/* $OpenBSD: if_wi.c,v 1.138 2007/09/17 01:33:33 krw Exp $ */ /* * Copyright (c) 1997, 1998, 1999 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * From: if_wi.c,v 1.7 1999/07/04 14:40:22 wpaul Exp $ */ /* * Lucent WaveLAN/IEEE 802.11 driver for OpenBSD. * * Originally written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The WaveLAN/IEEE adapter is the second generation of the WaveLAN * from Lucent. Unlike the older cards, the new ones are programmed * entirely via a firmware-driven controller called the Hermes. * Unfortunately, Lucent will not release the Hermes programming manual * without an NDA (if at all). What they do release is an API library * called the HCF (Hardware Control Functions) which is supposed to * do the device-specific operations of a device driver for you. The * publicly available version of the HCF library (the 'HCF Light') is * a) extremely gross, b) lacks certain features, particularly support * for 802.11 frames, and c) is contaminated by the GNU Public License. * * This driver does not use the HCF or HCF Light at all. Instead, it * programs the Hermes controller directly, using information gleaned * from the HCF Light code and corresponding documentation. */ #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */ #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #define BPFATTACH(if_bpf,if,dlt,sz) #define STATIC #ifdef WIDEBUG u_int32_t widebug = WIDEBUG; #define WID_INTR 0x01 #define WID_START 0x02 #define WID_IOCTL 0x04 #define WID_INIT 0x08 #define WID_STOP 0x10 #define WID_RESET 0x20 #define DPRINTF(mask,args) if (widebug & (mask)) printf args; #else /* !WIDEBUG */ #define DPRINTF(mask,args) #endif /* WIDEBUG */ #if !defined(lint) && !defined(__OpenBSD__) static const char rcsid[] = "$OpenBSD: if_wi.c,v 1.138 2007/09/17 01:33:33 krw Exp $"; #endif /* lint */ #ifdef foo static u_int8_t wi_mcast_addr[6] = { 0x01, 0x60, 0x1D, 0x00, 0x01, 0x00 }; #endif STATIC void wi_reset(struct wi_softc *); STATIC int wi_ioctl(struct ifnet *, u_long, caddr_t); STATIC void wi_init_io(struct wi_softc *); STATIC void wi_start(struct ifnet *); STATIC void wi_watchdog(struct ifnet *); STATIC void wi_shutdown(void *); STATIC void wi_rxeof(struct wi_softc *); STATIC void wi_txeof(struct wi_softc *, int); STATIC void wi_update_stats(struct wi_softc *); STATIC void wi_setmulti(struct wi_softc *); STATIC int wi_cmd_io(struct wi_softc *, int, int, int, int); STATIC int wi_read_record_io(struct wi_softc *, struct wi_ltv_gen *); STATIC int wi_write_record_io(struct wi_softc *, struct wi_ltv_gen *); STATIC int wi_read_data_io(struct wi_softc *, int, int, caddr_t, int); STATIC int wi_write_data_io(struct wi_softc *, int, int, caddr_t, int); STATIC int wi_seek(struct wi_softc *, int, int, int); STATIC void wi_inquire(void *); STATIC int wi_setdef(struct wi_softc *, struct wi_req *); STATIC void wi_get_id(struct wi_softc *); STATIC int wi_media_change(struct ifnet *); STATIC void wi_media_status(struct ifnet *, struct ifmediareq *); STATIC int wi_set_ssid(struct ieee80211_nwid *, u_int8_t *, int); STATIC int wi_set_nwkey(struct wi_softc *, struct ieee80211_nwkey *); STATIC int wi_get_nwkey(struct wi_softc *, struct ieee80211_nwkey *); STATIC int wi_sync_media(struct wi_softc *, int, int); STATIC int wi_set_pm(struct wi_softc *, struct ieee80211_power *); STATIC int wi_get_pm(struct wi_softc *, struct ieee80211_power *); STATIC int wi_set_txpower(struct wi_softc *, struct ieee80211_txpower *); STATIC int wi_get_txpower(struct wi_softc *, struct ieee80211_txpower *); STATIC int wi_get_debug(struct wi_softc *, struct wi_req *); STATIC int wi_set_debug(struct wi_softc *, struct wi_req *); STATIC void wi_do_hostencrypt(struct wi_softc *, caddr_t, int); STATIC int wi_do_hostdecrypt(struct wi_softc *, caddr_t, int); STATIC int wi_alloc_nicmem_io(struct wi_softc *, int, int *); STATIC int wi_get_fid_io(struct wi_softc *sc, int fid); STATIC void wi_intr_enable(struct wi_softc *sc, int mode); STATIC void wi_intr_ack(struct wi_softc *sc, int mode); void wi_scan_timeout(void *); /* Autoconfig definition of driver back-end */ struct cfdriver wi_cd = { NULL, "wi", DV_IFNET }; const struct wi_card_ident wi_card_ident[] = { WI_CARD_IDS }; struct wi_funcs wi_func_io = { wi_cmd_io, wi_read_record_io, wi_write_record_io, wi_alloc_nicmem_io, wi_read_data_io, wi_write_data_io, wi_get_fid_io, wi_init_io, wi_start, wi_ioctl, wi_watchdog, wi_inquire, }; int wi_attach(struct wi_softc *sc, struct wi_funcs *funcs) { struct ieee80211com *ic; struct ifnet *ifp; struct wi_ltv_macaddr mac; struct wi_ltv_rates rates; struct wi_ltv_gen gen; int error; ic = &sc->sc_ic; ifp = &ic->ic_if; sc->sc_funcs = funcs; sc->wi_cmd_count = 500; wi_reset(sc); /* Read the station address. */ mac.wi_type = WI_RID_MAC_NODE; mac.wi_len = 4; error = wi_read_record(sc, (struct wi_ltv_gen *)&mac); if (error) { printf(": unable to read station address\n"); return (error); } bcopy((char *)&mac.wi_mac_addr, (char *)&ic->ic_myaddr, IEEE80211_ADDR_LEN); wi_get_id(sc); printf("address %s", ether_sprintf(ic->ic_myaddr)); bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = funcs->f_ioctl; ifp->if_start = funcs->f_start; ifp->if_watchdog = funcs->f_watchdog; ifp->if_baudrate = 10000000; IFQ_SET_READY(&ifp->if_snd); (void)wi_set_ssid(&sc->wi_node_name, WI_DEFAULT_NODENAME, sizeof(WI_DEFAULT_NODENAME) - 1); (void)wi_set_ssid(&sc->wi_net_name, WI_DEFAULT_NETNAME, sizeof(WI_DEFAULT_NETNAME) - 1); (void)wi_set_ssid(&sc->wi_ibss_name, WI_DEFAULT_IBSS, sizeof(WI_DEFAULT_IBSS) - 1); sc->wi_portnum = WI_DEFAULT_PORT; sc->wi_ptype = WI_PORTTYPE_BSS; sc->wi_ap_density = WI_DEFAULT_AP_DENSITY; sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH; sc->wi_tx_rate = WI_DEFAULT_TX_RATE; sc->wi_max_data_len = WI_DEFAULT_DATALEN; sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS; sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED; sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP; sc->wi_roaming = WI_DEFAULT_ROAMING; sc->wi_authtype = WI_DEFAULT_AUTHTYPE; sc->wi_diversity = WI_DEFAULT_DIVERSITY; sc->wi_crypto_algorithm = WI_CRYPTO_FIRMWARE_WEP; /* * Read the default channel from the NIC. This may vary * depending on the country where the NIC was purchased, so * we can't hard-code a default and expect it to work for * everyone. */ gen.wi_type = WI_RID_OWN_CHNL; gen.wi_len = 2; if (wi_read_record(sc, &gen) == 0) sc->wi_channel = letoh16(gen.wi_val); else sc->wi_channel = 3; /* * Set flags based on firmware version. */ switch (sc->sc_firmware_type) { case WI_LUCENT: sc->wi_flags |= WI_FLAGS_HAS_ROAMING; if (sc->sc_sta_firmware_ver >= 60000) sc->wi_flags |= WI_FLAGS_HAS_MOR; if (sc->sc_sta_firmware_ver >= 60006) { sc->wi_flags |= WI_FLAGS_HAS_IBSS; sc->wi_flags |= WI_FLAGS_HAS_CREATE_IBSS; } sc->wi_ibss_port = htole16(1); break; case WI_INTERSIL: sc->wi_flags |= WI_FLAGS_HAS_ROAMING; /* older prism firmware is slow so crank the count */ if (sc->sc_sta_firmware_ver < 10000) sc->wi_cmd_count = 5000; else sc->wi_cmd_count = 2000; if (sc->sc_sta_firmware_ver >= 800) { #ifndef SMALL_KERNEL /* * USB hostap is more pain than it is worth * for now, things would have to be overhauled */ if ((sc->sc_sta_firmware_ver != 10402) && (!(sc->wi_flags & WI_FLAGS_BUS_USB))) sc->wi_flags |= WI_FLAGS_HAS_HOSTAP; #endif sc->wi_flags |= WI_FLAGS_HAS_IBSS; sc->wi_flags |= WI_FLAGS_HAS_CREATE_IBSS; } if (sc->sc_sta_firmware_ver >= 10603) sc->wi_flags |= WI_FLAGS_HAS_ENH_SECURITY; sc->wi_ibss_port = htole16(0); break; case WI_SYMBOL: sc->wi_flags |= WI_FLAGS_HAS_DIVERSITY; if (sc->sc_sta_firmware_ver >= 20000) sc->wi_flags |= WI_FLAGS_HAS_IBSS; if (sc->sc_sta_firmware_ver >= 25000) sc->wi_flags |= WI_FLAGS_HAS_CREATE_IBSS; sc->wi_ibss_port = htole16(4); break; } /* * Find out if we support WEP on this card. */ gen.wi_type = WI_RID_WEP_AVAIL; gen.wi_len = 2; if (wi_read_record(sc, &gen) == 0 && gen.wi_val != htole16(0)) sc->wi_flags |= WI_FLAGS_HAS_WEP; timeout_set(&sc->sc_timo, funcs->f_inquire, sc); bzero((char *)&sc->wi_stats, sizeof(sc->wi_stats)); /* Find supported rates. */ rates.wi_type = WI_RID_DATA_RATES; rates.wi_len = sizeof(rates.wi_rates); if (wi_read_record(sc, (struct wi_ltv_gen *)&rates) == 0) { int i, nrates; nrates = letoh16(*(u_int16_t *)rates.wi_rates); if (nrates > sizeof(rates.wi_rates) - 2) nrates = sizeof(rates.wi_rates) - 2; sc->wi_supprates = 0; for (i = 0; i < nrates; i++) sc->wi_supprates |= rates.wi_rates[2 + i]; } else sc->wi_supprates = WI_SUPPRATES_1M | WI_SUPPRATES_2M | WI_SUPPRATES_5M | WI_SUPPRATES_11M; ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status); #define ADD(m, c) ifmedia_add(&sc->sc_media, (m), (c), NULL) ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_ADHOC, 0), 0); if (sc->wi_flags & WI_FLAGS_HAS_IBSS) ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_IBSS, 0), 0); if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS) ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_IBSSMASTER, 0), 0); if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP) ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_HOSTAP, 0), 0); if (sc->wi_supprates & WI_SUPPRATES_1M) { ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, IFM_IEEE80211_ADHOC, 0), 0); if (sc->wi_flags & WI_FLAGS_HAS_IBSS) ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, IFM_IEEE80211_IBSS, 0), 0); if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS) ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, IFM_IEEE80211_IBSSMASTER, 0), 0); if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP) ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, IFM_IEEE80211_HOSTAP, 0), 0); } if (sc->wi_supprates & WI_SUPPRATES_2M) { ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, IFM_IEEE80211_ADHOC, 0), 0); if (sc->wi_flags & WI_FLAGS_HAS_IBSS) ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, IFM_IEEE80211_IBSS, 0), 0); if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS) ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, IFM_IEEE80211_IBSSMASTER, 0), 0); if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP) ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, IFM_IEEE80211_HOSTAP, 0), 0); } if (sc->wi_supprates & WI_SUPPRATES_5M) { ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, IFM_IEEE80211_ADHOC, 0), 0); if (sc->wi_flags & WI_FLAGS_HAS_IBSS) ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, IFM_IEEE80211_IBSS, 0), 0); if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS) ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, IFM_IEEE80211_IBSSMASTER, 0), 0); if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP) ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, IFM_IEEE80211_HOSTAP, 0), 0); } if (sc->wi_supprates & WI_SUPPRATES_11M) { ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, IFM_IEEE80211_ADHOC, 0), 0); if (sc->wi_flags & WI_FLAGS_HAS_IBSS) ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, IFM_IEEE80211_IBSS, 0), 0); if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS) ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, IFM_IEEE80211_IBSSMASTER, 0), 0); if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP) ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, IFM_IEEE80211_HOSTAP, 0), 0); ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_MANUAL, 0, 0), 0); } #undef ADD ifmedia_set(&sc->sc_media, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0)); /* * Call MI attach routines. */ if_attach(ifp); memcpy(((struct arpcom *)ifp)->ac_enaddr, ic->ic_myaddr, ETHER_ADDR_LEN); ether_ifattach(ifp); printf("\n"); sc->wi_flags |= WI_FLAGS_ATTACHED; #if NBPFILTER > 0 BPFATTACH(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header)); #endif sc->sc_sdhook = shutdownhook_establish(wi_shutdown, sc); wi_init(sc); wi_stop(sc); return (0); } STATIC void wi_intr_enable(struct wi_softc *sc, int mode) { if (!(sc->wi_flags & WI_FLAGS_BUS_USB)) CSR_WRITE_2(sc, WI_INT_EN, mode); } STATIC void wi_intr_ack(struct wi_softc *sc, int mode) { if (!(sc->wi_flags & WI_FLAGS_BUS_USB)) CSR_WRITE_2(sc, WI_EVENT_ACK, mode); } int wi_intr(void *vsc) { struct wi_softc *sc = vsc; struct ifnet *ifp; u_int16_t status; DPRINTF(WID_INTR, ("wi_intr: sc %p\n", sc)); ifp = &sc->sc_ic.ic_if; if (!(sc->wi_flags & WI_FLAGS_ATTACHED) || !(ifp->if_flags & IFF_UP)) { CSR_WRITE_2(sc, WI_INT_EN, 0); CSR_WRITE_2(sc, WI_EVENT_ACK, 0xffff); return (0); } /* Disable interrupts. */ CSR_WRITE_2(sc, WI_INT_EN, 0); status = CSR_READ_2(sc, WI_EVENT_STAT); CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS); if (status & WI_EV_RX) { wi_rxeof(sc); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX); } if (status & WI_EV_TX) { wi_txeof(sc, status); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX); } if (status & WI_EV_ALLOC) { int id; id = CSR_READ_2(sc, WI_ALLOC_FID); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC); if (id == sc->wi_tx_data_id) wi_txeof(sc, status); } if (status & WI_EV_INFO) { wi_update_stats(sc); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO); } if (status & WI_EV_TX_EXC) { wi_txeof(sc, status); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC); } if (status & WI_EV_INFO_DROP) { CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP); } /* Re-enable interrupts. */ CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); if (!IFQ_IS_EMPTY(&ifp->if_snd)) wi_start(ifp); return (1); } STATIC int wi_get_fid_io(struct wi_softc *sc, int fid) { return CSR_READ_2(sc, fid); } void wi_rxeof(struct wi_softc *sc) { struct ifnet *ifp; struct ether_header *eh; struct mbuf *m; caddr_t olddata; u_int16_t ftype; int maxlen; int id; ifp = &sc->sc_ic.ic_if; id = wi_get_fid(sc, WI_RX_FID); if (sc->wi_procframe || sc->wi_debug.wi_monitor) { struct wi_frame *rx_frame; int datlen, hdrlen; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { ifp->if_ierrors++; return; } MCLGET(m, M_DONTWAIT); if (!(m->m_flags & M_EXT)) { m_freem(m); ifp->if_ierrors++; return; } m->m_pkthdr.rcvif = ifp; if (wi_read_data(sc, id, 0, mtod(m, caddr_t), sizeof(struct wi_frame))) { m_freem(m); ifp->if_ierrors++; return; } rx_frame = mtod(m, struct wi_frame *); if (rx_frame->wi_status & htole16(WI_STAT_BADCRC)) { m_freem(m); ifp->if_ierrors++; return; } switch ((letoh16(rx_frame->wi_status) & WI_STAT_MAC_PORT) >> 8) { case 7: switch (letoh16(rx_frame->wi_frame_ctl) & WI_FCTL_FTYPE) { case WI_FTYPE_DATA: hdrlen = WI_DATA_HDRLEN; datlen = letoh16(rx_frame->wi_dat_len); break; case WI_FTYPE_MGMT: hdrlen = WI_MGMT_HDRLEN; datlen = letoh16(rx_frame->wi_dat_len); break; case WI_FTYPE_CTL: hdrlen = WI_CTL_HDRLEN; datlen = 0; break; default: printf(WI_PRT_FMT ": received packet of " "unknown type on port 7\n", WI_PRT_ARG(sc)); m_freem(m); ifp->if_ierrors++; return; } break; case 0: hdrlen = WI_DATA_HDRLEN; datlen = letoh16(rx_frame->wi_dat_len); break; default: printf(WI_PRT_FMT ": received packet on invalid port " "(wi_status=0x%x)\n", WI_PRT_ARG(sc), letoh16(rx_frame->wi_status)); m_freem(m); ifp->if_ierrors++; return; } if ((hdrlen + datlen + 2) > MCLBYTES) { m_freem(m); ifp->if_ierrors++; return; } if (wi_read_data(sc, id, hdrlen, mtod(m, caddr_t) + hdrlen, datlen + 2)) { m_freem(m); ifp->if_ierrors++; return; } m->m_pkthdr.len = m->m_len = hdrlen + datlen; } else { struct wi_frame rx_frame; /* First read in the frame header */ if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame, sizeof(rx_frame))) { ifp->if_ierrors++; return; } /* Drop undecryptable or packets with receive errors here */ if (rx_frame.wi_status & htole16(WI_STAT_ERRSTAT)) { ifp->if_ierrors++; return; } /* Stash frame type in host byte order for later use */ ftype = letoh16(rx_frame.wi_frame_ctl) & WI_FCTL_FTYPE; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { ifp->if_ierrors++; return; } MCLGET(m, M_DONTWAIT); if (!(m->m_flags & M_EXT)) { m_freem(m); ifp->if_ierrors++; return; } olddata = m->m_data; /* Align the data after the ethernet header */ m->m_data = (caddr_t)ALIGN(m->m_data + sizeof(struct ether_header)) - sizeof(struct ether_header); eh = mtod(m, struct ether_header *); maxlen = MCLBYTES - (m->m_data - olddata); m->m_pkthdr.rcvif = ifp; if (ftype == WI_FTYPE_MGMT && sc->wi_ptype == WI_PORTTYPE_HOSTAP) { u_int16_t rxlen = letoh16(rx_frame.wi_dat_len); if ((WI_802_11_OFFSET_RAW + rxlen + 2) > maxlen) { printf("%s: oversized mgmt packet received in " "hostap mode (wi_dat_len=%d, " "wi_status=0x%x)\n", sc->sc_dev.dv_xname, rxlen, letoh16(rx_frame.wi_status)); m_freem(m); ifp->if_ierrors++; return; } /* Put the whole header in there. */ bcopy(&rx_frame, mtod(m, void *), sizeof(struct wi_frame)); if (wi_read_data(sc, id, WI_802_11_OFFSET_RAW, mtod(m, caddr_t) + WI_802_11_OFFSET_RAW, rxlen + 2)) { m_freem(m); if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG) printf("wihap: failed to copy header\n"); ifp->if_ierrors++; return; } m->m_pkthdr.len = m->m_len = WI_802_11_OFFSET_RAW + rxlen; /* XXX: consider giving packet to bhp? */ wihap_mgmt_input(sc, &rx_frame, m); return; } switch (letoh16(rx_frame.wi_status) & WI_RXSTAT_MSG_TYPE) { case WI_STAT_1042: case WI_STAT_TUNNEL: case WI_STAT_WMP_MSG: if ((letoh16(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN) > maxlen) { printf(WI_PRT_FMT ": oversized packet received " "(wi_dat_len=%d, wi_status=0x%x)\n", WI_PRT_ARG(sc), letoh16(rx_frame.wi_dat_len), letoh16(rx_frame.wi_status)); m_freem(m); ifp->if_ierrors++; return; } m->m_pkthdr.len = m->m_len = letoh16(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN; bcopy((char *)&rx_frame.wi_dst_addr, (char *)&eh->ether_dhost, ETHER_ADDR_LEN); bcopy((char *)&rx_frame.wi_src_addr, (char *)&eh->ether_shost, ETHER_ADDR_LEN); bcopy((char *)&rx_frame.wi_type, (char *)&eh->ether_type, ETHER_TYPE_LEN); if (wi_read_data(sc, id, WI_802_11_OFFSET, mtod(m, caddr_t) + sizeof(struct ether_header), m->m_len + 2)) { ifp->if_ierrors++; m_freem(m); return; } break; default: if ((letoh16(rx_frame.wi_dat_len) + sizeof(struct ether_header)) > maxlen) { printf(WI_PRT_FMT ": oversized packet received " "(wi_dat_len=%d, wi_status=0x%x)\n", WI_PRT_ARG(sc), letoh16(rx_frame.wi_dat_len), letoh16(rx_frame.wi_status)); m_freem(m); ifp->if_ierrors++; return; } m->m_pkthdr.len = m->m_len = letoh16(rx_frame.wi_dat_len) + sizeof(struct ether_header); if (wi_read_data(sc, id, WI_802_3_OFFSET, mtod(m, caddr_t), m->m_len + 2)) { m_freem(m); ifp->if_ierrors++; return; } break; } ifp->if_ipackets++; if (sc->wi_use_wep && rx_frame.wi_frame_ctl & htole16(WI_FCTL_WEP)) { int len; switch (sc->wi_crypto_algorithm) { case WI_CRYPTO_FIRMWARE_WEP: break; case WI_CRYPTO_SOFTWARE_WEP: m_copydata(m, 0, m->m_pkthdr.len, (caddr_t)sc->wi_rxbuf); len = m->m_pkthdr.len - sizeof(struct ether_header); if (wi_do_hostdecrypt(sc, sc->wi_rxbuf + sizeof(struct ether_header), len)) { if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG) printf(WI_PRT_FMT ": Error decrypting incoming packet.\n", WI_PRT_ARG(sc)); m_freem(m); ifp->if_ierrors++; return; } len -= IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_CRCLEN; /* * copy data back to mbufs: * we need to ditch the IV & most LLC/SNAP stuff * (except SNAP type, we're going use that to * overwrite the ethertype in the ether_header) */ m_copyback(m, sizeof(struct ether_header) - WI_ETHERTYPE_LEN, WI_ETHERTYPE_LEN + (len - WI_SNAPHDR_LEN), sc->wi_rxbuf + sizeof(struct ether_header) + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + WI_SNAPHDR_LEN); m_adj(m, -(WI_ETHERTYPE_LEN + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + WI_SNAPHDR_LEN)); break; } } if (sc->wi_ptype == WI_PORTTYPE_HOSTAP) { /* * Give host AP code first crack at data packets. * If it decides to handle it (or drop it), it will * return a non-zero. Otherwise, it is destined for * this host. */ if (wihap_data_input(sc, &rx_frame, m)) return; } } #if NBPFILTER > 0 /* Handle BPF listeners. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_IN); #endif /* Receive packet unless in procframe or monitor mode. */ if (sc->wi_procframe || sc->wi_debug.wi_monitor) m_freem(m); else ether_input_mbuf(ifp, m); return; } void wi_txeof(struct wi_softc *sc, int status) { struct ifnet *ifp; ifp = &sc->sc_ic.ic_if; ifp->if_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; if (status & WI_EV_TX_EXC) ifp->if_oerrors++; else ifp->if_opackets++; return; } void wi_inquire(void *xsc) { struct wi_softc *sc; struct ifnet *ifp; int s, rv; sc = xsc; ifp = &sc->sc_ic.ic_if; timeout_add(&sc->sc_timo, hz * 60); /* Don't do this while we're transmitting */ if (ifp->if_flags & IFF_OACTIVE) return; s = splnet(); rv = wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS, 0, 0); splx(s); if (rv) printf(WI_PRT_FMT ": wi_cmd failed with %d\n", WI_PRT_ARG(sc), rv); return; } void wi_update_stats(struct wi_softc *sc) { struct wi_ltv_gen gen; u_int16_t id; struct ifnet *ifp; u_int32_t *ptr; int len, i; u_int16_t t; ifp = &sc->sc_ic.ic_if; id = wi_get_fid(sc, WI_INFO_FID); wi_read_data(sc, id, 0, (char *)&gen, 4); if (gen.wi_type == htole16(WI_INFO_SCAN_RESULTS)) { sc->wi_scanbuf_len = letoh16(gen.wi_len); wi_read_data(sc, id, 4, (caddr_t)sc->wi_scanbuf, sc->wi_scanbuf_len * 2); return; } else if (gen.wi_type != htole16(WI_INFO_COUNTERS)) return; /* Some card versions have a larger stats structure */ len = (letoh16(gen.wi_len) - 1 < sizeof(sc->wi_stats) / 4) ? letoh16(gen.wi_len) - 1 : sizeof(sc->wi_stats) / 4; ptr = (u_int32_t *)&sc->wi_stats; for (i = 0; i < len; i++) { if (sc->wi_flags & WI_FLAGS_BUS_USB) { wi_read_data(sc, id, 4 + i*2, (char *)&t, 2); t = letoh16(t); } else t = CSR_READ_2(sc, WI_DATA1); #ifdef WI_HERMES_STATS_WAR if (t > 0xF000) t = ~t & 0xFFFF; #endif ptr[i] += t; } ifp->if_collisions = sc->wi_stats.wi_tx_single_retries + sc->wi_stats.wi_tx_multi_retries + sc->wi_stats.wi_tx_retry_limit; return; } STATIC int wi_cmd_io(struct wi_softc *sc, int cmd, int val0, int val1, int val2) { int i, s = 0; /* Wait for the busy bit to clear. */ for (i = sc->wi_cmd_count; i--; DELAY(1000)) { if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY)) break; } if (i < 0) { if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG) printf(WI_PRT_FMT ": wi_cmd_io: busy bit won't clear\n", WI_PRT_ARG(sc)); return(ETIMEDOUT); } CSR_WRITE_2(sc, WI_PARAM0, val0); CSR_WRITE_2(sc, WI_PARAM1, val1); CSR_WRITE_2(sc, WI_PARAM2, val2); CSR_WRITE_2(sc, WI_COMMAND, cmd); for (i = WI_TIMEOUT; i--; DELAY(WI_DELAY)) { /* * Wait for 'command complete' bit to be * set in the event status register. */ s = CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD; if (s) { /* Ack the event and read result code. */ s = CSR_READ_2(sc, WI_STATUS); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD); if (s & WI_STAT_CMD_RESULT) return(EIO); break; } } if (i < 0) { if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG) printf(WI_PRT_FMT ": timeout in wi_cmd 0x%04x; event status 0x%04x\n", WI_PRT_ARG(sc), cmd, s); return(ETIMEDOUT); } return(0); } STATIC void wi_reset(struct wi_softc *sc) { int error, tries = 3; DPRINTF(WID_RESET, ("wi_reset: sc %p\n", sc)); /* Symbol firmware cannot be initialized more than once. */ if (sc->sc_firmware_type == WI_SYMBOL) { if (sc->wi_flags & WI_FLAGS_INITIALIZED) return; tries = 1; } for (; tries--; DELAY(WI_DELAY * 1000)) { if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0) break; } if (tries < 0) { printf(WI_PRT_FMT ": init failed\n", WI_PRT_ARG(sc)); return; } sc->wi_flags |= WI_FLAGS_INITIALIZED; wi_intr_enable(sc, 0); wi_intr_ack(sc, 0xffff); /* Calibrate timer. */ WI_SETVAL(WI_RID_TICK_TIME, 8); return; } STATIC void wi_cor_reset(struct wi_softc *sc) { u_int8_t cor_value; DPRINTF(WID_RESET, ("wi_cor_reset: sc %p\n", sc)); /* * Do a soft reset of the card; this is required for Symbol cards. * This shouldn't hurt other cards but there have been reports * of the COR reset messing up old Lucent firmware revisions so * we avoid soft reset on Lucent cards for now. */ if (sc->sc_firmware_type != WI_LUCENT) { cor_value = bus_space_read_1(sc->wi_ltag, sc->wi_lhandle, sc->wi_cor_offset); bus_space_write_1(sc->wi_ltag, sc->wi_lhandle, sc->wi_cor_offset, (cor_value | WI_COR_SOFT_RESET)); DELAY(1000); bus_space_write_1(sc->wi_ltag, sc->wi_lhandle, sc->wi_cor_offset, (cor_value & ~WI_COR_SOFT_RESET)); DELAY(1000); } return; } /* * Read an LTV record from the NIC. */ STATIC int wi_read_record_io(struct wi_softc *sc, struct wi_ltv_gen *ltv) { u_int8_t *ptr; int len, code; struct wi_ltv_gen *oltv, p2ltv; if (sc->sc_firmware_type != WI_LUCENT) { oltv = ltv; switch (ltv->wi_type) { case WI_RID_ENCRYPTION: p2ltv.wi_type = WI_RID_P2_ENCRYPTION; p2ltv.wi_len = 2; ltv = &p2ltv; break; case WI_RID_TX_CRYPT_KEY: if (ltv->wi_val > WI_NLTV_KEYS) return (EINVAL); p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY; p2ltv.wi_len = 2; ltv = &p2ltv; break; } } /* Tell the NIC to enter record read mode. */ if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type, 0, 0)) return(EIO); /* Seek to the record. */ if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1)) return(EIO); /* * Read the length and record type and make sure they * match what we expect (this verifies that we have enough * room to hold all of the returned data). */ len = CSR_READ_2(sc, WI_DATA1); if (len > ltv->wi_len) return(ENOSPC); code = CSR_READ_2(sc, WI_DATA1); if (code != ltv->wi_type) return(EIO); ltv->wi_len = len; ltv->wi_type = code; /* Now read the data. */ ptr = (u_int8_t *)<v->wi_val; if (ltv->wi_len > 1) CSR_READ_RAW_2(sc, WI_DATA1, ptr, (ltv->wi_len-1)*2); if (ltv->wi_type == WI_RID_PORTTYPE && sc->wi_ptype == WI_PORTTYPE_IBSS && ltv->wi_val == sc->wi_ibss_port) { /* * Convert vendor IBSS port type to WI_PORTTYPE_IBSS. * Since Lucent uses port type 1 for BSS *and* IBSS we * have to rely on wi_ptype to distinguish this for us. */ ltv->wi_val = htole16(WI_PORTTYPE_IBSS); } else if (sc->sc_firmware_type != WI_LUCENT) { int v; switch (oltv->wi_type) { case WI_RID_TX_RATE: case WI_RID_CUR_TX_RATE: switch (letoh16(ltv->wi_val)) { case 1: v = 1; break; case 2: v = 2; break; case 3: v = 6; break; case 4: v = 5; break; case 7: v = 7; break; case 8: v = 11; break; case 15: v = 3; break; default: v = 0x100 + letoh16(ltv->wi_val); break; } oltv->wi_val = htole16(v); break; case WI_RID_ENCRYPTION: oltv->wi_len = 2; if (ltv->wi_val & htole16(0x01)) oltv->wi_val = htole16(1); else oltv->wi_val = htole16(0); break; case WI_RID_TX_CRYPT_KEY: case WI_RID_CNFAUTHMODE: oltv->wi_len = 2; oltv->wi_val = ltv->wi_val; break; } } return(0); } /* * Same as read, except we inject data instead of reading it. */ STATIC int wi_write_record_io(struct wi_softc *sc, struct wi_ltv_gen *ltv) { u_int8_t *ptr; u_int16_t val = 0; int i; struct wi_ltv_gen p2ltv; if (ltv->wi_type == WI_RID_PORTTYPE && letoh16(ltv->wi_val) == WI_PORTTYPE_IBSS) { /* Convert WI_PORTTYPE_IBSS to vendor IBSS port type. */ p2ltv.wi_type = WI_RID_PORTTYPE; p2ltv.wi_len = 2; p2ltv.wi_val = sc->wi_ibss_port; ltv = &p2ltv; } else if (sc->sc_firmware_type != WI_LUCENT) { int v; switch (ltv->wi_type) { case WI_RID_TX_RATE: p2ltv.wi_type = WI_RID_TX_RATE; p2ltv.wi_len = 2; switch (letoh16(ltv->wi_val)) { case 1: v = 1; break; case 2: v = 2; break; case 3: v = 15; break; case 5: v = 4; break; case 6: v = 3; break; case 7: v = 7; break; case 11: v = 8; break; default: return EINVAL; } p2ltv.wi_val = htole16(v); ltv = &p2ltv; break; case WI_RID_ENCRYPTION: p2ltv.wi_type = WI_RID_P2_ENCRYPTION; p2ltv.wi_len = 2; if (ltv->wi_val & htole16(0x01)) { val = PRIVACY_INVOKED; /* * If using shared key WEP we must set the * EXCLUDE_UNENCRYPTED bit. Symbol cards * need this bit set even when not using * shared key. We can't just test for * IEEE80211_AUTH_SHARED since Symbol cards * have 2 shared key modes. */ if (sc->wi_authtype != IEEE80211_AUTH_OPEN || sc->sc_firmware_type == WI_SYMBOL) val |= EXCLUDE_UNENCRYPTED; switch (sc->wi_crypto_algorithm) { case WI_CRYPTO_FIRMWARE_WEP: /* * TX encryption is broken in * Host AP mode. */ if (sc->wi_ptype == WI_PORTTYPE_HOSTAP) val |= HOST_ENCRYPT; break; case WI_CRYPTO_SOFTWARE_WEP: val |= HOST_ENCRYPT|HOST_DECRYPT; break; } p2ltv.wi_val = htole16(val); } else p2ltv.wi_val = htole16(HOST_ENCRYPT | HOST_DECRYPT); ltv = &p2ltv; break; case WI_RID_TX_CRYPT_KEY: if (ltv->wi_val > WI_NLTV_KEYS) return (EINVAL); p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY; p2ltv.wi_len = 2; p2ltv.wi_val = ltv->wi_val; ltv = &p2ltv; break; case WI_RID_DEFLT_CRYPT_KEYS: { int error; int keylen; struct wi_ltv_str ws; struct wi_ltv_keys *wk = (struct wi_ltv_keys *)ltv; keylen = wk->wi_keys[sc->wi_tx_key].wi_keylen; keylen = letoh16(keylen); for (i = 0; i < 4; i++) { bzero(&ws, sizeof(ws)); ws.wi_len = (keylen > 5) ? 8 : 4; ws.wi_type = WI_RID_P2_CRYPT_KEY0 + i; bcopy(&wk->wi_keys[i].wi_keydat, ws.wi_str, keylen); error = wi_write_record(sc, (struct wi_ltv_gen *)&ws); if (error) return (error); } } return (0); } } if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1)) return(EIO); CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len); CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type); ptr = (u_int8_t *)<v->wi_val; if (ltv->wi_len > 1) CSR_WRITE_RAW_2(sc, WI_DATA1, ptr, (ltv->wi_len-1) *2); if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type, 0, 0)) return(EIO); return(0); } STATIC int wi_seek(struct wi_softc *sc, int id, int off, int chan) { int i; int selreg, offreg; switch (chan) { case WI_BAP0: selreg = WI_SEL0; offreg = WI_OFF0; break; case WI_BAP1: selreg = WI_SEL1; offreg = WI_OFF1; break; default: printf(WI_PRT_FMT ": invalid data path: %x\n", WI_PRT_ARG(sc), chan); return(EIO); } CSR_WRITE_2(sc, selreg, id); CSR_WRITE_2(sc, offreg, off); for (i = WI_TIMEOUT; i--; DELAY(1)) if (!