/* $OpenBSD: hme.c,v 1.1 2001/08/21 16:16:50 jason Exp $ */ /* $NetBSD: hme.c,v 1.21 2001/07/07 15:59:37 thorpej Exp $ */ /*- * Copyright (c) 1999 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Paul Kranenburg. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * HME Ethernet module driver. */ #include "vlan.h" #define HMEDEBUG #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #ifdef NS #include #include #endif #if NBPFILTER > 0 #include #include #endif #include #include #include #include #include #if NVLAN > 0 #include #endif struct cfdriver hme_cd = { NULL, "hme", DV_IFNET }; void hme_start __P((struct ifnet *)); void hme_stop __P((struct hme_softc *)); int hme_ioctl __P((struct ifnet *, u_long, caddr_t)); void hme_tick __P((void *)); void hme_watchdog __P((struct ifnet *)); void hme_shutdown __P((void *)); void hme_init __P((struct hme_softc *)); void hme_meminit __P((struct hme_softc *)); void hme_mifinit __P((struct hme_softc *)); void hme_reset __P((struct hme_softc *)); void hme_setladrf __P((struct hme_softc *)); /* MII methods & callbacks */ static int hme_mii_readreg __P((struct device *, int, int)); static void hme_mii_writereg __P((struct device *, int, int, int)); static void hme_mii_statchg __P((struct device *)); int hme_mediachange __P((struct ifnet *)); void hme_mediastatus __P((struct ifnet *, struct ifmediareq *)); struct mbuf *hme_get __P((struct hme_softc *, int, int)); int hme_put __P((struct hme_softc *, int, struct mbuf *)); void hme_read __P((struct hme_softc *, int, int)); int hme_eint __P((struct hme_softc *, u_int)); int hme_rint __P((struct hme_softc *)); int hme_tint __P((struct hme_softc *)); static int ether_cmp __P((u_char *, u_char *)); /* Default buffer copy routines */ void hme_copytobuf_contig __P((struct hme_softc *, void *, int, int)); void hme_copyfrombuf_contig __P((struct hme_softc *, void *, int, int)); void hme_zerobuf_contig __P((struct hme_softc *, int, int)); void hme_config(sc) struct hme_softc *sc; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct mii_data *mii = &sc->sc_mii; struct mii_softc *child; bus_dma_tag_t dmatag = sc->sc_dmatag; bus_dma_segment_t seg; bus_size_t size; int rseg, error; /* * HME common initialization. * * hme_softc fields that must be initialized by the front-end: * * the bus tag: * sc_bustag * * the dma bus tag: * sc_dmatag * * the bus handles: * sc_seb (Shared Ethernet Block registers) * sc_erx (Receiver Unit registers) * sc_etx (Transmitter Unit registers) * sc_mac (MAC registers) * sc_mif (Managment Interface registers) * * the maximum bus burst size: * sc_burst * * (notyet:DMA capable memory for the ring descriptors & packet buffers: * rb_membase, rb_dmabase) * * the local Ethernet address: * sc_enaddr * */ /* Make sure the chip is stopped. */ hme_stop(sc); /* * Allocate descriptors and buffers * XXX - do all this differently.. and more configurably, * eg. use things as `dma_load_mbuf()' on transmit, * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped * all the time) on the reveiver side. * * Note: receive buffers must be 64-byte aligned. * Also, apparently, the buffers must extend to a DMA burst * boundary beyond the maximum packet size. */ #define _HME_NDESC 32 #define _HME_BUFSZ 1600 /* Note: the # of descriptors must be a multiple of 16 */ sc->sc_rb.rb_ntbuf = _HME_NDESC; sc->sc_rb.rb_nrbuf = _HME_NDESC; /* * Allocate DMA capable memory * Buffer descriptors must be aligned on a 2048 byte boundary; * take this into account when calculating the size. Note that * the maximum number of descriptors (256) occupies 2048 bytes, * so we allocate that much regardless of _HME_NDESC. */ size = 2048 + /* TX descriptors */ 2048 + /* RX