/* $OpenBSD: iha.c,v 1.1 2001/01/23 04:19:41 krw Exp $ */ /* * Initio INI-9xxxU/UW SCSI Device Driver * * Copyright (c) 2000 Ken Westerback * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR OR HIS RELATIVES BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF MIND, USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * *------------------------------------------------------------------------- * * Ported from i91u.c, provided by Initio Corporation, which credits: * * Device driver for the INI-9XXXU/UW or INIC-940/950 PCI SCSI Controller. * * FreeBSD * * Written for 386bsd and FreeBSD by * Winston Hung * * Copyright (c) 1997-99 Initio Corp. All rights reserved. * *------------------------------------------------------------------------- */ #include #include #include #include #include #include #include #include #include #include struct cfdriver iha_cd = { NULL, "iha", DV_DULL }; struct scsi_adapter iha_switch = { iha_scsi_cmd, /* int (*scsi_cmd) __P((struct scsi_xfer *)); */ iha_minphys, /* void (*scsi_minphys) __P((struct buf *)); */ NULL, /* int (*open_target_lu) __P((void)); */ NULL /* int (*close_target_lu) __P((void)); */ }; struct scsi_device iha_dev = { NULL, /* Use default error handler */ NULL, /* have a queue, served by this */ NULL, /* have no async handler */ NULL, /* Use default 'done' routine */ }; /* * SCSI Rate Table, indexed by FLAG_SCSI_RATE field of * TCS_Flags. */ static u_int8_t tul_rate_tbl[8] = { /* fast 20 */ /* nanosecond divide by 4 */ 12, /* 50ns, 20M */ 18, /* 75ns, 13.3M */ 25, /* 100ns, 10M */ 31, /* 125ns, 8M */ 37, /* 150ns, 6.6M */ 43, /* 175ns, 5.7M */ 50, /* 200ns, 5M */ 62 /* 250ns, 4M */ }; static struct nvram tul_nvram; static u_int8_t tul_dftNvRam[64] = { /* -- Header ------------------------------------ */ 0x25, 0xc9, /* NVM_Signature */ 0x40, /* NVM_Size */ 0x01, /* NVM_Revision */ /* -- Host Adapter Structure -------------------- */ 0x95, /* NVM_ModelByte0 */ 0x00, /* NVM_ModelByte1 */ 0x00, /* NVM_ModelInfo */ 0x01, /* NVM_NumOfCh */ BIOSCFG_DEFAULT, /* NVM_BIOSConfig1 */ 0, /* NVM_BIOSConfig2 */ 0, /* NVM_HAConfig1 */ 0, /* NVM_HAConfig2 */ /* -- NVM_Scsi[0] ------------------------------- */ 7, /* NVM_SCSI_Id */ CFG_DEFAULT, /* NVM_SCSI_Cfg */ 0, /* NVM_SCSI_CfgByte2 */ 8, /* NVM_SCSI_Targets */ /* NVM_SCSI_TargetFlags */ FLAG_DEFAULT, FLAG_DEFAULT, FLAG_DEFAULT, FLAG_DEFAULT, FLAG_DEFAULT, FLAG_DEFAULT, FLAG_DEFAULT, FLAG_DEFAULT, FLAG_DEFAULT, FLAG_DEFAULT, FLAG_DEFAULT, FLAG_DEFAULT, FLAG_DEFAULT, FLAG_DEFAULT, FLAG_DEFAULT, FLAG_DEFAULT, /* -- NVM_Scsi[1] ------------------------------- */ 7, /* NVM_SCSI_Id */ CFG_DEFAULT, /* NVM_SCSI_Cfg */ 0, /* NVM_SCSI_CfgByte2 */ 8, /* NVM_SCSI_Targets */ /* NVM_SCSI_TargetFlags */ FLAG_DEFAULT, FLAG_DEFAULT, FLAG_DEFAULT, FLAG_DEFAULT, FLAG_DEFAULT, FLAG_DEFAULT, FLAG_DEFAULT, FLAG_DEFAULT, FLAG_DEFAULT, FLAG_DEFAULT, FLAG_DEFAULT, FLAG_DEFAULT, FLAG_DEFAULT, FLAG_DEFAULT, FLAG_DEFAULT, FLAG_DEFAULT, 0,0,0,0,0,0,0,0,0,0, /* NVM_Reserved[10] */ 0,0 /* NVM_CheckSum */ }; static u_int8_t tul_data_over_run __P((struct iha_scsi_req_q *)); static void tul_push_sense_request __P((struct iha_softc *, struct iha_scsi_req_q *)); static void tul_timeout __P((void *)); static int tul_alloc_scbs __P((struct iha_softc *)); static void tul_read_eeprom __P((bus_space_tag_t, bus_space_handle_t)); static void tul_se2_update_all __P((bus_space_tag_t, bus_space_handle_t)); static int tul_se2_rd_all __P((bus_space_tag_t, bus_space_handle_t)); static void tul_se2_wr __P((bus_space_tag_t, bus_space_handle_t, u_int8_t, u_int16_t)); static void tul_se2_instr __P((bus_space_tag_t, bus_space_handle_t, u_int8_t)); static u_int16_t tul_se2_rd __P((bus_space_tag_t, bus_space_handle_t, u_int8_t)); static void tul_reset_scsi_bus __P((struct iha_softc *)); static void tul_reset_chip __P((struct iha_softc *, bus_space_tag_t, bus_space_handle_t)); static void tul_reset_dma __P((bus_space_tag_t, bus_space_handle_t)); static void tul_reset_tcs __P((struct tcs *, u_int8_t)); static void tul_print_info __P((struct iha_softc *, int)); static void tul_done_scb __P((struct iha_softc *, struct iha_scsi_req_q *)); static void tul_exec_scb __P((struct iha_softc *, struct iha_scsi_req_q *)); static void tul_main __P((struct iha_softc *, bus_space_tag_t, bus_space_handle_t)); static void tul_scsi __P((struct iha_softc *, bus_space_tag_t, bus_space_handle_t)); static int tul_wait __P((struct iha_softc *, bus_space_tag_t, bus_space_handle_t, u_int8_t)); static void tul_mark_busy_scb __P((struct iha_scsi_req_q *)); static void tul_append_free_scb __P((struct iha_softc *, struct iha_scsi_req_q *)); static struct iha_scsi_req_q *tul_pop_free_scb __P((struct iha_softc *)); static void tul_append_done_scb __P((struct iha_softc *, struct iha_scsi_req_q *, u_int8_t)); static struct iha_scsi_req_q *tul_pop_done_scb __P((struct iha_softc *)); static void tul_append_pend_scb __P((struct iha_softc *, struct iha_scsi_req_q *)); static void tul_push_pend_scb __P((struct iha_softc *, struct iha_scsi_req_q *)); static void tul_del_pend_scb __P((struct iha_softc *, struct iha_scsi_req_q *)); static struct iha_scsi_req_q *tul_find_pend_scb __P((struct iha_softc *)); static void tul_sync_done __P((struct iha_softc *, bus_space_tag_t, bus_space_handle_t)); static void tul_wdtr_done __P((struct iha_softc *, bus_space_tag_t, bus_space_handle_t)); static void tul_bad_seq __P((struct iha_softc *)); static int tul_next_state __P((struct iha_softc *, bus_space_tag_t, bus_space_handle_t)); static int tul_state_1 __P((struct iha_softc *, bus_space_tag_t, bus_space_handle_t)); static int tul_state_2 __P((struct iha_softc *, bus_space_tag_t, bus_space_handle_t)); static int tul_state_3 __P((struct iha_softc *, bus_space_tag_t, bus_space_handle_t)); static int tul_state_4 __P((struct iha_softc *, bus_space_tag_t, bus_space_handle_t)); static int tul_state_5 __P((struct iha_softc *, bus_space_tag_t, bus_space_handle_t)); static int tul_state_6 __P((struct iha_softc *, bus_space_tag_t, bus_space_handle_t)); static int tul_state_8 __P((struct iha_softc *, bus_space_tag_t, bus_space_handle_t)); static void tul_set_ssig __P((bus_space_tag_t, bus_space_handle_t, u_int8_t, u_int8_t)); static int tul_xpad_in __P((struct iha_softc *, bus_space_tag_t, bus_space_handle_t)); static int tul_xpad_out __P((struct iha_softc *, bus_space_tag_t, bus_space_handle_t)); static int tul_xfer_data __P((struct iha_scsi_req_q *, bus_space_tag_t, bus_space_handle_t, int direction)); static int tul_status_msg __P((struct iha_softc *, bus_space_tag_t, bus_space_handle_t)); static int tul_msgin __P((struct iha_softc *, bus_space_tag_t, bus_space_handle_t)); static int tul_msgin_sync __P((struct iha_softc *)); static int tul_msgin_extend __P((struct iha_softc *, bus_space_tag_t, bus_space_handle_t)); static int tul_msgin_ignore_wid_resid __P((struct iha_softc *, bus_space_tag_t, bus_space_handle_t)); static int tul_msgout __P((struct iha_softc *, bus_space_tag_t, bus_space_handle_t, u_int8_t)); static void tul_msgout_abort __P((struct iha_softc *, bus_space_tag_t, bus_space_handle_t, u_int8_t)); static int tul_msgout_reject __P((struct iha_softc *, bus_space_tag_t, bus_space_handle_t)); static int tul_msgout_sync __P((struct iha_softc *, bus_space_tag_t, bus_space_handle_t)); static int tul_msgout_wide __P((struct iha_softc *, bus_space_tag_t, bus_space_handle_t)); static void tul_select __P((struct iha_softc *, bus_space_tag_t, bus_space_handle_t, struct iha_scsi_req_q *, u_int8_t)); static void tul_busfree __P((struct iha_softc *, bus_space_tag_t, bus_space_handle_t)); static int tul_resel __P((struct iha_softc *, bus_space_tag_t, bus_space_handle_t)); static void tul_abort_xs __P((struct iha_softc *, struct scsi_xfer *, u_int8_t)); /* * iha_intr - the interrupt service routine for the iha driver */ int iha_intr(arg) void *arg; { bus_space_handle_t ioh; struct iha_softc *sc; bus_space_tag_t iot; int s; sc = (struct iha_softc *)arg; iot = sc->sc_iot; ioh = sc->sc_ioh; if ((bus_space_read_1(iot, ioh, TUL_STAT0) & INTPD) == 0) return (0); s = splbio(); /* XXX - Or are interrupts off when ISR's are called? */ if (sc->HCS_Semaph != SEMAPH_IN_MAIN) { /* XXX - need these inside a splbio()/splx()? */ bus_space_write_1(iot, ioh, TUL_IMSK, MASK_ALL); sc->HCS_Semaph = SEMAPH_IN_MAIN; tul_main(sc, iot, ioh); sc->HCS_Semaph = ~SEMAPH_IN_MAIN; bus_space_write_1(iot, ioh, TUL_IMSK, (MASK_ALL & ~MSCMP)); } splx(s); return (1); } /* * iha_scsi_cmd - start execution of a SCSI command. This is called * from the generic SCSI driver via the field * sc_adapter.scsi_cmd of iha_softc. */ int iha_scsi_cmd(xs) struct scsi_xfer *xs; { struct iha_scsi_req_q *pScb; struct iha_sg_element *sg; struct scsi_link *sc_link = xs->sc_link; struct iha_softc *sc = sc_link->adapter_softc; bus_dmamap_t dm; int error, nseg, i; if ((xs->cmdlen > 12) || (sc_link->target >= IHA_MAX_TARGETS)) { xs->error = XS_DRIVER_STUFFUP; return (COMPLETE); } pScb = tul_pop_free_scb(sc); if (pScb == NULL) { /* XXX - different xs->error/return if * SCSI_POLL/_NOSLEEP? */ xs->error = XS_BUSY; return (TRY_AGAIN_LATER); } pScb->SCB_Target = sc_link->target; pScb->SCB_Lun = sc_link->lun; pScb->SCB_Tcs = &sc->HCS_Tcs[pScb->SCB_Target]; pScb->SCB_Flags = xs->flags; pScb->SCB_Ident = IDENT_IDENTITY | (pScb->SCB_Lun & IDENT_LUN); if ((xs->cmd->opcode != REQUEST_SENSE) && ((pScb->SCB_Flags & SCSI_POLL) == 0)) pScb->SCB_Ident |= IDENT_DISC_PRIV; pScb->SCB_Xs = xs; pScb->SCB_CDBLen = xs->cmdlen; bcopy(xs->cmd, &pScb->SCB_CDB, xs->cmdlen); pScb->SCB_BufLen = xs->datalen; if (pScb->SCB_BufLen > 0) { #ifdef TFS if (xs->flags & SCSI_DATA_UIO) error = bus_dmamap_load_uio(sc->sc_dmat, pScb->SCB_Dmamap, (struct uio *)xs->data, (xs->flags & SCSI_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK); else #endif /* TFS */ error = bus_dmamap_load(sc->sc_dmat, pScb->SCB_Dmamap, xs->data, pScb->SCB_BufLen, NULL, (xs->flags & SCSI_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK); if (error) { if (error == EFBIG) printf("%s: buffer needs >%d dma segments\n", sc->sc_dev.dv_xname, IHA_MAX_SG_ENTRIES); else printf("%s: error %d loading dma map\n", sc->sc_dev.dv_xname, error); /* XXX - need to scsi_done() xs? i.e. put in doneq? */ tul_append_free_scb(sc, pScb); xs->error = XS_DRIVER_STUFFUP; return (COMPLETE); } dm = pScb->SCB_Dmamap; nseg = dm->dm_nsegs; if (nseg > 1) { sg = pScb->SCB_SGList; for (i=0; i < nseg; i++) { sg[i].SG_Len = dm->dm_segs[i].ds_len; sg[i].SG_Ptr = dm->dm_segs[i].ds_addr; } pScb->SCB_Flags |= FLAG_SG; pScb->SCB_SGLen = nseg; pScb->SCB_BufPAddr = pScb->SCB_SGPAddr; } else pScb->SCB_BufPAddr = dm->dm_segs[0].ds_addr; bus_dmamap_sync(sc->sc_dmat, pScb->SCB_Dmamap, (pScb->SCB_Flags & SCSI_DATA_IN) ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE); } pScb->SCB_SGMax = pScb->SCB_SGLen; pScb->SCB_Timeout = xs->timeout; /* * Always initialize the stimeout structure as it may * contain garbage that confuses timeout_del() later on. * But, timeout_add() ONLY if we are not polling. */ timeout_set(&xs->stimeout, tul_timeout, pScb); if ((xs->flags & SCSI_POLL) == 0) timeout_add(&xs->stimeout, (xs->timeout/1000) * hz); tul_exec_scb(sc, pScb); if ((xs->flags & ITSDONE) == 0) return (SUCCESSFULLY_QUEUED); else return (COMPLETE); } /* * iha_init_tulip - initialize the inic-950 card and the rest of the * IHA_SOFTC structure supplied */ int iha_init_tulip(sc) struct iha_softc *sc; { struct iha_scsi_req_q *pScb; bus_space_handle_t ioh; struct nvram_scsi *pScsi; bus_space_tag_t iot; int i, error; iot = sc->sc_iot; ioh = sc->sc_ioh; tul_read_eeprom(iot, ioh); pScsi = &tul_nvram.NVM_Scsi[0]; /* * fill in the prototype scsi_link. */ sc->sc_link.adapter_softc = sc; sc->sc_link.adapter = &iha_switch; sc->sc_link.device = &iha_dev; sc->sc_link.openings = 4; /* # xs's allowed per device */ sc->sc_link.adapter_target = pScsi->NVM_SCSI_Id; sc->sc_link.adapter_buswidth = pScsi->NVM_SCSI_Targets; /* * fill in the rest of the IHA_SOFTC fields */ sc->HCS_Semaph = ~SEMAPH_IN_MAIN; sc->HCS_JSStatus0 = 0; sc->HCS_ActScb = NULL; TAILQ_INIT(&sc->HCS_FreeScb); TAILQ_INIT(&sc->HCS_PendScb); TAILQ_INIT(&sc->HCS_DoneScb); error = tul_alloc_scbs(sc); if (error != 0) return (error); for (i = 0, pScb = sc->HCS_Scb; i < IHA_MAX_SCB; i++, pScb++) { pScb->SCB_TagId = i; pScb->SCB_SGPAddr = sc->sc_dmamap->dm_segs[0].ds_addr + i*sizeof(struct iha_scsi_req_q) + OFFSETOF(struct iha_scsi_req_q, SCB_SGList); pScb->SCB_SenseLen = sizeof(struct scsi_sense_data); pScb->SCB_SensePAddr = sc->sc_dmamap->dm_segs[0].ds_addr + i*sizeof(struct iha_scsi_req_q) + OFFSETOF(struct iha_scsi_req_q, SCB_ScsiSenseData); error = bus_dmamap_create(sc->sc_dmat, (IHA_MAX_SG_ENTRIES-1) * PAGE_SIZE, IHA_MAX_SG_ENTRIES, (IHA_MAX_SG_ENTRIES-1) * PAGE_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &pScb->SCB_Dmamap); if (error != 0) { printf("%s: couldn't create SCB DMA map, error = %d\n", sc->sc_dev.dv_xname, error); return (error); } TAILQ_INSERT_TAIL(&sc->HCS_FreeScb, pScb, SCB_ScbList); } /* Mask all the interrupts */ bus_space_write_1(iot, ioh, TUL_IMSK, MASK_ALL); /* Stop any I/O and reset the scsi module */ tul_reset_dma(iot, ioh); bus_space_write_1(iot, ioh, TUL_SCTRL0, RSMOD); /* Program HBA's SCSI ID */ bus_space_write_1(iot, ioh, TUL_SID, sc->sc_link.adapter_target << 4); /* * Configure the channel as requested by the NVRAM settings read * into tul_nvram by tul_read_eeprom() above. */ if ((pScsi->NVM_SCSI_Cfg & CFG_EN_PAR) != 0) sc->HCS_SConf1 = (SCONFIG0DEFAULT | SPCHK); else sc->HCS_SConf1 = (SCONFIG0DEFAULT); bus_space_write_1(iot, ioh, TUL_SCONFIG0, sc->HCS_SConf1); /* selection time out in units of 1.6385 millisecond = 250 ms */ bus_space_write_1(iot, ioh, TUL_STIMO, 153); /* Enable desired SCSI termination configuration read from eeprom */ bus_space_write_1(iot, ioh, TUL_DCTRL0, (pScsi->NVM_SCSI_Cfg & (CFG_ACT_TERM1 | CFG_ACT_TERM2))); bus_space_write_1(iot, ioh, TUL_GCTRL1, ((pScsi->NVM_SCSI_Cfg & CFG_AUTO_TERM) >> 4) | (bus_space_read_1(iot, ioh, TUL_GCTRL1) & (~ATDEN))); for (i = 0; i < IHA_MAX_TARGETS; i++) { sc->HCS_Tcs[i].TCS_Flags = pScsi->NVM_SCSI_TargetFlags[i]; tul_reset_tcs(&sc->HCS_Tcs[i], sc->HCS_SConf1); } tul_reset_chip(sc, iot, ioh); bus_space_write_1(iot, ioh, TUL_SIEN, ALL_INTERRUPTS); return (0); } /* * iha_minphys - reduce bp->b_bcount to something less than * or equal to the largest I/O possible through * the adapter. Called from higher layers * via sc->sc_adapter.scsi_minphys. */ void iha_minphys(bp) struct buf *bp; { if (bp->b_bcount > ((IHA_MAX_SG_ENTRIES - 1) * PAGE_SIZE)) bp->b_bcount = ((IHA_MAX_SG_ENTRIES - 1) * PAGE_SIZE); minphys(bp); } /* * tul_reset_dma - abort any active DMA xfer, reset tulip FIFO. */ static void tul_reset_dma(iot, ioh) bus_space_tag_t iot; bus_space_handle_t ioh; { if ((bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND) != 0) { /* if DMA xfer is pending, abort DMA xfer */ bus_space_write_1(iot, ioh, TUL_DCMD, ABTXFR); /* wait Abort DMA xfer done */ while ((bus_space_read_1(iot, ioh, TUL_ISTUS0) & DABT) == 0) ; } bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO); } /* * tul_pop_free_scb - return the first free SCB, or NULL if there are none. */ static struct iha_scsi_req_q * tul_pop_free_scb(sc) struct iha_softc *sc; { struct iha_scsi_req_q *pScb; int s; s = splbio(); pScb = TAILQ_FIRST(&sc->HCS_FreeScb); if (pScb != NULL) { pScb->SCB_Status = STATUS_RENT; TAILQ_REMOVE(&sc->HCS_FreeScb, pScb, SCB_ScbList); } splx(s); return (pScb); } /* * tul_append_free_scb - append the supplied SCB to the tail of the * HCS_FreeScb queue after clearing and resetting * everything possible. */ static void tul_append_free_scb(sc, pScb) struct iha_softc *sc; struct iha_scsi_req_q *pScb; { int s; s = splbio(); if (pScb->SCB_Xs != NULL) timeout_del(&pScb->SCB_Xs->stimeout); if (pScb == sc->HCS_ActScb) sc->HCS_ActScb = NULL; pScb->SCB_Status = STATUS_QUEUED; pScb->SCB_HaStat = HOST_OK; pScb->SCB_TaStat = SCSI_OK; pScb->SCB_NxtStat = 0; pScb->SCB_SGIdx = 0; pScb->SCB_SGMax = 0; pScb->SCB_Flags = 0; pScb->SCB_Target = 0; pScb->SCB_Lun = 0; pScb->SCB_BufLen = 0; pScb->SCB_SGLen = 0; pScb->SCB_CDBLen = 0; pScb->SCB_Ident = 0; pScb->SCB_TagMsg = 0; pScb->SCB_Timeout = 0; pScb->SCB_BufPAddr = 0; pScb->SCB_Xs = NULL; pScb->SCB_Tcs = NULL; bzero( pScb->SCB_CDB, sizeof(pScb->SCB_CDB)); bzero(&pScb->SCB_ScsiSenseData, sizeof(pScb->SCB_ScsiSenseData)); bzero( pScb->SCB_SGList, sizeof(pScb->SCB_SGList)); /* * SCB_TagId, SCB_SGPAddr, SCB_SenseLen, SCB_SGList * SCB_SensePtr are set at initialization * and