/* $OpenBSD: if_wi.c,v 1.11 2001/06/23 22:54:17 fgsch Exp $ */ /* * Copyright (c) 1997, 1998, 1999 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * From: if_wi.c,v 1.7 1999/07/04 14:40:22 wpaul Exp $ */ /* * Lucent WaveLAN/IEEE 802.11 driver for OpenBSD. * * Originally written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The WaveLAN/IEEE adapter is the second generation of the WaveLAN * from Lucent. Unlike the older cards, the new ones are programmed * entirely via a firmware-driven controller called the Hermes. * Unfortunately, Lucent will not release the Hermes programming manual * without an NDA (if at all). What they do release is an API library * called the HCF (Hardware Control Functions) which is supposed to * do the device-specific operations of a device driver for you. The * publically available version of the HCF library (the 'HCF Light') is * a) extremely gross, b) lacks certain features, particularly support * for 802.11 frames, and c) is contaminated by the GNU Public License. * * This driver does not use the HCF or HCF Light at all. Instead, it * programs the Hermes controller directly, using information gleaned * from the HCF Light code and corresponding documentation. */ #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */ #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #if NBPFILTER > 0 #include #endif #include #include #include #include #define BPF_MTAP(if,mbuf) bpf_mtap((if)->if_bpf, (mbuf)) #define BPFATTACH(if_bpf,if,dlt,sz) #define STATIC #ifdef WIDEBUG u_int32_t widebug = WIDEBUG; #define WID_INTR 0x01 #define WID_START 0x02 #define WID_IOCTL 0x04 #define WID_INIT 0x08 #define WID_STOP 0x10 #define WID_RESET 0x20 #define DPRINTF(mask,args) if (widebug & (mask)) printf args; #else /* !WIDEBUG */ #define DPRINTF(mask,args) #endif /* WIDEBUG */ #if !defined(lint) && !defined(__OpenBSD__) static const char rcsid[] = "$OpenBSD: if_wi.c,v 1.11 2001/06/23 22:54:17 fgsch Exp $"; #endif /* lint */ #ifdef foo static u_int8_t wi_mcast_addr[6] = { 0x01, 0x60, 0x1D, 0x00, 0x01, 0x00 }; #endif STATIC void wi_reset __P((struct wi_softc *)); STATIC int wi_ioctl __P((struct ifnet *, u_long, caddr_t)); STATIC void wi_start __P((struct ifnet *)); STATIC void wi_watchdog __P((struct ifnet *)); STATIC void wi_shutdown __P((void *)); STATIC void wi_rxeof __P((struct wi_softc *)); STATIC void wi_txeof __P((struct wi_softc *, int)); STATIC void wi_update_stats __P((struct wi_softc *)); STATIC void wi_setmulti __P((struct wi_softc *)); STATIC int wi_cmd __P((struct wi_softc *, int, int)); STATIC int wi_read_record __P((struct wi_softc *, struct wi_ltv_gen *)); STATIC int wi_write_record __P((struct wi_softc *, struct wi_ltv_gen *)); STATIC int wi_read_data __P((struct wi_softc *, int, int, caddr_t, int)); STATIC int wi_write_data __P((struct wi_softc *, int, int, caddr_t, int)); STATIC int wi_seek __P((struct wi_softc *, int, int, int)); STATIC int wi_alloc_nicmem __P((struct wi_softc *, int, int *)); STATIC void wi_inquire __P((void *)); STATIC void wi_setdef __P((struct wi_softc *, struct wi_req *)); STATIC int wi_mgmt_xmit __P((struct wi_softc *, caddr_t, int)); STATIC void wi_get_id __P((struct wi_softc *, int)); int wi_intr __P((void *)); int wi_attach __P((struct wi_softc *, int)); void wi_init __P((void *)); void wi_stop __P((struct wi_softc *)); /* Autoconfig definition of driver back-end */ struct cfdriver wi_cd = { NULL, "wi", DV_IFNET }; int wi_attach(sc, print_cis) struct wi_softc *sc; int print_cis; { struct wi_ltv_macaddr mac; struct wi_ltv_gen gen; struct ifnet *ifp; int error; sc->wi_gone = 0; wi_reset(sc); /* Read the station address. */ mac.wi_type = WI_RID_MAC_NODE; mac.wi_len = 4; error = wi_read_record(sc, (struct wi_ltv_gen *)&mac); if (error) { printf(": unable to read station address\n"); return (error); } bcopy((char *)&mac.wi_mac_addr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); wi_get_id(sc, print_cis); printf("address %s", ether_sprintf(sc->arpcom.ac_enaddr)); ifp = &sc->arpcom.ac_if; bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = wi_ioctl; ifp->if_start = wi_start; ifp->if_watchdog = wi_watchdog; ifp->if_baudrate = 