descriptors */ sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */ sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* TX buffers */ /* Allocate DMA buffer */ if ((error = bus_dmamem_alloc(dmatag, size, 2048, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) { printf("%s: DMA buffer alloc error %d\n", sc->sc_dev.dv_xname, error); return; } /* Map DMA memory in CPU addressable space */ if ((error = bus_dmamem_map(dmatag, &seg, rseg, size, &sc->sc_rb.rb_membase, BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) { printf("%s: DMA buffer map error %d\n", sc->sc_dev.dv_xname, error); bus_dmamap_unload(dmatag, sc->sc_dmamap); bus_dmamem_free(dmatag, &seg, rseg); return; } if ((error = bus_dmamap_create(dmatag, size, 1, size, 0, BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) { printf("%s: DMA map create error %d\n", sc->sc_dev.dv_xname, error); return; } /* Load the buffer */ if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap, sc->sc_rb.rb_membase, size, NULL, BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) { printf("%s: DMA buffer map load error %d\n", sc->sc_dev.dv_xname, error); bus_dmamem_free(dmatag, &seg, rseg); return; } sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr; printf(": address %s\n", ether_sprintf(sc->sc_enaddr)); /* Initialize ifnet structure. */ strcpy(ifp->if_xname, sc->sc_dev.dv_xname); ifp->if_softc = sc; ifp->if_start = hme_start; ifp->if_ioctl = hme_ioctl; ifp->if_watchdog = hme_watchdog; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST; IFQ_SET_READY(&ifp->if_snd); /* Initialize ifmedia structures and MII info */ mii->mii_ifp = ifp; mii->mii_readreg = hme_mii_readreg; mii->mii_writereg = hme_mii_writereg; mii->mii_statchg = hme_mii_statchg; ifmedia_init(&mii->mii_media, 0, hme_mediachange, hme_mediastatus); hme_mifinit(sc); mii_attach(&sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); child = LIST_FIRST(&mii->mii_phys); if (child == NULL) { /* No PHY attached */ ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL); } else { /* * Walk along the list of attached MII devices and * establish an `MII instance' to `phy number' * mapping. We'll use this mapping in media change * requests to determine which phy to use to program * the MIF configuration register. */ for (; child != NULL; child = LIST_NEXT(child, mii_list)) { /* * Note: we support just two PHYs: the built-in * internal device and an external on the MII * connector. */ if (child->mii_phy > 1 || child->mii_inst > 1) { printf("%s: cannot accomodate MII device %s" " at phy %d, instance %d\n", sc->sc_dev.dv_xname, child->mii_dev.dv_xname, child->mii_phy, child->mii_inst); continue; } sc->sc_phys[child->mii_inst] = child->mii_phy; } /* * XXX - we can really do the following ONLY if the * phy indeed has the auto negotiation capability!! */ ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO); } /* Attach the interface. */ if_attach(ifp); ether_ifattach(ifp); sc->sc_sh = shutdownhook_establish(hme_shutdown, sc); if (sc->sc_sh == NULL) panic("hme_config: can't establish shutdownhook"); #if 0 printf("%s: %d receive buffers, %d transmit buffers\n", sc->sc_dev.dv_xname, sc->sc_nrbuf, sc->sc_ntbuf); sc->sc_rbufaddr = malloc(sc->sc_nrbuf * sizeof(int), M_DEVBUF, M_WAITOK); sc->sc_tbufaddr = malloc(sc->sc_ntbuf * sizeof(int), M_DEVBUF, M_WAITOK); #endif timeout_set(&sc->sc_tick_ch, hme_tick, sc); } void hme_tick(arg) void *arg; { struct hme_softc *sc = arg; int s; s = splnet(); mii_tick(&sc->sc_mii); splx(s); timeout_add(&sc->sc_tick_ch, hz); } void hme_reset(sc) struct hme_softc *sc; { int s; s = splnet(); hme_init(sc); splx(s); } void hme_stop(sc) struct hme_softc *sc; { bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t seb = sc->sc_seb; int n; timeout_del(&sc->sc_tick_ch); mii_down(&sc->sc_mii); /* Reset transmitter and receiver */ bus_space_write_4(t, seb, HME_SEBI_RESET, (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)); for (n = 0; n < 20; n++) { u_int32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET); if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0) return; DELAY(20); } printf("%s: hme_stop: reset failed\n", sc->sc_dev.dv_xname); } void hme_meminit(sc) struct hme_softc *sc; { bus_addr_t txbufdma, rxbufdma; bus_addr_t dma; caddr_t p; unsigned int ntbuf, nrbuf, i; struct hme_ring *hr = &sc->sc_rb; p = hr->rb_membase; dma = hr->rb_dmabase; ntbuf = hr->rb_ntbuf; nrbuf = hr->rb_nrbuf; /* * Allocate transmit descriptors */ hr->rb_txd = p; hr->rb_txddma = dma; p += ntbuf * HME_XD_SIZE; dma += ntbuf * HME_XD_SIZE; /* We have reserved descriptor space until the next 2048 byte boundary.*/ dma = (bus_addr_t)roundup((u_long)dma, 2048); p = (caddr_t)roundup((u_long)p, 2048); /* * Allocate receive descriptors */ hr->rb_rxd = p; hr->rb_rxddma = dma; p += nrbuf * HME_XD_SIZE; dma += nrbuf * HME_XD_SIZE; /* Again move forward to the next 2048 byte boundary.*/ dma = (bus_addr_t)roundup((u_long)dma, 2048); p = (caddr_t)roundup((u_long)p, 2048); /* * Allocate transmit buffers */ hr->rb_txbuf = p; txbufdma = dma; p += ntbuf * _HME_BUFSZ; dma += ntbuf * _HME_BUFSZ; /* * Allocate receive buffers */ hr->rb_rxbuf = p; rxbufdma = dma; p += nrbuf * _HME_BUFSZ; dma += nrbuf * _HME_BUFSZ; /* * Initialize transmit buffer descriptors */ for (i = 0; i < ntbuf; i++) { HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ); HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0); } /* * Initialize receive buffer descriptors */ for (i = 0; i < nrbuf; i++) { HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ); HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i, HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ)); } hr->rb_tdhead = hr->rb_tdtail = 0; hr->rb_td_nbusy = 0; hr->rb_rdtail = 0; } /* * Initialization of interface; set up initialization block * and transmit/receive descriptor rings. */ void hme_init(sc) struct hme_softc *sc; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t seb = sc->sc_seb; bus_space_handle_t etx = sc->sc_etx; bus_space_handle_t erx = sc->sc_erx; bus_space_handle_t mac = sc->sc_mac; bus_space_handle_t mif = sc->sc_mif; u_int8_t *ea; u_int32_t v; /* * Initialization sequence. The numbered steps below correspond * to the sequence outlined in section 6.3.5.1 in the Ethernet * Channel Engine manual (part of the PCIO manual). * See also the STP2002-STQ document from Sun Microsystems. */ /* step 1 & 2. Reset the Ethernet Channel */ hme_stop(sc); /* Re-initialize the MIF */ hme_mifinit(sc); /* Call MI reset function if any */ if (sc->sc_hwreset) (*sc->sc_hwreset)(sc); #if 0 /* Mask all MIF interrupts, just in case */ bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff); #endif /* step 3. Setup data structures in host memory */ hme_meminit(sc); /* step 4. TX MAC registers & counters */ bus_space_write_4(t, mac, HME_MACI_NCCNT, 0); bus_space_write_4(t, mac, HME_MACI_FCCNT, 0); bus_space_write_4(t, mac, HME_MACI_EXCNT, 0); bus_space_write_4(t, mac, HME_MACI_LTCNT, 0); v = ETHERMTU + #if NVLAN > 0 EVL_ENCAPLEN + #endif 0; bus_space_write_4(t, mac, HME_MACI_TXSIZE, v); /* Load station MAC address */ ea = sc->sc_enaddr; bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]); bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]); bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]); /* * Init seed for backoff * (source suggested by manual: low 10 bits of MAC