never change */ TAILQ_INSERT_TAIL(&sc->HCS_FreeScb, pScb, SCB_ScbList); splx(s); } static void tul_append_pend_scb(sc, pScb) struct iha_softc *sc; struct iha_scsi_req_q *pScb; { /* ASSUMPTION: only called within a splbio()/splx() pair */ if (pScb == sc->HCS_ActScb) sc->HCS_ActScb = NULL; pScb->SCB_Status = STATUS_QUEUED; TAILQ_INSERT_TAIL(&sc->HCS_PendScb, pScb, SCB_ScbList); } static void tul_push_pend_scb(sc, pScb) struct iha_softc *sc; struct iha_scsi_req_q *pScb; { int s; s = splbio(); if (pScb == sc->HCS_ActScb) sc->HCS_ActScb = NULL; pScb->SCB_Status = STATUS_QUEUED; TAILQ_INSERT_HEAD(&sc->HCS_PendScb, pScb, SCB_ScbList); splx(s); } /* * tul_find_pend_scb - scan the pending queue for a SCB that can be * processed immediately. Return NULL if none found * and a pointer to the SCB if one is found. If there * is an active SCB, return NULL! */ static struct iha_scsi_req_q * tul_find_pend_scb(sc) struct iha_softc *sc; { struct iha_scsi_req_q *pScb; struct tcs *pTcs; int s; s = splbio(); if (sc->HCS_ActScb != NULL) pScb = NULL; else TAILQ_FOREACH(pScb, &sc->HCS_PendScb, SCB_ScbList) { if ((pScb->SCB_Flags & SCSI_RESET) != 0) /* ALWAYS willing to reset a device */ break; pTcs = pScb->SCB_Tcs; if ((pScb->SCB_TagMsg) != 0) { /* * A Tagged I/O. OK to start If no * non-tagged I/O is active on the same * target */ if (pTcs->TCS_NonTagScb == NULL) break; } else if (pScb->SCB_CDB[0] == REQUEST_SENSE) { /* * OK to do a non-tagged request sense * even if a non-tagged I/O has been * started, 'cuz we don't allow any * disconnect during a request sense op */ break; } else if (pTcs->TCS_TagCnt == 0) { /* * No tagged I/O active on this target, * ok to start a non-tagged one if one * is not already active */ if (pTcs->TCS_NonTagScb == NULL) break; } } splx(s); return (pScb); } /* * tul_del_pend_scb - remove pScb from HCS_PendScb */ static void tul_del_pend_scb(sc, pScb) struct iha_softc *sc; struct iha_scsi_req_q *pScb; { int s; s = splbio(); TAILQ_REMOVE(&sc->HCS_PendScb, pScb, SCB_ScbList); splx(s); } static void tul_mark_busy_scb(pScb) struct iha_scsi_req_q *pScb; { int s; s = splbio(); pScb->SCB_Status = STATUS_BUSY; if (pScb->SCB_TagMsg == 0) pScb->SCB_Tcs->TCS_NonTagScb = pScb; else pScb->SCB_Tcs->TCS_TagCnt++; splx(s); } static void tul_append_done_scb(sc, pScb, hastat) struct iha_softc *sc; struct iha_scsi_req_q *pScb; u_int8_t hastat; { struct tcs *pTcs; int s; s = splbio(); if (pScb->SCB_Xs != NULL) timeout_del(&pScb->SCB_Xs->stimeout); if (pScb == sc->HCS_ActScb) sc->HCS_ActScb = NULL; pTcs = pScb->SCB_Tcs; if (pScb->SCB_TagMsg != 0) { if (pTcs->TCS_TagCnt) pTcs->TCS_TagCnt--; } else if (pTcs->TCS_NonTagScb == pScb) pTcs->TCS_NonTagScb = NULL; pScb->SCB_Status = STATUS_QUEUED; pScb->SCB_HaStat = hastat; TAILQ_INSERT_TAIL(&sc->HCS_DoneScb, pScb, SCB_ScbList); splx(s); } static struct iha_scsi_req_q * tul_pop_done_scb(sc) struct iha_softc *sc; { struct iha_scsi_req_q *pScb; int s; s = splbio(); pScb = TAILQ_FIRST(&sc->HCS_DoneScb); if (pScb != NULL) { pScb->SCB_Status = STATUS_RENT; TAILQ_REMOVE(&sc->HCS_DoneScb, pScb, SCB_ScbList); } splx(s); return (pScb); } /* * tul_abort_xs - find the SCB associated with the supplied xs and * stop all processing on it, moving it to the done * queue with the supplied host status value. */ static void tul_abort_xs(sc, xs, hastat) struct iha_softc *sc; struct scsi_xfer *xs; u_int8_t hastat; { struct iha_scsi_req_q *pScb; int i, s; s = splbio(); /* Check the pending queue for the SCB pointing to xs */ TAILQ_FOREACH(pScb, &sc->HCS_PendScb, SCB_ScbList) if (pScb->SCB_Xs == xs) { tul_del_pend_scb(sc, pScb); tul_append_done_scb(sc, pScb, hastat); splx(s); return; } /* * If that didn't work, check all BUSY/SELECTING SCB's for one * pointing to xs */ for (i = 0, pScb = sc->HCS_Scb; i < IHA_MAX_SCB; i++, pScb++) switch (pScb->SCB_Status) { case STATUS_BUSY: case STATUS_SELECT: if (pScb->SCB_Xs == xs) { tul_append_done_scb(sc, pScb, hastat); splx(s); return; } break; default: break; } splx(s); } /* * tul_bad_seq - a SCSI bus phase was encountered out of the * correct/expected sequence. Reset the SCSI bus. */ static void tul_bad_seq(sc) struct iha_softc *sc; { struct iha_scsi_req_q *pScb = sc->HCS_ActScb; if (pScb != NULL) tul_append_done_scb(sc, pScb, HOST_BAD_PHAS); tul_reset_scsi_bus(sc); tul_reset_chip(sc, sc->sc_iot, sc->sc_ioh); } /* * tul_push_sense_request - obtain auto sense data by pushing the * SCB needing it back onto the pending * queue with a REQUEST_SENSE CDB. */ static void tul_push_sense_request(sc, pScb) struct iha_softc *sc; struct iha_scsi_req_q *pScb; { pScb->SCB_BufLen = pScb->SCB_SenseLen; pScb->SCB_BufPAddr = pScb->SCB_SensePAddr; pScb->SCB_Flags &= ~(FLAG_SG | FLAG_DIR); pScb->SCB_Flags |= FLAG_RSENS | SCSI_DATA_IN; pScb->SCB_Ident &= ~IDENT_DISC_PRIV; pScb->SCB_TagMsg = 0; pScb->SCB_TaStat = SCSI_OK; bzero(pScb->SCB_CDB, sizeof(pScb->SCB_CDB)); pScb->SCB_CDBLen = 6; pScb->SCB_CDB[0] = REQUEST_SENSE; pScb->SCB_CDB[4] = pScb->SCB_SenseLen; if ((pScb->SCB_Flags & SCSI_POLL) == 0) timeout_add(&pScb->SCB_Xs->stimeout, (pScb->SCB_Timeout/1000) * hz); tul_push_pend_scb(sc, pScb); } /* * tul_main - process the active SCB, taking one off pending and making it * active if necessary, and any done SCB's created as * a result until there are no interrupts pending and no pending * SCB's that can be started. */ static void tul_main(sc, iot, ioh) struct iha_softc *sc; bus_space_tag_t iot; bus_space_handle_t ioh; { struct iha_scsi_req_q *pScb; for (;;) { tul_scsi_label: tul_scsi(sc, iot, ioh); while ((pScb = tul_pop_done_scb(sc)) != NULL) { switch (pScb->SCB_TaStat) { case SCSI_CMD_TERMINATED: case SCSI_ACA_ACTIVE: case SCSI_CHECK: pScb->SCB_Tcs->TCS_Flags &= ~(FLAG_SYNC_DONE | FLAG_WIDE_DONE); if ((pScb->SCB_Flags & FLAG_RSENS) != 0) /* Check condition on check condition*/ pScb->SCB_HaStat = HOST_BAD_PHAS; else { tul_push_sense_request(sc, pScb); goto tul_scsi_label; } break; default: if ((pScb->SCB_Flags & FLAG_RSENS) != 0) /* * Return the original SCSI_CHECK, not * the status of the request sense * command! */ pScb->SCB_TaStat = SCSI_CHECK; break; } tul_done_scb(sc, pScb); } /* * If there are no interrupts pending, or we can't start * a pending sc, break out of the for(;;). Otherwise * continue the good work with another call to * tul_scsi(). */ if (((bus_space_read_1(iot, ioh, TUL_STAT0) & INTPD) == 0) && (tul_find_pend_scb(sc) == NULL)) break; } } /* * tul_scsi - service any outstanding interrupts. If there are none, try to * start another SCB currently in the pending queue. */ static void tul_scsi(sc, iot, ioh) struct iha_softc *sc; bus_space_tag_t iot; bus_space_handle_t ioh; { struct iha_scsi_req_q *pScb; struct tcs *pTcs; u_int8_t stat; /* service pending interrupts asap */ stat = bus_space_read_1(iot, ioh, TUL_STAT0); if ((stat & INTPD) != 0) { sc->HCS_JSStatus0 = stat; sc->HCS_JSStatus1 = bus_space_read_1(iot, ioh, TUL_STAT1); sc->HCS_JSInt = bus_space_read_1(iot, ioh, TUL_SISTAT); sc->HCS_Phase = sc->HCS_JSStatus0 & PH_MASK; if ((sc->HCS_JSInt & SRSTD) != 0) { tul_reset_scsi_bus(sc); return; } if ((sc->HCS_JSInt & RSELED) != 0) { tul_resel(sc, iot, ioh); return; } if ((sc->HCS_JSInt & (STIMEO | DISCD)) != 0) { tul_busfree(sc, iot, ioh); return; } if ((sc->HCS_JSInt & (SCMDN | SBSRV)) != 0) { tul_next_state(sc, iot, ioh); return; } if ((sc->HCS_JSInt & SELED) != 0) tul_set_ssig(iot, ioh, 0, 0); } /* * There were no interrupts pending which required action elsewhere, so * see if it is possible to start the selection phase on a pending SCB */ if ((pScb = tul_find_pend_scb(sc)) == NULL) return; pTcs = pScb->SCB_Tcs; /* program HBA's SCSI ID & target SCSI ID */ bus_space_write_1(iot, ioh, TUL_SID, (sc->sc_link.adapter_target << 4) | pScb->SCB_Target); if ((pScb->SCB_Flags & SCSI_RESET) == 0) { bus_space_write_1(iot, ioh, TUL_SYNCM, pTcs->TCS_JS_Period); if ((pTcs->TCS_Flags & FLAG_NO_NEGOTIATE) == 0) tul_select(sc, iot, ioh, pScb, SELATNSTOP); else if (pScb->SCB_TagMsg != 0) tul_select(sc, iot, ioh, pScb, SEL_ATN3); else tul_select(sc, iot, ioh, pScb, SEL_ATN); } else { tul_select(sc, iot, ioh, pScb, SELATNSTOP); pScb->SCB_NxtStat = 8; } if (pScb->SCB_Flags & SCSI_POLL) { for (; pScb->SCB_Timeout > 0; pScb->SCB_Timeout--) { if (tul_wait(sc, iot, ioh, NO_OP) == -1) return; if (tul_next_state(sc, iot, ioh) == -1) return; delay(1000); /* Only happens in boot, so it's ok */ } tul_timeout(pScb); } } /* * tul_data_over_run - return HOST_OK for all SCSI opcodes where BufLen * is an 'Allocation Length'. All other SCSI opcodes * get HOST_DO_DU as they SHOULD have xferred all the * data requested. * * The list of opcodes using 'Allocation Length' was * found by scanning all the SCSI-3 T10 drafts. See * www.t10.org for the curious with a .pdf reader. */ static u_int8_t tul_data_over_run(pScb) struct iha_scsi_req_q *pScb; { switch (pScb->SCB_CDB[0]) { case 0x03: /* Request Sense SPC-2 */ case 0x12: /* Inquiry SPC-2 */ case 0x1a: /* Mode Sense (6 byte version) SPC-2 */ case 0x1c: /* Receive Diagnostic Results SPC-2 */ case 0x23: /* Read Format Capacities MMC-2 */ case 0x29: /* Read Generation SBC */ case 0x34: /* Read Position SSC-2 */ case 0x37: /* Read Defect Data SBC */ case 0x3c: /* Read Buffer SPC-2 */ case 0x42: /* Read Sub Channel MMC-2 */ case 0x43: /* Read TOC/PMA/ATIP MMC */ /* XXX - 2 with same opcode of 0x44? */ case 0x44: /* Read Header/Read Density Suprt MMC/SSC*/ case 0x46: /* Get Configuration MMC-2 */ case 0x4a: /* Get Event/Status Notification MMC-2 */ case 0x4d: /* Log Sense SPC-2 */ case 0x51: /* Read Disc Information MMC */ case 0x52: /* Read Track Information MMC */ case 0x59: /* Read Master CUE MMC */ case 0x5a: /* Mode Sense (10 byte version) SPC-2 */ case 0x5c: /* Read Buffer Capacity MMC */ case 0x5e: /* Persistant Reserve In SPC-2 */ case 0x84: /* Receive Copy Results SPC-2 */ case 0xa0: /* Report LUNs SPC-2 */ case 0xa3: /* Various Report requests SBC-2/SCC-2*/ case 0xa4: /* Report Key MMC-2 */ case 0xad: /* Read DVD Structure MMC-2 */ case 0xb4: /* Read Element Status (Attached) SMC */ case 0xb5: /* Request Volume Element Address SMC */ case 0xb7: /* Read Defect Data (12 byte ver.) SBC */ case 0xb8: /* Read Element Status (Independ.) SMC */ case 0xba: /* Report Redundancy SCC-2 */ case 0xbd: /* Mechanism Status MMC */ case 0xbe: /* Report Basic Redundancy SCC-2 */ return (HOST_OK); break; default: return (HOST_DO_DU); break; } } /* * tul_next_state - prcess the current SCB as requested in it's * SCB_NxtStat member. */ static int tul_next_state(sc, iot, ioh) struct iha_softc *sc; bus_space_tag_t iot; bus_space_handle_t ioh; { if (sc->HCS_ActScb == NULL) return (-1); switch (sc->HCS_ActScb->SCB_NxtStat) { case 1: if (tul_state_1(sc, iot, ioh) == 3) goto state_3; break; case 2: switch (tul_state_2(sc, iot, ioh)) { case 3: goto state_3; case 4: goto state_4; default: break; } break; case 3: state_3: if (tul_state_3(sc, iot, ioh) == 4) goto state_4; break; case 4: state_4: switch (tul_state_4(sc, iot, ioh)) { case 0: return (0); case 6: goto state_6; default: break; } break; case 5: switch (tul_state_5(sc, iot, ioh)) { case 4: goto state_4; case 6: goto state_6; default: break; } break; case 6: state_6: tul_state_6(sc, iot, ioh); break; case 8: tul_state_8(sc, iot, ioh); break; default: #ifdef IHA_DEBUG_STATE printf("[debug] -unknown state: %i-\n", sc->HCS_ActScb->SCB_NxtStat); #endif tul_bad_seq(sc); break; } return (-1); } /* * tul_state_1 - selection is complete after a SELATNSTOP. If the target * has put the bus into MSG_OUT phase start wide/sync * negotiation. Otherwise clear the FIFO and go to state 3, * which will send the SCSI CDB to the target. */ static int tul_state_1(sc, iot, ioh) struct iha_softc *sc; bus_space_tag_t iot; bus_space_handle_t ioh; { struct iha_scsi_req_q *pScb = sc->HCS_ActScb; struct tcs *pTcs; u_int16_t flags; tul_mark_busy_scb(pScb); pTcs = pScb->SCB_Tcs; bus_space_write_1(iot, ioh, TUL_SCONFIG0, pTcs->TCS_SConfig0); /* * If we are in PHASE_MSG_OUT, send * a) IDENT message (with tags if appropriate) * b) WDTR if the target is configured to negotiate wide xfers * ** OR ** * c) SDTR if the target is configured to negotiate sync xfers * but not wide ones * * If we are NOT, then the target is not asking for anything but * the data/command, so go straight to state 3. */ if (sc->HCS_Phase == PHASE_MSG_OUT) { bus_space_write_1(iot, ioh, TUL_SCTRL1, (ESBUSIN | EHRSL)); bus_space_write_1(iot, ioh, TUL_SFIFO, pScb->SCB_Ident); if (pScb->SCB_TagMsg != 0) { bus_space_write_1(iot, ioh, TUL_SFIFO, pScb->SCB_TagMsg); bus_space_write_1(iot, ioh, TUL_SFIFO, pScb->SCB_TagId); } flags = pTcs->TCS_Flags; if ((flags & FLAG_NO_NEG_WIDE) == 0) { if (tul_msgout_wide(sc, iot, ioh) == -1) return (-1); } else if ((flags & FLAG_NO_NEG_SYNC) == 0) { if (tul_msgout_sync(sc, iot, ioh) == -1) return (-1); } } else { bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO); tul_set_ssig(iot, ioh, REQ | BSY | SEL | ATN, 0); } return (3); } /* * tul_state_2 - selection is complete after a SEL_ATN or SEL_ATN3. If the SCSI * CDB has already been send, go to state 4 to start the data * xfer. Otherwise reset the FIFO and go to state 3, sending * the SCSI CDB. */ static int tul_state_2(sc, iot, ioh) struct iha_softc *sc; bus_space_tag_t iot; bus_space_handle_t ioh; { struct iha_scsi_req_q *pScb = sc->HCS_ActScb; tul_mark_busy_scb(pScb); bus_space_write_1(iot, ioh, TUL_SCONFIG0, pScb->SCB_Tcs->TCS_SConfig0); if ((sc->HCS_JSStatus1 & CPDNE) != 0) return (4); bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO); tul_set_ssig(iot, ioh, REQ | BSY | SEL | ATN, 0); return (3); } /* * tul_state_3 - send the SCSI CDB to the target, processing any status * or other messages received until that is done or * abandoned. */ static int tul_state_3(sc, iot, ioh) struct iha_softc *sc; bus_space_tag_t iot; bus_space_handle_t ioh; { struct iha_scsi_req_q *pScb = sc->HCS_ActScb; u_int16_t flags; for (;;) switch (sc->HCS_Phase) { case PHASE_CMD_OUT: bus_space_write_multi_1(iot, ioh, TUL_SFIFO, pScb->SCB_CDB, pScb->SCB_CDBLen); if (tul_wait(sc, iot, ioh, XF_FIFO_OUT) == -1) return (-1); else if (sc->HCS_Phase == PHASE_CMD_OUT) { tul_bad_seq(sc); return (-1); } else return (4); case PHASE_MSG_IN: pScb->SCB_NxtStat = 3; if (tul_msgin(sc, iot, ioh) == -1) return (-1); break; case PHASE_STATUS_IN: if (tul_status_msg(sc, iot, ioh) == -1) return (-1); break; case PHASE_MSG_OUT: flags = pScb->SCB_Tcs->TCS_Flags; if ((flags & FLAG_NO_NEG_SYNC) != 0) { if (tul_msgout(sc, iot, ioh, MSG_NOP) == -1) return (-1); } else if (tul_msgout_sync(sc, iot, ioh) == -1) return (-1); break; default: printf("[debug] -s3- bad phase = %d\n", sc->HCS_Phase); tul_bad_seq(sc); return (-1); } } /* * tul_state_4 - start a data xfer. Handle any bus state * transitions until PHASE_DATA_IN/_OUT * or the attempt is abandoned. If there is * no data to xfer, go to state 6 and finish * processing the current SCB. */ static int tul_state_4(sc, iot, ioh) struct iha_softc *sc; bus_space_tag_t iot; bus_space_handle_t ioh; { struct iha_scsi_req_q *pScb = sc->HCS_ActScb; if ((pScb->SCB_Flags & FLAG_DIR) == FLAG_DIR) return (6); /* Both dir flags set => NO xfer was requested */ for (;;) { if (pScb->SCB_BufLen == 0) return (6); switch (sc->HCS_Phase) { case PHASE_STATUS_IN: if ((pScb->SCB_Flags & FLAG_DIR) != 0) pScb->SCB_HaStat = tul_data_over_run(pScb); if ((tul_status_msg(sc, iot, ioh)) == -1) return (-1); break; case PHASE_MSG_IN: pScb->SCB_NxtStat = 4; if (tul_msgin(sc, iot, ioh) == -1) return (-1); break; case PHASE_MSG_OUT: if ((sc->HCS_JSStatus0 & SPERR) != 0) { pScb->SCB_BufLen = 0; pScb->SCB_HaStat = HOST_SPERR; if (tul_msgout(sc, iot, ioh, MSG_IDE) == -1) return (-1); else return (6); } else { if (tul_msgout(sc, iot, ioh, MSG_NOP) == -1) return (-1); } break; case PHASE_DATA_IN: return (tul_xfer_data(pScb, iot, ioh, SCSI_DATA_IN)); case PHASE_DATA_OUT: return (tul_xfer_data(pScb, iot, ioh, SCSI_DATA_OUT)); default: tul_bad_seq(sc); return (-1); } } } /* * tul_state_5 - handle the partial or final completion of the current * data xfer. If DMA is still active stop it. If there is * more data to xfer, go to state 4 and start the xfer. * If not go to state 6 and finish the SCB. */ static int tul_state_5(sc, iot, ioh) struct iha_softc *sc; bus_space_tag_t iot; bus_space_handle_t ioh; { struct iha_scsi_req_q *pScb = sc->HCS_ActScb; struct iha_sg_element *pSg; u_int32_t cnt; u_int16_t period; u_int8_t stat; long xcnt; /* cannot use unsigned!! see code: if (xcnt < 0) */ int i; cnt = bus_space_read_4(iot, ioh, TUL_STCNT0) & TCNT; /* * Stop any