10000000; ifp->if_snd.ifq_maxlen = IFQ_MAXLEN; bzero(sc->wi_node_name, sizeof(sc->wi_node_name)); bcopy(WI_DEFAULT_NODENAME, sc->wi_node_name, sizeof(WI_DEFAULT_NODENAME) - 1); bzero(sc->wi_net_name, sizeof(sc->wi_net_name)); bcopy(WI_DEFAULT_NETNAME, sc->wi_net_name, sizeof(WI_DEFAULT_NETNAME) - 1); bzero(sc->wi_ibss_name, sizeof(sc->wi_ibss_name)); bcopy(WI_DEFAULT_IBSS, sc->wi_ibss_name, sizeof(WI_DEFAULT_IBSS) - 1); sc->wi_portnum = WI_DEFAULT_PORT; sc->wi_ptype = WI_PORTTYPE_BSS; sc->wi_ap_density = WI_DEFAULT_AP_DENSITY; sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH; sc->wi_tx_rate = WI_DEFAULT_TX_RATE; sc->wi_max_data_len = WI_DEFAULT_DATALEN; sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS; sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED; sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP; sc->wi_roaming = WI_DEFAULT_ROAMING; sc->wi_authtype = WI_DEFAULT_AUTHTYPE; /* * Read the default channel from the NIC. This may vary * depending on the country where the NIC was purchased, so * we can't hard-code a default and expect it to work for * everyone. */ gen.wi_type = WI_RID_OWN_CHNL; gen.wi_len = 2; if (wi_read_record(sc, &gen) == 0) sc->wi_channel = letoh16(gen.wi_val); else sc->wi_channel = 3; /* * Find out if we support WEP on this card. */ gen.wi_type = WI_RID_WEP_AVAIL; gen.wi_len = 2; if (wi_read_record(sc, &gen) == 0) sc->wi_has_wep = letoh16(gen.wi_val); timeout_set(&sc->sc_timo, wi_inquire, sc); bzero((char *)&sc->wi_stats, sizeof(sc->wi_stats)); /* * Call MI attach routines. */ if_attach(ifp); ether_ifattach(ifp); printf("\n"); #if NBPFILTER > 0 BPFATTACH(&sc->arpcom.ac_if.if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header)); #endif shutdownhook_establish(wi_shutdown, sc); wi_init(sc); wi_stop(sc); return (0); } int wi_intr(vsc) void *vsc; { struct wi_softc *sc = vsc; struct ifnet *ifp; u_int16_t status; DPRINTF(WID_INTR, ("wi_intr: sc %p\n", sc)); ifp = &sc->arpcom.ac_if; if (!(ifp->if_flags & IFF_UP)) { CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF); CSR_WRITE_2(sc, WI_INT_EN, 0); return (0); } /* Disable interrupts. */ CSR_WRITE_2(sc, WI_INT_EN, 0); status = CSR_READ_2(sc, WI_EVENT_STAT); CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS); if (status & WI_EV_RX) { wi_rxeof(sc); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX); } if (status & WI_EV_TX) { wi_txeof(sc, status); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX); } if (status & WI_EV_ALLOC) { int id; id = CSR_READ_2(sc, WI_ALLOC_FID); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC); if (id == sc->wi_tx_data_id) wi_txeof(sc, status); } if (status & WI_EV_INFO) { wi_update_stats(sc); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO); } if (status & WI_EV_TX_EXC) { wi_txeof(sc, status); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC); } if (status & WI_EV_INFO_DROP) { CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP); } /* Re-enable interrupts. */ CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); if (ifp->if_snd.ifq_head != NULL) wi_start(ifp); return (1); } STATIC void wi_rxeof(sc) struct wi_softc *sc; { struct ifnet *ifp; struct ether_header *eh; struct wi_frame rx_frame; struct mbuf *m; int id; ifp = &sc->arpcom.ac_if; id = CSR_READ_2(sc, WI_RX_FID); /* First read in the frame header */ if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame, sizeof(rx_frame))) { ifp->if_ierrors++; return; } if (rx_frame.wi_status & htole16(WI_STAT_ERRSTAT)) { ifp->if_ierrors++; return; } MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { ifp->if_ierrors++; return; } MCLGET(m, M_DONTWAIT); if (!