(CSR_READ_2(sc, offreg) & (WI_OFF_BUSY|WI_OFF_ERR))) break; if (i < 0) return(ETIMEDOUT); return(0); } STATIC int wi_read_data_io(struct wi_softc *sc, int id, int off, caddr_t buf, int len) { u_int8_t *ptr; if (wi_seek(sc, id, off, WI_BAP1)) return(EIO); ptr = (u_int8_t *)buf; CSR_READ_RAW_2(sc, WI_DATA1, ptr, len); return(0); } /* * According to the comments in the HCF Light code, there is a bug in * the Hermes (or possibly in certain Hermes firmware revisions) where * the chip's internal autoincrement counter gets thrown off during * data writes: the autoincrement is missed, causing one data word to * be overwritten and subsequent words to be written to the wrong memory * locations. The end result is that we could end up transmitting bogus * frames without realizing it. The workaround for this is to write a * couple of extra guard words after the end of the transfer, then * attempt to read then back. If we fail to locate the guard words where * we expect them, we preform the transfer over again. */ STATIC int wi_write_data_io(struct wi_softc *sc, int id, int off, caddr_t buf, int len) { u_int8_t *ptr; #ifdef WI_HERMES_AUTOINC_WAR again: #endif if (wi_seek(sc, id, off, WI_BAP0)) return(EIO); ptr = (u_int8_t *)buf; CSR_WRITE_RAW_2(sc, WI_DATA0, ptr, len); #ifdef WI_HERMES_AUTOINC_WAR CSR_WRITE_2(sc, WI_DATA0, 0x1234); CSR_WRITE_2(sc, WI_DATA0, 0x5678); if (wi_seek(sc, id, off + len, WI_BAP0)) return(EIO); if (CSR_READ_2(sc, WI_DATA0) != 0x1234 || CSR_READ_2(sc, WI_DATA0) != 0x5678) goto again; #endif return(0); } /* * Allocate a region of memory inside the NIC and zero * it out. */ STATIC int wi_alloc_nicmem_io(struct wi_softc *sc, int len, int *id) { int i; if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) { printf(WI_PRT_FMT ": failed to allocate %d bytes on NIC\n", WI_PRT_ARG(sc), len); return(ENOMEM); } for (i = WI_TIMEOUT; i--; DELAY(1)) { if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC) break; } if (i < 0) return(ETIMEDOUT); *id = CSR_READ_2(sc, WI_ALLOC_FID); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC); if (wi_seek(sc, *id, 0, WI_BAP0)) return(EIO); for (i = 0; i < len / 2; i++) CSR_WRITE_2(sc, WI_DATA0, 0); return(0); } STATIC void wi_setmulti(struct wi_softc *sc) { struct ifnet *ifp; int i = 0; struct wi_ltv_mcast mcast; struct ether_multistep step; struct ether_multi *enm; ifp = &sc->sc_ic.ic_if; bzero((char *)&mcast, sizeof(mcast)); mcast.wi_type = WI_RID_MCAST_LIST; mcast.wi_len = ((ETHER_ADDR_LEN / 2) * 16) + 1; allmulti: if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { wi_write_record(sc, (struct wi_ltv_gen *)&mcast); return; } ETHER_FIRST_MULTI(step, &sc->sc_ic.ic_ac, enm); while (enm != NULL) { if (i >= 16) { bzero((char *)&mcast, sizeof(mcast)); break; } if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { ifp->if_flags |= IFF_ALLMULTI; goto allmulti; } bcopy(enm->enm_addrlo, (char *)&mcast.wi_mcast[i], ETHER_ADDR_LEN); i++; ETHER_NEXT_MULTI(step, enm); } mcast.wi_len = (i * 3) + 1; wi_write_record(sc, (struct wi_ltv_gen *)&mcast); return; } STATIC int wi_setdef(struct wi_softc *sc, struct wi_req *wreq) { struct ifnet *ifp; int error = 0; ifp = &sc->sc_ic.ic_if; switch(wreq->wi_type) { case WI_RID_MAC_NODE: bcopy((char *)&wreq->wi_val, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN); bcopy((char *)&wreq->wi_val, (char *)&sc->sc_ic.ic_myaddr, ETHER_ADDR_LEN); break; case WI_RID_PORTTYPE: error = wi_sync_media(sc, letoh16(wreq->wi_val[0]), sc->wi_tx_rate); break; case WI_RID_TX_RATE: error = wi_sync_media(sc, sc->wi_ptype, letoh16(wreq->wi_val[0])); break; case WI_RID_MAX_DATALEN: sc->wi_max_data_len = letoh16(wreq->wi_val[0]); break; case WI_RID_RTS_THRESH: sc->wi_rts_thresh = letoh16(wreq->wi_val[0]); break; case WI_RID_SYSTEM_SCALE: sc->wi_ap_density = letoh16(wreq->wi_val[0]); break; case WI_RID_CREATE_IBSS: sc->wi_create_ibss = letoh16(wreq->wi_val[0]); error = wi_sync_media(sc, sc->wi_ptype, sc->wi_tx_rate); break; case WI_RID_OWN_CHNL: sc->wi_channel = letoh16(wreq->wi_val[0]); break; case WI_RID_NODENAME: error = wi_set_ssid(&sc->wi_node_name, (u_int8_t *)&wreq->wi_val[1], letoh16(wreq->wi_val[0])); break; case WI_RID_DESIRED_SSID: error = wi_set_ssid(&sc->wi_net_name, (u_int8_t *)&wreq->wi_val[1], letoh16(wreq->wi_val[0])); break; case WI_RID_OWN_SSID: error = wi_set_ssid(&sc->wi_ibss_name, (u_int8_t *)&wreq->wi_val[1], letoh16(wreq->wi_val[0])); break; case WI_RID_PM_ENABLED: sc->wi_pm_enabled = letoh16(wreq->wi_val[0]); break; case WI_RID_MICROWAVE_OVEN: sc->wi_mor_enabled = letoh16(wreq->wi_val[0]); break; case WI_RID_MAX_SLEEP: sc->wi_max_sleep = letoh16(wreq->wi_val[0]); break; case WI_RID_CNFAUTHMODE: sc->wi_authtype = letoh16(wreq->wi_val[0]); break; case WI_RID_ROAMING_MODE: sc->wi_roaming = letoh16(wreq->wi_val[0]); break; case WI_RID_SYMBOL_DIVERSITY: sc->wi_diversity = letoh16(wreq->wi_val[0]); break; case WI_RID_ENH_SECURITY: sc->wi_enh_security = letoh16(wreq->wi_val[0]); break; case WI_RID_ENCRYPTION: sc->wi_use_wep = letoh16(wreq->wi_val[0]); break; case WI_RID_TX_CRYPT_KEY: sc->wi_tx_key = letoh16(wreq->wi_val[0]); break; case WI_RID_DEFLT_CRYPT_KEYS: bcopy((char *)wreq, (char *)&sc->wi_keys, sizeof(struct wi_ltv_keys)); break; case WI_FRID_CRYPTO_ALG: switch (letoh16(wreq->wi_val[0])) { case WI_CRYPTO_FIRMWARE_WEP: sc->wi_crypto_algorithm = WI_CRYPTO_FIRMWARE_WEP; break; case WI_CRYPTO_SOFTWARE_WEP: sc->wi_crypto_algorithm = WI_CRYPTO_SOFTWARE_WEP; break; default: printf(WI_PRT_FMT ": unsupported crypto algorithm %d\n", WI_PRT_ARG(sc), letoh16(wreq->wi_val[0])); error = EINVAL; } break; default: error = EINVAL; break; } return (error); } STATIC int wi_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { int s, error = 0, i, j, len; struct wi_softc *sc; struct ifreq *ifr; struct proc *p = curproc; struct ifaddr *ifa = (struct ifaddr *)data; struct wi_scan_res *res; struct wi_scan_p2_hdr *p2; struct wi_req *wreq = NULL; u_int32_t flags; struct ieee80211_nwid *nwidp = NULL; struct ieee80211_nodereq_all *na; struct ieee80211_bssid *bssid; s = splnet(); sc = ifp->if_softc; ifr = (struct ifreq *)data; if (!(sc->wi_flags & WI_FLAGS_ATTACHED)) { splx(s); return(ENODEV); } DPRINTF (WID_IOCTL, ("wi_ioctl: command %lu data %p\n", command, data)); if ((error = ether_ioctl(ifp, &sc->sc_ic.ic_ac, command, data)) > 0) { splx(s); return error; } switch(command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: wi_init(sc); arp_ifinit(&sc->sc_ic.ic_ac, ifa); break; #endif /* INET */ default: wi_init(sc); break; } break; case SIOCSIFMTU: if (ifr->ifr_mtu > ETHERMTU || ifr->ifr_mtu < ETHERMIN) { error = EINVAL; } else if (ifp->if_mtu != ifr->ifr_mtu) { ifp->if_mtu = ifr->ifr_mtu; } break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->wi_if_flags & IFF_PROMISC)) { if (sc->wi_ptype != WI_PORTTYPE_HOSTAP) WI_SETVAL(WI_RID_PROMISC, 1); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->wi_if_flags & IFF_PROMISC) { if (sc->wi_ptype != WI_PORTTYPE_HOSTAP) WI_SETVAL(WI_RID_PROMISC, 0); } else wi_init(sc); } else if (ifp->if_flags & IFF_RUNNING) wi_stop(sc); sc->wi_if_flags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: /* Update our multicast list. */ error = (command == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->sc_ic.ic_ac) : ether_delmulti(ifr, &sc->sc_ic.ic_ac); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware filter * accordingly. */ if (ifp->if_flags & IFF_RUNNING) wi_setmulti(sc); error = 0; } break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command); break; case SIOCGWAVELAN: wreq = malloc(sizeof *wreq, M_DEVBUF, M_WAITOK | M_ZERO); error = copyin(ifr->ifr_data, wreq, sizeof(*wreq)); if (error) break; if (wreq->wi_len > WI_MAX_DATALEN) { error = EINVAL; break; } switch (wreq->wi_type) { case WI_RID_IFACE_STATS: /* XXX native byte order */ bcopy((char *)&sc->wi_stats, (char *)&wreq->wi_val, sizeof(sc->wi_stats)); wreq->wi_len = (sizeof(sc->wi_stats) / 2) + 1; break; case WI_RID_DEFLT_CRYPT_KEYS: /* For non-root user, return all-zeroes keys */ if (suser(p, 0)) bzero(wreq, sizeof(struct wi_ltv_keys)); else bcopy((char *)&sc->wi_keys, wreq, sizeof(struct wi_ltv_keys)); break; case WI_RID_PROCFRAME: wreq->wi_len = 2; wreq->wi_val[0] = htole16(sc->wi_procframe); break; case WI_RID_PRISM2: wreq->wi_len = 2; wreq->wi_val[0] = htole16(sc->sc_firmware_type == WI_LUCENT ? 0 : 1); break; case WI_FRID_CRYPTO_ALG: wreq->wi_val[0] = htole16((u_int16_t)sc->wi_crypto_algorithm); wreq->wi_len = 1; break; case WI_RID_SCAN_RES: if (sc->sc_firmware_type == WI_LUCENT) { memcpy((char *)wreq->wi_val, (char *)sc->wi_scanbuf, sc->wi_scanbuf_len * 2); wreq->wi_len = sc->wi_scanbuf_len; break; } /* FALLTHROUGH */ default: if (wi_read_record(sc, (struct wi_ltv_gen *)wreq)) { error = EINVAL; } break; } error = copyout(wreq, ifr->ifr_data, sizeof(*wreq)); break; case SIOCSWAVELAN: if ((error = suser(curproc, 0)) != 0) break; wreq = malloc(sizeof *wreq, M_DEVBUF, M_WAITOK | M_ZERO); error = copyin(ifr->ifr_data, wreq, sizeof(*wreq)); if (error) break; error = EINVAL; if (wreq->wi_len > WI_MAX_DATALEN) break; switch (wreq->wi_type) { case WI_RID_IFACE_STATS: break; case WI_RID_MGMT_XMIT: error = wi_mgmt_xmit(sc, (caddr_t)&wreq->wi_val, wreq->wi_len); break; case WI_RID_PROCFRAME: sc->wi_procframe = letoh16(wreq->wi_val[0]); error = 0; break; case WI_RID_SCAN_REQ: error = 0; if (sc->sc_firmware_type == WI_LUCENT) wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0); else error = wi_write_record(sc, (struct wi_ltv_gen *)wreq); break; case WI_FRID_CRYPTO_ALG: if (sc->sc_firmware_type != WI_LUCENT) { error = wi_setdef(sc, wreq); if (!error && (ifp->if_flags & IFF_UP)) wi_init(sc); } break; case WI_RID_SYMBOL_DIVERSITY: case WI_RID_ROAMING_MODE: case WI_RID_CREATE_IBSS: case WI_RID_MICROWAVE_OVEN: case WI_RID_OWN_SSID: case WI_RID_ENH_SECURITY: /* * Check for features that may not be supported * (must be just before default case). */ if ((wreq->wi_type == WI_RID_SYMBOL_DIVERSITY && !(sc->wi_flags & WI_FLAGS_HAS_DIVERSITY)) || (wreq->wi_type == WI_RID_ROAMING_MODE && !(sc->wi_flags & WI_FLAGS_HAS_ROAMING)) || (wreq->wi_type == WI_RID_CREATE_IBSS && !(sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)) || (wreq->wi_type == WI_RID_MICROWAVE_OVEN && !