/* $OpenBSD: isp_openbsd.c,v 1.31 2008/01/21 20:00:33 sobrado Exp $ */ /* * Platform (OpenBSD) dependent common attachment code for QLogic adapters. * * Copyright (c) 1999, 2000, 2001 by Matthew Jacob * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice immediately at the beginning of the file, without modification, * this list of conditions, and the following disclaimer. * documentation and/or other materials provided with the distribution. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The author may be reached via electronic communications at * * mjacob@feral.com * * or, via United States Postal Address * * Matthew Jacob * Feral Software * PMB#825 * 5214-F Diamond Heights Blvd. * San Francisco, CA, 94131 */ /* expand expensive inline functions here. */ #define EXPENSIVE_INLINE #include /* * Set a timeout for the watchdogging of a command. * * The dimensional analysis is * * milliseconds * (seconds/millisecond) * (ticks/second) = ticks * * = * * (milliseconds / 1000) * hz = ticks * * * For timeouts less than 1 second, we'll get zero. Because of this, and * because we want to establish *our* timeout to be longer than what the * firmware might do, we just add 3 seconds at the back end. */ #define _XT(xs) ((((xs)->timeout/1000) * hz) + (3 * hz)) static void ispminphys(struct buf *); static int32_t ispcmd_slow(XS_T *); static int32_t ispcmd(XS_T *); static struct scsi_device isp_dev = { NULL, NULL, NULL, NULL }; static int isp_polled_cmd (struct ispsoftc *, XS_T *); static void isp_wdog (void *); static void isp_requeue(void *); static void isp_trestart(void *); static void isp_restart(struct ispsoftc *); struct cfdriver isp_cd = { NULL, "isp", DV_DULL }; /* * Complete attachment of hardware, include subdevices. */ void isp_attach(struct ispsoftc *isp) { struct scsibus_attach_args saa; struct scsi_link *lptr = &isp->isp_osinfo._link[0]; isp->isp_osinfo._adapter.scsi_minphys = ispminphys; isp->isp_state = ISP_RUNSTATE; /* * We only manage a single wait queues for dual bus controllers. * This is arguably broken. */ isp->isp_osinfo.wqf = isp->isp_osinfo.wqt = NULL; lptr->adapter_softc = isp; lptr->device = &isp_dev; lptr->adapter = &isp->isp_osinfo._adapter; lptr->openings = imin(isp->isp_maxcmds, MAXISPREQUEST(isp)); isp->isp_osinfo._adapter.scsi_cmd = ispcmd_slow; if (IS_FC(isp)) { lptr->adapter_buswidth = MAX_FC_TARG; /* We can set max lun width here */ /* loopid set below */ } else { sdparam *sdp = isp->isp_param; lptr->adapter_buswidth = MAX_TARGETS; /* We can set max lun width here */ lptr->adapter_target = sdp->isp_initiator_id; isp->isp_osinfo.discovered[0] = 1 << sdp->isp_initiator_id; if (IS_DUALBUS(isp)) { struct scsi_link *lptrb = &isp->isp_osinfo._link[1]; lptrb->adapter_softc = isp; lptrb->device = &isp_dev; lptrb->adapter = &isp->isp_osinfo._adapter; lptrb->openings = lptr->openings; lptrb->adapter_buswidth = MAX_TARGETS; lptrb->adapter_target = sdp->isp_initiator_id; lptrb->flags = SDEV_2NDBUS; isp->isp_osinfo.discovered[1] = 1 << (sdp+1)->isp_initiator_id; } } /* * Send a SCSI Bus Reset (used to be done as part of attach, * but now left to the OS outer layers). * * We don't do 'bus resets' for FC because the LIP that occurs * when we start the firmware does all that for us. */ if (IS_SCSI(isp)) { int bus = 0; ISP_LOCK(isp); (void) isp_control(isp, ISPCTL_RESET_BUS, &bus); if (IS_DUALBUS(isp)) { bus++; (void) isp_control(isp, ISPCTL_RESET_BUS, &bus); } ISP_UNLOCK(isp); /* * wait for the bus to settle. */ delay(4 * 1000000); } else { fcparam *fcp = isp->isp_param; int defid = MAX_FC_TARG; delay(2 * 1000000); ISP_LOCK(isp); isp_fc_runstate(isp, 10 * 1000000); if (fcp->isp_fwstate == FW_READY && fcp->isp_loopstate >= LOOP_PDB_RCVD) { defid = fcp->isp_loopid; } ISP_UNLOCK(isp); lptr->adapter_target = defid; } bzero(&saa, sizeof(saa)); saa.saa_sc_link = lptr; /* * And attach children (if any). */ config_found((void *)isp, &saa, scsiprint); if (IS_DUALBUS(isp)) { lptr++; bzero(&saa, sizeof(saa)); saa.saa_sc_link = lptr; config_found((void *)isp, &saa, scsiprint); } } /* * minphys our xfers * * Unfortunately, the buffer pointer describes the target device- not the * adapter device, so we can't use the pointer to find out what kind of * adapter we are and adjust accordingly. */ static void ispminphys(struct buf *bp) { /* * XX: Only the 1020 has a 24 bit limit. */ if (bp->b_bcount >= (1 << 24)) { bp->b_bcount = (1 << 24); } minphys(bp); } static int32_t ispcmd_slow(XS_T *xs) { sdparam *sdp; int tgt, chan; u_int16_t f; struct ispsoftc *isp = XS_ISP(xs); if (IS_FC(isp)) { if (cold == 0) { isp->isp_osinfo.no_mbox_ints = 0; isp->isp_osinfo._adapter.scsi_cmd = ispcmd; } return (ispcmd(xs)); } /* * Have we completed discovery for this target on this adapter? */ sdp = isp->isp_param; tgt = XS_TGT(xs); chan = XS_CHANNEL(xs); sdp += chan; if ((xs->flags & SCSI_POLL) != 0 || (isp->isp_osinfo.discovered[chan] & (1 << tgt)) != 0) { return (ispcmd(xs)); } if (cold == 0) { isp->isp_osinfo.no_mbox_ints = 0; } f = DPARM_DEFAULT; if (xs->sc_link->quirks & SDEV_NOSYNC) { f &= ~DPARM_SYNC; } if (xs->sc_link->quirks & SDEV_NOWIDE) { f &= ~DPARM_WIDE; } if (xs->sc_link->quirks & SDEV_NOTAGS) { f &= ~DPARM_TQING; } /* * Okay, we know about this device now, * so mark parameters to be updated for it. */ sdp->isp_devparam[tgt].goal_flags = f; sdp->isp_devparam[tgt].dev_update = 1; isp->isp_update |= (1 << chan); /* * Now check to see whether we can get out of this checking mode now. * XXX: WE CANNOT AS YET BECAUSE THERE IS NO MECHANISM TO TELL US * XXX: WHEN WE'RE DONE DISCOVERY BECAUSE WE NEED ONE COMMAND AFTER * XXX: DISCOVERY IS DONE FOR EACH TARGET TO TELL US THAT WE'RE DONE * XXX: AND THAT DOESN'T HAPPEN HERE. AT BEST WE CAN MARK OURSELVES * XXX: DONE WITH DISCOVERY FOR THIS TARGET AND SO SAVE MAYBE 20 * XXX: LINES OF C CODE. */ isp->isp_osinfo.discovered[chan] |= (1 << tgt); /* do not bother with these lines- they'll never execute correctly */ #if 0 sdp = isp->isp_param; for (chan = 0; chan < (IS_12X0(isp)? 