pending DMA activity and check for parity error. */ if ((bus_space_read_1(iot, ioh, TUL_DCMD) & XDIR) != 0) { /* Input Operation */ if ((sc->HCS_JSStatus0 & SPERR) != 0) pScb->SCB_HaStat = HOST_SPERR; if ((bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND) != 0) { bus_space_write_1(iot, ioh, TUL_DCTRL0, bus_space_read_1(iot, ioh, TUL_DCTRL0) | SXSTP); while (bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND) ; } } else { /* Output Operation */ if ((sc->HCS_JSStatus1 & SXCMP) == 0) { period = pScb->SCB_Tcs->TCS_JS_Period; if ((period & PERIOD_WIDE_SCSI) != 0) cnt += (bus_space_read_1(iot, ioh, TUL_SFIFOCNT) & FIFOC) << 1; else cnt += (bus_space_read_1(iot, ioh, TUL_SFIFOCNT) & FIFOC); } if ((bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND) != 0) { bus_space_write_1(iot, ioh, TUL_DCMD, ABTXFR); do stat = bus_space_read_1(iot, ioh, TUL_ISTUS0); while ((stat & DABT) == 0); } if ((cnt == 1) && (sc->HCS_Phase == PHASE_DATA_OUT)) { if (tul_wait(sc, iot, ioh, XF_FIFO_OUT) == -1) return (-1); cnt = 0; } else if ((sc->HCS_JSStatus1 & SXCMP) == 0) bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO); } if (cnt == 0) { pScb->SCB_BufLen = 0; return (6); } /* Update active data pointer and restart the I/O at the new point */ xcnt = pScb->SCB_BufLen - cnt; /* xcnt == bytes xferred */ pScb->SCB_BufLen = cnt; /* cnt == bytes left */ if ((pScb->SCB_Flags & FLAG_SG) != 0) { pSg = &pScb->SCB_SGList[pScb->SCB_SGIdx]; for (i = pScb->SCB_SGIdx; i < pScb->SCB_SGMax; pSg++, i++) { xcnt -= pSg->SG_Len; if (xcnt < 0) { xcnt += pSg->SG_Len; pSg->SG_Ptr += xcnt; pSg->SG_Len -= xcnt; pScb->SCB_BufPAddr += (i - pScb->SCB_SGIdx) * sizeof(struct iha_sg_element); pScb->SCB_SGLen = pScb->SCB_SGMax - i; pScb->SCB_SGIdx = i; return (4); } } return (6); } else pScb->SCB_BufPAddr += xcnt; return (4); } /* * tul_state_6 - finish off the active scb (may require several * iterations if PHASE_MSG_IN) and return -1 to indicate * the bus is free. */ static int tul_state_6(sc, iot, ioh) struct iha_softc *sc; bus_space_tag_t iot; bus_space_handle_t ioh; { for (;;) switch (sc->HCS_Phase) { case PHASE_STATUS_IN: if (tul_status_msg(sc, iot, ioh) == -1) return (-1); break; case PHASE_MSG_IN: sc->HCS_ActScb->SCB_NxtStat = 6; if ((tul_msgin(sc, iot, ioh)) == -1) return (-1); break; case PHASE_MSG_OUT: if ((tul_msgout(sc, iot, ioh, MSG_NOP)) == -1) return (-1); break; case PHASE_DATA_IN: if (tul_xpad_in(sc, iot, ioh) == -1) return (-1); break; case PHASE_DATA_OUT: if (tul_xpad_out(sc, iot, ioh) == -1) return (-1); break; default: tul_bad_seq(sc); return (-1); } } /* * tul_state_8 - reset the active device and all busy SCBs using it */ static int tul_state_8(sc, iot, ioh) struct iha_softc *sc; bus_space_tag_t iot; bus_space_handle_t ioh; { struct iha_scsi_req_q *pScb; u_int32_t i; u_int8_t tar; if (sc->HCS_Phase == PHASE_MSG_OUT) { bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_DEVRST); pScb = sc->HCS_ActScb; /* This SCB finished correctly -- resetting the device */ tul_append_done_scb(sc, pScb, HOST_OK); tul_reset_tcs(pScb->SCB_Tcs, sc->HCS_SConf1); tar = pScb->SCB_Target; for (i = 0, pScb = sc->HCS_Scb; i < IHA_MAX_SCB; i++, pScb++) if (pScb->SCB_Target == tar) switch (pScb->SCB_Status) { case STATUS_BUSY: tul_append_done_scb(sc, pScb, HOST_DEV_RST); break; case STATUS_SELECT: tul_push_pend_scb(sc, pScb); break; default: break; } sc->HCS_Flags |= FLAG_EXPECT_DISC; if (tul_wait(sc, iot, ioh, XF_FIFO_OUT) == -1) return (-1); } tul_bad_seq(sc); return (-1); } /* * tul_xfer_data - initiate the DMA xfer of the data */ static int tul_xfer_data(pScb, iot, ioh, direction) struct iha_scsi_req_q *pScb; bus_space_tag_t iot; bus_space_handle_t ioh; int direction; { u_int32_t xferlen; u_int8_t xfertype; if ((pScb->SCB_Flags & FLAG_DIR) != direction) return (6); /* wrong direction, abandon I/O */ bus_space_write_4(iot, ioh, TUL_STCNT0, pScb->SCB_BufLen); if ((pScb->SCB_Flags & FLAG_SG) == 0) { xferlen = pScb->SCB_BufLen; xfertype = (direction == SCSI_DATA_IN) ? ST_X_IN : ST_X_OUT; } else { xferlen = pScb->SCB_SGLen * sizeof(struct iha_sg_element); xfertype = (direction == SCSI_DATA_IN) ? ST_SG_IN : ST_SG_OUT; } bus_space_write_4(iot, ioh, TUL_DXC, xferlen); bus_space_write_4(iot, ioh, TUL_DXPA, pScb->SCB_BufPAddr); bus_space_write_1(iot, ioh, TUL_DCMD, xfertype); bus_space_write_1(iot, ioh, TUL_SCMD, (direction == SCSI_DATA_IN) ? XF_DMA_IN : XF_DMA_OUT); pScb->SCB_NxtStat = 5; return (0); } static int tul_xpad_in(sc, iot, ioh) struct iha_softc *sc; bus_space_tag_t iot; bus_space_handle_t ioh; { struct iha_scsi_req_q *pScb = sc->HCS_ActScb; if ((pScb->SCB_Flags & FLAG_DIR) != 0) pScb->SCB_HaStat = HOST_DO_DU; for (;;) { if ((pScb->SCB_Tcs->TCS_JS_Period & PERIOD_WIDE_SCSI) != 0) bus_space_write_4(iot, ioh, TUL_STCNT0, 2); else bus_space_write_4(iot, ioh, TUL_STCNT0, 1); switch (tul_wait(sc, iot, ioh, XF_FIFO_IN)) { case -1: return (-1); case PHASE_DATA_IN: bus_space_read_1(iot, ioh, TUL_SFIFO); break; default: bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO); return (6); } } } static int tul_xpad_out(sc, iot, ioh) struct iha_softc *sc; bus_space_tag_t iot; bus_space_handle_t ioh; { struct iha_scsi_req_q *pScb = sc->HCS_ActScb; if ((pScb->SCB_Flags & FLAG_DIR) != 0) pScb->SCB_HaStat = HOST_DO_DU; for (;;) { if ((pScb->SCB_Tcs->TCS_JS_Period & PERIOD_WIDE_SCSI) != 0) bus_space_write_4(iot, ioh, TUL_STCNT0, 2); else bus_space_write_4(iot, ioh, TUL_STCNT0, 1); bus_space_write_1(iot, ioh, TUL_SFIFO, 0); switch (tul_wait(sc, iot, ioh, XF_FIFO_OUT)) { case -1: return (-1); case PHASE_DATA_OUT: break; default: /* Disable wide CPU to allow read 16 bits */ bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL); bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO); return (6); } } } static int tul_status_msg(sc, iot, ioh) struct iha_softc *sc; bus_space_tag_t iot; bus_space_handle_t ioh; { struct iha_scsi_req_q *pScb; u_int8_t msg; int phase; if ((phase = tul_wait(sc, iot, ioh, CMD_COMP)) == -1) return (-1); pScb = sc->HCS_ActScb; pScb->SCB_TaStat = bus_space_read_1(iot, ioh, TUL_SFIFO); if (phase == PHASE_MSG_OUT) { if ((sc->HCS_JSStatus0 & SPERR) == 0) bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_NOP); else bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_PARITY); return (tul_wait(sc, iot, ioh, XF_FIFO_OUT)); } else if (phase == PHASE_MSG_IN) { msg = bus_space_read_1(iot, ioh, TUL_SFIFO); if ((sc->HCS_JSStatus0 & SPERR) != 0) switch (tul_wait(sc, iot, ioh, MSG_ACCEPT)) { case -1: return (-1); case PHASE_MSG_OUT: bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_PARITY); return (tul_wait(sc, iot, ioh, XF_FIFO_OUT)); default: tul_bad_seq(sc); return (-1); } if (msg == MSG_COMP) { if ((pScb->SCB_TaStat & (SCSI_INTERM | SCSI_BUSY)) == SCSI_INTERM) { tul_bad_seq(sc); return (-1); } sc->HCS_Flags |= FLAG_EXPECT_DONE_DISC; bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO); return (tul_wait(sc, iot, ioh, MSG_ACCEPT)); } if ((msg == MSG_LINK_COMP) || (msg == MSG_LINK_FLAG)) { if ((pScb->SCB_TaStat & (SCSI_INTERM | SCSI_BUSY)) == SCSI_INTERM) return (tul_wait(sc, iot, ioh, MSG_ACCEPT)); } } tul_bad_seq(sc); return (-1); } /* * tul_busfree - SCSI bus free detected as a result of a TIMEOUT or * DISCONNECT interrupt. Reset the tulip FIFO and * SCONFIG0 and enable hardware reselect. Move any active * SCB to HCS_DoneScb list. Return an appropriate host status * if an I/O was active. */ static void tul_busfree(sc, iot, ioh) struct iha_softc *sc; bus_space_tag_t iot; bus_space_handle_t ioh; { struct iha_scsi_req_q *pScb; bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO); bus_space_write_1(iot, ioh, TUL_SCONFIG0, SCONFIG0DEFAULT); bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL); pScb = sc->HCS_ActScb; if (pScb != NULL) { if (pScb->SCB_Status == STATUS_SELECT) /* selection timeout */ tul_append_done_scb(sc, pScb, HOST_SEL_TOUT); else /* Unexpected bus free */ tul_append_done_scb(sc, pScb, HOST_BAD_PHAS); } } static void tul_reset_scsi_bus(sc) struct iha_softc *sc; { struct iha_scsi_req_q *pScb; struct tcs *pTcs; int i, s; s = splbio(); tul_reset_dma(sc->sc_iot, sc->sc_ioh); for (i = 0, pScb = sc->HCS_Scb; i < IHA_MAX_SCB; i++, pScb++) switch (pScb->SCB_Status) { case STATUS_BUSY: tul_append_done_scb(sc, pScb, HOST_SCSI_RST); break; case