sc_media.ifm_list, ifm_list) { if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T || IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX || IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX || IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) { sc->sc_flags |= GEM_GIGABIT; break; } } /* Attach the interface. */ if_attach(ifp); ether_ifattach(ifp); sc->sc_sh = shutdownhook_establish(gem_shutdown, sc); if (sc->sc_sh == NULL) panic("gem_config: can't establish shutdownhook"); timeout_set(&sc->sc_tick_ch, gem_tick, sc); return; /* * Free any resources we've allocated during the failed attach * attempt. Do this in reverse order and fall through. */ fail_6: for (i = 0; i < GEM_NTXDESC; i++) { if (sc->sc_txd[i].sd_map != NULL) bus_dmamap_destroy(sc->sc_dmatag, sc->sc_txd[i].sd_map); } fail_5: for (i = 0; i < GEM_NRXDESC; i++) { if (sc->sc_rxsoft[i].rxs_dmamap != NULL) bus_dmamap_destroy(sc->sc_dmatag, sc->sc_rxsoft[i].rxs_dmamap); } bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap); fail_3: bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap); fail_2: bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data, sizeof(struct gem_control_data)); fail_1: bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg); fail_0: return; } void gem_tick(arg) void *arg; { struct gem_softc *sc = arg; struct ifnet *ifp = &sc->sc_arpcom.ac_if; bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t mac = sc->sc_h; int s; /* unload collisions counters */ ifp->if_collisions += bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) + bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) + bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) + bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT); /* clear the hardware counters */ bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0); bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0); bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0); bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0); s = splnet(); mii_tick(&sc->sc_mii); splx(s); timeout_add(&sc->sc_tick_ch, hz); } int gem_bitwait(sc, r, clr, set) struct gem_softc *sc; int r; u_int32_t clr; u_int32_t set; { int i; u_int32_t reg; for (i = TRIES; i--; DELAY(100)) { reg = bus_space_read_4(sc->sc_bustag, sc->sc_h, r); if ((r & clr) == 0 && (r & set) == set) return (1); } return (0); } void gem_reset(sc) struct gem_softc *sc; { bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h; int s; s = splnet(); DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname)); gem_reset_rx(sc); gem_reset_tx(sc); /* Do a full reset */ bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX); if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0)) printf("%s: cannot reset device\n", sc->sc_dev.dv_xname); splx(s); } /* * gem_rxdrain: * * Drain the receive queue. */ void gem_rxdrain(struct gem_softc *sc) { struct gem_rxsoft *rxs; int i; for (i = 0; i < GEM_NRXDESC; i++) { rxs = &sc->sc_rxsoft[i]; if (rxs->rxs_mbuf != NULL) { bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap); m_freem(rxs->rxs_mbuf); rxs->rxs_mbuf = NULL; } } } /* * Reset the whole thing. */ void gem_stop(struct ifnet *ifp, int disable) { struct gem_softc *sc = (struct gem_softc *)ifp->if_softc; struct gem_sxd *sd; u_int32_t i; DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname)); timeout_del(&sc->sc_tick_ch); /* * Mark the interface down and cancel the watchdog timer. */ ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ifp->if_timer = 0; mii_down(&sc->sc_mii); gem_reset_rx(sc); gem_reset_tx(sc); /* * Release any queued transmit buffers. */ for (i = 0; i < GEM_NTXDESC; i++) { sd = &sc->sc_txd[i]; if (sd->sd_mbuf != NULL) { bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0, sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmatag, sd->sd_map); m_freem(sd->sd_mbuf); sd->sd_mbuf = NULL; } } sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0; if (disable) gem_rxdrain(sc); } /* * Reset the receiver */ int gem_reset_rx(struct gem_softc *sc) { bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h; /* * Resetting while DMA is in progress can cause a bus hang, so we * disable DMA first. */ gem_disable_rx(sc); bus_space_write_4(t, h, GEM_RX_CONFIG, 0); /* Wait till it finishes */ if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_TX, 0)) printf("%s: cannot disable rx dma\n", sc->sc_dev.dv_xname); /* Wait 5ms