(m->m_flags & M_EXT)) { m_freem(m); ifp->if_ierrors++; return; } eh = mtod(m, struct ether_header *); m->m_pkthdr.rcvif = ifp; if (rx_frame.wi_status == htole16(WI_STAT_1042) || rx_frame.wi_status == htole16(WI_STAT_TUNNEL) || rx_frame.wi_status == htole16(WI_STAT_WMP_MSG)) { if ((letoh16(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN) > MCLBYTES) { printf(WI_PRT_FMT ": oversized packet received " "(wi_dat_len=%d, wi_status=0x%x)\n", WI_PRT_ARG(sc), letoh16(rx_frame.wi_dat_len), letoh16(rx_frame.wi_status)); m_freem(m); ifp->if_ierrors++; return; } m->m_pkthdr.len = m->m_len = letoh16(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN; bcopy((char *)&rx_frame.wi_addr1, (char *)&eh->ether_dhost, ETHER_ADDR_LEN); bcopy((char *)&rx_frame.wi_addr2, (char *)&eh->ether_shost, ETHER_ADDR_LEN); bcopy((char *)&rx_frame.wi_type, (char *)&eh->ether_type, sizeof(u_int16_t)); if (wi_read_data(sc, id, WI_802_11_OFFSET, mtod(m, caddr_t) + sizeof(struct ether_header), m->m_len + 2)) { m_freem(m); ifp->if_ierrors++; return; } } else { if ((letoh16(rx_frame.wi_dat_len) + sizeof(struct ether_header)) > MCLBYTES) { printf(WI_PRT_FMT ": oversized packet received " "(wi_dat_len=%d, wi_status=0x%x)\n", WI_PRT_ARG(sc), letoh16(rx_frame.wi_dat_len), letoh16(rx_frame.wi_status)); m_freem(m); ifp->if_ierrors++; return; } m->m_pkthdr.len = m->m_len = letoh16(rx_frame.wi_dat_len) + sizeof(struct ether_header); if (wi_read_data(sc, id, WI_802_3_OFFSET, mtod(m, caddr_t), m->m_len + 2)) { m_freem(m); ifp->if_ierrors++; return; } } ifp->if_ipackets++; #if NBPFILTER > 0 /* Handle BPF listeners. */ if (ifp->if_bpf) BPF_MTAP(ifp, m); #endif /* Receive packet. */ ether_input_mbuf(ifp, m); return; } STATIC void wi_txeof(sc, status) struct wi_softc *sc; int status; { struct ifnet *ifp; ifp = &sc->arpcom.ac_if; ifp->if_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; if (status & WI_EV_TX_EXC) ifp->if_oerrors++; else ifp->if_opackets++; return; } void wi_inquire(xsc) void *xsc; { struct wi_softc *sc; struct ifnet *ifp; int s, rv; sc = xsc; ifp = &sc->arpcom.ac_if; timeout_add(&sc->sc_timo, hz * 60); /* Don't do this while we're transmitting */ if (ifp->if_flags & IFF_OACTIVE) return; s = splnet(); rv = wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS); splx(s); if (rv) printf(WI_PRT_FMT ": wi_cmd failed with %d\n", WI_PRT_ARG(sc), rv); return; } void wi_update_stats(sc) struct wi_softc *sc; { struct wi_ltv_gen gen; u_int16_t id; struct ifnet *ifp; u_int32_t *ptr; int len, i; u_int16_t t; ifp = &sc->arpcom.ac_if; id = CSR_READ_2(sc, WI_INFO_FID); wi_read_data(sc, id, 0, (char *)&gen, 4); if (gen.wi_type != WI_INFO_COUNTERS) return; /* Some card versions have a larger stats structure */ len = (gen.wi_len - 1 < sizeof(sc->wi_stats) / 4) ? gen.wi_len - 1 : sizeof(sc->wi_stats) / 4; ptr = (u_int32_t *)&sc->wi_stats; for (i = 0; i < len; i++) { t = CSR_READ_2(sc, WI_DATA1); #ifdef WI_HERMES_STATS_WAR if (t > 0xF000) t = ~t & 0xFFFF; #endif ptr[i] += t; } ifp->if_collisions = sc->wi_stats.wi_tx_single_retries + sc->wi_stats.wi_tx_multi_retries + sc->wi_stats.wi_tx_retry_limit; return; } STATIC int wi_cmd(sc, cmd, val) struct wi_softc *sc; int cmd; int val; { int i, s = 0; /* Wait for the busy bit to clear. */ for (i = 0; i < WI_TIMEOUT; i++) { if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY)) break; DELAY(1); } CSR_WRITE_2(sc, WI_PARAM0, val); CSR_WRITE_2(sc, WI_PARAM1, 0); CSR_WRITE_2(sc, WI_PARAM2, 0); CSR_WRITE_2(sc, WI_COMMAND, cmd); for (i = WI_TIMEOUT; i--; DELAY(1)) { /* * Wait for 'command complete' bit to be * set in the event status register. */ s = CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD; if (s) { /* Ack the event and read result code. */ s = CSR_READ_2(sc, WI_STATUS); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD); #ifdef foo if ((s & WI_CMD_CODE_MASK) != (cmd & WI_CMD_CODE_MASK)) return(EIO); #endif if (s & WI_STAT_CMD_RESULT) return(EIO); break; } } if (i < 0) return(ETIMEDOUT); return(0); } STATIC void wi_reset(sc) struct wi_softc *sc; { DPRINTF(WID_RESET, ("wi_reset: sc %p\n", sc)); if (wi_cmd(sc, WI_CMD_INI, 0)) printf(WI_PRT_FMT ": init failed\n", WI_PRT_ARG(sc)); CSR_WRITE_2(sc, WI_INT_EN, 0); CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF); /* Calibrate timer. */ WI_SETVAL(WI_RID_TICK_TIME, 8); return; } /* * Read an LTV record from the NIC. */ STATIC int wi_read_record(sc, ltv) struct wi_softc *sc; struct wi_ltv_gen *ltv; { u_int16_t *ptr; int i, len, code; struct wi_ltv_gen *oltv, p2ltv; if (sc->sc_prism2) { oltv = ltv; switch (ltv->wi_type) { case WI_RID_ENCRYPTION: p2ltv.wi_type = WI_RID_P2_ENCRYPTION; p2ltv.wi_len = 2; ltv = &p2ltv; break; case WI_RID_TX_CRYPT_KEY: p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY; p2ltv.wi_len = 2; ltv = &p2ltv; break; } } /* Tell the NIC to enter record read mode. */ if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type)) return(EIO); /* Seek to the record. */ if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1)) return(EIO); /* * Read the length and record type and make sure they * match what we expect (this verifies that we have enough * room to hold all of the returned data). */ len = CSR_READ_2(sc, WI_DATA1); if (len > ltv->wi_len) return(ENOSPC); code = CSR_READ_2(sc, WI_DATA1); if (code != ltv->wi_type) return(EIO); ltv->wi_len = len; ltv->wi_type = code; /* Now read the data. */ ptr = <v->wi_val; for (i = 0; i < ltv->wi_len - 1; i++) ptr[i] = CSR_READ_2(sc, WI_DATA1); if (sc->sc_prism2) { int v; switch (oltv->wi_type) { case WI_RID_TX_RATE: case WI_RID_CUR_TX_RATE: switch (letoh16(ltv->wi_val)) { case 1: v = 1; break; case 2: v = 2; break; case 3: v = 6; break; case 4: v = 5; break; case 7: v = 7; break; case 8: v = 11; break; case 15: v = 3; break; default: v = 0x100 + letoh16(ltv->wi_val); break; } oltv->wi_val = htole16(v); break; case WI_RID_ENCRYPTION: oltv->wi_len = 2; if (ltv->wi_val & htole16(0x01)) oltv->wi_val = htole16(1); else oltv->wi_val = htole16(0); break; case WI_RID_TX_CRYPT_KEY: oltv->wi_len = 2; oltv->wi_val = ltv->wi_val; break; case WI_RID_AUTH_CNTL: oltv->wi_len = 2; if (ltv->wi_val & htole16(0x01)) oltv->wi_val = htole16(1); else if (ltv->wi_val & htole16(0x02)) oltv->wi_val = htole16(2); break; } } return(0); } /* * Same as read, except we inject data instead of reading it. */ STATIC int wi_write_record(sc, ltv) struct wi_softc *sc; struct wi_ltv_gen *ltv; { u_int16_t *ptr; int i; struct wi_ltv_gen p2ltv; if (sc->sc_prism2) { int v; switch (ltv->wi_type) { case WI_RID_TX_RATE: p2ltv.wi_type = WI_RID_TX_RATE; p2ltv.wi_len = 2; switch (letoh16(ltv->wi_val)) { case 1: v = 1; break; case 2: v = 2; break; case 3: v = 15; break; case 5: v = 4; break; case 6: v = 3; break; case 7: v = 7; break; case 11: v = 8; break; default: return EINVAL; } p2ltv.wi_val = htole16(v); ltv = &p2ltv; break; case WI_RID_ENCRYPTION: p2ltv.wi_type = WI_RID_P2_ENCRYPTION; p2ltv.wi_len = 2; if (ltv->wi_val & htole16(0x01)) p2ltv.wi_val = htole16(0x03); else p2ltv.wi_val = htole16(0x90); ltv = &p2ltv; break; case WI_RID_TX_CRYPT_KEY: p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY; p2ltv.wi_len = 2; p2ltv.wi_val = ltv->wi_val; ltv = &p2ltv; break; case WI_RID_DEFLT_CRYPT_KEYS: { int error; struct wi_ltv_str ws; struct wi_ltv_keys *wk = (struct wi_ltv_keys *)ltv; for (i = 0; i < 4; i++) { ws.wi_len = 4; ws.wi_type = WI_RID_P2_CRYPT_KEY0 + i; bcopy(&wk->wi_keys[i].wi_keydat, ws.wi_str, 5); ws.wi_str[5] = '\0'; error = wi_write_record(sc, (struct wi_ltv_gen *)&ws); if (error) return (error); } } return (0); case WI_RID_AUTH_CNTL: p2ltv.wi_type = WI_RID_AUTH_CNTL; p2ltv.wi_len = 2; if (ltv->wi_val == htole16(1)) p2ltv.wi_val = htole16(0x01); else if (ltv->wi_val == htole16(2)) p2ltv.wi_val = htole16(0x02); ltv = &p2ltv; break; } } if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1)) return(EIO); CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len); CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type); ptr = <v->wi_val; for (i = 0; i < ltv->wi_len - 1; i++) CSR_WRITE_2(sc, WI_DATA1, ptr[i]); if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type)) return(EIO); return(0); } STATIC int wi_seek(sc, id, off, chan) struct wi_softc *sc; int id, off, chan; { int i; int selreg, offreg; switch (chan) { case WI_BAP0: selreg = WI_SEL0; offreg = WI_OFF0; break; case WI_BAP1: selreg = WI_SEL1; offreg = WI_OFF1; break; default: printf(WI_PRT_FMT ": invalid data path: %x\n", WI_PRT_ARG(sc), chan); return(EIO); } CSR_WRITE_2(sc, selreg, id); CSR_WRITE_2(sc, offreg, off); for (i = WI_TIMEOUT; i--; DELAY(1)) if (!