2 : 1); chan++, sdp++) { f = 0xffff & ~(1 << sdp->isp_initiator_id); if (isp->isp_osinfo.discovered[chan] != f) { break; } } if (chan == (IS_12X0(isp)? 2 : 1)) { isp->isp_osinfo._adapter.scsipi_cmd = ispcmd; if (IS_12X0(isp)) isp->isp_update |= 2; } #endif return (ispcmd(xs)); } static INLINE void isp_add2_blocked_queue(struct ispsoftc *, XS_T *); static INLINE void isp_add2_blocked_queue(struct ispsoftc *isp, XS_T *xs) { if (isp->isp_osinfo.wqf != NULL) { isp->isp_osinfo.wqt->free_list.le_next = xs; } else { isp->isp_osinfo.wqf = xs; } isp->isp_osinfo.wqt = xs; xs->free_list.le_next = NULL; } static int32_t ispcmd(XS_T *xs) { struct ispsoftc *isp; int result; /* * Make sure that there's *some* kind of sane setting. */ isp = XS_ISP(xs); timeout_set(&xs->stimeout, isp_wdog, isp); if (XS_LUN(xs) >= isp->isp_maxluns) { xs->error = XS_SELTIMEOUT; return (COMPLETE); } ISP_LOCK(isp); if (isp->isp_state < ISP_RUNSTATE) { DISABLE_INTS(isp); isp_init(isp); if (isp->isp_state != ISP_INITSTATE) { ENABLE_INTS(isp); ISP_UNLOCK(isp); XS_SETERR(xs, HBA_BOTCH); return (CMD_COMPLETE); } isp->isp_state = ISP_RUNSTATE; ENABLE_INTS(isp); } /* * Check for queue blockage... */ if (isp->isp_osinfo.blocked) { if (xs->flags & SCSI_POLL) { ISP_UNLOCK(isp); return (TRY_AGAIN_LATER); } if (isp->isp_osinfo.blocked == 2) { isp_restart(isp); } if (isp->isp_osinfo.blocked) { isp_add2_blocked_queue(isp, xs); ISP_UNLOCK(isp); isp_prt(isp, ISP_LOGDEBUG0, "added to blocked queue"); return (SUCCESSFULLY_QUEUED); } } if (xs->flags & SCSI_POLL) { volatile u_int8_t ombi = isp->isp_osinfo.no_mbox_ints; isp->isp_osinfo.no_mbox_ints = 1; result = isp_polled_cmd(isp, xs); isp->isp_osinfo.no_mbox_ints = ombi; ISP_UNLOCK(isp); return (result); } result = isp_start(xs); switch (result) { case CMD_QUEUED: result = SUCCESSFULLY_QUEUED; if (xs->timeout) { timeout_add(&xs->stimeout, _XT(xs)); XS_CMD_S_TIMER(xs); } if (isp->isp_osinfo.hiwater < isp->isp_nactive) { isp->isp_osinfo.hiwater = isp->isp_nactive; isp_prt(isp, ISP_LOGDEBUG0, "Active Hiwater Mark=%d", isp->isp_nactive); } break; case CMD_EAGAIN: isp->isp_osinfo.blocked |= 2; isp_prt(isp, ISP_LOGDEBUG0, "blocking queue"); isp_add2_blocked_queue(isp, xs); result = SUCCESSFULLY_QUEUED; break; case CMD_RQLATER: result = SUCCESSFULLY_QUEUED; /* Lie */ isp_prt(isp, ISP_LOGDEBUG1, "retrying later for %d.