(sc->wi_flags & WI_FLAGS_HAS_MOR)) || (wreq->wi_type == WI_RID_ENH_SECURITY && !(sc->wi_flags & WI_FLAGS_HAS_ENH_SECURITY)) || (wreq->wi_type == WI_RID_OWN_SSID && wreq->wi_len != 0)) break; /* FALLTHROUGH */ default: error = wi_write_record(sc, (struct wi_ltv_gen *)wreq); if (!error) error = wi_setdef(sc, wreq); if (!error && (ifp->if_flags & IFF_UP)) wi_init(sc); } break; case SIOCGPRISM2DEBUG: wreq = malloc(sizeof *wreq, M_DEVBUF, M_WAITOK | M_ZERO); error = copyin(ifr->ifr_data, wreq, sizeof(*wreq)); if (error) break; if (!(ifp->if_flags & IFF_RUNNING) || sc->sc_firmware_type == WI_LUCENT) { error = EIO; break; } error = wi_get_debug(sc, wreq); if (error == 0) error = copyout(wreq, ifr->ifr_data, sizeof(*wreq)); break; case SIOCSPRISM2DEBUG: if ((error = suser(curproc, 0)) != 0) break; wreq = malloc(sizeof *wreq, M_DEVBUF, M_WAITOK | M_ZERO); error = copyin(ifr->ifr_data, wreq, sizeof(*wreq)); if (error) break; error = wi_set_debug(sc, wreq); break; case SIOCG80211NWID: if ((ifp->if_flags & IFF_UP) && sc->wi_net_name.i_len > 0) { /* Return the desired ID */ error = copyout(&sc->wi_net_name, ifr->ifr_data, sizeof(sc->wi_net_name)); } else { wreq = malloc(sizeof *wreq, M_DEVBUF, M_WAITOK|M_ZERO); wreq->wi_type = WI_RID_CURRENT_SSID; wreq->wi_len = WI_MAX_DATALEN; if (wi_read_record(sc, (struct wi_ltv_gen *)wreq) || letoh16(wreq->wi_val[0]) > IEEE80211_NWID_LEN) error = EINVAL; else { nwidp = malloc(sizeof *nwidp, M_DEVBUF, M_WAITOK | M_ZERO); wi_set_ssid(nwidp, (u_int8_t *)&wreq->wi_val[1], letoh16(wreq->wi_val[0])); error = copyout(nwidp, ifr->ifr_data, sizeof(*nwidp)); } } break; case SIOCS80211NWID: if ((error = suser(curproc, 0)) != 0) break; nwidp = malloc(sizeof *nwidp, M_DEVBUF, M_WAITOK); error = copyin(ifr->ifr_data, nwidp, sizeof(*nwidp)); if (error) break; if (nwidp->i_len > IEEE80211_NWID_LEN) { error = EINVAL; break; } if (sc->wi_net_name.i_len == nwidp->i_len && memcmp(sc->wi_net_name.i_nwid, nwidp->i_nwid, nwidp->i_len) == 0) break; wi_set_ssid(&sc->wi_net_name, nwidp->i_nwid, nwidp->i_len); WI_SETSTR(WI_RID_DESIRED_SSID, sc->wi_net_name); if (ifp->if_flags & IFF_UP) /* Reinitialize WaveLAN. */ wi_init(sc); break; case SIOCS80211NWKEY: if ((error = suser(curproc, 0)) != 0) break; error = wi_set_nwkey(sc, (struct ieee80211_nwkey *)data); break; case SIOCG80211NWKEY: error = wi_get_nwkey(sc, (struct ieee80211_nwkey *)data); break; case SIOCS80211POWER: if ((error = suser(curproc, 0)) != 0) break; error = wi_set_pm(sc, (struct ieee80211_power *)data); break; case SIOCG80211POWER: error = wi_get_pm(sc, (struct ieee80211_power *)data); break; case SIOCS80211TXPOWER: if ((error = suser(curproc, 0)) != 0) break; error = wi_set_txpower(sc, (struct ieee80211_txpower *)data); break; case SIOCG80211TXPOWER: error = wi_get_txpower(sc, (struct ieee80211_txpower *)data); break; case SIOCS80211CHANNEL: if ((error = suser(curproc, 0)) != 0) break; if (((struct ieee80211chanreq *)data)->i_channel > 14) { error = EINVAL; break; } wreq = malloc(sizeof *wreq, M_DEVBUF, M_WAITOK | M_ZERO); wreq->wi_type = WI_RID_OWN_CHNL; wreq->wi_val[0] = htole16(((struct ieee80211chanreq *)data)->i_channel); error = wi_setdef(sc, wreq); if (!error && (ifp->if_flags & IFF_UP)) wi_init(sc); break; case SIOCG80211CHANNEL: wreq = malloc(sizeof *wreq, M_DEVBUF, M_WAITOK | M_ZERO); wreq->wi_type = WI_RID_CURRENT_CHAN; wreq->wi_len = WI_MAX_DATALEN; if (wi_read_record(sc, (struct wi_ltv_gen *)wreq)) { error = EINVAL; break; } ((struct ieee80211chanreq *)data)->i_channel = letoh16(wreq->wi_val[0]); break; case SIOCG80211BSSID: bssid = (struct ieee80211_bssid *)data; wreq = malloc(sizeof *wreq, M_DEVBUF, M_WAITOK | M_ZERO); wreq->wi_type = WI_RID_CURRENT_BSSID; wreq->wi_len = WI_MAX_DATALEN; if (wi_read_record(sc, (struct wi_ltv_gen *)wreq)) { error = EINVAL; break; } IEEE80211_ADDR_COPY(bssid->i_bssid, wreq->wi_val); break; case SIOCS80211SCAN: if ((error = suser(curproc, 0)) != 0) break; if (sc->wi_ptype == WI_PORTTYPE_HOSTAP) break; if ((ifp->if_flags & IFF_UP) == 0) { error = ENETDOWN; break; } if (sc->sc_firmware_type == WI_LUCENT) { wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0); } else { wreq = malloc(sizeof *wreq, M_DEVBUF, M_WAITOK|M_ZERO); wreq->wi_len = 3; wreq->wi_type = WI_RID_SCAN_REQ; wreq->wi_val[0] = 0x3FFF; wreq->wi_val[1] = 0x000F; error = wi_write_record(sc, (struct wi_ltv_gen *)wreq); if (error) break; } sc->wi_scan_lock = 0; timeout_set(&sc->wi_scan_timeout, wi_scan_timeout, sc); len = WI_WAVELAN_RES_TIMEOUT; if (sc->wi_flags & WI_FLAGS_BUS_USB) { /* Use a longer timeout for wi@usb */ len = WI_WAVELAN_RES_TIMEOUT * 4; } timeout_add(&sc->wi_scan_timeout, len); /* Let the userspace process wait for completion */ error = tsleep(&sc->wi_scan_lock, PCATCH, "wiscan", hz * IEEE80211_SCAN_TIMEOUT); break; case SIOCG80211ALLNODES: { struct ieee80211_nodereq *nr = NULL; if ((error = suser(curproc, 0)) != 0) break; na = (struct ieee80211_nodereq_all *)data; if (sc->wi_ptype == WI_PORTTYPE_HOSTAP) { /* List all associated stations */ error = wihap_ioctl(sc, command, data); break; } wreq = malloc(sizeof *wreq, M_DEVBUF, M_WAITOK | M_ZERO); wreq->wi_len = WI_MAX_DATALEN; wreq->wi_type = WI_RID_SCAN_RES; if (sc->sc_firmware_type == WI_LUCENT) { bcopy(sc->wi_scanbuf, wreq->wi_val, sc->wi_scanbuf_len * 2); wreq->wi_len = sc->wi_scanbuf_len; i = 0; len = WI_WAVELAN_RES_SIZE; } else { if (wi_read_record(sc, (struct wi_ltv_gen *)wreq)) { error = EINVAL; break; } p2 = (struct wi_scan_p2_hdr *)wreq->wi_val; if (p2->wi_reason == 0) break; i = sizeof(*p2); len = WI_PRISM2_RES_SIZE; } for (na->na_nodes = j = 0; (i < (wreq->wi_len * 2) - len) && (na->na_size >= j + sizeof(struct ieee80211_nodereq)); i += len) { if (nr == NULL) nr = malloc(sizeof *nr, M_DEVBUF, M_WAITOK); res = (struct wi_scan_res *)((char *)wreq->wi_val + i); if (res == NULL) break; bzero(nr, sizeof(*nr)); IEEE80211_ADDR_COPY(nr->nr_macaddr, res->wi_bssid); IEEE80211_ADDR_COPY(nr->nr_bssid, res->wi_bssid); nr->nr_channel = letoh16(res->wi_chan); nr->nr_chan_flags = IEEE80211_CHAN_B; nr->nr_rssi = letoh16(res->wi_signal); nr->nr_max_rssi = 0; /* XXX */ nr->nr_nwid_len = letoh16(res->wi_ssid_len); bcopy(res->wi_ssid, nr->nr_nwid, nr->nr_nwid_len); nr->nr_intval = letoh16(res->wi_interval); nr->nr_capinfo = letoh16(res->wi_capinfo); nr->nr_txrate = res->wi_rate == WI_WAVELAN_RES_1M ? 2 : (res->wi_rate == WI_WAVELAN_RES_2M ? 4 : (res->wi_rate == WI_WAVELAN_RES_5M ? 11 : (res->wi_rate == WI_WAVELAN_RES_11M ? 22 : 0))); nr->nr_nrates = 0; while (res->wi_srates[nr->nr_nrates] != 0) { nr->nr_rates[nr->nr_nrates] = res->wi_srates[nr->nr_nrates] & WI_VAR_SRATES_MASK; nr->nr_nrates++; } nr->nr_flags = 0; if (bcmp(nr->nr_macaddr, nr->nr_bssid, IEEE80211_ADDR_LEN) == 0) nr->nr_flags |= IEEE80211_NODEREQ_AP; error = copyout(nr, (caddr_t)na->na_node + j, sizeof(struct ieee80211_nodereq)); if (error) break; j += sizeof(struct ieee80211_nodereq); na->na_nodes++; } if (nr) free(nr, M_DEVBUF); break; } case SIOCG80211FLAGS: if (sc->wi_ptype != WI_PORTTYPE_HOSTAP) break; ifr->ifr_flags = 0; if (sc->wi_flags & WI_FLAGS_HAS_ENH_SECURITY) { wreq = malloc(sizeof *wreq, M_DEVBUF, M_WAITOK|M_ZERO); wreq->wi_len = WI_MAX_DATALEN; wreq->wi_type = WI_RID_ENH_SECURITY; if (wi_read_record(sc, (struct wi_ltv_gen *)wreq)) { error = EINVAL; break; } sc->wi_enh_security = letoh16(wreq->wi_val[0]); if (sc->wi_enh_security == WI_HIDESSID_IGNPROBES) ifr->ifr_flags |= IEEE80211_F_HIDENWID >> IEEE80211_F_USERSHIFT; } break; case SIOCS80211FLAGS: if ((error = suser(curproc, 0)) != 0) break; if (sc->wi_ptype != WI_PORTTYPE_HOSTAP) { error = EINVAL; break; } flags = (u_int32_t)ifr->ifr_flags << IEEE80211_F_USERSHIFT; if (sc->wi_flags & WI_FLAGS_HAS_ENH_SECURITY) { sc->wi_enh_security = (flags & IEEE80211_F_HIDENWID) ? WI_HIDESSID_IGNPROBES : 0; WI_SETVAL(WI_RID_ENH_SECURITY, sc->wi_enh_security); } break; case SIOCHOSTAP_ADD: case SIOCHOSTAP_DEL: case SIOCHOSTAP_GET: case SIOCHOSTAP_GETALL: case SIOCHOSTAP_GFLAGS: case SIOCHOSTAP_SFLAGS: /* Send all Host AP specific ioctl's to Host AP code. */ error = wihap_ioctl(sc, command, data); break; default: error = EINVAL; break; } if (wreq) free(wreq, M_DEVBUF); if (nwidp) free(nwidp, M_DEVBUF); splx(s); return(error); } void wi_scan_timeout(void *arg) { struct wi_softc *sc = (struct wi_softc *)arg; struct wi_req wreq; if (sc->wi_scan_lock++ < WI_WAVELAN_RES_TRIES && sc->sc_firmware_type != WI_LUCENT && (sc->wi_flags & WI_FLAGS_BUS_USB) == 0) { /* * The Prism2/2.5/3 chipsets will set an extra field in the * scan result if the scan request has been completed by the * firmware. This allows to poll for completion and to * wait for some more time if the scan is still in progress. * * XXX This doesn't work with wi@usb because it isn't safe * to call wi_read_record_usb() while beeing in the timeout * handler. */ wreq.wi_len = WI_MAX_DATALEN; wreq.wi_type = WI_RID_SCAN_RES; if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) == 0 && ((struct wi_scan_p2_hdr *)wreq.wi_val)->wi_reason == 0) { /* Wait some more time for scan completion */ timeout_add(&sc->wi_scan_timeout, WI_WAVELAN_RES_TIMEOUT); return; } } if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG) printf(WI_PRT_FMT ": wi_scan_timeout: %d tries\n", WI_PRT_ARG(sc), sc->wi_scan_lock); /* Wakeup the userland */ wakeup(&sc->wi_scan_lock); sc->wi_scan_lock = 0; } STATIC void wi_init_io(struct wi_softc *sc) { struct ifnet *ifp = &sc->sc_ic.ic_ac.ac_if; int s; struct wi_ltv_macaddr mac; int id = 0; if (!