STATUS_SELECT: tul_push_pend_scb(sc, pScb); break; default: break; } for (i = 0, pTcs = sc->HCS_Tcs; i < IHA_MAX_TARGETS; i++, pTcs++) tul_reset_tcs(pTcs, sc->HCS_SConf1); splx(s); } /* * tul_resel - handle a detected SCSI bus reselection request. */ static int tul_resel(sc, iot, ioh) struct iha_softc *sc; bus_space_tag_t iot; bus_space_handle_t ioh; { struct iha_scsi_req_q *pScb; struct tcs *pTcs; u_int8_t tag, target, lun, msg, abortmsg; if (sc->HCS_ActScb != NULL) { if ((sc->HCS_ActScb->SCB_Status == STATUS_SELECT)) tul_push_pend_scb(sc, sc->HCS_ActScb); /* sets ActScb to NULL */ else sc->HCS_ActScb = NULL; } target = bus_space_read_1(iot, ioh, TUL_SBID); lun = bus_space_read_1(iot, ioh, TUL_SALVC) & IDENT_LUN; pTcs = &sc->HCS_Tcs[target]; bus_space_write_1(iot, ioh, TUL_SCONFIG0, pTcs->TCS_SConfig0); bus_space_write_1(iot, ioh, TUL_SYNCM, pTcs->TCS_JS_Period); abortmsg = MSG_ABORT; /* until a valid tag has been obtained */ if (pTcs->TCS_NonTagScb != NULL) /* There is a non-tagged I/O active on the target */ pScb = pTcs->TCS_NonTagScb; else { /* * Since there is no active non-tagged operation * read the tag type, the tag itself, and find * the appropriate pScb by indexing HCS_Scb with * the tag. */ switch (tul_wait(sc, iot, ioh, MSG_ACCEPT)) { case -1: return (-1); case PHASE_MSG_IN: bus_space_write_4(iot, ioh, TUL_STCNT0, 1); if ((tul_wait(sc, iot, ioh, XF_FIFO_IN)) == -1) return (-1); break; default: goto abort; } msg = bus_space_read_1(iot, ioh, TUL_SFIFO); /* Read Tag Msg */ if ((msg < MSG_STAG) || (msg > MSG_OTAG)) goto abort; switch (tul_wait(sc, iot, ioh, MSG_ACCEPT)) { case -1: return (-1); case PHASE_MSG_IN: bus_space_write_4(iot, ioh, TUL_STCNT0, 1); if ((tul_wait(sc, iot, ioh, XF_FIFO_IN)) == -1) return (-1); break; default: goto abort; } tag = bus_space_read_1(iot, ioh, TUL_SFIFO); /* Read Tag ID */ pScb = &sc->HCS_Scb[tag]; abortmsg = MSG_ABORT_TAG; /* Now that we have valdid tag! */ } if ((pScb->SCB_Target != target) || (pScb->SCB_Lun != lun) || (pScb->SCB_Status != STATUS_BUSY)) { abort: tul_msgout_abort(sc, iot, ioh, abortmsg); return (-1); } sc->HCS_ActScb = pScb; if (tul_wait(sc, iot, ioh, MSG_ACCEPT) == -1) return (-1); return(tul_next_state(sc, iot, ioh)); } static int tul_msgin(sc, iot, ioh) struct iha_softc *sc; bus_space_tag_t iot; bus_space_handle_t ioh; { u_int16_t flags; u_int8_t msg; int phase; for (;;) { if ((bus_space_read_1(iot, ioh, TUL_SFIFOCNT) & FIFOC) > 0) bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO); bus_space_write_4(iot, ioh, TUL_STCNT0, 1); phase = tul_wait(sc, iot, ioh, XF_FIFO_IN); msg = bus_space_read_1(iot, ioh, TUL_SFIFO); switch (msg) { case MSG_DISC: sc->HCS_Flags |= FLAG_EXPECT_DISC; if (tul_wait(sc, iot, ioh, MSG_ACCEPT) != -1) tul_bad_seq(sc); phase = -1; break; case MSG_SDP: case MSG_RESTORE: case MSG_NOP: phase = tul_wait(sc, iot, ioh, MSG_ACCEPT); break; case MSG_REJ: /* XXX - need to clear FIFO like other 'Clear ATN'?*/ tul_set_ssig(iot, ioh, REQ | BSY | SEL | ATN, 0); flags = sc->HCS_ActScb->SCB_Tcs->TCS_Flags; if ((flags & FLAG_NO_NEG_SYNC) == 0) tul_set_ssig(iot, ioh, REQ | BSY | SEL, ATN); phase = tul_wait(sc, iot, ioh, MSG_ACCEPT); break; case MSG_EXTEND: phase = tul_msgin_extend(sc, iot, ioh); break; case MSG_IGNOREWIDE: phase = tul_msgin_ignore_wid_resid(sc, iot, ioh); break; case MSG_COMP: sc->HCS_Flags |= FLAG_EXPECT_DONE_DISC; bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO); phase = tul_wait(sc, iot, ioh, MSG_ACCEPT); if (phase != -1) { tul_bad_seq(sc); return (-1); } break; default: printf("[debug] tul_msgin: bad msg type: %d\n", msg); phase = tul_msgout_reject(sc, iot, ioh); break; } if (phase != PHASE_MSG_IN) return (phase); } /* NOTREACHED */ } static int tul_msgin_ignore_wid_resid(sc, iot, ioh) struct iha_softc *sc; bus_space_tag_t iot; bus_space_handle_t ioh; { int phase; phase = tul_wait(sc, iot, ioh, MSG_ACCEPT); if (phase == PHASE_MSG_IN) { if (tul_wait(sc, iot, ioh, XF_FIFO_IN) == -1) return (-1); bus_space_write_1(iot, ioh, TUL_SFIFO, 0); /* put pad */ bus_space_read_1 (iot, ioh, TUL_SFIFO); /* get IGNORE */ bus_space_read_1 (iot, ioh, TUL_SFIFO); /* get pad */ return (tul_wait(sc, iot, ioh, MSG_ACCEPT)); } else return (phase); } static int tul_msgin_extend(sc, iot, ioh) struct iha_softc *sc; bus_space_tag_t iot; bus_space_handle_t ioh; { u_int16_t flags; int i, phase, msglen, msgcode; /* XXX - can we just stop reading and reject, or do we have to * read all input, discarding the excess, and then reject */ for (i = 0; i < IHA_MAX_EXTENDED_MSG; i++) { phase = tul_wait(sc, iot, ioh, MSG_ACCEPT); if (phase != PHASE_MSG_IN) return (phase); bus_space_write_4(iot, ioh, TUL_STCNT0, 1); if (tul_wait(sc, iot, ioh, XF_FIFO_IN) == -1) return (-1); sc->HCS_Msg[i] = bus_space_read_1(iot, ioh, TUL_SFIFO); if (sc->HCS_Msg[0] == i) break; } msglen = sc->HCS_Msg[0]; msgcode = sc->HCS_Msg[1]; if ((msglen == MSG_LEN_SYNC_XFER) && (msgcode == MSG_CODE_SYNC_XFER)) { if (tul_msgin_sync(sc) == 0) { tul_sync_done(sc, iot, ioh); return (tul_wait(sc, iot, ioh, MSG_ACCEPT)); } tul_set_ssig(iot, ioh, REQ | BSY | SEL, ATN); phase = tul_wait(sc, iot, ioh, MSG_ACCEPT); if (phase != PHASE_MSG_OUT) return (phase); /* Clear FIFO for important message - final SYNC offer */ bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO); tul_sync_done(sc, iot, ioh); /* This is our final offer */ bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_EXTEND); bus_space_write_1(iot, ioh, TUL_SFIFO, 3); bus_space_write_1(iot, ioh, TUL_SFIFO, 1); bus_space_write_1(iot, ioh, TUL_SFIFO, sc->HCS_Msg[2]); bus_space_write_1(iot, ioh, TUL_SFIFO, sc->HCS_Msg[3]); } else if ((msglen == MSG_LEN_WIDE_XFER) && (msgcode == MSG_CODE_WIDE_XFER)) { flags = sc->HCS_ActScb->SCB_Tcs->TCS_Flags; if ((flags & FLAG_NO_WIDE) != 0) sc->HCS_Msg[2] = 0; /* Offer async xfers only */ else if (sc->HCS_Msg[2] > 2) /* BAD MSG: 2 is max value */ return (tul_msgout_reject(sc, iot, ioh)); else if (sc->HCS_Msg[2] == 2) /* a request for 32 bit xfers*/ sc->HCS_Msg[2] = 1; /* Offer 16 instead */ else { tul_wdtr_done(sc, iot, ioh); if ((flags & FLAG_NO_NEG_SYNC) == 0) tul_set_ssig(iot, ioh, REQ | BSY | SEL, ATN); return (tul_wait(sc, iot, ioh, MSG_ACCEPT)); } tul_set_ssig(iot, ioh, REQ | BSY | SEL, ATN); phase = tul_wait(sc, iot, ioh, MSG_ACCEPT); if (phase != PHASE_MSG_OUT) return (phase); /* WDTR msg out */ bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_EXTEND); bus_space_write_1(iot, ioh, TUL_SFIFO, 2); bus_space_write_1(iot, ioh, TUL_SFIFO, 3); bus_space_write_1(iot, ioh, TUL_SFIFO, sc->HCS_Msg[2]); } else return (tul_msgout_reject(sc, iot, ioh)); return (tul_wait(sc, iot, ioh, XF_FIFO_OUT)); } /* * tul_msgin_sync - check SDTR msg in HCS_Msg. If the offer is * acceptable leave HCS_Msg as is and return 0. * If the negotiation must continue, modify HCS_Msg * as needed and return 1. Else return 0. */ static int tul_msgin_sync(sc) struct iha_softc *sc; { u_int16_t flags; u_int8_t default_period; int newoffer; flags = sc->HCS_ActScb->SCB_Tcs->TCS_Flags; default_period = tul_rate_tbl[flags & FLAG_SCSI_RATE]; if (sc->HCS_Msg[3] == 0) /* target offered async only. Accept it. */ return (0); newoffer = 0; if ((flags & FLAG_NO_SYNC) != 0) { sc->HCS_Msg[3] = 0; newoffer = 1; } if (sc->HCS_Msg[3] > IHA_MAX_TARGETS-1) { sc->HCS_Msg[3] = IHA_MAX_TARGETS-1; newoffer = 1; } if (sc->HCS_Msg[2] < default_period) { sc->HCS_Msg[2] = default_period; newoffer = 1; } if (sc->HCS_Msg[2] >= 59) { sc->HCS_Msg[3] = 0; newoffer = 1; } return (newoffer); } static int tul_msgout(sc, iot, ioh, msg) struct iha_softc *sc; bus_space_tag_t iot; bus_space_handle_t ioh; u_int8_t msg; { bus_space_write_1(iot, ioh, TUL_SFIFO, msg); return (tul_wait(sc, iot, ioh, XF_FIFO_OUT)); } static void tul_msgout_abort(sc, iot, ioh, aborttype) struct iha_softc *sc; bus_space_tag_t iot; bus_space_handle_t ioh; u_int8_t aborttype; { tul_set_ssig(iot, ioh, REQ | BSY | SEL, ATN); switch (tul_wait(sc, iot, ioh, MSG_ACCEPT)) { case -1: break; case PHASE_MSG_OUT: bus_space_write_1(iot, ioh, TUL_SFIFO, aborttype ); sc->HCS_Flags |= FLAG_EXPECT_DISC; if (tul_wait(sc, iot, ioh, XF_FIFO_OUT) != -1) tul_bad_seq(sc); break; default: tul_bad_seq(sc); break; } } static int tul_msgout_reject(sc, iot, ioh) struct iha_softc *sc; bus_space_tag_t iot; bus_space_handle_t ioh; { int phase; tul_set_ssig(iot, ioh, REQ | BSY | SEL, ATN); if ((phase = tul_wait(sc, iot, ioh, MSG_ACCEPT)) == -1) return (-1); if (phase == PHASE_MSG_OUT) { bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_REJ); return (tul_wait(sc, iot, ioh, XF_FIFO_OUT)); } return (phase); } static int tul_msgout_wide(sc, iot, ioh) struct iha_softc *sc; bus_space_tag_t iot; bus_space_handle_t ioh; { int phase; sc->HCS_ActScb->SCB_Tcs->TCS_Flags |= FLAG_WIDE_DONE; bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_EXTEND); bus_space_write_1(iot, ioh, TUL_SFIFO, 2); /* Message length*/ bus_space_write_1(iot, ioh, TUL_SFIFO, 3); /* WDTR request */ bus_space_write_1(iot, ioh, TUL_SFIFO, 1); /* 16 bits xfer */ phase = tul_wait(sc, iot, ioh, XF_FIFO_OUT); bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO); tul_set_ssig(iot, ioh, REQ | BSY | SEL | ATN, 0); return (phase); } static int tul_msgout_sync(sc, iot, ioh) struct iha_softc *sc; bus_space_tag_t iot; bus_space_handle_t ioh; { u_int16_t rateindex; u_int8_t sync_rate; int phase; rateindex = sc->HCS_ActScb->SCB_Tcs->TCS_Flags & FLAG_SCSI_RATE; sync_rate = tul_rate_tbl[rateindex]; bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_EXTEND); bus_space_write_1(iot, ioh, TUL_SFIFO, 3); /* Msg len*/ bus_space_write_1(iot, ioh, TUL_SFIFO, 1); /* SDTR */ bus_space_write_1(iot, ioh, TUL_SFIFO, sync_rate); bus_space_write_1(iot, ioh, TUL_SFIFO, IHA_MAX_TARGETS-1); /* REQ/ACK*/ phase = tul_wait(sc, iot, ioh, XF_FIFO_OUT); bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO); tul_set_ssig(iot, ioh, REQ | BSY | SEL | ATN, 0); return (phase); } static void tul_wdtr_done(sc, iot, ioh) struct iha_softc *sc; bus_space_tag_t iot; bus_space_handle_t ioh; { struct tcs *pTcs = sc->HCS_ActScb->SCB_Tcs; pTcs->TCS_JS_Period = 0; if (sc->HCS_Msg[2] != 0) pTcs->TCS_JS_Period |= PERIOD_WIDE_SCSI; pTcs->TCS_SConfig0 &= ~ALTPD; pTcs->TCS_Flags &= ~FLAG_SYNC_DONE; pTcs->TCS_Flags |= FLAG_WIDE_DONE; bus_space_write_1(iot, ioh, TUL_SCONFIG0, pTcs->TCS_SConfig0); bus_space_write_1(iot, ioh, TUL_SYNCM, pTcs->TCS_JS_Period); } static void tul_sync_done(sc, iot, ioh) struct iha_softc *sc; bus_space_tag_t iot; bus_space_handle_t ioh; { struct tcs *pTcs = sc->HCS_ActScb->SCB_Tcs; int i; if ((pTcs->TCS_Flags & FLAG_SYNC_DONE) == 0) { if (sc->HCS_Msg[3] != 0) { pTcs->TCS_JS_Period |= sc->HCS_Msg[3]; /* pick the highest possible rate */ for (i = 0; i < 8; i++) if (tul_rate_tbl[i] >= sc->HCS_Msg[2]) break; pTcs->TCS_JS_Period |= (i << 4); pTcs->TCS_SConfig0 |= ALTPD; } pTcs->TCS_Flags |= FLAG_SYNC_DONE; bus_space_write_1(iot, ioh, TUL_SCONFIG0, pTcs->TCS_SConfig0); bus_space_write_1(iot, ioh, TUL_SYNCM, pTcs->TCS_JS_Period); } } void tul_reset_chip(sc, iot, ioh) struct iha_softc *sc; bus_space_tag_t iot; bus_space_handle_t ioh; { int i; /* reset tulip chip */ bus_space_write_1(iot, ioh, TUL_SCTRL0, RSCSI); do sc->HCS_JSInt = bus_space_read_1(iot, ioh, TUL_SISTAT); while((sc->HCS_JSInt & SRSTD) == 0); tul_set_ssig(iot, ioh, 0, 0); /* * Stall for 2 seconds, wait for target's firmware ready. */ for (i = 0; i < 2000; i++) DELAY (1000); bus_space_read_1(iot, ioh, TUL_SISTAT); /* Clear any active interrupt*/ } static void tul_select(sc, iot, ioh, pScb, select_type) struct iha_softc *sc; bus_space_tag_t iot; bus_space_handle_t ioh; struct iha_scsi_req_q *pScb; u_int8_t select_type; { switch (select_type) { case SEL_ATN: bus_space_write_1(iot, ioh, TUL_SFIFO, pScb->SCB_Ident); bus_space_write_multi_1(iot, ioh, TUL_SFIFO, pScb->SCB_CDB, pScb->SCB_CDBLen); pScb->SCB_NxtStat = 2; break; case SELATNSTOP: pScb->SCB_NxtStat = 1; break; case SEL_ATN3: bus_space_write_1(iot, ioh, TUL_SFIFO, pScb->SCB_Ident); bus_space_write_1(iot, ioh, TUL_SFIFO, pScb->SCB_TagMsg); bus_space_write_1(iot, ioh, TUL_SFIFO, pScb->SCB_TagId); bus_space_write_multi_1(iot, ioh, TUL_SFIFO, pScb->SCB_CDB, pScb->SCB_CDBLen); pScb->SCB_NxtStat = 2; break; default: printf("[debug] tul_select() - unknown select type = 0x%02x\n", select_type); return; } tul_del_pend_scb(sc, pScb); pScb->SCB_Status = STATUS_SELECT; sc->HCS_ActScb = pScb; bus_space_write_1(iot, ioh, TUL_SCMD, select_type); } /* * tul_wait - wait for an interrupt to service or a SCSI bus phase change * after writing the supplied command to the tulip chip. If * the command is NO_OP, skip the command writing. */ static int tul_wait(sc, iot, ioh, cmd) struct iha_softc *sc; bus_space_tag_t iot; bus_space_handle_t ioh; u_int8_t cmd; { if (cmd != NO_OP) bus_space_write_1(iot, ioh, TUL_SCMD, cmd); /* * Have to do this here, in addition to in iha_isr, because * interrupts might be turned off when we get here. */ do sc->HCS_JSStatus0 = bus_space_read_1(iot, ioh, TUL_STAT0); while ((sc->HCS_JSStatus0 & INTPD) == 0); sc->HCS_JSStatus1 = bus_space_read_1(iot, ioh, TUL_STAT1); sc->HCS_JSInt = bus_space_read_1(iot, ioh, TUL_SISTAT); sc->HCS_Phase = sc->HCS_JSStatus0 & PH_MASK; if ((sc->HCS_JSInt & SRSTD) != 0) { /* SCSI bus reset interrupt */ tul_reset_scsi_bus(sc); return (-1); } if ((sc->HCS_JSInt & RSELED) != 0) /* Reselection interrupt */ return (tul_resel(sc, iot, ioh)); if ((sc->HCS_JSInt & STIMEO) != 0) { /* selected/reselected timeout interrupt */ tul_busfree(sc, iot, ioh); return (-1); } if ((sc->HCS_JSInt & DISCD) != 0) { /* BUS disconnection interrupt */ if ((sc->HCS_Flags & FLAG_EXPECT_DONE_DISC) != 0) { bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO); bus_space_write_1(iot, ioh, TUL_SCONFIG0, SCONFIG0DEFAULT); bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL); tul_append_done_scb(sc, sc->HCS_ActScb, HOST_OK); sc->HCS_Flags &= ~FLAG_EXPECT_DONE_DISC; } else if ((sc->HCS_Flags & FLAG_EXPECT_DISC) != 0) { bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO); bus_space_write_1(iot, ioh, TUL_SCONFIG0, SCONFIG0DEFAULT); bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL); sc->HCS_ActScb = NULL; sc->HCS_Flags &= ~FLAG_EXPECT_DISC; } else tul_busfree(sc, iot, ioh); return (-1); } return (sc->HCS_Phase); } /* * tul_done_scb - We have a scb which has been processed by the * adaptor, now we look to see how the operation went. */ static void tul_done_scb(sc, pScb) struct iha_softc *sc; struct iha_scsi_req_q *pScb; { struct scsi_sense_data *s1, *s2; struct scsi_xfer *xs = pScb->SCB_Xs; if (xs != NULL) { xs->status = pScb->SCB_TaStat; switch (pScb->SCB_HaStat) { case HOST_OK: switch (pScb->SCB_TaStat) { case SCSI_OK: case SCSI_CONDITION_MET: case SCSI_INTERM: case SCSI_INTERM_COND_MET: if (((pScb->SCB_Flags & SCSI_POLL) != 0) && (pScb->SCB_CDB[0] == INQUIRY) && (pScb->SCB_Lun == 0)) tul_print_info(sc, pScb->SCB_Target); xs->resid = pScb->SCB_BufLen; xs->error = XS_NOERROR; break; case SCSI_RSERV_CONFLICT: case SCSI_BUSY: case SCSI_QUEUE_FULL: xs->error = XS_BUSY; break; case SCSI_CMD_TERMINATED: case SCSI_ACA_ACTIVE: case SCSI_CHECK: s1 = &pScb->SCB_ScsiSenseData; s2 = &xs->sense; *s2 = *s1; xs->error = XS_SENSE; break; default: xs->error = XS_DRIVER_STUFFUP; break; } break; case HOST_SEL_TOUT: xs->error = XS_SELTIMEOUT; break; case HOST_SCSI_RST: case HOST_DEV_RST: xs->error = XS_RESET; break; case HOST_SPERR: printf("%s: SCSI Parity error detected\n", sc->sc_dev.dv_xname); xs->error = XS_DRIVER_STUFFUP; break; case HOST_TIMED_OUT: xs->error = XS_TIMEOUT; break; case HOST_DO_DU: case HOST_BAD_PHAS: default: xs->error = XS_DRIVER_STUFFUP; break; } if (xs->datalen > 0) { bus_dmamap_sync(sc->sc_dmat, pScb->SCB_Dmamap ,(xs->flags & SCSI_DATA_IN) ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, pScb->SCB_Dmamap); } xs->flags |= ITSDONE; scsi_done(xs); } if (xs->flags & SCSI_RESET) printf("[debug] tul_done_scb - finished a reset request\n"); tul_append_free_scb(sc, pScb); } static void tul_timeout(arg) void *arg; { struct iha_scsi_req_q *pScb = (struct iha_scsi_req_q *)arg; struct scsi_xfer *xs = pScb->SCB_Xs; struct iha_softc *sc; if (xs == NULL) printf("[debug] tul_timeout called with xs == NULL\n"); else { sc = xs->sc_link->adapter_softc; sc_print_addr(xs->sc_link); printf("SCSI OpCode 0x%02x timed out\n", xs->cmd->opcode); tul_abort_xs(xs->sc_link->adapter_softc, xs, HOST_TIMED_OUT); } } static void tul_exec_scb(sc, pScb) struct iha_softc *sc; struct iha_scsi_req_q *pScb; { bus_space_handle_t ioh; bus_space_tag_t iot; int