%d", XS_TGT(xs), XS_LUN(xs)); timeout_set(&xs->stimeout, isp_requeue, xs); timeout_add(&xs->stimeout, hz); XS_CMD_S_TIMER(xs); break; case CMD_COMPLETE: result = COMPLETE; break; } ISP_UNLOCK(isp); return (result); } static int isp_polled_cmd(struct ispsoftc *isp, XS_T *xs) { int result; int infinite = 0, mswait; result = isp_start(xs); switch (result) { case CMD_QUEUED: result = SUCCESSFULLY_QUEUED; break; case CMD_RQLATER: case CMD_EAGAIN: result = TRY_AGAIN_LATER; break; case CMD_COMPLETE: result = COMPLETE; break; } if (result != SUCCESSFULLY_QUEUED) { return (result); } /* * If we can't use interrupts, poll on completion. */ if ((mswait = XS_TIME(xs)) == 0) infinite = 1; while (mswait || infinite) { u_int16_t isr, sema, mbox; if (ISP_READ_ISR(isp, &isr, &sema, &mbox)) { isp_intr(isp, isr, sema, mbox); if (XS_CMD_DONE_P(xs)) { break; } } USEC_DELAY(1000); mswait -= 1; } /* * If no other error occurred but we didn't finish, * something bad happened. */ if (XS_CMD_DONE_P(xs) == 0) { if (isp_control(isp, ISPCTL_ABORT_CMD, xs)) { isp_reinit(isp); } if (XS_NOERR(xs)) { XS_SETERR(xs, HBA_BOTCH); } } result = COMPLETE; return (result); } void isp_done(XS_T *xs) { XS_CMD_S_DONE(xs); if (XS_CMD_WDOG_P(xs) == 0) { struct ispsoftc *isp = XS_ISP(xs); if (XS_CMD_TIMER_P(xs)) { timeout_del(&xs->stimeout); XS_CMD_C_TIMER(xs); } if (XS_CMD_GRACE_P(xs)) { struct ispsoftc *isp = XS_ISP(xs); isp_prt(isp, ISP_LOGWARN, "finished command on borrowed time"); } XS_CMD_S_CLEAR(xs); scsi_done(xs); if (isp->isp_osinfo.blocked == 2) { isp->isp_osinfo.blocked = 0; isp_prt(isp, ISP_LOGDEBUG0, "restarting blocked queue"); isp_restart(isp); } } } static void isp_wdog(void *arg) { XS_T *xs = arg; struct ispsoftc *isp = XS_ISP(xs); u_int32_t handle; /* * We've decided this command is dead. Make sure we're not trying * to kill a command that's already dead by getting its handle and * and seeing whether it's still alive. */ ISP_LOCK(isp); handle = isp_find_handle(isp, xs); if (handle) { u_int16_t isr, sema, mbox; if (XS_CMD_DONE_P(xs)) { isp_prt(isp, ISP_LOGDEBUG1, "watchdog found done cmd (handle 0x%x)", handle); ISP_UNLOCK(isp); return; } if (XS_CMD_WDOG_P(xs)) { isp_prt(isp, ISP_LOGDEBUG1, "recursive watchdog (handle 0x%x)", handle); ISP_UNLOCK(isp); return; } XS_CMD_S_WDOG(xs); if (ISP_READ_ISR(isp, &isr, &sema, &mbox)) { isp_intr(isp, isr, sema, mbox); } if (XS_CMD_DONE_P(xs)) { isp_prt(isp, ISP_LOGINFO, "watchdog cleanup for handle 0x%x", handle); XS_CMD_C_WDOG(xs); isp_done(xs); } else if (XS_CMD_GRACE_P(xs)) { /* * Make sure the command is *really* dead before we * release the handle (and DMA resources) for reuse. */ (void) isp_control(isp, ISPCTL_ABORT_CMD, arg); /* * After this point, the command is really dead. */ if (XS_XFRLEN(xs)) { ISP_DMAFREE(isp, xs, handle); } isp_prt(isp, ISP_LOGWARN, "watchdog timeout on handle %x", handle); isp_destroy_handle(isp, handle); XS_SETERR(xs, XS_TIMEOUT); XS_CMD_S_CLEAR(xs); isp_done(xs); } else { u_int16_t nxti, optr; ispreq_t local, *mp = &local, *qe; isp_prt(isp, ISP_LOGWARN, "possible command timeout on handle %x", handle); XS_CMD_C_WDOG(xs); timeout_add(&xs->stimeout, _XT(xs)); XS_CMD_S_TIMER(xs); if (isp_getrqentry(isp, &nxti, &optr, (void **) &qe)) { ISP_UNLOCK(isp); return; } XS_CMD_S_GRACE(xs); MEMZERO((void *) mp, sizeof (*mp)); mp->req_header.rqs_entry_count = 1; mp->req_header.rqs_entry_type = RQSTYPE_MARKER; mp->req_modifier = SYNC_ALL; mp->req_target = XS_CHANNEL(xs) << 7; isp_put_request(isp, mp, qe); ISP_ADD_REQUEST(isp, nxti); } } else if (isp->isp_dblev) { isp_prt(isp, ISP_LOGDEBUG1, "watchdog with no command"); } ISP_UNLOCK(isp); } /* * Free any associated resources prior to decommissioning and * set the card to a known state (so it doesn't wake up and kick * us when we aren't expecting it to). * * Locks are held before coming here. */ void isp_uninit(struct ispsoftc *isp) { ISP_LOCK(isp); /* * Leave with interrupts disabled. */ DISABLE_INTS(isp); ISP_UNLOCK(isp); } /* * Restart function for a command to be requeued later. */ static void isp_requeue(void *arg) { int r; struct scsi_xfer *xs = arg; struct ispsoftc *isp = XS_ISP(xs); ISP_LOCK(isp); r = isp_start(xs); switch (r) { case CMD_QUEUED: isp_prt(isp, ISP_LOGDEBUG1, "restarted command for %d.%d", XS_TGT(xs), XS_LUN(xs)); if (xs->timeout) { timeout_set(&xs->stimeout, isp_wdog, isp); timeout_add(&xs->stimeout, _XT(xs)); XS_CMD_S_TIMER(xs); } break; case CMD_EAGAIN: isp_prt(isp, ISP_LOGDEBUG0, "blocked cmd again"); isp->isp_osinfo.blocked |= 2; isp_add2_blocked_queue(isp, xs); break; case CMD_RQLATER: isp_prt(isp, ISP_LOGDEBUG0, "%s for %d.%d", (r == CMD_EAGAIN)? "CMD_EAGAIN" : "CMD_RQLATER", XS_TGT(xs), XS_LUN(xs)); timeout_set(&xs->stimeout, isp_requeue, xs); timeout_add(&xs->stimeout, hz); XS_CMD_S_TIMER(xs); break; case CMD_COMPLETE: /* can only be an error */ if (XS_NOERR(xs)) XS_SETERR(xs, XS_DRIVER_STUFFUP); isp_done(xs); break; } ISP_UNLOCK(isp); } /* * Restart function after a LOOP UP event or a command completing, * sometimes done as a timeout for some hysteresis. */ static void isp_trestart(void *arg) { struct ispsoftc *isp = arg; struct scsi_xfer *list; ISP_LOCK(isp); isp->isp_osinfo.rtpend = 0; list = isp->isp_osinfo.wqf; if (isp->isp_osinfo.blocked == 0 && list != NULL) { int nrestarted = 0; isp->isp_osinfo.wqf = NULL; ISP_UNLOCK(isp); do { struct scsi_xfer *xs = list; list = xs->free_list.le_next; xs->free_list.le_next = NULL; isp_requeue(xs); if (isp->isp_osinfo.wqf == NULL) nrestarted++; } while (list != NULL); isp_prt(isp, ISP_LOGDEBUG0, "requeued %d commands", nrestarted); } else { ISP_UNLOCK(isp); } } static void isp_restart(struct ispsoftc *isp) { struct scsi_xfer *list; list = isp->isp_osinfo.wqf; if (isp->isp_osinfo.blocked == 0 && list != NULL) { int nrestarted = 0; isp->isp_osinfo.wqf = NULL; do { struct scsi_xfer *xs = list; list = xs->free_list.le_next; xs->free_list.le_next = NULL; isp_requeue(xs); if (isp->isp_osinfo.wqf == NULL) nrestarted++; } while (list != NULL); isp_prt(isp, ISP_LOGDEBUG0, "requeued %d commands", nrestarted); } } int isp_async(struct ispsoftc *isp, ispasync_t cmd, void *arg) { int bus, tgt; switch (cmd) { case ISPASYNC_NEW_TGT_PARAMS: if (IS_SCSI(isp) && isp->isp_dblev) { sdparam *sdp = isp->isp_param; char *wt; int mhz, flags, period; tgt = *((int *) arg); bus = (tgt >> 16) & 0xffff; tgt &= 0xffff; sdp += bus; flags = sdp->isp_devparam[tgt].actv_flags; period = sdp->isp_devparam[tgt].actv_period; if ((flags & DPARM_SYNC) && period && (sdp->isp_devparam[tgt].actv_offset) != 0) { /* * There's some ambiguity about our negotiated speed * if we haven't detected LVD mode correctly (which * seems to happen, unfortunately). If we're in LVD * mode, then different rules apply about speed. */ if (sdp->isp_lvdmode || period < 0xc) { switch (period) { case 0x9: mhz = 80; break; case 0xa: mhz = 40; break; case 0xb: mhz = 33; break; case 0xc: mhz = 25; break; default: mhz = 1000 / (period * 4); break; } } else { mhz = 1000 / (period * 4); } } else { mhz = 0; } switch (flags & (DPARM_WIDE|DPARM_TQING)) { case DPARM_WIDE: wt = ", 16 bit wide"; break; case DPARM_TQING: wt = ", Tagged Queueing Enabled"; break; case DPARM_WIDE|DPARM_TQING: wt = ", 16 bit wide, Tagged Queueing Enabled"; break; default: wt = " "; break; } if (mhz) { isp_prt(isp, ISP_LOGINFO, "Bus %d Target %d at %dMHz Max Offset %d%s", bus, tgt, mhz, sdp->isp_devparam[tgt].actv_offset, wt); } else { isp_prt(isp, ISP_LOGINFO, "Bus %d Target %d Async Mode%s", bus, tgt, wt); } break; } case ISPASYNC_BUS_RESET: if (arg) bus = *((int *) arg); else bus = 0; isp_prt(isp, ISP_LOGINFO, "SCSI bus %d reset detected", bus); break; case ISPASYNC_LOOP_DOWN: /* * Hopefully we get here in time to minimize the number * of commands we are firing off that are sure to die. */ isp->isp_osinfo.blocked |= 1; isp_prt(isp, ISP_LOGINFO, "Loop DOWN"); break; case ISPASYNC_LOOP_UP: isp->isp_osinfo.blocked &= ~1; if (isp->isp_osinfo.rtpend == 0) { timeout_set(&isp->isp_osinfo.rqt, isp_trestart, isp); isp->isp_osinfo.rtpend = 1; } timeout_add(&isp->isp_osinfo.rqt, 1); isp_prt(isp, ISP_LOGINFO, "Loop UP"); break; case ISPASYNC_PROMENADE: if (IS_FC(isp) && isp->isp_dblev) { const char *fmt = "Target %d (Loop 0x%x) Port ID 0x%x " "role %s %s\n Port WWN 0x%08x%08x\n Node WWN 0x%08x%08x"; const static char *roles[4] = { "No", "Target", "Initiator", "Target/Initiator" }; fcparam *fcp = isp->isp_param; int tgt = *((int *) arg); struct lportdb *lp = &fcp->portdb[tgt]; isp_prt(isp, ISP_LOGINFO, fmt, tgt, lp->loopid, lp->portid, roles[lp->roles & 0x3], (lp->valid)? "Arrived" : "Departed", (u_int32_t) (lp->port_wwn >> 32), (u_int32_t) (lp->port_wwn & 0xffffffffLL), (u_int32_t) (lp->node_wwn >> 