(sc->wi_flags & WI_FLAGS_ATTACHED)) return; DPRINTF(WID_INIT, ("wi_init: sc %p\n", sc)); s = splnet(); if (ifp->if_flags & IFF_RUNNING) wi_stop(sc); wi_reset(sc); /* Program max data length. */ WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len); /* Set the port type. */ WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype); /* Enable/disable IBSS creation. */ WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss); /* Program the RTS/CTS threshold. */ WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh); /* Program the TX rate */ WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate); /* Access point density */ WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density); /* Power Management Enabled */ WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled); /* Power Management Max Sleep */ WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep); /* Set Enhanced Security if supported. */ if (sc->wi_flags & WI_FLAGS_HAS_ENH_SECURITY) WI_SETVAL(WI_RID_ENH_SECURITY, sc->wi_enh_security); /* Set Roaming Mode unless this is a Symbol card. */ if (sc->wi_flags & WI_FLAGS_HAS_ROAMING) WI_SETVAL(WI_RID_ROAMING_MODE, sc->wi_roaming); /* Set Antenna Diversity if this is a Symbol card. */ if (sc->wi_flags & WI_FLAGS_HAS_DIVERSITY) WI_SETVAL(WI_RID_SYMBOL_DIVERSITY, sc->wi_diversity); /* Specify the network name */ WI_SETSTR(WI_RID_DESIRED_SSID, sc->wi_net_name); /* Specify the IBSS name */ if (sc->wi_net_name.i_len != 0 && (sc->wi_ptype == WI_PORTTYPE_HOSTAP || (sc->wi_create_ibss && sc->wi_ptype == WI_PORTTYPE_IBSS))) WI_SETSTR(WI_RID_OWN_SSID, sc->wi_net_name); else WI_SETSTR(WI_RID_OWN_SSID, sc->wi_ibss_name); /* Specify the frequency to use */ WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel); /* Program the nodename. */ WI_SETSTR(WI_RID_NODENAME, sc->wi_node_name); /* Set our MAC address. */ mac.wi_len = 4; mac.wi_type = WI_RID_MAC_NODE; bcopy(LLADDR(ifp->if_sadl), (char *)&sc->sc_ic.ic_myaddr, ETHER_ADDR_LEN); bcopy((char *)&sc->sc_ic.ic_myaddr, (char *)&mac.wi_mac_addr, ETHER_ADDR_LEN); wi_write_record(sc, (struct wi_ltv_gen *)&mac); /* * Initialize promisc mode. * Being in the Host-AP mode causes * great deal of pain if promisc mode is set. * Therefore we avoid confusing the firmware * and always reset promisc mode in Host-AP regime, * it shows us all the packets anyway. */ if (sc->wi_ptype != WI_PORTTYPE_HOSTAP && ifp->if_flags & IFF_PROMISC) WI_SETVAL(WI_RID_PROMISC, 1); else WI_SETVAL(WI_RID_PROMISC, 0); /* Configure WEP. */ if (sc->wi_flags & WI_FLAGS_HAS_WEP) { WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep); WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key); sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1; sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS; wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys); if (sc->sc_firmware_type != WI_LUCENT && sc->wi_use_wep) { /* * HWB3163 EVAL-CARD Firmware version less than 0.8.2. * * If promiscuous mode is disabled, the Prism2 chip * does not work with WEP . * I'm currently investigating the details of this. * (ichiro@netbsd.org) */ if (sc->sc_firmware_type == WI_INTERSIL && sc->sc_sta_firmware_ver < 802 ) { /* firm ver < 0.8.2 */ WI_SETVAL(WI_RID_PROMISC, 1); } WI_SETVAL(WI_RID_CNFAUTHMODE, sc->wi_authtype); } } /* Set multicast filter. */ wi_setmulti(sc); /* Enable desired port */ wi_cmd(sc, WI_CMD_ENABLE | sc->wi_portnum, 0, 0, 0); if (wi_alloc_nicmem(sc, ETHER_MAX_LEN + sizeof(struct wi_frame) + 8, &id)) printf(WI_PRT_FMT ": tx buffer allocation failed\n", WI_PRT_ARG(sc)); sc->wi_tx_data_id = id; if (wi_alloc_nicmem(sc, ETHER_MAX_LEN + sizeof(struct wi_frame) + 8, &id)) printf(WI_PRT_FMT ": mgmt. buffer allocation failed\n", WI_PRT_ARG(sc)); sc->wi_tx_mgmt_id = id; /* Set txpower */ if (sc->wi_flags & WI_FLAGS_TXPOWER) wi_set_txpower(sc, NULL); /* enable interrupts */ wi_intr_enable(sc, WI_INTRS); wihap_init(sc); splx(s); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; timeout_add(&sc->sc_timo, hz * 60); return; } static const u_int32_t crc32tab[] = { 0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L, 0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L, 0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L, 0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL, 0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L, 0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L, 0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L, 0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL, 0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L, 0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL, 0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L, 0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L, 0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L, 0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL, 0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL, 0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L, 0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL, 0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L, 0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L, 0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L, 0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL, 0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L, 0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L, 0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL, 0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L, 0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L, 0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L, 0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L, 0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L, 0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL, 0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL, 0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L, 0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L, 0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL, 0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL, 0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L, 0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL, 0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L, 0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL, 0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L, 0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL, 0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L, 0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L, 0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL, 0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L, 0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L, 0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L, 0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L, 0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L, 0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L, 0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL, 0x2d02ef8dL }; STATIC void wi_do_hostencrypt(struct wi_softc *sc, caddr_t buf, int len) { u_int32_t i, crc, klen; u_int8_t key[RC4KEYLEN]; u_int8_t *dat; struct rc4_ctx ctx; if (!sc->wi_icv_flag) { sc->wi_icv = arc4random(); sc->wi_icv_flag++; } else sc->wi_icv++; /* * Skip 'bad' IVs from Fluhrer/Mantin/Shamir: * (B, 255, N) with 3 <= B < 8 */ if (sc->wi_icv >= 0x03ff00 && (sc->wi_icv & 0xf8ff00) == 0x00ff00) sc->wi_icv += 0x000100; /* prepend 24bit IV to tx key, byte order does not matter */ bzero(key, sizeof(key)); key[0] = sc->wi_icv >> 16; key[1] = sc->wi_icv >> 8; key[2] = sc->wi_icv; klen = letoh16(sc->wi_keys.wi_keys[sc->wi_tx_key].wi_keylen); bcopy((char *)&sc->wi_keys.wi_keys[sc->wi_tx_key].wi_keydat, (char *)key + IEEE80211_WEP_IVLEN, klen); klen = (klen > IEEE80211_WEP_KEYLEN) ? RC4KEYLEN : RC4KEYLEN / 2; /* rc4 keysetup */ rc4_keysetup(&ctx, key, klen); /* output: IV, tx keyid, rc4(data), rc4(crc32(data)) */ dat = buf; dat[0] = key[0]; dat[1] = key[1]; dat[2] = key[2]; dat[3] = sc->wi_tx_key << 6; /* pad and keyid */ dat += 4; /* compute crc32 over data and encrypt */ crc = ~0; for (i = 0; i < len; i++) crc = crc32tab[(crc ^ dat[i]) & 0xff] ^ (crc >> 8); crc = ~crc; rc4_crypt(&ctx, dat, dat, len); dat += len; /* append little-endian crc32 and encrypt */ dat[0] = crc; dat[1] = crc >> 8; dat[2] = crc >> 16; dat[3] = crc >> 24; rc4_crypt(&ctx, dat, dat, IEEE80211_WEP_CRCLEN); } STATIC int wi_do_hostdecrypt(struct wi_softc *sc, caddr_t buf, int len) { u_int32_t i, crc, klen, kid; u_int8_t key[RC4KEYLEN]; u_int8_t *dat; struct rc4_ctx ctx; if (len < IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_CRCLEN) return -1; len -= (IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_CRCLEN); dat = buf; bzero(key, sizeof(key)); key[0] = dat[0]; key[1] = dat[1]; key[2] = dat[2]; kid = (dat[3] >> 6) % 4; dat += 4; klen = letoh16(sc->wi_keys.wi_keys[kid].wi_keylen); bcopy((char *)&sc->wi_keys.wi_keys[kid].wi_keydat, (char *)key + IEEE80211_WEP_IVLEN, klen); klen = (klen > IEEE80211_WEP_KEYLEN) ? RC4KEYLEN : RC4KEYLEN / 2; /* rc4 keysetup */ rc4_keysetup(&ctx, key, klen); /* decrypt and compute crc32 over data */ rc4_crypt(&ctx, dat, dat, len); crc = ~0; for (i = 0; i < len; i++) crc = crc32tab[(crc ^ dat[i]) & 0xff] ^ (crc >> 8); crc = ~crc; dat += len; /* decrypt little-endian crc32 and verify */ rc4_crypt(&ctx, dat, dat, IEEE80211_WEP_CRCLEN); if ((dat[0] != crc) && (dat[1] != crc >> 8) && (dat[2] != crc >> 16) && (dat[3] != crc >> 24)) { if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG) printf(WI_PRT_FMT ": wi_do_hostdecrypt: iv mismatch: " "0x%02x%02x%02x%02x vs. 0x%x\n", WI_PRT_ARG(sc), dat[3], dat[2], dat[1], dat[0], crc); return -1; } return 0; } void wi_start(struct ifnet *ifp) { struct wi_softc *sc; struct mbuf *m0; struct wi_frame tx_frame; struct ether_header *eh; int id, hostencrypt = 0; sc = ifp->if_softc; DPRINTF(WID_START, ("wi_start: ifp %p sc %p\n", ifp, sc)); if (!(sc->wi_flags & WI_FLAGS_ATTACHED)) return; if (ifp->if_flags & IFF_OACTIVE) return; nextpkt: IFQ_DEQUEUE(&ifp->if_snd, m0); if (m0 == NULL) return; bzero((char *)&tx_frame, sizeof(tx_frame)); tx_frame.wi_frame_ctl = htole16(WI_FTYPE_DATA | WI_STYPE_DATA); id = sc->wi_tx_data_id; eh = mtod(m0, struct ether_header *); if (sc->wi_ptype == WI_PORTTYPE_HOSTAP) { if (!wihap_check_tx(&sc->wi_hostap_info, eh->ether_dhost, &tx_frame.wi_tx_rate) && !