address) */ v = ((ea[4] << 8) | ea[5]) & 0x3fff; bus_space_write_4(t, mac, HME_MACI_RANDSEED, v); /* Note: Accepting power-on default for other MAC registers here.. */ /* step 5. RX MAC registers & counters */ hme_setladrf(sc); /* step 6 & 7. Program Descriptor Ring Base Addresses */ bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma); bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf); bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma); v = ETHERMTU + #if NVLAN > 0 EVL_ENCAPLEN + #endif 0; bus_space_write_4(t, mac, HME_MACI_RXSIZE, v); /* step 8. Global Configuration & Interrupt Mask */ bus_space_write_4(t, seb, HME_SEBI_IMASK, ~( /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/ HME_SEB_STAT_HOSTTOTX | HME_SEB_STAT_RXTOHOST | HME_SEB_STAT_TXALL | HME_SEB_STAT_TXPERR | HME_SEB_STAT_RCNTEXP | HME_SEB_STAT_ALL_ERRORS )); switch (sc->sc_burst) { default: v = 0; break; case 16: v = HME_SEB_CFG_BURST16; break; case 32: v = HME_SEB_CFG_BURST32; break; case 64: v = HME_SEB_CFG_BURST64; break; } bus_space_write_4(t, seb, HME_SEBI_CFG, v); /* step 9. ETX Configuration: use mostly default values */ /* Enable DMA */ v = bus_space_read_4(t, etx, HME_ETXI_CFG); v |= HME_ETX_CFG_DMAENABLE; bus_space_write_4(t, etx, HME_ETXI_CFG, v); /* Transmit Descriptor ring size: in increments of 16 */ bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1); /* step 10. ERX Configuration */ v = bus_space_read_4(t, erx, HME_ERXI_CFG); /* Encode Receive Descriptor ring size: four possible values */ switch (_HME_NDESC /*XXX*/) { case 32: v |= HME_ERX_CFG_RINGSIZE32; break; case 64: v |= HME_ERX_CFG_RINGSIZE64; break; case 128: v |= HME_ERX_CFG_RINGSIZE128; break; case 256: v |= HME_ERX_CFG_RINGSIZE256; break; default: printf("hme: invalid Receive Descriptor ring size\n"); break; } /* Enable DMA */ v |= HME_ERX_CFG_DMAENABLE; bus_space_write_4(t, erx, HME_ERXI_CFG, v); /* step 11. XIF Configuration */ v = bus_space_read_4(t, mac, HME_MACI_XIF); v |= HME_MAC_XIF_OE; /* If an external transceiver is connected, enable its MII drivers */ if ((bus_space_read_4(t, mif, HME_MIFI_CFG) & HME_MIF_CFG_MDI1) != 0) v |= HME_MAC_XIF_MIIENABLE; bus_space_write_4(t, mac, HME_MACI_XIF, v); /* step 12. RX_MAC Configuration Register */ v = bus_space_read_4(t, mac, HME_MACI_RXCFG); v |= HME_MAC_RXCFG_ENABLE; bus_space_write_4(t, mac, HME_MACI_RXCFG, v); /* step 13. TX_MAC Configuration Register */ v = bus_space_read_4(t, mac, HME_MACI_TXCFG); v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP); bus_space_write_4(t, mac, HME_MACI_TXCFG, v); /* step 14. Issue Transmit Pending command */ /* Call MI initialization function if any */ if (sc->sc_hwinit) (*sc->sc_hwinit)(sc); /* Start the one second timer. */ timeout_add(&sc->sc_tick_ch, hz); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; ifp->if_timer = 0; hme_start(ifp); } /* * Compare two Ether/802 addresses for equality, inlined and unrolled for * speed. */ static __inline__ int ether_cmp(a, b) u_char *a, *b; { if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] || a[2] != b[2] || a[1] != b[1] || a[0] != b[0]) return (0); return (1); } /* * Routine to copy from mbuf chain to transmit buffer in * network buffer memory. * Returns the amount of data copied. */ int hme_put(sc, ri, m) struct hme_softc *sc; int ri; /* Ring index */ struct mbuf *m; { struct mbuf *n; int len, tlen = 0; caddr_t bp; bp = sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ; for (; m; m = n) { len = m->m_len; if (len == 0) { MFREE(m, n); continue; } memcpy(bp, mtod(m, caddr_t), len); bp += len; tlen += len; MFREE(m, n); } return (tlen); } /* * Pull data off an interface. * Len is length of data, with local