s; s = splbio(); if (((pScb->SCB_Flags & SCSI_RESET) != 0) || (pScb->SCB_CDB[0] == REQUEST_SENSE)) tul_push_pend_scb(sc, pScb); /* Insert SCB at head of Pend */ else tul_append_pend_scb(sc, pScb); /* Append SCB to tail of Pend */ /* * Run through tul_main() to ensure something is active, if * only this new SCB. */ if (sc->HCS_Semaph != SEMAPH_IN_MAIN) { iot = sc->sc_iot; ioh = sc->sc_ioh; bus_space_write_1(iot, ioh, TUL_IMSK, MASK_ALL); sc->HCS_Semaph = SEMAPH_IN_MAIN;; splx(s); tul_main(sc, iot, ioh); s = splbio(); sc->HCS_Semaph = ~SEMAPH_IN_MAIN;; bus_space_write_1(iot, ioh, TUL_IMSK, (MASK_ALL & ~MSCMP)); } splx(s); } /* * tul_set_ssig - read the current scsi signal mask, then write a new * one which turns off/on the specified signals. */ static void tul_set_ssig( iot, ioh, offsigs, onsigs) bus_space_tag_t iot; bus_space_handle_t ioh; u_int8_t offsigs, onsigs; { u_int8_t currsigs; currsigs = bus_space_read_1(iot, ioh, TUL_SSIGI); bus_space_write_1(iot, ioh, TUL_SSIGO, (currsigs & ~offsigs) | onsigs); } static void tul_print_info(sc, target) struct iha_softc *sc; int target; { struct tcs *pTcs = &sc->HCS_Tcs[target]; int rate; printf("%s: target %d ", sc->sc_dev.dv_xname, target); if ((pTcs->TCS_JS_Period & PERIOD_WIDE_SCSI) != 0) printf("using 16 bit "); else printf("using 8 bit "); if ((pTcs->TCS_JS_Period & PERIOD_SYOFS) != 0) { printf("synchronous transfers at "); rate = (pTcs->TCS_JS_Period & PERIOD_SYXPD) >> 4; if ((pTcs->TCS_SConfig0 & ALTPD) == 0) rate = 100 + rate * 50; else rate = 50 + rate * 25; rate = 1000000000 / rate; printf("%d.%d MHz ", rate / 1000000 ,(rate % 1000000 + 99999) / 100000); } else printf("asynchronous transfers "); printf("with "); if ((pTcs->TCS_SConfig0 & SPCHK) == 0) printf("no "); printf("parity\n"); } /* * tul_alloc_scbs - allocate and map the SCB's for the supplied IHA_SOFTC */ static int tul_alloc_scbs(sc) struct iha_softc *sc; { bus_dma_segment_t seg; int error, rseg; /* * Allocate dma-safe memory for the SCB's */ if ((error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct iha_scsi_req_q)*IHA_MAX_SCB, NBPG, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) { printf("%s: unable to allocate SCBs," " error = %d\n", sc->sc_dev.dv_xname, error); return (error); } if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, sizeof(struct iha_scsi_req_q)*IHA_MAX_SCB, (caddr_t *)&sc->HCS_Scb, BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) { printf("%s: unable to map SCBs, error = %d\n", sc->sc_dev.dv_xname, error); return (error); } /* * Create and load the DMA map used for the SCBs */ if ((error = bus_dmamap_create(sc->sc_dmat, sizeof(struct iha_scsi_req_q)*IHA_MAX_SCB, 1, sizeof(struct iha_scsi_req_q)*IHA_MAX_SCB, 0, BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) { printf("%s: unable to create control DMA map, error = %d\n", sc->sc_dev.dv_xname, error); return (error); } if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->HCS_Scb, sizeof(struct iha_scsi_req_q)*IHA_MAX_SCB, NULL, BUS_DMA_NOWAIT)) != 0) { printf("%s: unable to load control DMA map, error = %d\n", sc->sc_dev.dv_xname, error); return (error); } bzero(sc->HCS_Scb, sizeof(struct iha_scsi_req_q)*IHA_MAX_SCB); return (0); } /* * tul_read_eeprom - read Serial EEPROM value & set to defaults * if required. XXX - Writing does NOT work! */ void tul_read_eeprom(iot, ioh) bus_space_tag_t iot; bus_space_handle_t ioh; { u_int8_t gctrl; /*------Enable EEProm programming ---*/ gctrl = bus_space_read_1(iot, ioh, TUL_GCTRL0) | EEPRG; bus_space_write_1(iot, ioh, TUL_GCTRL0, gctrl); /*------ Program default pattern ----*/ if (tul_se2_rd_all(iot, ioh) == 0) { tul_se2_update_all(iot, ioh); if(tul_se2_rd_all(iot, ioh) == 0) panic("could not program iha Tulip EEPROM\n"); } /*------ Disable EEProm programming ---*/ gctrl = bus_space_read_1(iot, ioh, TUL_GCTRL0) & ~EEPRG; bus_space_write_1(iot, ioh, TUL_GCTRL0, gctrl); } /* * tul_se2_update_all - Update SCSI H/A configuration parameters from * serial EEPROM Setup default pattern. Only * change those values different from the values * in tul_nvram. */ void tul_se2_update_all(iot, ioh) bus_space_tag_t iot; bus_space_handle_t ioh; { u_int16_t *np, *np1; u_int32_t chksum; u_int8_t i; /* Enable erase/write state of EEPROM */ tul_se2_instr(iot, ioh, ENABLE_ERASE); bus_space_write_1(iot, ioh, TUL_NVRAM, 0); DELAY(5); np = (u_int16_t *)tul_dftNvRam; np1 = (u_int16_t *)&tul_nvram; for (i = 0, chksum = 0; i < 31; i++, np++, np1++) { if (*np != *np1) tul_se2_wr(iot, ioh, i, *np); chksum += *np; } chksum &= 0x0000ffff; tul_se2_wr(iot, ioh, 31, chksum); /* Disable erase/write state of EEPROM */ tul_se2_instr(iot, ioh, 0); bus_space_write_1(iot, ioh, TUL_NVRAM, 0); DELAY(5); } /* * tul_se2_wr - write the given 16 bit value into the Serial EEPROM * at the specified offset */ void tul_se2_wr(iot, ioh, addr, writeWord) bus_space_tag_t iot; bus_space_handle_t ioh; u_int8_t addr; u_int16_t writeWord; { u_int8_t bit; int i; /* send 'WRITE' Instruction == address | WRITE bit */ tul_se2_instr(iot, ioh, (addr | WRITE)); for (i = 15; i >= 0; i--, writeWord <<= 1) { if (writeWord & 0x8000) bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRDO); else bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS); DELAY(5); bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRCK); DELAY(5); } bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS); DELAY(5); bus_space_write_1(iot, ioh, TUL_NVRAM, 0); DELAY(5); bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS); DELAY(5); for (;;) { bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRCK); DELAY(5); bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS); DELAY(5); bit = bus_space_read_1(iot, ioh, TUL_NVRAM) & NVRDI; DELAY(5); if (bit != 0) break; /* write complete */ } bus_space_write_1(iot, ioh, TUL_NVRAM, 0); DELAY(5); } /* * tul_se2_rd - read & return the 16 bit value at the specified * offset in the Serial E2PROM * */ u_int16_t tul_se2_rd(iot, ioh, addr) bus_space_tag_t iot; bus_space_handle_t ioh; u_int8_t addr; { u_int16_t readWord; u_int8_t bit; int i; /* Send 'READ' instruction == address | READ bit */ tul_se2_instr(iot, ioh, (addr | READ)); readWord = 0; for (i = 15; i >= 0; i--) { bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRCK); DELAY(5); bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS); DELAY(5); /* sample data after the following edge of clock */ bit = bus_space_read_1(iot, ioh, TUL_NVRAM) & NVRDI; DELAY(5); readWord += bit << i; } bus_space_write_1(iot, ioh, TUL_NVRAM, 0); DELAY(5); return (readWord); } /* * tul_se2_rd_all - Read SCSI H/A config parameters from serial EEPROM * into tul_nvram static variable. */ int tul_se2_rd_all(iot, ioh) bus_space_tag_t iot; bus_space_handle_t ioh; { u_int16_t *np, *np1; u_int32_t chksum; u_int8_t i; np = (u_int16_t *)&tul_nvram; np1 = (u_int16_t *)&tul_dftNvRam; for (i = 0, chksum = 0; i < 31; i++, np++, np1++) { *np = tul_se2_rd(iot, ioh, i); chksum += *np; } *np = tul_se2_rd(iot, ioh, 31); /* just read checksum */ chksum &= 0x0000ffff; /* checksum is lower 16 bits of sum */ return (tul_nvram.NVM_Signature == SIGNATURE) && (tul_nvram.NVM_CheckSum == chksum); } /* * tul_se2_instr - write an octet to serial E2PROM one bit at a time */ void tul_se2_instr(iot, ioh, instr) bus_space_tag_t iot; bus_space_handle_t ioh; u_int8_t instr; { u_int8_t b; int i; b = NVRCS | NVRDO; /* Write the start bit (== 1) */ bus_space_write_1(iot, ioh, TUL_NVRAM, b); DELAY(5); bus_space_write_1(iot, ioh, TUL_NVRAM, b | NVRCK); DELAY(5); for (i = 0; i < 8; i++, instr <<= 1) { if (instr & 0x80) b = NVRCS | NVRDO; /* Write a 1 bit */ else b = NVRCS; /* Write a 0 bit */ bus_space_write_1(iot, ioh, TUL_NVRAM, b); DELAY(5); bus_space_write_1(iot, ioh, TUL_NVRAM, b | NVRCK); DELAY(5); } bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS); DELAY(5); return; } /* * tul_reset_tcs - reset the target control structure pointed * to by pTcs to default values. TCS_Flags * only has the negotiation done bits reset as * the other bits are fixed at initialization. */ void tul_reset_tcs(pTcs, config0) struct tcs *pTcs; u_int8_t config0; { pTcs->TCS_Flags &= ~(FLAG_SYNC_DONE | FLAG_WIDE_DONE); pTcs->TCS_JS_Period = 0; pTcs->TCS_SConfig0 = config0; pTcs->TCS_TagCnt = 0; pTcs->TCS_NonTagScb = NULL; }