extra. */ delay(5000); /* Finally, reset the ERX */ bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX); /* Wait till it finishes */ if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_TX, 0)) { printf("%s: cannot reset receiver\n", sc->sc_dev.dv_xname); return (1); } return (0); } /* * Reset the transmitter */ int gem_reset_tx(struct gem_softc *sc) { bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h; /* * Resetting while DMA is in progress can cause a bus hang, so we * disable DMA first. */ gem_disable_tx(sc); bus_space_write_4(t, h, GEM_TX_CONFIG, 0); /* Wait till it finishes */ if (!gem_bitwait(sc, GEM_TX_CONFIG, 1, 0)) printf("%s: cannot disable tx dma\n", sc->sc_dev.dv_xname); /* Wait 5ms extra. */ delay(5000); /* Finally, reset the ETX */ bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX); /* Wait till it finishes */ if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_TX, 0)) { printf("%s: cannot reset transmitter\n", sc->sc_dev.dv_xname); return (1); } return (0); } /* * disable receiver. */ int gem_disable_rx(struct gem_softc *sc) { bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h; u_int32_t cfg; /* Flip the enable bit */ cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG); cfg &= ~GEM_MAC_RX_ENABLE; bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg); /* Wait for it to finish */ return (gem_bitwait(sc, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0)); } /* * disable transmitter. */ int gem_disable_tx(struct gem_softc *sc) { bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h; u_int32_t cfg; /* Flip the enable bit */ cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG); cfg &= ~GEM_MAC_TX_ENABLE; bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg); /* Wait for it to finish */ return (gem_bitwait(sc, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0)); } /* * Initialize interface. */ int gem_meminit(struct gem_softc *sc) { struct gem_rxsoft *rxs; int i, error; /* * Initialize the transmit descriptor ring. */ for (i = 0; i < GEM_NTXDESC; i++) { sc->sc_txdescs[i].gd_flags = 0; sc->sc_txdescs[i].gd_addr = 0; } GEM_CDTXSYNC(sc, 0, GEM_NTXDESC, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); /* * Initialize the receive descriptor and receive job * descriptor rings. */ for (i = 0; i < GEM_NRXDESC; i++) { rxs = &sc->sc_rxsoft[i]; if (rxs->rxs_mbuf == NULL) { if ((error = gem_add_rxbuf(sc, i)) != 0) { printf("%s: unable to allocate or map rx " "buffer %d, error = %d\n", sc->sc_dev.dv_xname, i, error); /* * XXX Should attempt to run with fewer receive * XXX buffers instead of just failing. */ gem_rxdrain(sc); return (1); } } else GEM_INIT_RXDESC(sc, i); } sc->sc_rxptr = 0; return (0); } int gem_ringsize(int sz) { switch (sz) { case 32: return GEM_RING_SZ_32; case 64: return GEM_RING_SZ_64; case 128: return GEM_RING_SZ_128; case 256: return GEM_RING_SZ_256; case 512: return GEM_RING_SZ_512; case 1024: return GEM_RING_SZ_1024; case 2048: return GEM_RING_SZ_2048; case 4096: return GEM_RING_SZ_4096; case 8192: return GEM_RING_SZ_8192; default: printf("gem: invalid Receive Descriptor ring size %d\n", sz); return GEM_RING_SZ_32; } } /* * Initialization of interface; set up initialization block * and transmit/receive descriptor rings. */ int gem_init(struct ifnet *ifp) { struct gem_softc *sc = (struct gem_softc *)ifp->if_softc; bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h; int s; u_int max_frame_size; u_int32_t v; s = splnet(); if (ifp->if_flags & IFF_RUNNING) { splx(s); return (0); } DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname)); /* * Initialization sequence. The numbered steps below correspond * to the sequence outlined in section 6.3.5.1 in the Ethernet * Channel Engine manual (part of the PCIO manual). * See also the STP2002-STQ document from Sun Microsystems. */ /* step 1 & 2. Reset the Ethernet Channel */ gem_stop(ifp, 0); gem_reset(sc); DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname)); /* Re-initialize the MIF */ gem_mifinit(sc); /* Call MI reset function if any */ if (sc->sc_hwreset) (*sc->sc_hwreset)(sc); /* step 3. Setup data structures in host memory */ gem_meminit(sc); /* step 4. TX MAC registers & counters */ bcopy(sc->sc_arpcom.ac_enaddr, sc->sc_enaddr, ETHER_ADDR_LEN); gem_init_regs(sc); max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN; v = (max_frame_size) | (0x2000 << 16) /* Burst size */; bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME, v); /* step 5. RX MAC registers & counters */ gem_setladrf(sc); /* step 6 & 7. Program Descriptor Ring Base Addresses */ bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, (((uint64_t)GEM_CDTXADDR(sc,0)) >> 32)); bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0)); bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, (((uint64_t)GEM_CDRXADDR(sc,0)) >> 32)); bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0)); /* step 8. Global Configuration & Interrupt Mask */ bus_space_write_4(t, h, GEM_INTMASK, ~(GEM_INTR_TX_INTME| GEM_INTR_TX_EMPTY| GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF| GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS| GEM_INTR_MAC_CONTROL|GEM_INTR_MIF| GEM_INTR_BERR)); bus_space_write_4(t, h, GEM_MAC_RX_MASK, GEM_MAC_RX_DONE|GEM_MAC_RX_FRAME_CNT); bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */ bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */ /* step 9. ETX Configuration: use mostly default values */ /* Enable DMA */ v = gem_ringsize(GEM_NTXDESC /*XXX*/); bus_space_write_4(t, h, GEM_TX_CONFIG, v|GEM_TX_CONFIG_TXDMA_EN| ((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH)); bus_space_write_4(t, h, GEM_TX_KICK, 0); /* step 10. ERX Configuration */ /* Encode Receive Descriptor ring size: four possible values */ v = gem_ringsize(GEM_NRXDESC /*XXX*/); /* Enable DMA */ bus_space_write_4(t, h, GEM_RX_CONFIG, v|(GEM_THRSH_1024<sc_rxfifosize / 256) | ( (sc->sc_rxfifosize / 256) << 12)); bus_space_write_4(t, h, GEM_RX_BLANKING, (6<<12)|6); /* step 11. Configure Media */ mii_mediachg(&sc->sc_mii); /* step 12. RX_MAC Configuration Register */ v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG); v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC; bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v); /* step 14. Issue Transmit Pending command */ /* Call MI initialization function if any */ if (sc->sc_hwinit) (*sc->sc_hwinit)(sc); /* step 15. Give the receiver a swift kick */ bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4); /* Start the one second timer. */ timeout_add(&sc->sc_tick_ch, hz); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; ifp->if_timer = 0; splx(s); return (0); } void gem_init_regs(struct gem_softc *sc) { bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h; u_int32_t v; /* These regs are not cleared on reset */ sc->sc_inited = 0; if (!sc->sc_inited) { /* Wooo. Magic values. */ bus_space_write_4(t, h, GEM_MAC_IPG0, 0); bus_space_write_4(t, h, GEM_MAC_IPG1, 8); bus_space_write_4(t, h, GEM_MAC_IPG2, 4); bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN); /* Max frame and max burst size */ v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */; bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME, v); bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7); bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4); bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10); /* Dunno.... */ bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088); bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED, ((sc->sc_enaddr[5]<<8)|sc->sc_enaddr[4])&0x3ff); /* Secondary MAC addr set to 0:0:0:0:0:0 */ bus_space_write_4(t, h, GEM_MAC_ADDR3, 0); bus_space_write_4(t, h, GEM_MAC_ADDR4, 0); bus_space_write_4(t, h, GEM_MAC_ADDR5, 0); /* MAC control addr set to 0:1:c2:0:1:80 */ bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001); bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200); bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180); /* MAC filter addr set to 0:0:0:0:0:0 */ bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0); bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0); bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0); bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0); bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0); sc->sc_inited = 1; } /* Counters need to be zeroed */ bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0); bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0); bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0); bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0); bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0); bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0); bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0); bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0); bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0); bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0); bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0); /* Un-pause