(ifp->if_flags & IFF_PROMISC)) { if (ifp->if_flags & IFF_DEBUG) printf(WI_PRT_FMT ": wi_start: dropping unassoc dst %s\n", WI_PRT_ARG(sc), ether_sprintf(eh->ether_dhost)); m_freem(m0); goto nextpkt; } } /* * Use RFC1042 encoding for IP and ARP datagrams, * 802.3 for anything else. */ if (eh->ether_type == htons(ETHERTYPE_IP) || eh->ether_type == htons(ETHERTYPE_ARP) || eh->ether_type == htons(ETHERTYPE_REVARP) || eh->ether_type == htons(ETHERTYPE_IPV6)) { bcopy((char *)&eh->ether_dhost, (char *)&tx_frame.wi_addr1, ETHER_ADDR_LEN); if (sc->wi_ptype == WI_PORTTYPE_HOSTAP) { tx_frame.wi_tx_ctl = htole16(WI_ENC_TX_MGMT); /* XXX */ tx_frame.wi_frame_ctl |= htole16(WI_FCTL_FROMDS); bcopy((char *)&sc->sc_ic.ic_myaddr, (char *)&tx_frame.wi_addr2, ETHER_ADDR_LEN); bcopy((char *)&eh->ether_shost, (char *)&tx_frame.wi_addr3, ETHER_ADDR_LEN); if (sc->wi_use_wep) hostencrypt = 1; } else if (sc->wi_ptype == WI_PORTTYPE_BSS && sc->wi_use_wep && sc->wi_crypto_algorithm != WI_CRYPTO_FIRMWARE_WEP) { tx_frame.wi_tx_ctl = htole16(WI_ENC_TX_MGMT); /* XXX */ tx_frame.wi_frame_ctl |= htole16(WI_FCTL_TODS); bcopy((char *)&sc->sc_ic.ic_myaddr, (char *)&tx_frame.wi_addr2, ETHER_ADDR_LEN); bcopy((char *)&eh->ether_dhost, (char *)&tx_frame.wi_addr3, ETHER_ADDR_LEN); hostencrypt = 1; } else bcopy((char *)&eh->ether_shost, (char *)&tx_frame.wi_addr2, ETHER_ADDR_LEN); bcopy((char *)&eh->ether_dhost, (char *)&tx_frame.wi_dst_addr, ETHER_ADDR_LEN); bcopy((char *)&eh->ether_shost, (char *)&tx_frame.wi_src_addr, ETHER_ADDR_LEN); tx_frame.wi_dat_len = m0->m_pkthdr.len - WI_SNAPHDR_LEN; tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0); tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1); tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN); tx_frame.wi_type = eh->ether_type; if (hostencrypt) { /* Do host encryption. */ tx_frame.wi_frame_ctl |= htole16(WI_FCTL_WEP); bcopy(&tx_frame.wi_dat[0], &sc->wi_txbuf[4], 8); m_copydata(m0, sizeof(struct ether_header), m0->m_pkthdr.len - sizeof(struct ether_header), (caddr_t)&sc->wi_txbuf[12]); wi_do_hostencrypt(sc, (caddr_t)&sc->wi_txbuf, tx_frame.wi_dat_len); tx_frame.wi_dat_len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_CRCLEN; tx_frame.wi_dat_len = htole16(tx_frame.wi_dat_len); wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame)); wi_write_data(sc, id, WI_802_11_OFFSET_RAW, (caddr_t)&sc->wi_txbuf, (m0->m_pkthdr.len - sizeof(struct ether_header)) + 18); } else { m_copydata(m0, sizeof(struct ether_header), m0->m_pkthdr.len - sizeof(struct ether_header), (caddr_t)&sc->wi_txbuf); tx_frame.wi_dat_len = htole16(tx_frame.wi_dat_len); wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame)); wi_write_data(sc, id, WI_802_11_OFFSET, (caddr_t)&sc->wi_txbuf, (m0->m_pkthdr.len - sizeof(struct ether_header)) + 2); } } else { tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len); if (sc->wi_ptype == WI_PORTTYPE_HOSTAP && sc->wi_use_wep) { /* Do host encryption. (XXX - not implemented) */ printf(WI_PRT_FMT ": host encrypt not implemented for 802.3\n", WI_PRT_ARG(sc)); } else { m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&sc->wi_txbuf); wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame)); wi_write_data(sc, id, WI_802_3_OFFSET, (caddr_t)&sc->wi_txbuf, m0->m_pkthdr.len + 2); } } #if NBPFILTER > 0 /* * If there's a BPF listener, bounce a copy of * this frame to him. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT); #endif m_freem(m0); ifp->if_flags |= IFF_OACTIVE; /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id, 0, 0)) printf(WI_PRT_FMT ": wi_start: xmit failed\n", WI_PRT_ARG(sc)); return; } STATIC int wi_mgmt_xmit(struct wi_softc *sc, caddr_t data, int len) { struct wi_frame tx_frame; int id; struct wi_80211_hdr *hdr; caddr_t dptr; if (!(sc->wi_flags & WI_FLAGS_ATTACHED)) return(ENODEV); hdr = (struct wi_80211_hdr *)data; dptr = data + sizeof(struct wi_80211_hdr); bzero((char *)&tx_frame, sizeof(tx_frame)); id = sc->wi_tx_mgmt_id; bcopy((char *)hdr, (char *)&tx_frame.wi_frame_ctl, sizeof(struct wi_80211_hdr)); tx_frame.wi_tx_ctl = htole16(WI_ENC_TX_MGMT); tx_frame.wi_dat_len = len - sizeof(struct wi_80211_hdr); tx_frame.wi_len = htole16(tx_frame.wi_dat_len); tx_frame.wi_dat_len = htole16(tx_frame.wi_dat_len); wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame)); wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr, (len - sizeof(struct wi_80211_hdr)) + 2); if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id, 0, 0)) { printf(WI_PRT_FMT ": wi_mgmt_xmit: xmit failed\n", WI_PRT_ARG(sc)); /* * Hostile stations or corrupt frames may crash the card * and cause the kernel to get stuck printing complaints. * Reset the card and hope the problem goes away. */ wi_reset(sc); return(EIO); } return(0); } void wi_stop(struct wi_softc *sc) { struct ifnet *ifp; wihap_shutdown(sc); if (!(sc->wi_flags & WI_FLAGS_ATTACHED)) return; DPRINTF(WID_STOP, ("wi_stop: sc %p\n", sc)); timeout_del(&sc->sc_timo); ifp = &sc->sc_ic.ic_if; wi_intr_enable(sc, 0); wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0, 0, 0); ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE); ifp->if_timer = 0; return; } void wi_watchdog(struct ifnet *ifp) { struct wi_softc *sc; sc = ifp->if_softc; printf(WI_PRT_FMT ": device timeout\n", WI_PRT_ARG(sc)); wi_cor_reset(sc); wi_init(sc); ifp->if_oerrors++; return; } void wi_detach(struct wi_softc *sc) { struct ifnet *ifp; ifp = &sc->sc_ic.ic_if; if (ifp->if_flags & IFF_RUNNING) wi_stop(sc); if (sc->wi_flags & WI_FLAGS_ATTACHED) { sc->wi_flags &= ~WI_FLAGS_ATTACHED; if (sc->sc_sdhook != NULL) shutdownhook_disestablish(sc->sc_sdhook); } } STATIC void wi_shutdown(void *arg) { struct wi_softc *sc; sc = arg; wi_stop(sc); return; } STATIC void wi_get_id(struct wi_softc *sc) { struct wi_ltv_ver ver; const struct wi_card_ident *id; u_int16_t pri_fw_ver[3]; const char *card_name; u_int16_t card_id; /* get chip identity */ bzero(&ver, sizeof(ver)); ver.wi_type = WI_RID_CARD_ID; ver.wi_len = 5; wi_read_record(sc, (struct wi_ltv_gen *)&ver); card_id = letoh16(ver.wi_ver[0]); for (id = wi_card_ident; id->firm_type != WI_NOTYPE; id++) { if (card_id == id->card_id) break; } if (id->firm_type != WI_NOTYPE) { sc->sc_firmware_type = id->firm_type; card_name = id->card_name; } else if (ver.wi_ver[0] & htole16(0x8000)) { sc->sc_firmware_type = WI_INTERSIL; card_name = "Unknown PRISM2 chip"; } else { sc->sc_firmware_type = WI_LUCENT; } /* get primary firmware version (XXX - how to do Lucent?) */ if (sc->sc_firmware_type != WI_LUCENT) { bzero(&ver, sizeof(ver)); ver.wi_type = WI_RID_PRI_IDENTITY; ver.wi_len = 5; wi_read_record(sc, (struct wi_ltv_gen *)&ver); pri_fw_ver[0] = letoh16(ver.wi_ver[2]); pri_fw_ver[1] = letoh16(ver.wi_ver[3]); pri_fw_ver[2] = letoh16(ver.wi_ver[1]); } /* get station firmware version */ bzero(&ver, sizeof(ver)); ver.wi_type = WI_RID_STA_IDENTITY; ver.wi_len = 5; wi_read_record(sc, (struct wi_ltv_gen *)&ver); ver.wi_ver[1] = letoh16(ver.wi_ver[1]); ver.wi_ver[2] = letoh16(ver.wi_ver[2]); ver.wi_ver[3] = letoh16(ver.wi_ver[3]); sc->sc_sta_firmware_ver = ver.wi_ver[2] * 10000 + ver.wi_ver[3] * 100 + ver.wi_ver[1]; if (sc->sc_firmware_type == WI_INTERSIL && (sc->sc_sta_firmware_ver == 10102 || sc->sc_sta_firmware_ver == 20102)) { struct wi_ltv_str sver; char *p; bzero(&sver, sizeof(sver)); sver.wi_type = WI_RID_SYMBOL_IDENTITY; sver.wi_len = 7; /* value should be something like "V2.00-11" */ if (wi_read_record(sc, (struct wi_ltv_gen *)&sver) == 0 && *(p = (char *)sver.wi_str) >= 'A' && p[2] == '.' && p[5] == '-' && p[8] == '\0') { sc->sc_firmware_type = WI_SYMBOL; sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 + (p[3] - '0') * 1000 + (p[4] - '0') * 100 + (p[6] - '0') * 10 + (p[7] - '0'); } } if (sc->sc_firmware_type == WI_LUCENT) { printf("%s: Firmware %d.%02d variant %d, ", WI_PRT_ARG(sc), ver.wi_ver[2], ver.wi_ver[3], ver.wi_ver[1]); } else { printf("%s: %s%s (0x%04x), Firmware %d.%d.%d (primary), %d.%d.%d (station), ", WI_PRT_ARG(sc), sc->sc_firmware_type == WI_SYMBOL ? "Symbol " : "", card_name, card_id, pri_fw_ver[0], pri_fw_ver[1], pri_fw_ver[2], sc->sc_sta_firmware_ver / 10000, (sc->sc_sta_firmware_ver % 10000) / 100, sc->sc_sta_firmware_ver % 100); } } STATIC int wi_sync_media(struct wi_softc *sc, int ptype, int txrate) { int media = sc->sc_media.ifm_cur->ifm_media; int options = IFM_OPTIONS(media); int subtype; switch (txrate) { case 1: subtype = IFM_IEEE80211_DS1; break; case 2: subtype = IFM_IEEE80211_DS2; break; case 3: subtype = IFM_AUTO; break; case 5: subtype = IFM_IEEE80211_DS5; break; case 11: subtype = IFM_IEEE80211_DS11; break; default: subtype = IFM_MANUAL; /* Unable to represent */ break; } options &= ~IFM_OMASK; switch (ptype) { case WI_PORTTYPE_BSS: /* default port type */ break; case WI_PORTTYPE_ADHOC: options |= IFM_IEEE80211_ADHOC; break; case WI_PORTTYPE_HOSTAP: options |= IFM_IEEE80211_HOSTAP; break; case WI_PORTTYPE_IBSS: if (sc->wi_create_ibss) options |= IFM_IEEE80211_IBSSMASTER; else options |= IFM_IEEE80211_IBSS; break; default: subtype = IFM_MANUAL; /* Unable to represent */ break; } media = IFM_MAKEWORD(IFM_TYPE(media), subtype, options, IFM_INST(media)); if (ifmedia_match(&sc->sc_media, media, sc->sc_media.ifm_mask) == NULL) return (EINVAL); ifmedia_set(&sc->sc_media, media); sc->wi_ptype = ptype; sc->wi_tx_rate = txrate; return (0); } STATIC int wi_media_change(struct ifnet *ifp) { struct wi_softc *sc = ifp->if_softc; int otype = sc->wi_ptype; int orate = sc->wi_tx_rate; int ocreate_ibss = sc->wi_create_ibss; if ((sc->sc_media.ifm_cur->ifm_media & IFM_IEEE80211_HOSTAP) && sc->sc_firmware_type != WI_INTERSIL) return (EINVAL); sc->wi_create_ibss = 0; switch (sc->sc_media.ifm_cur->ifm_media & IFM_OMASK) { case 0: sc->wi_ptype = WI_PORTTYPE_BSS; break; case IFM_IEEE80211_ADHOC: sc->wi_ptype = WI_PORTTYPE_ADHOC; break; case IFM_IEEE80211_HOSTAP: sc->wi_ptype = WI_PORTTYPE_HOSTAP; break; case IFM_IEEE80211_IBSSMASTER: case IFM_IEEE80211_IBSSMASTER|IFM_IEEE80211_IBSS: if (!(sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)) return (EINVAL); sc->wi_create_ibss = 1; /* FALLTHROUGH */ case IFM_IEEE80211_IBSS: sc->wi_ptype = WI_PORTTYPE_IBSS; break; default: /* Invalid combination. */ return (EINVAL); } switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) { case IFM_IEEE80211_DS1: sc->wi_tx_rate = 1; break; case IFM_IEEE80211_DS2: sc->wi_tx_rate = 2; break; case IFM_AUTO: sc->wi_tx_rate = 3; break; case IFM_IEEE80211_DS5: sc->wi_tx_rate = 5; break; case IFM_IEEE80211_DS11: sc->wi_tx_rate = 11; break; } if (sc->sc_ic.ic_if.if_flags & IFF_UP) { if (otype != sc->wi_ptype || orate != sc->wi_tx_rate || ocreate_ibss != sc->wi_create_ibss) wi_init(sc); } ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media); return (0); } STATIC void wi_media_status(struct ifnet *ifp, struct ifmediareq *imr) { struct wi_softc *sc = ifp->if_softc; struct wi_req wreq; if (!(sc->sc_ic.ic_if.if_flags & IFF_UP)) { imr->ifm_active = IFM_IEEE80211|IFM_NONE; imr->ifm_status = 0; return; } if (sc->wi_tx_rate == 3) { imr->ifm_active = IFM_IEEE80211|IFM_AUTO; wreq.wi_type = WI_RID_CUR_TX_RATE; wreq.wi_len = WI_MAX_DATALEN; if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) == 0) { switch (letoh16(wreq.wi_val[0])) { case 1: imr->ifm_active |= IFM_IEEE80211_DS1; break; case 2: imr->ifm_active |= IFM_IEEE80211_DS2; break; case 6: imr->ifm_active |= IFM_IEEE80211_DS5; break; case 11: imr->ifm_active |= IFM_IEEE80211_DS11; break; } } } else { imr->ifm_active = sc->sc_media.ifm_cur->ifm_media; } imr->ifm_status = IFM_AVALID; switch (sc->wi_ptype) { case WI_PORTTYPE_ADHOC: case WI_PORTTYPE_IBSS: /* * XXX: It would be nice if we could give some actually * useful status like whether we joined another IBSS or * created one ourselves. */ /* FALLTHROUGH */ case WI_PORTTYPE_HOSTAP: imr->ifm_status |= IFM_ACTIVE; break; default: wreq.wi_type = WI_RID_COMMQUAL; wreq.wi_len = WI_MAX_DATALEN; if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) == 0 && letoh16(wreq.wi_val[0]) != 0) imr->ifm_status |= IFM_ACTIVE; } } STATIC int wi_set_nwkey(struct wi_softc *sc, struct ieee80211_nwkey *nwkey) { int i, len, error; struct wi_req wreq; struct wi_ltv_keys *wk = (struct wi_ltv_keys *)&wreq; if (!(sc->wi_flags & WI_FLAGS_HAS_WEP)) return ENODEV; if (nwkey->i_defkid <= 0 || nwkey->i_defkid > IEEE80211_WEP_NKID) return EINVAL; memcpy(wk, &sc->wi_keys, sizeof(*wk)); for (i = 0; i < IEEE80211_WEP_NKID; i++) { if (nwkey->i_key[i].i_keydat == NULL) continue; len = nwkey->i_key[i].i_keylen; if (len > sizeof(wk->wi_keys[i].wi_keydat)) return EINVAL; error = copyin(nwkey->i_key[i].i_keydat, wk->wi_keys[i].wi_keydat, len); if (error) return error; wk->wi_keys[i].wi_keylen = htole16(len); } wk->wi_len = (sizeof(*wk) / 2) + 1; wk->wi_type = WI_RID_DEFLT_CRYPT_KEYS; if (sc->sc_ic.ic_if.if_flags & IFF_UP) { error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq); if (error) return error; } if ((error = wi_setdef(sc, &wreq))) return (error); wreq.wi_len = 2; wreq.wi_type = WI_RID_TX_CRYPT_KEY; wreq.wi_val[0] = htole16(nwkey->i_defkid - 1); if (sc->sc_ic.ic_if.if_flags & IFF_UP) { error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq); if (error) return error; } if ((error = wi_setdef(sc, &wreq))) return (error); wreq.wi_type = WI_RID_ENCRYPTION; wreq.wi_val[0] = htole16(nwkey->i_wepon); if (sc->sc_ic.ic_if.if_flags & IFF_UP) { error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq); if (error) return error; } if ((error = wi_setdef(sc, &wreq))) return (error); if (sc->sc_ic.ic_if.if_flags & IFF_UP) wi_init(sc); return 0; } STATIC int wi_get_nwkey(struct wi_softc *sc, struct ieee80211_nwkey *nwkey) { int i, len, error; struct wi_ltv_keys *wk = &sc->wi_keys; if (!(sc->wi_flags & WI_FLAGS_HAS_WEP)) return ENODEV; nwkey->i_wepon = sc->wi_use_wep; nwkey->i_defkid = sc->wi_tx_key + 1; /* do not show any keys to non-root user */ error = suser(curproc, 0); for (i = 0; i < IEEE80211_WEP_NKID; i++) { if (nwkey->i_key[i].i_keydat == NULL) continue; /* error holds results of suser() for the first time */ if (error) return error; len = letoh16(wk->wi_keys[i].wi_keylen); if (nwkey->i_key[i].i_keylen < len) return ENOSPC; nwkey->i_key[i].i_keylen = len; error = copyout(wk->wi_keys[i].wi_keydat, nwkey->i_key[i].i_keydat, len); if (error) return error; } return 0; } STATIC int wi_set_pm(struct wi_softc *sc, struct ieee80211_power *power) { sc->wi_pm_enabled = power->i_enabled; sc->wi_max_sleep = power->i_maxsleep; if (sc->sc_ic.ic_if.if_flags & IFF_UP) wi_init(sc); return (0); } STATIC int wi_get_pm(struct wi_softc *sc, struct ieee80211_power *power) { power->i_enabled = sc->wi_pm_enabled; power->i_maxsleep = sc->wi_max_sleep; return (0); } STATIC int wi_set_txpower(struct wi_softc *sc, struct ieee80211_txpower *txpower) { u_int16_t cmd; u_int16_t power; int8_t tmp; int error; int alc; if (txpower == NULL) { if (!(sc->wi_flags & WI_FLAGS_TXPOWER)) return (EINVAL); alc = 0; /* disable ALC */ } else { if (txpower->i_mode == IEEE80211_TXPOWER_MODE_AUTO) { alc = 1; /* enable ALC */ sc->wi_flags &= ~WI_FLAGS_TXPOWER; } else { alc = 0; /* disable ALC */ sc->wi_flags |= WI_FLAGS_TXPOWER; sc->wi_txpower = txpower->i_val; } } /* Set ALC */ cmd = WI_CMD_DEBUG | (WI_DEBUG_CONFBITS << 8); if ((error = wi_cmd(sc, cmd, alc, 0x8, 0)) != 0) return (error); /* No need to set the TX power value if ALC is enabled */ if (alc) return (0); /* Convert dBM to internal TX power value */ if (sc->wi_txpower > 20) power = 128; else if (sc->wi_txpower < -43) power = 127; else { tmp = sc->wi_txpower; tmp = -12 - tmp; tmp <<= 2; power = (u_int16_t)tmp; } /* Set manual TX power */ cmd = WI_CMD_WRITE_MIF; if ((error = wi_cmd(sc, cmd, WI_HFA384X_CR_MANUAL_TX_POWER, power, 0)) != 0) return (error); if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG) printf("%s: %u (%d dBm)\n", sc->sc_dev.dv_xname, power, sc->wi_txpower); return (0); } STATIC int wi_get_txpower(struct wi_softc *sc, struct ieee80211_txpower *txpower) { u_int16_t cmd; u_int16_t power; int8_t tmp; int error; if (sc->wi_flags & WI_FLAGS_BUS_USB) return (EOPNOTSUPP); /* Get manual TX power */ cmd = WI_CMD_READ_MIF; if ((error = wi_cmd(sc, cmd, WI_HFA384X_CR_MANUAL_TX_POWER, 0, 0)) != 0) return (error); power = CSR_READ_2(sc, WI_RESP0); /* Convert internal TX power value to dBM */ if (power > 255) txpower->i_val = 255; else { tmp = power; tmp >>= 2; txpower->i_val = (u_int16_t)(-12 - tmp); } if (sc->wi_flags & WI_FLAGS_TXPOWER) txpower->i_mode = IEEE80211_TXPOWER_MODE_FIXED; else txpower->i_mode = IEEE80211_TXPOWER_MODE_AUTO; return (0); } STATIC int wi_set_ssid(struct ieee80211_nwid *ws, u_int8_t *id, int len) { if (len > IEEE80211_NWID_LEN) return (EINVAL); ws->i_len = len; memcpy(ws->i_nwid, id, len); return (0); } STATIC int wi_get_debug(struct wi_softc *sc, struct wi_req *wreq) { int error = 0; wreq->wi_len = 1; switch (wreq->wi_type) { case WI_DEBUG_SLEEP: wreq->wi_len++; wreq->wi_val[0] = htole16(sc->wi_debug.wi_sleep); break; case WI_DEBUG_DELAYSUPP: wreq->wi_len++; wreq->wi_val[0] = htole16(sc->wi_debug.wi_delaysupp); break; case WI_DEBUG_TXSUPP: wreq->wi_len++; wreq->wi_val[0] = htole16(sc->wi_debug.wi_txsupp); break; case WI_DEBUG_MONITOR: wreq->wi_len++; wreq->wi_val[0] = htole16(sc->wi_debug.wi_monitor); break; case WI_DEBUG_LEDTEST: wreq->wi_len += 3; wreq->wi_val[0] = htole16(sc->wi_debug.wi_ledtest); wreq->wi_val[1] = htole16(sc->wi_debug.wi_ledtest_param0); wreq->wi_val[2] = htole16(sc->wi_debug.wi_ledtest_param1); break; case WI_DEBUG_CONTTX: wreq->wi_len += 2; wreq->wi_val[0] = htole16(sc->wi_debug.wi_conttx); wreq->wi_val[1] = htole16(sc->wi_debug.wi_conttx_param0); break; case WI_DEBUG_CONTRX: wreq->wi_len++; wreq->wi_val[0] = htole16(sc->wi_debug.wi_contrx); break; case WI_DEBUG_SIGSTATE: wreq->wi_len += 2; wreq->wi_val[0] = htole16(sc->wi_debug.wi_sigstate); wreq->wi_val[1] = htole16(sc->wi_debug.wi_sigstate_param0); break; case WI_DEBUG_CONFBITS: wreq->wi_len += 2; wreq->wi_val[0] = htole16(sc->wi_debug.wi_confbits); wreq->wi_val[1] = htole16(sc->wi_debug.wi_confbits_param0); break; default: error = EIO; break; } return (error); } STATIC int wi_set_debug(struct wi_softc *sc, struct wi_req *wreq) { int error = 0; u_int16_t cmd, param0 = 0, param1 = 0; switch (wreq->wi_type) { case WI_DEBUG_RESET: case WI_DEBUG_INIT: case WI_DEBUG_CALENABLE: break; case WI_DEBUG_SLEEP: sc->wi_debug.wi_sleep = 1; break; case WI_DEBUG_WAKE: sc->wi_debug.wi_sleep = 0; break; case WI_DEBUG_CHAN: param0 = letoh16(wreq->wi_val[0]); break; case WI_DEBUG_DELAYSUPP: sc->wi_debug.wi_delaysupp = 1; break; case WI_DEBUG_TXSUPP: sc->wi_debug.wi_txsupp = 1; break; case WI_DEBUG_MONITOR: sc->wi_debug.wi_monitor = 1; break; case WI_DEBUG_LEDTEST: param0 = letoh16(wreq->wi_val[0]); param1 = letoh16(wreq->wi_val[1]); sc->wi_debug.wi_ledtest = 1; sc->wi_debug.wi_ledtest_param0 = param0; sc->wi_debug.wi_ledtest_param1 = param1; break; case WI_DEBUG_CONTTX: param0 = letoh16(wreq->wi_val[0]); sc->wi_debug.wi_conttx = 1; sc->wi_debug.wi_conttx_param0 = param0; break; case WI_DEBUG_STOPTEST: sc->wi_debug.wi_delaysupp = 0; sc->wi_debug.wi_txsupp = 0; sc->wi_debug.wi_monitor = 0; sc->wi_debug.wi_ledtest = 0; sc->wi_debug.wi_ledtest_param0 = 0; sc->wi_debug.wi_ledtest_param1 = 0; sc->wi_debug.wi_conttx = 0; sc->wi_debug.wi_conttx_param0 = 0; sc->wi_debug.wi_contrx = 0; sc->wi_debug.wi_sigstate = 0; sc->wi_debug.wi_sigstate_param0 = 0; break; case WI_DEBUG_CONTRX: sc->wi_debug.wi_contrx = 1; break; case WI_DEBUG_SIGSTATE: param0 = letoh16(wreq->wi_val[0]); sc->wi_debug.wi_sigstate = 1; sc->wi_debug.wi_sigstate_param0 = param0; break; case WI_DEBUG_CONFBITS: param0 = letoh16(wreq->wi_val[0]); param1 = letoh16(wreq->wi_val[1]); sc->wi_debug.wi_confbits = param0; sc->wi_debug.wi_confbits_param0 = param1; break; default: error = EIO; break; } if (error) return (error); cmd = WI_CMD_DEBUG | (wreq->wi_type << 8); error = wi_cmd(sc, cmd, param0, param1, 0); return (error); }