32), (u_int32_t) (lp->node_wwn & 0xffffffffLL)); break; } case ISPASYNC_CHANGE_NOTIFY: if (arg == (void *) 1) { isp_prt(isp, ISP_LOGINFO, "Name Server Database Changed"); } else { isp_prt(isp, ISP_LOGINFO, "Name Server Database Changed"); } break; case ISPASYNC_FABRIC_DEV: { int target, base, lim; fcparam *fcp = isp->isp_param; struct lportdb *lp = NULL; struct lportdb *clp = (struct lportdb *) arg; char *pt; switch (clp->port_type) { case 1: pt = " N_Port"; break; case 2: pt = " NL_Port"; break; case 3: pt = "F/NL_Port"; break; case 0x7f: pt = " Nx_Port"; break; case 0x81: pt = " F_port"; break; case 0x82: pt = " FL_Port"; break; case 0x84: pt = " E_port"; break; default: pt = " "; break; } isp_prt(isp, ISP_LOGINFO, "%s Fabric Device @ PortID 0x%x", pt, clp->portid); /* * If we don't have an initiator role we bail. * * We just use ISPASYNC_FABRIC_DEV for announcement purposes. */ if ((isp->isp_role & ISP_ROLE_INITIATOR) == 0) { break; } /* * Is this entry for us? If so, we bail. */ if (fcp->isp_portid == clp->portid) { break; } /* * Else, the default policy is to find room for it in * our local port database. Later, when we execute * the call to isp_pdb_sync either this newly arrived * or already logged in device will be (re)announced. */ if (fcp->isp_topo == TOPO_FL_PORT) base = FC_SNS_ID+1; else base = 0; if (fcp->isp_topo == TOPO_N_PORT) lim = 1; else lim = MAX_FC_TARG; /* * Is it already in our list? */ for (target = base; target < lim; target++) { if (target >= FL_PORT_ID && target <= FC_SNS_ID) { continue; } lp = &fcp->portdb[target]; if (lp->port_wwn == clp->port_wwn && lp->node_wwn == clp->node_wwn) { lp->fabric_dev = 1; break; } } if (target < lim) { break; } for (target = base; target < lim; target++) { if (target >= FL_PORT_ID && target <= FC_SNS_ID) { continue; } lp = &fcp->portdb[target]; if (lp->port_wwn == 0) { break; } } if (target == lim) { isp_prt(isp, ISP_LOGWARN, "out of space for fabric devices"); break; } lp->port_type = clp->port_type; lp->fc4_type = clp->fc4_type; lp->node_wwn = clp->node_wwn; lp->port_wwn = clp->port_wwn; lp->portid = clp->portid; lp->fabric_dev = 1; break; } case ISPASYNC_FW_CRASH: { u_int16_t mbox1, mbox6; mbox1 = ISP_READ(isp, OUTMAILBOX1); if (IS_DUALBUS(isp)) { mbox6 = ISP_READ(isp, OUTMAILBOX6); } else { mbox6 = 0; } isp_prt(isp, ISP_LOGERR, "Internal Firmware Error on bus %d @ RISC Address 0x%x", mbox6, mbox1); #ifdef ISP_FW_CRASH_DUMP if (IS_FC(isp)) { isp->isp_osinfo.blocked |= 1; isp_fw_dump(isp); } isp_reinit(isp); isp_async(isp, ISPASYNC_FW_RESTART, NULL); #endif break; } default: break; } return (0); } void isp_prt(struct ispsoftc *isp, int level, const char *fmt, ...) { va_list ap; if (level != ISP_LOGALL && (level & isp->isp_dblev) == 0) { return; } printf("%s: ", isp->isp_name); va_start(ap, fmt); vprintf(fmt, ap); va_end(ap); printf("\n"); }