stuff */ bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0); /* * Set the station address. */ bus_space_write_4(t, h, GEM_MAC_ADDR0, (sc->sc_enaddr[4]<<8) | sc->sc_enaddr[5]); bus_space_write_4(t, h, GEM_MAC_ADDR1, (sc->sc_enaddr[2]<<8) | sc->sc_enaddr[3]); bus_space_write_4(t, h, GEM_MAC_ADDR2, (sc->sc_enaddr[0]<<8) | sc->sc_enaddr[1]); /* * Enable MII outputs. Enable GMII if there is a gigabit PHY. */ sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG); v = GEM_MAC_XIF_TX_MII_ENA; if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) { v |= GEM_MAC_XIF_FDPLX_LED; if (sc->sc_flags & GEM_GIGABIT) v |= GEM_MAC_XIF_GMII_MODE; } bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v); } /* * Receive interrupt. */ int gem_rint(sc) struct gem_softc *sc; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h; struct ether_header *eh; struct gem_rxsoft *rxs; struct mbuf *m; u_int64_t rxstat; int i, len; for (i = sc->sc_rxptr;; i = GEM_NEXTRX(i)) { rxs = &sc->sc_rxsoft[i]; GEM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags); if (rxstat & GEM_RD_OWN) { /* * We have processed all of the receive buffers. */ break; } if (rxstat & GEM_RD_BAD_CRC) { printf("%s: receive error: CRC error\n", sc->sc_dev.dv_xname); GEM_INIT_RXDESC(sc, i); continue; } bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); #ifdef GEM_DEBUG if (ifp->if_flags & IFF_DEBUG) { printf(" rxsoft %p descriptor %d: ", rxs, i); printf("gd_flags: 0x%016llx\t", (long long) GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags)); printf("gd_addr: 0x%016llx\n", (long long) GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr)); } #endif /* No errors; receive the packet. */ len = GEM_RD_BUFLEN(rxstat); /* * Allocate a new mbuf cluster. If that fails, we are * out of memory, and must drop the packet and recycle * the buffer that's already attached to this descriptor. */ m = rxs->rxs_mbuf; if (gem_add_rxbuf(sc, i) != 0) { ifp->if_ierrors++; GEM_INIT_RXDESC(sc, i); bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); continue; } m->m_data += 2; /* We're already off by two */ ifp->if_ipackets++; eh = mtod(m, struct ether_header *); m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = len; #if NBPFILTER > 0 /* * Pass this up to any BPF listeners, but only * pass it up the stack if its for us. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_IN); #endif /* NPBFILTER > 0 */ /* Pass it on. */ ether_input_mbuf(ifp, m); } /* Update the receive pointer. */ sc->sc_rxptr = i; bus_space_write_4(t, h, GEM_RX_KICK, i); DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n", sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION))); return (1); } /* * gem_add_rxbuf: * * Add a receive buffer to the indicated descriptor. */ int gem_add_rxbuf(struct gem_softc *sc, int idx) { struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx]; struct mbuf *m; int error; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return (ENOBUFS); MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); return (ENOBUFS); } #ifdef GEM_DEBUG /* bzero the packet to check dma */ memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size); #endif if (rxs->rxs_mbuf != NULL) bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap); rxs->rxs_mbuf = m; error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap, m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_READ|BUS_DMA_NOWAIT); if (error) { printf("%s: can't load rx DMA map %d, error = %d\n", sc->sc_dev.dv_xname, idx, error); panic("gem_add_rxbuf"); /* XXX */ } bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); GEM_INIT_RXDESC(sc, idx); return (0); } int gem_eint(sc, status) struct gem_softc *sc; u_int status; { if ((status & GEM_INTR_MIF) != 0) { printf("%s: link status changed\n", sc->sc_dev.dv_xname); return (1); } printf("%s: status=%b\n", sc->sc_dev.dv_xname, status, GEM_INTR_BITS); return (1); } int gem_intr(v) void *v; { struct gem_softc *sc = (struct gem_softc *)v; struct ifnet *ifp = &sc->sc_arpcom.ac_if; bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t seb = sc->sc_h; u_int32_t status; int r = 0; status = bus_space_read_4(t, seb, GEM_STATUS); DPRINTF(sc, ("%s: gem_intr: cplt %xstatus %b\n", sc->sc_dev.dv_xname, (status>>19), status, GEM_INTR_BITS)); if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0) r |= gem_eint(sc, status); if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) r |= gem_tint(sc, status); if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) r |= gem_rint(sc); /* We should eventually do more than just print out error stats. */ if (status & GEM_INTR_TX_MAC) { int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS); #ifdef GEM_DEBUG if (txstat & ~GEM_MAC_TX_XMIT_DONE) printf("%s: MAC tx fault, status %x\n", sc->sc_dev.dv_xname, txstat); #endif if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG)) { ifp->if_flags &= ~IFF_RUNNING; gem_init(ifp); } } if (status & GEM_INTR_RX_MAC) { int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS); #ifdef GEM_DEBUG if (rxstat & ~GEM_MAC_RX_DONE) printf("%s: MAC rx fault, status %x\n", sc->sc_dev.dv_xname, rxstat); #endif /* * On some chip revisions GEM_MAC_RX_OVERFLOW happen often * due to a silicon bug so handle them silently. */ if (rxstat & GEM_MAC_RX_OVERFLOW) { ifp->if_ierrors++; ifp->if_flags &= ~IFF_RUNNING; gem_init(ifp); } #ifdef GEM_DEBUG else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT)) printf("%s: MAC rx fault, status %x\n", sc->sc_dev.dv_xname, rxstat); #endif } return (r); } void gem_watchdog(ifp) struct ifnet *ifp; { struct gem_softc *sc = ifp->if_softc; DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x " "GEM_MAC_RX_CONFIG %x\n", bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG), bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS), bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG))); log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname); ++ifp->if_oerrors; /* Try to get more packets going. */ ifp->if_flags &= ~IFF_RUNNING; gem_init(ifp); } /* * Initialize the MII Management Interface */ void gem_mifinit(sc) struct gem_softc *sc; { bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t mif = sc->sc_h; if (GEM_IS_APPLE(sc)) { if (sc->sc_variant == GEM_APPLE_K2_GMAC) sc->sc_tcvr = 1; else sc->sc_tcvr = 0; } else { sc->sc_tcvr = -1; } /* Configure the MIF in frame mode */ sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG); sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA; bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config); } /* * MII interface * * The GEM MII interface supports at least three different operating modes: * * Bitbang mode is implemented using data, clock and output enable registers. * * Frame mode is implemented by loading a complete frame into the frame * register and polling the valid bit for completion. * * Polling mode uses the frame register but completion is indicated by * an interrupt. * */ int gem_mii_readreg(self, phy, reg) struct device *self; int phy, reg; { struct gem_softc *sc = (void *)self; bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t mif = sc->sc_h; int n; u_int32_t v; #ifdef GEM_DEBUG if (sc->sc_debug) printf("gem_mii_readreg: phy %d reg %d\n", phy, reg); #endif /* Construct the frame command */ v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) | GEM_MIF_FRAME_READ; bus_space_write_4(t, mif, GEM_MIF_FRAME, v); for (n = 0; n < 100; n++) { DELAY(1); v = bus_space_read_4(t, mif, GEM_MIF_FRAME); if (v & GEM_MIF_FRAME_TA0) return (v & GEM_MIF_FRAME_DATA); } printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname); return (0); } void gem_mii_writereg(self, phy, reg, val) struct device *self; int phy, reg, val; { struct gem_softc *sc = (void *)self; bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t mif = sc->sc_h; int n; u_int32_t v; #ifdef GEM_DEBUG if (sc->sc_debug) printf("gem_mii_writereg: phy %d reg %d val %x\n", phy, reg, val); #endif #if 0 /* Select the desired PHY in the MIF configuration register */ v = bus_space_read_4(t, mif, GEM_MIF_CONFIG); /* Clear PHY select bit */ v &= ~GEM_MIF_CONFIG_PHY_SEL; if (phy == GEM_PHYAD_EXTERNAL) /* Set PHY select bit to get at external device */ v |= GEM_MIF_CONFIG_PHY_SEL; bus_space_write_4(t, mif, GEM_MIF_CONFIG, v); #endif /* Construct the frame command */ v = GEM_MIF_FRAME_WRITE | (phy << GEM_MIF_PHY_SHIFT) | (reg << GEM_MIF_REG_SHIFT) | (val & GEM_MIF_FRAME_DATA); bus_space_write_4(t, mif, GEM_MIF_FRAME, v); for (n = 0; n < 100; n++) { DELAY(1); v = bus_space_read_4(t, mif, GEM_MIF_FRAME); if (v & GEM_MIF_FRAME_TA0) return; } printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname); } void