(CSR_READ_2(sc, offreg) & (WI_OFF_BUSY|WI_OFF_ERR))) break; if (i < 0) return(ETIMEDOUT); return(0); } STATIC int wi_read_data(sc, id, off, buf, len) struct wi_softc *sc; int id, off; caddr_t buf; int len; { int i; u_int16_t *ptr; if (wi_seek(sc, id, off, WI_BAP1)) return(EIO); ptr = (u_int16_t *)buf; for (i = 0; i < len / 2; i++) ptr[i] = CSR_READ_2(sc, WI_DATA1); return(0); } /* * According to the comments in the HCF Light code, there is a bug in * the Hermes (or possibly in certain Hermes firmware revisions) where * the chip's internal autoincrement counter gets thrown off during * data writes: the autoincrement is missed, causing one data word to * be overwritten and subsequent words to be written to the wrong memory * locations. The end result is that we could end up transmitting bogus * frames without realizing it. The workaround for this is to write a * couple of extra guard words after the end of the transfer, then * attempt to read then back. If we fail to locate the guard words where * we expect them, we preform the transfer over again. */ STATIC int wi_write_data(sc, id, off, buf, len) struct wi_softc *sc; int id, off; caddr_t buf; int len; { int i; u_int16_t *ptr; #ifdef WI_HERMES_AUTOINC_WAR again: #endif if (wi_seek(sc, id, off, WI_BAP0)) return(EIO); ptr = (u_int16_t *)buf; for (i = 0; i < (len / 2); i++) CSR_WRITE_2(sc, WI_DATA0, ptr[i]); #ifdef WI_HERMES_AUTOINC_WAR CSR_WRITE_2(sc, WI_DATA0, 0x1234); CSR_WRITE_2(sc, WI_DATA0, 0x5678); if (wi_seek(sc, id, off + len, WI_BAP0)) return(EIO); if (CSR_READ_2(sc, WI_DATA0) != 0x1234 || CSR_READ_2(sc, WI_DATA0) != 0x5678) goto again; #endif return(0); } /* * Allocate a region of memory inside the NIC and zero * it out. */ STATIC int wi_alloc_nicmem(sc, len, id) struct wi_softc *sc; int len; int *id; { int i; if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len)) { printf(WI_PRT_FMT ": failed to allocate %d bytes on NIC\n", WI_PRT_ARG(sc), len); return(ENOMEM); } for (i = WI_TIMEOUT; i--; DELAY(1)) { if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC) break; } if (i < 0) return(ETIMEDOUT); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC); *id = CSR_READ_2(sc, WI_ALLOC_FID); if (wi_seek(sc, *id, 0, WI_BAP0)) return(EIO); for (i = 0; i < len / 2; i++) CSR_WRITE_2(sc, WI_DATA0, 0); return(0); } STATIC void wi_setmulti(sc) struct wi_softc *sc; { struct ifnet *ifp; int i = 0; struct wi_ltv_mcast mcast; struct ether_multistep step; struct ether_multi *enm; ifp = &sc->arpcom.ac_if; bzero((char *)&mcast, sizeof(mcast)); mcast.wi_type = WI_RID_MCAST_LIST; mcast.wi_len = ((ETHER_ADDR_LEN / 2) * 16) + 1; if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { wi_write_record(sc, (struct wi_ltv_gen *)&mcast); return; } ETHER_FIRST_MULTI(step, &sc->arpcom, enm); while (enm != NULL) { if (i >= 16) { bzero((char *)&mcast, sizeof(mcast)); break; } /* Punt on ranges. */ if (bcmp(enm->enm_addrlo, enm->enm_addrhi, sizeof(enm->enm_addrlo)) != 0) break; bcopy(enm->enm_addrlo, (char *)&mcast.wi_mcast[i], ETHER_ADDR_LEN); i++; ETHER_NEXT_MULTI(step, enm); } mcast.wi_len = (i * 3) + 1; wi_write_record(sc, (struct wi_ltv_gen *)&mcast); return; } STATIC void wi_setdef(sc, wreq) struct wi_softc *sc; struct wi_req *wreq; { struct sockaddr_dl *sdl; struct ifaddr *ifa; struct ifnet *ifp; extern struct ifaddr **ifnet_addrs; ifp = &sc->arpcom.ac_if; switch(wreq->wi_type) { case WI_RID_MAC_NODE: ifa = ifnet_addrs[ifp->if_index]; sdl = (struct sockaddr_dl *)ifa->ifa_addr; bcopy((char *)&wreq->wi_val, LLADDR(sdl), ETHER_ADDR_LEN); bcopy((char *)&wreq->wi_val, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); break; case WI_RID_PORTTYPE: sc->wi_ptype = letoh16(wreq->wi_val[0]); break; case WI_RID_TX_RATE: sc->wi_tx_rate = letoh16(wreq->wi_val[0]); break; case WI_RID_MAX_DATALEN: sc->wi_max_data_len = letoh16(wreq->wi_val[0]); break; case WI_RID_RTS_THRESH: sc->wi_rts_thresh = letoh16(wreq->wi_val[0]); break; case WI_RID_SYSTEM_SCALE: sc->wi_ap_density = letoh16(wreq->wi_val[0]); break; case WI_RID_CREATE_IBSS: sc->wi_create_ibss = letoh16(wreq->wi_val[0]); break; case WI_RID_OWN_CHNL: sc->wi_channel = letoh16(wreq->wi_val[0]); break; case WI_RID_NODENAME: bzero(sc->wi_node_name, sizeof(sc->wi_node_name)); bcopy((char *)&wreq->wi_val[1], sc->wi_node_name, 30); break; case WI_RID_DESIRED_SSID: bzero(sc->wi_net_name, sizeof(sc->wi_net_name)); bcopy((char *)&wreq->wi_val[1], sc->wi_net_name, 30); break; case WI_RID_OWN_SSID: bzero(sc->wi_ibss_name, sizeof(sc->wi_ibss_name)); bcopy((char *)&wreq->wi_val[1], sc->wi_ibss_name, 30); break; case WI_RID_PM_ENABLED: sc->wi_pm_enabled = letoh16(wreq->wi_val[0]); break; case WI_RID_MICROWAVE_OVEN: sc->wi_mor_enabled = letoh16(wreq->wi_val[0]); break; case WI_RID_MAX_SLEEP: sc->wi_max_sleep = letoh16(wreq->wi_val[0]); break; case WI_RID_AUTH_CNTL: sc->wi_authtype = letoh16(wreq->wi_val[0]); break; case WI_RID_ROAMING_MODE: sc->wi_roaming = letoh16(wreq->wi_val[0]); break; case WI_RID_ENCRYPTION: sc->wi_use_wep = letoh16(wreq->wi_val[0]); break; case WI_RID_TX_CRYPT_KEY: sc->wi_tx_key = letoh16(wreq->wi_val[0]); break; case WI_RID_DEFLT_CRYPT_KEYS: bcopy((char *)wreq, (char *)&sc->wi_keys, sizeof(struct wi_ltv_keys)); break; default: break; } /* Reinitialize WaveLAN. */ wi_init(sc); return; } STATIC int wi_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { int s, error = 0; struct wi_softc *sc; struct wi_req wreq; struct ifreq *ifr; struct proc *p = curproc; struct ifaddr *ifa = (struct ifaddr *)data; s = splimp(); sc = ifp->if_softc; ifr = (struct ifreq *)data; if (sc->wi_gone) { splx(s); return(ENODEV); } DPRINTF (WID_IOCTL, ("wi_ioctl: command %lu data %p\n", command, data)); if ((error = ether_ioctl(ifp, &sc->arpcom, command, data)) > 0) { splx(s); return error; } switch(command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: wi_init(sc); arp_ifinit(&sc->arpcom, ifa); break; #endif /* INET */ default: wi_init(sc); break; } break; case SIOCSIFMTU: if (ifr->ifr_mtu > ETHERMTU || ifr->ifr_mtu < ETHERMIN) { error = EINVAL; } else if (ifp->if_mtu != ifr->ifr_mtu) { ifp->if_mtu = ifr->ifr_mtu; } break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->wi_if_flags & IFF_PROMISC)) { WI_SETVAL(WI_RID_PROMISC, 1); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->wi_if_flags & IFF_PROMISC) { WI_SETVAL(WI_RID_PROMISC, 0); } wi_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) { wi_stop(sc); } } sc->wi_if_flags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: /* Update our multicast list. */ error = (command == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->arpcom) : ether_delmulti(ifr, &sc->arpcom); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware filter * accordingly. */ wi_setmulti(sc); error = 0; } break; case SIOCGWAVELAN: error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); if (error) break; if (wreq.wi_type == WI_RID_IFACE_STATS) { /* XXX native byte order */ bcopy((char *)&sc->wi_stats, (char *)&wreq.wi_val, sizeof(sc->wi_stats)); wreq.wi_len = (sizeof(sc->wi_stats) / 2) + 1; } else if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS) { /* For non-root user, return all-zeroes keys */ if (suser(p->p_ucred, &p->p_acflag)) bzero((char *)&wreq, sizeof(struct wi_ltv_keys)); else bcopy((char *)&sc->wi_keys, (char *)&wreq, sizeof(struct wi_ltv_keys)); } else { if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq)) { error = EINVAL; break; } } error = copyout(&wreq, ifr->ifr_data, sizeof(wreq)); break; case SIOCSWAVELAN: error = suser(p->p_ucred, &p->p_acflag); if (error) break; error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); if (error) break; if (wreq.wi_type == WI_RID_IFACE_STATS) { error = EINVAL; break; } else if (wreq.wi_type == WI_RID_MGMT_XMIT) { error = wi_mgmt_xmit(sc, (caddr_t)&wreq.wi_val, wreq.wi_len); } else { error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq); if (!error) wi_setdef(sc, &wreq); } break; default: error = EINVAL; break; } splx(s); return(error); } STATIC void wi_init(xsc) void *xsc; { struct wi_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; int s; struct wi_ltv_macaddr mac; int id = 0; if (sc->wi_gone) return; DPRINTF(WID_INIT, ("wi_init: sc %p\n", sc)); s = splimp(); if (ifp->if_flags & IFF_RUNNING) wi_stop(sc); wi_reset(sc); /* Program max data length. */ WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len); /* Enable/disable IBSS creation. */ WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss); /* Set the port type. */ WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype); /* Program the RTS/CTS threshold. */ WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh); /* Program