net header stripped. * We copy the data into mbufs. When full cluster sized units are present * we copy into clusters. */ struct mbuf * hme_get(sc, ri, totlen) struct hme_softc *sc; int ri, totlen; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct mbuf *m, *m0, *newm; caddr_t bp; int len; MGETHDR(m0, M_DONTWAIT, MT_DATA); if (m0 == 0) return (0); m0->m_pkthdr.rcvif = ifp; m0->m_pkthdr.len = totlen; len = MHLEN; m = m0; bp = sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ; while (totlen > 0) { if (totlen >= MINCLSIZE) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) goto bad; len = MCLBYTES; } if (m == m0) { caddr_t newdata = (caddr_t) ALIGN(m->m_data + sizeof(struct ether_header)) - sizeof(struct ether_header); len -= newdata - m->m_data; m->m_data = newdata; } m->m_len = len = min(totlen, len); memcpy(mtod(m, caddr_t), bp, len); bp += len; totlen -= len; if (totlen > 0) { MGET(newm, M_DONTWAIT, MT_DATA); if (newm == 0) goto bad; len = MLEN; m = m->m_next = newm; } } return (m0); bad: m_freem(m0); return (0); } /* * Pass a packet to the higher levels. */ void hme_read(sc, ix, len) struct hme_softc *sc; int ix, len; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct mbuf *m; if (len <= sizeof(struct ether_header) || (len > ETHERMTU + #if NVLAN > 1 EVL_ENCAPLEN + #endif 0 )) { #ifdef HMEDEBUG printf("%s: invalid packet size %d; dropping\n", sc->sc_dev.dv_xname, len); #endif ifp->if_ierrors++; return; } /* Pull packet off interface. */ m = hme_get(sc, ix, len); if (m == 0) { ifp->if_ierrors++; return; } ifp->if_ipackets++; #if NBPFILTER > 0 /* * Check if there's a BPF listener on this interface. * If so, hand off the raw packet to BPF. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif /* Pass the packet up. */ ether_input_mbuf(ifp, m); } void hme_start(ifp) struct ifnet *ifp; { struct hme_softc *sc = (struct hme_softc *)ifp->if_softc; caddr_t txd = sc->sc_rb.rb_txd; struct mbuf *m; unsigned int ri, len; unsigned int ntbuf = sc->sc_rb.rb_ntbuf; if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; ri = sc->sc_rb.rb_tdhead; for (;;) { IFQ_DEQUEUE(&ifp->if_snd, m); if (m == 0) break; #if NBPFILTER > 0 /* * If BPF is listening on this interface, let it see the * packet before we commit it to the wire. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif /* * Copy the mbuf chain into the transmit buffer. */ len = hme_put(sc, ri, m); /* * Initialize transmit registers and start transmission */ HME_XD_SETFLAGS(sc->sc_pci, txd, ri, HME_XD_OWN | HME_XD_SOP | HME_XD_EOP | HME_XD_ENCODE_TSIZE(len)); /*if (sc->sc_rb.rb_td_nbusy <= 0)*/ bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING, HME_ETX_TP_DMAWAKEUP); if (++ri == ntbuf) ri = 0; if (++sc->sc_rb.rb_td_nbusy == ntbuf) { ifp->if_flags |= IFF_OACTIVE; break; } } sc->sc_rb.rb_tdhead = ri; } /* * Transmit interrupt. */ int hme_tint(sc) struct hme_softc *sc; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t mac = sc->sc_mac; unsigned int ri, txflags; /* * Unload collision counters */ ifp->if_collisions += bus_space_read_4(t, mac, HME_MACI_NCCNT) + bus_space_read_4(t, mac, HME_MACI_FCCNT) + bus_space_read_4(t, mac, HME_MACI_EXCNT) + bus_space_read_4(t, mac, HME_MACI_LTCNT); /* * then clear the hardware counters. */ bus_space_write_4(t, mac, HME_MACI_NCCNT, 0); bus_space_write_4(t, mac, HME_MACI_FCCNT, 0); bus_space_write_4(t, mac, HME_MACI_EXCNT, 0); bus_space_write_4(t, mac, HME_MACI_LTCNT, 0); /* Fetch current position in the transmit ring */ ri = sc->sc_rb.rb_tdtail; for (;;) { if (sc->sc_rb.rb_td_nbusy <= 0) break; txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri); if (txflags & HME_XD_OWN) break; ifp->if_flags &= ~IFF_OACTIVE; ifp->if_opackets++; if (++ri == sc->sc_rb.rb_ntbuf) ri = 0; --sc->sc_rb.rb_td_nbusy; } /* Update ring */ sc->sc_rb.rb_tdtail = ri; hme_start(ifp); if (sc->sc_rb.rb_td_nbusy == 0) ifp->if_timer = 0; return (1); } /* * Receive interrupt. */ int hme_rint(sc) struct hme_softc *sc; { caddr_t xdr = sc->sc_rb.rb_rxd; unsigned int nrbuf = sc->sc_rb.rb_nrbuf; unsigned int ri, len; u_int32_t flags; ri = sc->sc_rb.rb_rdtail; /* * Process all buffers with valid data. */ for (;;) { flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri); if (flags & HME_XD_OWN) break; if (flags & HME_XD_OFL) { printf("%s: buffer overflow, ri=%d; flags=0x%x\n", sc->sc_dev.dv_xname, ri, flags); } else { len = HME_XD_DECODE_RSIZE(flags); hme_read(sc, ri, len); } /* This buffer can be used by the hardware again */ HME_XD_SETFLAGS(sc->sc_pci, xdr, ri, HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ)); if (++ri == nrbuf) ri = 0; } sc->sc_rb.rb_rdtail = ri; return (1); } int hme_eint(sc, status) struct hme_softc *sc; u_int status; { if ((status & HME_SEB_STAT_MIFIRQ) != 0) { printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname); return (1); } printf("%s: status=%b\n", sc->sc_dev.dv_xname, status, HME_SEB_STAT_BITS); return (1); } int hme_intr(v) void *v; { struct hme_softc *sc = (struct hme_softc *)v; bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t seb = sc->sc_seb; u_int32_t status; int r = 0; status = bus_space_read_4(t, seb, HME_SEBI_STAT); if ((status & HME_SEB_STAT_ALL_ERRORS) != 0) r |= hme_eint(sc, status); if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0) r |= hme_tint(sc); if ((status & HME_SEB_STAT_RXTOHOST) != 0) r |= hme_rint(sc); return (r); } void hme_watchdog(ifp) struct ifnet *ifp; { struct hme_softc *sc = ifp->if_softc; log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname); ++ifp->if_oerrors; hme_reset(sc); } /* * Initialize the MII Management Interface */ void hme_mifinit(sc) struct hme_softc *sc; { bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t mif = sc->sc_mif; u_int32_t v; /* Configure the MIF in frame mode */ v = bus_space_read_4(t, mif, HME_MIFI_CFG); v &= ~HME_MIF_CFG_BBMODE; bus_space_write_4(t, mif, HME_MIFI_CFG, v); } /* * MII interface */ static int hme_mii_readreg(self, phy, reg) struct device *self; int phy, reg; { struct hme_softc *sc = (void *)self; bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t mif = sc->sc_mif; int n; u_int32_t v; /* Select the desired PHY in the MIF configuration register */ v = bus_space_read_4(t, mif, HME_MIFI_CFG); /* Clear PHY select bit */ v &= ~HME_MIF_CFG_PHY; if (phy == HME_PHYAD_EXTERNAL) /* Set PHY select bit to get at external device */ v |= HME_MIF_CFG_PHY; bus_space_write_4(t, mif, HME_MIFI_CFG, v); /* Construct the frame command */ v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) | HME_MIF_FO_TAMSB | (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) | (phy << HME_MIF_FO_PHYAD_SHIFT) | (reg << HME_MIF_FO_REGAD_SHIFT); bus_space_write_4(t, mif, HME_MIFI_FO, v); for (n = 0; n < 100; n++) { DELAY(1); v = bus_space_read_4(t, mif, HME_MIFI_FO); if (v & HME_MIF_FO_TALSB) return (v & HME_MIF_FO_DATA); } printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname); return (0); } static void hme_mii_writereg(self, phy, reg, val) struct device *self; int phy, reg, val; { struct hme_softc *sc = (void *)self; bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t mif = sc->sc_mif; int n; u_int32_t v; /* Select the desired PHY in the MIF configuration register */ v = bus_space_read_4(t, mif, HME_MIFI_CFG); /* Clear PHY select bit */ v &= ~HME_MIF_CFG_PHY; if (phy == HME_PHYAD_EXTERNAL) /* Set PHY select bit to get at external device */ v |= HME_MIF_CFG_PHY; bus_space_write_4(t, mif, HME_MIFI_CFG, v); /* Construct the frame command */ v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) | HME_MIF_FO_TAMSB | (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) | (phy << HME_MIF_FO_PHYAD_SHIFT) | (reg << HME_MIF_FO_REGAD_SHIFT) | (val & HME_MIF_FO_DATA); bus_space_write_4(t, mif, HME_MIFI_FO, v); for (n = 0; n < 100; n++) { DELAY(1); v = bus_space_read_4(t, mif, HME_MIFI_FO); if (v & HME_MIF_FO_TALSB) return; } printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname); } static void hme_mii_statchg(dev) struct device *dev; { struct hme_softc *sc = (void *)dev; int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media); int phy = sc->sc_phys[instance]; bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t mif = sc->sc_mif; bus_space_handle_t mac = sc->sc_mac; u_int32_t v; #ifdef HMEDEBUG if (sc->sc_debug) printf("hme_mii_statchg: status change: phy = %d\n", phy); #endif /* Select the current PHY in the MIF configuration register */ v = bus_space_read_4(t, mif, HME_MIFI_CFG); v &= ~HME_MIF_CFG_PHY; if (phy == HME_PHYAD_EXTERNAL) v |= HME_MIF_CFG_PHY; bus_space_write_4(t, mif, HME_MIFI_CFG, v); /* Set the MAC Full Duplex bit appropriately */ v = bus_space_read_4(t, mac, HME_MACI_TXCFG); if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) v |= HME_MAC_TXCFG_FULLDPLX; else v &= ~HME_MAC_TXCFG_FULLDPLX; bus_space_write_4(t, mac, HME_MACI_TXCFG, v); /* If an external transceiver is selected, enable its MII drivers */ v = bus_space_read_4(t, mac, HME_MACI_XIF); v &= ~HME_MAC_XIF_MIIENABLE; if (phy == HME_PHYAD_EXTERNAL) v |= HME_MAC_XIF_MIIENABLE; bus_space_write_4(t, mac, HME_MACI_XIF, v); } int hme_mediachange(ifp) struct ifnet *ifp; { struct hme_softc *sc = ifp->if_softc; if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER) return (EINVAL); return (mii_mediachg(&sc->sc_mii)); } void hme_mediastatus(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct hme_softc *sc = ifp->if_softc; if ((ifp->if_flags & IFF_UP) == 0) return; mii_pollstat(&sc->sc_mii); ifmr->ifm_active = sc->sc_mii.mii_media_active; ifmr->ifm_status = sc->sc_mii.mii_media_status; } /* * Process an ioctl request. */ int hme_ioctl(ifp, cmd, data) struct ifnet *ifp; u_long cmd; caddr_t data; { struct hme_softc *sc = ifp->if_softc; struct ifaddr *ifa = (struct ifaddr *)data; struct ifreq *ifr = (struct ifreq *)data; int s, error = 0; s = splnet(); switch (cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: hme_init(sc); arp_ifinit(&sc->sc_arpcom, ifa); break; #endif #ifdef NS case AF_NS: { struct ns_addr *ina = &IA_SNS(ifa)->sns_addr; if (ns_nullhost(*ina)) ina->x_host = *(union ns_host *)LLADDR(ifp->if_sadl); else { memcpy(LLADDR(ifp->if_sadl), ina->x_host.c_host, sizeof(sc->sc_enaddr)); } /* Set new address. */ hme_init(sc); break; } #endif default: hme_init(sc); break; } break; case SIOCSIFFLAGS: if ((ifp->if_flags & IFF_UP) == 0 && (ifp->if_flags & IFF_RUNNING) != 0) { /* * If interface is marked down and it is running, then * stop it. */ hme_stop(sc); ifp->if_flags &= ~IFF_RUNNING; } else if ((ifp->if_flags & IFF_UP) != 0 && (ifp->if_flags & IFF_RUNNING) == 0) { /* * If interface is marked up and it is stopped, then * start it. */ hme_init(sc); } else if ((ifp->if_flags & IFF_UP) != 0) { /* * Reset the interface to pick up changes in any other * flags that affect hardware registers. */ /*hme_stop(sc);*/ hme_init(sc); } #ifdef HMEDEBUG sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0; #endif break; case SIOCADDMULTI: case SIOCDELMULTI: error = (cmd == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->sc_arpcom) : ether_delmulti(ifr, &sc->sc_arpcom); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware filter * accordingly. */ hme_setladrf(sc); error = 0; } break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd); break; default: error = EINVAL; break; } splx(s); return (error); } void hme_shutdown(arg) void *arg; { hme_stop((struct hme_softc *)arg); } /* * Set up the logical address filter. */ void hme_setladrf(sc) struct hme_softc *sc; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct ether_multi *enm; struct ether_multistep step; struct arpcom *ac = &sc->sc_arpcom; bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t mac = sc->sc_mac; u_char *cp; u_int32_t crc; u_int32_t hash[4]; u_int32_t v; int len; /* Clear hash table */ hash[3] = hash[2] = hash[1] = hash[0] = 0; /* Get current RX configuration */ v = bus_space_read_4(t, mac, HME_MACI_RXCFG); if ((ifp->if_flags & IFF_PROMISC) != 0) { /* Turn on promiscuous mode; turn off the hash filter */ v |= HME_MAC_RXCFG_PMISC; v &= ~HME_MAC_RXCFG_HENABLE; ifp->if_flags |= IFF_ALLMULTI; goto chipit; } /* Turn off promiscuous mode; turn on the hash filter */ v &= ~HME_MAC_RXCFG_PMISC; v |= HME_MAC_RXCFG_HENABLE; /* * Set up multicast address filter by passing all multicast addresses * through a crc generator, and then using the high order 6 bits as an * index into the 64 bit logical address filter. The high order bit * selects the word, while the rest of the bits select the bit within * the word. */ ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) { /* * We must listen to a range of multicast addresses. * For now, just accept all multicasts, rather than * trying to set only those filter bits needed to match * the range. (At this time, the only use of address * ranges is for IP multicast routing, for which the * range is big enough to require all bits set.) */ hash[3] = hash[2] = hash[1] = hash[0] = 0xffff; ifp->if_flags |= IFF_ALLMULTI; goto chipit; } cp = enm->enm_addrlo; crc = 0xffffffff; for (len = sizeof(enm->enm_addrlo); --len >= 0;) { int octet = *cp++; int i; #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */ for (i = 0; i < 8; i++) { if ((crc & 1) ^ (octet & 1)) { crc >>= 1; crc ^= MC_POLY_LE; } else { crc >>= 1; } octet >>= 1; } } /* Just want the 6 most significant bits. */ crc >>= 26; /* Set the corresponding bit in the filter. */ hash[crc >> 4] |= 1 << (crc & 0xf); ETHER_NEXT_MULTI(step, enm); } ifp->if_flags &= ~IFF_ALLMULTI; chipit: /* Now load the hash table into the chip */ bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]); bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]); bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]); bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]); bus_space_write_4(t, mac, HME_MACI_RXCFG, v); } /* * Routines for accessing the transmit and receive buffers. * The various CPU and adapter configurations supported by this * driver require three different access methods for buffers * and descriptors: * (1) contig (contiguous data; no padding), * (2) gap2 (two bytes of data followed by two bytes of padding), * (3) gap16 (16 bytes of data followed by 16 bytes of padding). */ #if 0 /* * contig: contiguous data with no padding. * * Buffers may have any alignment. */ void hme_copytobuf_contig(sc, from, ri, len) struct hme_softc *sc; void *from; int ri, len; { volatile caddr_t buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ); /* * Just call memcpy() to do the work. */ memcpy(buf, from, len); } void hme_copyfrombuf_contig(sc, to, boff, len) struct hme_softc *sc; void *to; int boff, len; { volatile caddr_t buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ); /* * Just call memcpy() to do the work. */ memcpy(to, buf, len); } #endif