gem_mii_statchg(dev) struct device *dev; { struct gem_softc *sc = (void *)dev; #ifdef GEM_DEBUG int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media); #endif bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t mac = sc->sc_h; u_int32_t v; #ifdef GEM_DEBUG if (sc->sc_debug) printf("gem_mii_statchg: status change: phy = %d\n", sc->sc_phys[instance]); #endif /* Set tx full duplex options */ bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0); delay(10000); /* reg must be cleared and delay before changing. */ v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT| GEM_MAC_TX_ENABLE; if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) { v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS; } bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v); /* XIF Configuration */ /* We should really calculate all this rather than rely on defaults */ v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG); v = GEM_MAC_XIF_LINK_LED; v |= GEM_MAC_XIF_TX_MII_ENA; /* If an external transceiver is connected, enable its MII drivers */ sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG); if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) { /* External MII needs echo disable if half duplex. */ if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) /* turn on full duplex LED */ v |= GEM_MAC_XIF_FDPLX_LED; else /* half duplex -- disable echo */ v |= GEM_MAC_XIF_ECHO_DISABL; switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) { case IFM_1000_T: /* Gigabit using GMII interface */ v |= GEM_MAC_XIF_GMII_MODE; break; default: v &= ~GEM_MAC_XIF_GMII_MODE; } } else /* Internal MII needs buf enable */ v |= GEM_MAC_XIF_MII_BUF_ENA; bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v); } int gem_mediachange(ifp) struct ifnet *ifp; { struct gem_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_mii; if (mii->mii_instance) { struct mii_softc *miisc; for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL; miisc = LIST_NEXT(miisc, mii_list)) mii_phy_reset(miisc); } return (mii_mediachg(&sc->sc_mii)); } void gem_mediastatus(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct gem_softc *sc = ifp->if_softc; mii_pollstat(&sc->sc_mii); ifmr->ifm_active = sc->sc_mii.mii_media_active; ifmr->ifm_status = sc->sc_mii.mii_media_status; } /* * Process an ioctl request. */ int gem_ioctl(ifp, cmd, data) struct ifnet *ifp; u_long cmd; caddr_t data; { struct gem_softc *sc = ifp->if_softc; struct ifaddr *ifa = (struct ifaddr *)data; struct ifreq *ifr = (struct ifreq *)data; int s, error = 0; s = splnet(); if ((error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data)) > 0) { splx(s); return (error); } switch (cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; gem_init(ifp); switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: arp_ifinit(&sc->sc_arpcom, ifa); break; #endif default: break; } break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if ((ifp->if_flags & IFF_RUNNING) && ((ifp->if_flags ^ sc->sc_if_flags) & (IFF_ALLMULTI | IFF_PROMISC)) != 0) gem_setladrf(sc); else gem_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) gem_stop(ifp, 1); } sc->sc_if_flags = ifp->if_flags; #ifdef GEM_DEBUG sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0; #endif break; case SIOCSIFMTU: if (ifr->ifr_mtu > ETHERMTU || ifr->ifr_mtu < ETHERMIN) { error = EINVAL; } else if (ifp->if_mtu != ifr->ifr_mtu) { ifp->if_mtu = ifr->ifr_mtu; } break; case SIOCADDMULTI: case SIOCDELMULTI: error = (cmd == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->sc_arpcom) : ether_delmulti(ifr, &sc->sc_arpcom); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware filter * accordingly. */ if (ifp->if_flags & IFF_RUNNING) gem_setladrf(sc); error = 0; } break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd); break; default: error = EINVAL; break; } splx(s); return (error); } void gem_shutdown(arg) void *arg; { struct gem_softc *sc = (struct gem_softc *)arg; struct ifnet *ifp = &sc->sc_arpcom.ac_if; gem_stop(ifp, 1); } /* * Set up the logical address filter. */ void gem_setladrf(sc) struct gem_softc *sc; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct ether_multi *enm; struct ether_multistep step; struct arpcom *ac = &sc->sc_arpcom; bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h; u_int32_t crc, hash[16], v; int i; /* Get current RX configuration */ v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG); /* * Turn off promiscuous mode, promiscuous group mode (all multicast), * and hash filter. Depending on the case, the right bit will be * enabled. */ v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER| GEM_MAC_RX_PROMISC_GRP); if ((ifp->if_flags & IFF_PROMISC) != 0) { /* Turn on promiscuous mode */ v |= GEM_MAC_RX_PROMISCUOUS; ifp->if_flags |= IFF_ALLMULTI; goto chipit; } /* * Set up multicast address filter by passing all multicast addresses * through a crc generator, and then using the high order 8 bits as an * index into the 256 bit logical address filter. The high order 4 * bits selects the word, while the other 4 bits select the bit within * the word (where bit 0 is the MSB). */ /* Clear hash table */ for (i = 0; i < 16; i++) hash[i] = 0; ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { /* * We must listen to a range of multicast addresses. * For now, just accept all multicasts, rather than * trying to set only those filter bits needed to match * the range. (At this time, the only use of address * ranges is for IP multicast routing, for which the * range is big enough to require all bits set.) * XXX use the addr filter for this */ ifp->if_flags |= IFF_ALLMULTI; v |= GEM_MAC_RX_PROMISC_GRP; goto chipit; } crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); /* Just want the 8 most significant bits. */ crc >>= 24; /* Set the corresponding bit in the filter. */ hash[crc >> 4] |= 1 << (15 - (crc & 15)); ETHER_NEXT_MULTI(step, enm); } v |= GEM_MAC_RX_HASH_FILTER; ifp->if_flags &= ~IFF_ALLMULTI; /* Now load the hash table into the chip (if we are using it) */ for (i = 0; i < 16; i++) { bus_space_write_4(t, h, GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0), hash[i]); } chipit: bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v); } int gem_encap(sc, mhead, bixp) struct gem_softc *sc; struct mbuf *mhead; u_int32_t *bixp; { u_int64_t flags; u_int32_t cur, frag, i; bus_dmamap_t map; cur = frag = *bixp; map = sc->sc_txd[cur].sd_map; if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead, BUS_DMA_NOWAIT) != 0) { return (ENOBUFS); } if ((sc->sc_tx_cnt + map->dm_nsegs) > (GEM_NTXDESC - 2)) { bus_dmamap_unload(sc->sc_dmatag, map); return (ENOBUFS); } bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize, BUS_DMASYNC_PREWRITE); for (i = 0; i < map->dm_nsegs; i++) { sc->sc_txdescs[frag].gd_addr = GEM_DMA_WRITE(sc, map->dm_segs[i].ds_addr); flags = (map->dm_segs[i].ds_len & GEM_TD_BUFSIZE) | (i == 0 ? GEM_TD_START_OF_PACKET : 0) | ((i == (map->dm_nsegs - 1)) ? GEM_TD_END_OF_PACKET : 0); sc->sc_txdescs[frag].gd_flags = GEM_DMA_WRITE(sc, flags); bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap, GEM_CDTXOFF(frag), sizeof(struct gem_desc), BUS_DMASYNC_PREWRITE); cur = frag; if (++frag == GEM_NTXDESC) frag = 0; } sc->sc_tx_cnt += map->dm_nsegs; sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map; sc->sc_txd[cur].sd_map = map; sc->sc_txd[cur].sd_mbuf = mhead; bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK, frag); *bixp = frag; /* sync descriptors */ return (0); } /* * Transmit interrupt. */ int gem_tint(sc, status) struct gem_softc *sc; u_int32_t status; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct gem_sxd *sd; u_int32_t cons, hwcons; hwcons = status >> 19; cons = sc->sc_tx_cons; while (cons != hwcons) { sd = &sc->sc_txd[cons]; if (sd->sd_mbuf != NULL) { bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0, sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmatag, sd->sd_map); m_freem(sd->sd_mbuf); sd->sd_mbuf = NULL; } sc->sc_tx_cnt--; ifp->if_opackets++; if (++cons == GEM_NTXDESC) cons = 0; } sc->sc_tx_cons = cons; gem_start(ifp); if (sc->sc_tx_cnt == 0) ifp->if_timer = 0; return (1); } void gem_start(ifp) struct ifnet *ifp; { struct gem_softc *sc = ifp->if_softc; struct mbuf *m; u_int32_t bix; if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; bix = sc->sc_tx_prod; while (sc->sc_txd[bix].sd_mbuf == NULL) { IFQ_POLL(&ifp->if_snd, m); if (m == NULL) break; #if NBPFILTER > 0 /* * If BPF is listening on this interface, let it see the * packet before we commit it to the wire. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT); #endif /* * Encapsulate this packet and start it going... * or fail... */ if (gem_encap(sc, m, &bix)) { ifp->if_timer = 2; break; } IFQ_DEQUEUE(&ifp->if_snd, m); ifp->if_timer = 5; } sc->sc_tx_prod = bix; }