the TX rate */ WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate); /* Access point density */ WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density); /* Power Management Enabled */ WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled); /* Power Managment Max Sleep */ WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep); /* Roaming type */ WI_SETVAL(WI_RID_ROAMING_MODE, sc->wi_roaming); /* Specify the IBSS name */ WI_SETSTR(WI_RID_OWN_SSID, sc->wi_ibss_name); /* Specify the network name */ WI_SETSTR(WI_RID_DESIRED_SSID, sc->wi_net_name); /* Specify the frequency to use */ WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel); /* Program the nodename. */ WI_SETSTR(WI_RID_NODENAME, sc->wi_node_name); /* Set our MAC address. */ mac.wi_len = 4; mac.wi_type = WI_RID_MAC_NODE; bcopy((char *)&sc->arpcom.ac_enaddr, (char *)&mac.wi_mac_addr, ETHER_ADDR_LEN); wi_write_record(sc, (struct wi_ltv_gen *)&mac); /* Initialize promisc mode. */ if (ifp->if_flags & IFF_PROMISC) { WI_SETVAL(WI_RID_PROMISC, 1); } else { WI_SETVAL(WI_RID_PROMISC, 0); } /* Configure WEP. */ if (sc->wi_has_wep) { WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep); WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key); sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1; sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS; wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys); if (sc->sc_prism2 && sc->wi_use_wep) { /* * For Prism2 Firmware version less than 0.8 variant3. * If promiscuous mode is disabled, the Prism2 chip * does not work with WEP . * I'm currently investigating the details of this. * (ichiro@netbsd.org) */ if (sc->sc_prism2_ver < 83 ) { /* firm ver < 0.8 variant 3 */ WI_SETVAL(WI_RID_PROMISC, 1); } WI_SETVAL(WI_RID_AUTH_CNTL, sc->wi_authtype); } } /* Set multicast filter. */ wi_setmulti(sc); /* Enable desired port */ wi_cmd(sc, WI_CMD_ENABLE | sc->wi_portnum, 0); if (wi_alloc_nicmem(sc, 1518 + sizeof(struct wi_frame) + 8, &id)) printf(WI_PRT_FMT ": tx buffer allocation failed\n", WI_PRT_ARG(sc)); sc->wi_tx_data_id = id; if (wi_alloc_nicmem(sc, 1518 + sizeof(struct wi_frame) + 8, &id)) printf(WI_PRT_FMT ": mgmt. buffer allocation failed\n", WI_PRT_ARG(sc)); sc->wi_tx_mgmt_id = id; /* enable interrupts */ CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); splx(s); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; timeout_add(&sc->sc_timo, hz * 60); return; } STATIC void wi_start(ifp) struct ifnet *ifp; { struct wi_softc *sc; struct mbuf *m0; struct wi_frame tx_frame; struct ether_header *eh; int id; sc = ifp->if_softc; DPRINTF(WID_START, ("wi_start: ifp %p sc %p\n", ifp, sc)); if (sc->wi_gone) return; if (ifp->if_flags & IFF_OACTIVE) return; IF_DEQUEUE(&ifp->if_snd, m0); if (m0 == NULL) return; bzero((char *)&tx_frame, sizeof(tx_frame)); id = sc->wi_tx_data_id; eh = mtod(m0, struct ether_header *); /* * Use RFC1042 encoding for IP and ARP datagrams, * 802.3 for anything else. */ if (ntohs(eh->ether_type) == ETHERTYPE_IP || ntohs(eh->ether_type) == ETHERTYPE_ARP || ntohs(eh->ether_type) == ETHERTYPE_REVARP || ntohs(eh->ether_type) == ETHERTYPE_IPV6) { bcopy((char *)&eh->ether_dhost, (char *)&tx_frame.wi_addr1, ETHER_ADDR_LEN); bcopy((char *)&eh->ether_shost, (char *)&tx_frame.wi_addr2, ETHER_ADDR_LEN); bcopy((char *)&eh->ether_dhost, (char *)&tx_frame.wi_dst_addr, ETHER_ADDR_LEN); bcopy((char *)&eh->ether_shost, (char *)&tx_frame.wi_src_addr, ETHER_ADDR_LEN); tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len - WI_SNAPHDR_LEN); tx_frame.wi_frame_ctl = htole16(WI_FTYPE_DATA); tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0); tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1); tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN); tx_frame.wi_type = eh->ether_type; m_copydata(m0, sizeof(struct ether_header), m0->m_pkthdr.len - sizeof(struct ether_header), (caddr_t)&sc->wi_txbuf); wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame)); wi_write_data(sc, id, WI_802_11_OFFSET, (caddr_t)&sc->wi_txbuf, (m0->m_pkthdr.len - sizeof(struct ether_header)) + 2); } else { tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len); m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&sc->wi_txbuf); wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame)); wi_write_data(sc, id, WI_802_3_OFFSET, (caddr_t)&sc->wi_txbuf, m0->m_pkthdr.len + 2); } #if NBPFILTER > 0 /* * If there's a BPF listner, bounce a copy of * this frame to him. */ if (ifp->if_bpf) BPF_MTAP(ifp, m0); #endif m_freem(m0); if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id)) printf(WI_PRT_FMT ": xmit failed\n", WI_PRT_ARG(sc)); ifp->if_flags |= IFF_OACTIVE; /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; return; } STATIC int wi_mgmt_xmit(sc, data, len) struct wi_softc *sc; caddr_t data; int len; { struct wi_frame tx_frame; int id; struct wi_80211_hdr *hdr; caddr_t dptr; if (sc->wi_gone) return(ENODEV); hdr = (struct wi_80211_hdr *)data; dptr = data + sizeof(struct wi_80211_hdr); bzero((char *)&tx_frame, sizeof(tx_frame)); id = sc->wi_tx_mgmt_id; bcopy((char *)hdr, (char *)&tx_frame.wi_frame_ctl, sizeof(struct wi_80211_hdr)); tx_frame.wi_dat_len = htole16(len - WI_SNAPHDR_LEN); tx_frame.wi_len = htons(len - WI_SNAPHDR_LEN); wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame)); wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr, (len - sizeof(struct wi_80211_hdr)) + 2); if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id)) { printf(WI_PRT_FMT ": xmit failed\n", WI_PRT_ARG(sc)); return(EIO); } return(0); } STATIC void wi_stop(sc) struct wi_softc *sc; { struct ifnet *ifp; if (sc->wi_gone) return; DPRINTF(WID_STOP, ("wi_stop: sc %p\n", sc)); ifp = &sc->arpcom.ac_if; CSR_WRITE_2(sc, WI_INT_EN, 0); wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0); timeout_del(&sc->sc_timo); ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE); ifp->if_timer = 0; return; } STATIC void wi_watchdog(ifp) struct ifnet *ifp; { struct wi_softc *sc; sc = ifp->if_softc; printf(WI_PRT_FMT ": device timeout\n", WI_PRT_ARG(sc)); wi_init(sc); ifp->if_oerrors++; return; } STATIC void wi_shutdown(arg) void *arg; { struct wi_softc *sc; sc = arg; wi_stop(sc); return; } STATIC void wi_get_id(sc, print_cis) struct wi_softc *sc; int print_cis; { struct wi_ltv_ver ver; struct wi_ltv_cis cis; const char *p; if (print_cis) { /* * For PCI attachments the CIS strings won't have been printed * so print them here. */ cis.wi_type = WI_RID_CIS; cis.wi_len = sizeof(cis.wi_cis); if (wi_read_record(sc, (struct wi_ltv_gen *)&cis) == 0) { char *cis_strings[3]; cis_strings[0] = (char *)&cis.wi_cis[11]; cis_strings[1] = cis_strings[0] + strlen(cis_strings[0]) + 1; cis_strings[2] = cis_strings[1] + strlen(cis_strings[1]) + 1; printf("\n%s: \"%s, %s, %s\"", WI_PRT_ARG(sc), cis_strings[0], cis_strings[1], cis_strings[2]); } } /* get chip identity */ bzero(&ver, sizeof(ver)); ver.wi_type = WI_RID_CARD_ID; ver.wi_len = 5; wi_read_record(sc, (struct wi_ltv_gen *)&ver); switch (letoh16(ver.wi_ver[0])) { case WI_NIC_EVB2: p = "PRISM I HFA3841(EVB2)"; sc->sc_prism2 = 1; break; case WI_NIC_HWB3763: p = "PRISM II HWB3763 rev.B"; sc->sc_prism2 = 1; break; case WI_NIC_HWB3163: p = "PRISM II HWB3163 rev.A"; sc->sc_prism2 = 1; break; case WI_NIC_HWB3163B: p = "PRISM II HWB3163 rev.B"; sc->sc_prism2 = 1; break; case WI_NIC_EVB3: p = "PRISM II HFA3842(EVB3)"; sc->sc_prism2 = 1; break; case WI_NIC_HWB1153: p = "PRISM I HFA1153"; sc->sc_prism2 = 1; break; case WI_NIC_P2_SST: p = "PRISM II HWB3163 SST-flash"; sc->sc_prism2 = 1; break; case WI_NIC_PRISM2_5: p = "PRISM 2.5 ISL3873"; sc->sc_prism2 = 1; break; default: p = "Lucent chip or unknown chip"; sc->sc_prism2 = 0; break; } /* get firmware version */ bzero(&ver, sizeof(ver)); ver.wi_type = WI_RID_STA_IDENTITY; ver.wi_len = 5; wi_read_record(sc, (struct wi_ltv_gen *)&ver); ver.wi_ver[1] = letoh16(ver.wi_ver[1]); ver.wi_ver[2] = letoh16(ver.wi_ver[2]); ver.wi_ver[3] = letoh16(ver.wi_ver[3]); if (sc->sc_prism2) { printf("\n%s: %s, Firmware %i.%i variant %i, ", WI_PRT_ARG(sc), p, ver.wi_ver[2], ver.wi_ver[3], ver.wi_ver[1]); sc->sc_prism2_ver = ver.wi_ver[2] * 100 + ver.wi_ver[3] * 10 + ver.wi_ver[1]; } else { printf("\n%s: Firmware %i.%i variant %i, ", WI_PRT_ARG(sc), ver.wi_ver[2], ver.wi_ver[3], ver.wi_ver[1]); } return; }