/* $OpenBSD: mpt_openbsd.c,v 1.16 2004/10/22 04:54:26 marco Exp $ */ /* $NetBSD: mpt_netbsd.c,v 1.7 2003/07/14 15:47:11 lukem Exp $ */ /* * Copyright (c) 2004 Milos Urbanek * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 2003 Wasabi Systems, Inc. * All rights reserved. * * Written by Jason R. Thorpe for Wasabi Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project by * Wasabi Systems, Inc. * 4. The name of Wasabi Systems, Inc. may not be used to endorse * or promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 2000, 2001 by Greg Ansley * Partially derived from Matt Jacob's ISP driver. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice immediately at the beginning of the file, without modification, * this list of conditions, and the following disclaimer. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Additional Copyright (c) 2002 by Matthew Jacob under same license. */ /* * mpt_openbsd.c: * * OpenBSD-specific routines for LSI Fusion adapters. Includes some * bus_dma glue, and SCSI glue. * * Adapted from the NetBSD "mpt" driver by Milos Urbanek for * ZOOM International, s.r.o. */ #include /* __KERNEL_RCSID(0, "$NetBSD: mpt_netbsd.c,v 1.7 2003/07/14 15:47:11 lukem Exp $"); */ #include /* pulls in all headers */ void mpt_run_ppr(mpt_softc_t *, int); int mpt_ppr(mpt_softc_t *, struct scsi_link *, int, int); int mpt_poll(mpt_softc_t *, struct scsi_xfer *, int); void mpt_timeout(void *); void mpt_done(mpt_softc_t *, uint32_t); int mpt_run_xfer(mpt_softc_t *, struct scsi_xfer *); void mpt_check_xfer_settings(mpt_softc_t *, struct scsi_xfer *, MSG_SCSI_IO_REQUEST *); void mpt_ctlop(mpt_softc_t *, void *vmsg, uint32_t); void mpt_event_notify_reply(mpt_softc_t *, MSG_EVENT_NOTIFY_REPLY *); int mpt_action(struct scsi_xfer *); void mpt_minphys(struct buf *); #if NBIO > 0 int mpt_ioctl(struct device *, u_long, caddr_t); #endif struct cfdriver mpt_cd = { NULL, "mpt", DV_DULL }; /* the below structure is so we have a default dev struct for our link struct */ static struct scsi_device mpt_dev = { NULL, /* Use default error handler */ NULL, /* have a queue, served by this */ NULL, /* have no async handler */ NULL, /* Use default 'done' routine */ }; enum mpt_scsi_speed { U320, U160, U80 }; /* * try speed and * return 0 if failed * return 1 if passed */ int mpt_ppr(mpt_softc_t *mpt, struct scsi_link *sc_link, int speed, int flags) { fCONFIG_PAGE_SCSI_DEVICE_0 page0; fCONFIG_PAGE_SCSI_DEVICE_1 page1; uint8_t tp; int error; struct scsi_inquiry_data inqbuf; if (mpt->verbose > 1) { mpt_prt(mpt, "Entering PPR"); } if (mpt->is_fc) { /* * SCSI transport settings don't make any sense for * Fibre Channel; silently ignore the request. */ return 1; /* success */ } /* * Always allow disconnect; we don't have a way to disable * it right now, in any case. */ mpt->mpt_disc_enable |= (1 << sc_link->target); /* * Enable tagged queueing. */ if (sc_link->quirks & SDEV_NOTAGS) mpt->mpt_tag_enable &= ~(1 << sc_link->target); else mpt->mpt_tag_enable |= (1 << sc_link->target); page1 = mpt->mpt_dev_page1[sc_link->target]; /* * Set the wide/narrow parameter for the target. */ if (sc_link->quirks & SDEV_NOWIDE) page1.RequestedParameters &= ~MPI_SCSIDEVPAGE1_RP_WIDE; else { page1.RequestedParameters |= MPI_SCSIDEVPAGE1_RP_WIDE; } /* * Set the synchronous parameters for the target. */ page1.RequestedParameters &= ~(MPI_SCSIDEVPAGE1_RP_MIN_SYNC_PERIOD_MASK | MPI_SCSIDEVPAGE1_RP_MAX_SYNC_OFFSET_MASK | MPI_SCSIDEVPAGE1_RP_DT | MPI_SCSIDEVPAGE1_RP_QAS | MPI_SCSIDEVPAGE1_RP_IU); if (!(sc_link->quirks & SDEV_NOSYNC)) { int factor, offset, np; /* * Factor: * 0x08 = U320 = 6.25ns * 0x09 = U160 = 12.5ns * 0x0a = U80 = 25ns */ factor = (mpt->mpt_port_page0.Capabilities >> 8) & 0xff; offset = (mpt->mpt_port_page0.Capabilities >> 16) & 0xff; np = 0; switch (speed) { case U320: /* do nothing */ break; case U160: factor = 0x09; /* force U160 */ break; case U80: factor = 0x0a; /* force U80 */ } if (factor < 0x9) { /* Ultra320 enable QAS & IU */ np |= MPI_SCSIDEVPAGE1_RP_QAS | MPI_SCSIDEVPAGE1_RP_IU; } if (factor < 0xa) { /* >= Ultra160 enable DT transfer */ np |= MPI_SCSIDEVPAGE1_RP_DT; } np |= (factor << 8) | (offset << 16); page1.RequestedParameters |= np; } /* write parameters out to chip */ if (mpt_write_cfg_page(mpt, sc_link->target, &page1.Header)) { mpt_prt(mpt, "unable to write Device Page 1"); return 0; } /* make sure the parameters were written */ if (mpt_read_cfg_page(mpt, sc_link->target, &page1.Header)) { mpt_prt(mpt, "unable to read back Device Page 1"); return 0; } mpt->mpt_dev_page1[sc_link->target] = page1; if (mpt->verbose > 1) { mpt_prt(mpt, "SPI Target %d Page 1: RequestedParameters %x Config %x", sc_link->target, mpt->mpt_dev_page1[sc_link->target].RequestedParameters, mpt->mpt_dev_page1[sc_link->target].Configuration); } /* * use INQUIRY for PPR two reasons: * 1) actually transfer data at requested speed * 2) no need to test for TUR QUIRK */ error = scsi_inquire(sc_link, &inqbuf, flags); if (error) { mpt_prt(mpt, "Invalid INQUIRY on target: %d", sc_link->target); return 0; } /* read page 0 back to figure out if the PPR worked */ page0 = mpt->mpt_dev_page0[sc_link->target]; if (mpt_read_cfg_page(mpt, sc_link->target, &page0.Header)) { mpt_prt(mpt, "unable to read Device Page 0"); return 0; } if (mpt->verbose > 1) { mpt_prt(mpt, "SPI Tgt %d Page 0: NParms %x Information %x", sc_link->target, page0.NegotiatedParameters, page0.Information); } if (!(page0.NegotiatedParameters & 0x07) && (speed == U320)) { /* if lowest 3 aren't set the PPR probably failed, retry with other parameters */ if (mpt->verbose > 1) { mpt_prt(mpt, "U320 PPR failed"); } return 0; } if ((((page0.NegotiatedParameters >> 8) & 0xff) > 0x09) && (speed == U160)) { /* if transfer period > 0x09 then U160 PPR failed, retry */ if (mpt->verbose > 1) { mpt_prt(mpt, "U160 PPR failed"); } return 0; } /* * Bit 3 - PPR rejected: The IOC sets this bit if the device rejects a PPR message. * Bit 2 - WDTR Rejected: The IOC sets this bit if the device rejects a WDTR message. * Bit 1 - SDTR Rejected: The IOC sets this bit if the device rejects a SDTR message. * Bit 0 - 1 A SCSI SDTR, WDTR, or PPR negotiation has occurred with this device. */ if (page0.Information & 0x0e) { /* target rejected PPR message */ mpt_prt(mpt, "Target %d rejected PPR message with %02x", sc_link->target, (uint8_t)page0.Information); return 0; } /* print PPR results */ switch ((page0.NegotiatedParameters >> 8) & 0xff) { case 0x08: tp = 160; break; case 0x09: tp = 80; break; case 0x0a: tp = 40; break; case 0x0b: tp = 20; break; case 0x0c: tp = 10; break; default: tp = 0; } mpt_prt(mpt, "target %d %s at %dMHz width %dbit offset %d QAS %d DT %d IU %d", sc_link->target, tp ? "Synchronous" : "Asynchronous", tp, (page0.NegotiatedParameters & 0x20000000) ? 16 : 8, (page0.NegotiatedParameters >> 16) & 0xff, (page0.NegotiatedParameters & 0x04) ? 1 : 0, (page0.NegotiatedParameters & 0x02) ? 1 : 0, (page0.NegotiatedParameters & 0x01) ? 1 : 0); return 1; /* success */ } /* * Run PPR on all attached devices */ void mpt_run_ppr(mpt_softc_t *mpt, int flags) { struct scsi_link *sc_link; struct device *dev; u_int8_t target; u_int16_t buswidth; /* walk device list */ for (dev = TAILQ_FIRST(&alldevs); dev != NULL; dev = TAILQ_NEXT(dev, dv_list)) { if (dev->dv_parent == (struct device *)mpt) { /* found scsibus softc */ buswidth = ((struct scsi_link *)&mpt->sc_link)->adapter_buswidth; /* printf("mpt_softc: %x scsibus: %x buswidth: %d\n", mpt, dev, buswidth); */ /* walk target list */ for (target = 0; target < buswidth; target++) { sc_link = ((struct scsibus_softc *)dev)->sc_link[target][0]; if ((sc_link != NULL)) { /* got a device! run PPR */ /* FIXME: skip CPU devices since they * can crash at U320 speeds */ /*if (device == cpu) { continue; }*/ if (mpt_ppr(mpt, sc_link, U320, flags)) { mpt->mpt_negotiated_speed[target] = U320; continue; } if (mpt_ppr(mpt, sc_link, U160, flags)) { mpt->mpt_negotiated_speed[target] = U160; continue; } if (mpt_ppr(mpt, sc_link, U80, flags)) { mpt->mpt_negotiated_speed[target] = U80; continue; } } /* sc_link */ } /* for target */ } /* if dev */ } /* end for dev */ } /* * Complete attachment of hardware, include subdevices. */ void mpt_attach(mpt_softc_t *mpt) { struct scsi_link *lptr = &mpt->sc_link; mpt->bus = 0; /* XXX ?? */ /* Fill in the scsi_adapter. */ mpt->sc_adapter.scsi_cmd = mpt_action; mpt->sc_adapter.scsi_minphys = mpt_minphys; /* Fill in the prototype scsi_link */ lptr->adapter_softc = mpt; lptr->device = &mpt_dev; lptr->adapter = &mpt->sc_adapter; lptr->flags = 0; lptr->luns = 8; if (mpt->is_fc) { lptr->adapter_buswidth = 256; lptr->adapter_target = 256; } else { lptr->adapter_buswidth = 16; lptr->adapter_target = mpt->mpt_ini_id; } lptr->openings = MPT_MAX_REQUESTS(mpt) / lptr->adapter_buswidth; #ifdef MPT_DEBUG mpt->verbose = 2; #endif #if NBIO > 0 if (bio_register(&mpt->mpt_dev, mpt_ioctl) != 0) panic("%s: controller registration failed", mpt->mpt_dev.dv_xname); #endif mpt->im_support = mpt->mpt_ioc_page2.CapabilitiesFlags & (MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT | MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT | MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT); mpt_prt(mpt, "IM support: %x", mpt->im_support); (void) config_found(&mpt->mpt_dev, lptr, scsiprint); /* done attaching now walk targets and PPR them */ /* FC does not do PPR */ if (!mpt->is_fc) { mpt_run_ppr(mpt, SCSI_POLL); } } int mpt_dma_mem_alloc(mpt_softc_t *mpt) { bus_dma_segment_t reply_seg, request_seg; int reply_rseg, request_rseg; bus_addr_t pptr, end; caddr_t vptr; size_t len; int error, i; /* Check if we have already allocated the reply memory. */ if (mpt->reply != NULL) return (0); /* * Allocate the request pool. This isn't really DMA'd memory, * but it's a convenient place to do it. */ len = sizeof(request_t) * MPT_MAX_REQUESTS(mpt); mpt->request_pool = malloc(len, M_DEVBUF, M_WAITOK); if (mpt->request_pool == NULL) { printf("%s: unable to allocate request pool\n", mpt->mpt_dev.dv_xname); return (ENOMEM); } bzero(mpt->request_pool, len); /* * Allocate DMA resources for reply buffers. */ error = bus_dmamem_alloc(mpt->sc_dmat, PAGE_SIZE, PAGE_SIZE, 0, &reply_seg, 1, &reply_rseg, 0); if (error) { printf("%s: unable to allocate reply area, error = %d\n", mpt->mpt_dev.dv_xname, error); goto fail_0; } error = bus_dmamem_map(mpt->sc_dmat, &reply_seg, reply_rseg, PAGE_SIZE, (caddr_t *) &mpt->reply, BUS_DMA_COHERENT/*XXX*/); if (error) { printf("%s: unable to map reply area, error = %d\n", mpt->mpt_dev.dv_xname, error); goto fail_1; } error = bus_dmamap_create(mpt->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE, 0, 0, &mpt->reply_dmap); if (error) { printf("%s: unable to create reply DMA map, error = %d\n", mpt->mpt_dev.dv_xname, error); goto fail_2; } error = bus_dmamap_load(mpt->sc_dmat, mpt->reply_dmap, mpt->reply, PAGE_SIZE, NULL, 0); if (error) { printf("%s: unable to load reply DMA map, error = %d\n", mpt->mpt_dev.dv_xname, error); goto fail_3; } mpt->reply_phys = mpt->reply_dmap->dm_segs[0].ds_addr; /* * Allocate DMA resources for request buffers. */ error = bus_dmamem_alloc(mpt->sc_dmat, MPT_REQ_MEM_SIZE(mpt), PAGE_SIZE, 0, &request_seg, 1, &request_rseg, 0); if (error) { printf("%s: unable to allocate request area, error = %d\n", mpt->mpt_dev.dv_xname, error); goto fail_4; } error = bus_dmamem_map(mpt->sc_dmat, &request_seg, request_rseg, MPT_REQ_MEM_SIZE(mpt), (caddr_t *) &mpt->request, 0); if (error) { printf("%s: unable to map request area, error = %d\n", mpt->mpt_dev.dv_xname, error); goto fail_5; } error = bus_dmamap_create(mpt->sc_dmat, MPT_REQ_MEM_SIZE(mpt), 1, MPT_REQ_MEM_SIZE(mpt), 0, 0, &mpt->request_dmap); if (error) { printf("%s: unable to create request DMA map, error = %d\n", mpt->mpt_dev.dv_xname, error); goto fail_6; } error = bus_dmamap_load(mpt->sc_dmat, mpt->request_dmap, mpt->request, MPT_REQ_MEM_SIZE(mpt), NULL, 0); if (error) { printf("%s: unable to load request DMA map, error = %d\n", mpt->mpt_dev.dv_xname, error); goto fail_7; } mpt->request_phys = mpt->request_dmap->dm_segs[0].ds_addr; pptr = mpt->request_phys; vptr = (caddr_t) mpt->request; end = pptr + MPT_REQ_MEM_SIZE(mpt); for (i = 0; pptr < end; i++) { request_t *req = &mpt->request_pool[i]; req->index = i; /* Store location of Request Data */ req->req_pbuf = pptr; req->req_vbuf = vptr; pptr += MPT_REQUEST_AREA; vptr += MPT_REQUEST_AREA; req->sense_pbuf = (pptr - MPT_SENSE_SIZE); req->sense_vbuf = (vptr - MPT_SENSE_SIZE); error = bus_dmamap_create(mpt->sc_dmat, MAXPHYS, MPT_SGL_MAX, MAXPHYS, 0, 0, &req->dmap); if (error) { printf("%s: unable to create req %d DMA map, error = ", "%d", mpt->mpt_dev.dv_xname, i, error); goto fail_8; } } return (0); fail_8: for (--i; i >= 0; i--) { request_t *req = &mpt->request_pool[i]; if (req->dmap != NULL) bus_dmamap_destroy(mpt->sc_dmat, req->dmap); } bus_dmamap_unload(mpt->sc_dmat, mpt->request_dmap); fail_7: bus_dmamap_destroy(mpt->sc_dmat, mpt->request_dmap); fail_6: bus_dmamem_unmap(mpt->sc_dmat, (caddr_t)mpt->request, PAGE_SIZE); fail_5: bus_dmamem_free(mpt->sc_dmat, &request_seg, request_rseg); fail_4: bus_dmamap_unload(mpt->sc_dmat, mpt->reply_dmap); fail_3: bus_dmamap_destroy(mpt->sc_dmat, mpt->reply_dmap); fail_2: bus_dmamem_unmap(mpt->sc_dmat, (caddr_t)mpt->reply, PAGE_SIZE); fail_1: bus_dmamem_free(mpt->sc_dmat, &reply_seg, reply_rseg); fail_0: free(mpt->request_pool, M_DEVBUF); mpt->reply = NULL; mpt->request = NULL; mpt->request_pool = NULL; return (error); } int mpt_intr(void *arg) { mpt_softc_t *mpt = arg; int nrepl = 0; uint32_t reply; /* if ((mpt_read(mpt, MPT_OFFSET_INTR_STATUS) & MPT_INTR_REPLY_READY) == 0) return (0); */ /* * Speed up trick to save one PCI read. * Reply FIFO replies 0xffffffff whenever * MPT_OFFSET_INTR_STATUS & MPT_INTR_REPLY_READY == 0 * */ reply = mpt_pop_reply_queue(mpt); if (reply == 0xffffffff) { /* check doorbell, this is error path not IO path */ /* FIXME for now ignore strays and doorbells */ return (0); } while (reply != MPT_REPLY_EMPTY) { nrepl++; if (mpt->verbose > 1) { if ((reply & MPT_CONTEXT_REPLY) != 0) { /* Address reply; IOC has something to say */ mpt_print_reply(MPT_REPLY_PTOV(mpt, reply)); } else { /* Context reply; all went well */ mpt_prt(mpt, "context %u reply OK", reply); } } mpt_done(mpt, reply); reply = mpt_pop_reply_queue(mpt); } return (nrepl != 0); } void mpt_prt(mpt_softc_t *mpt, const char *fmt, ...) { va_list ap; printf("%s: ", mpt->mpt_dev.dv_xname); va_start(ap, fmt); vprintf(fmt, ap); va_end(ap); printf("\n"); } int mpt_poll(mpt_softc_t *mpt, struct scsi_xfer *xs, int count) { /* Timeouts are in msec, so we loop in 1000usec cycles */ while (count) { mpt_intr(mpt); if (xs->flags & ITSDONE) { return (0); } delay(1000); /* only happens in boot, so ok */ count--; } return (1); } void mpt_timeout(void *arg) { request_t *req = arg; struct scsi_xfer *xs = req->xfer; struct scsi_link *linkp = xs->sc_link; mpt_softc_t *mpt = (void *) linkp->adapter_softc; uint32_t oseq; int s, index; mpt_prt(mpt, "command timeout"); sc_print_addr(linkp); s = splbio(); oseq = req->sequence; mpt->timeouts++; if (mpt_intr(mpt)) { if (req->sequence != oseq) { mpt_prt(mpt, "recovered from command timeout"); splx(s); return; } } mpt_prt(mpt, "timeout on request index = 0x%x, seq = 0x%08x", req->index, req->sequence); mpt_check_doorbell(mpt); mpt_prt(mpt, "Status 0x%08x, Mask 0x%08x, Doorbell 0x%08x", mpt_read(mpt, MPT_OFFSET_INTR_STATUS), mpt_read(mpt, MPT_OFFSET_INTR_MASK), mpt_read(mpt, MPT_OFFSET_DOORBELL)); mpt_prt(mpt, "request state: %s", mpt_req_state(req->debug)); if (mpt->verbose > 1) mpt_print_scsi_io_request((MSG_SCSI_IO_REQUEST *)req->req_vbuf); for(index = 0; index < MPT_MAX_REQUESTS(mpt); index++) if (req == &mpt->request_pool[index]) { req->debug = REQ_TIMEOUT; break; } mpt_done(mpt, index); splx(s); } void mpt_done(mpt_softc_t *mpt, uint32_t reply) { struct scsi_xfer *xs = NULL; struct scsi_link *linkp; int index; request_t *req; MSG_REQUEST_HEADER *mpt_req; MSG_SCSI_IO_REPLY *mpt_reply; if ((reply & MPT_CONTEXT_REPLY) == 0) { /* context reply (ok) */ mpt_reply = NULL; index = reply & MPT_CONTEXT_MASK; } else { /* address reply (error) */ /* XXX BUS_DMASYNC_POSTREAD XXX */ mpt_reply = MPT_REPLY_PTOV(mpt, reply); if (mpt->verbose > 1) { uint32_t *pReply = (uint32_t *) mpt_reply; mpt_prt(mpt, "Address Reply (index %u):", mpt_reply->MsgContext & 0xffff); mpt_prt(mpt, "%08x %08x %08x %08x", pReply[0], pReply[1], pReply[2], pReply[3]); mpt_prt(mpt, "%08x %08x %08x %08x", pReply[4], pReply[5], pReply[6], pReply[7]); mpt_prt(mpt, "%08x %08x %08x %08x", pReply[8], pReply[9], pReply[10], pReply[11]); } index = mpt_reply->MsgContext; } /* * Address reply with MessageContext high bit set. * This is most likely a notify message, so we try * to process it, then free it. */ if ((index & 0x80000000) != 0) { if (mpt_reply != NULL) mpt_ctlop(mpt, mpt_reply, reply); else mpt_prt(mpt, "mpt_done: index 0x%x, NULL reply", index); return; } /* Did we end up with a valid index into the table? */ if (index < 0 || index >= MPT_MAX_REQUESTS(mpt)) { mpt_prt(mpt, "mpt_done: invalid index (0x%x) in reply", index); return; } req = &mpt->request_pool[index]; /* Make sure memory hasn't been trashed. */ if (req->index != index) { mpt_prt(mpt, "mpt_done: corrupted request_t (0x%x)", index); return; } MPT_SYNC_REQ(mpt, req, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); mpt_req = req->req_vbuf; /* Short cut for task management replies; nothing more for us to do. */ if (mpt_req->Function == MPI_FUNCTION_SCSI_TASK_MGMT) { if (mpt->verbose > 1) mpt_prt(mpt, "mpt_done: TASK MGMT"); goto done; } if (mpt_req->Function == MPI_FUNCTION_PORT_ENABLE) goto done; /* * At this point, it had better be a SCSI I/O command, but don't * crash if it isn't. */ if (mpt_req->Function != MPI_FUNCTION_SCSI_IO_REQUEST) { if (mpt->verbose > 1) mpt_prt(mpt, "mpt_done: unknown Function 0x%x (0x%x)", mpt_req->Function, index); goto done; } /* Recover scsi_xfer from the request structure. */ xs = req->xfer; /* Can't have a SCSI command without a scsi_xfer. */ if (xs == NULL) { mpt_prt(mpt, "mpt_done: no scsi_xfer, index = 0x%x, seq = 0x%08x", req->index, req->sequence); mpt_prt(mpt, "request state: %s", mpt_req_state(req->debug)); mpt_prt(mpt, "mpt_request:"); mpt_print_scsi_io_request((MSG_SCSI_IO_REQUEST *)req->req_vbuf); if (mpt_reply != NULL) { mpt_prt(mpt, "mpt_reply:"); mpt_print_reply(mpt_reply); } else { mpt_prt(mpt, "context reply: 0x%08x", reply); } goto done; } timeout_del(&xs->stimeout); linkp = xs->sc_link; /* * If we were a data transfer, unload the map that described * the data buffer. */ if (xs->datalen != 0) { bus_dmamap_sync(mpt->sc_dmat, req->dmap, 0, req->dmap->dm_mapsize, (xs->flags & SCSI_DATA_IN) ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(mpt->sc_dmat, req->dmap); } if (req->debug == REQ_TIMEOUT) { xs->error = XS_TIMEOUT; xs->status = SCSI_OK; xs->resid = 0; goto done; } else if (mpt_reply == NULL) { /* * Context reply; report that the command was * successful! * * Also report the xfer mode, if necessary. */ #if 0 /*XXX report xfer mode not impl */ if (mpt->mpt_report_xfer_mode != 0) { if ((mpt->mpt_report_xfer_mode & (1 << periph->periph_target)) != 0) mpt_get_xfer_mode(mpt, periph); } #endif xs->error = XS_NOERROR; xs->status = SCSI_OK; xs->resid = 0; goto done; } xs->status = mpt_reply->SCSIStatus; switch (mpt_reply->IOCStatus) { case MPI_IOCSTATUS_SCSI_DATA_OVERRUN: xs->error = XS_DRIVER_STUFFUP; break; case MPI_IOCSTATUS_SCSI_DATA_UNDERRUN: /* * Yikes! Tagged queue full comes through this path! * * So we'll change it to a status error and anything * that returns status should probably be a status * error as well. */ xs->resid = xs->datalen - mpt_reply->TransferCount; if (mpt_reply->SCSIState & MPI_SCSI_STATE_NO_SCSI_STATUS) { xs->error = XS_DRIVER_STUFFUP; break; } /* FALLTHROUGH */ case MPI_IOCSTATUS_SUCCESS: case MPI_IOCSTATUS_SCSI_RECOVERED_ERROR: switch (xs->status) { case SCSI_OK: #if 0 /* XXX xfer mode */ /* Report the xfer mode, if necessary. */ if ((mpt->mpt_report_xfer_mode & (1 << periph->periph_target)) != 0) mpt_get_xfer_mode(mpt, periph); #endif xs->resid = 0; break; case SCSI_CHECK: xs->error = XS_SENSE; break; case SCSI_BUSY: xs->error = XS_BUSY; break; case SCSI_QUEUE_FULL: xs->error = XS_TIMEOUT; xs->retries++; break; default: sc_print_addr(linkp); mpt_prt(mpt, "invalid status code %d", xs->status); xs->error = XS_DRIVER_STUFFUP; break; } break; #if 0 /* XS_RESOURCE_SHORTAGE not impl */ case MPI_IOCSTATUS_BUSY: case MPI_IOCSTATUS_INSUFFICIENT_RESOURCES: xs->error = XS_RESOURCE_SHORTAGE; break; #endif case MPI_IOCSTATUS_SCSI_INVALID_BUS: case MPI_IOCSTATUS_SCSI_INVALID_TARGETID: case MPI_IOCSTATUS_SCSI_DEVICE_NOT_THERE: xs->error = XS_SELTIMEOUT; break; case MPI_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: xs->error = XS_DRIVER_STUFFUP; break; case MPI_IOCSTATUS_SCSI_TASK_TERMINATED: xs->error = XS_DRIVER_STUFFUP; break; case MPI_IOCSTATUS_SCSI_TASK_MGMT_FAILED: /* XXX */ xs->error = XS_DRIVER_STUFFUP; break; case MPI_IOCSTATUS_SCSI_IOC_TERMINATED: /* XXX */ xs->error = XS_DRIVER_STUFFUP; break; case MPI_IOCSTATUS_SCSI_EXT_TERMINATED: /* XXX This is a bus-reset */ xs->error = XS_DRIVER_STUFFUP; break; default: /* XXX unrecognized HBA error */ xs->error = XS_DRIVER_STUFFUP; break; } if (mpt_reply->SCSIState & MPI_SCSI_STATE_AUTOSENSE_VALID) { memcpy(&xs->sense, req->sense_vbuf, sizeof(xs->sense)); } else if (mpt_reply->SCSIState & MPI_SCSI_STATE_AUTOSENSE_FAILED) { /* * This will cause the scsi layer to issue * a REQUEST SENSE. */ if (xs->status == SCSI_CHECK) xs->error = XS_BUSY; } done: /* If IOC done with this requeset, free it up. */ if (mpt_reply == NULL || (mpt_reply->MsgFlags & 0x80) == 0) mpt_free_request(mpt, req); /* If address reply, give the buffer back to the IOC. */ if (mpt_reply != NULL) mpt_free_reply(mpt, (reply << 1)); if (xs != NULL) { xs->flags |= ITSDONE; scsi_done(xs); } } int mpt_run_xfer(mpt_softc_t *mpt, struct scsi_xfer *xs) { struct scsi_link *linkp = xs->sc_link; request_t *req; MSG_SCSI_IO_REQUEST *mpt_req; int error, s; s = splbio(); req = mpt_get_request(mpt); if (req == NULL) { /* This should happen very infrequently. */ xs->error = XS_DRIVER_STUFFUP; /* xs->error = XS_RESOURCE_SHORTAGE; */ xs->flags |= ITSDONE; scsi_done(xs); splx(s); return (COMPLETE); } splx(s); /* Link the req and the scsi_xfer. */ req->xfer = xs; /* Now we build the command for the IOC */ mpt_req = req->req_vbuf; bzero(mpt_req, sizeof(*mpt_req)); mpt_req->Function = MPI_FUNCTION_SCSI_IO_REQUEST; mpt_req->Bus = mpt->bus; mpt_req->SenseBufferLength = (sizeof(xs->sense) < MPT_SENSE_SIZE) ? sizeof(xs->sense) : MPT_SENSE_SIZE; /* * We use the message context to find the request structure when * we get the command completion interrupt from the IOC. */ mpt_req->MsgContext = req->index; /* Which physical device to do the I/O on. */ mpt_req->TargetID = linkp->target; mpt_req->LUN[1] = linkp->lun; /* Set the direction of the transfer. */ if (xs->flags & SCSI_DATA_IN) mpt_req->Control = MPI_SCSIIO_CONTROL_READ; else if (xs->flags & SCSI_DATA_OUT) mpt_req->Control = MPI_SCSIIO_CONTROL_WRITE; else mpt_req->Control = MPI_SCSIIO_CONTROL_NODATATRANSFER; mpt_check_xfer_settings(mpt, xs, mpt_req); /* Copy the SCSI command block into place. */ memcpy(mpt_req->CDB, xs->cmd, xs->cmdlen); mpt_req->CDBLength = xs->cmdlen; mpt_req->DataLength = xs->datalen; mpt_req->SenseBufferLowAddr = req->sense_pbuf; /* * Map the DMA transfer. */ if (xs->datalen) { SGE_SIMPLE32 *se; error = bus_dmamap_load(mpt->sc_dmat, req->dmap, xs->data, xs->datalen, NULL, ((xs->flags & SCSI_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK) | BUS_DMA_STREAMING | ((xs->flags & SCSI_DATA_IN) ? BUS_DMA_READ : BUS_DMA_WRITE)); switch (error) { case 0: break; case ENOMEM: case EAGAIN: xs->error = XS_DRIVER_STUFFUP; /* xs->error = XS_RESOURCE_SHORTAGE; */ goto out_bad; default: xs->error = XS_DRIVER_STUFFUP; mpt_prt(mpt, "error %d loading DMA map", error); out_bad: s = splbio(); mpt_free_request(mpt, req); xs->flags |= ITSDONE; scsi_done(xs); splx(s); return (TRY_AGAIN_LATER); } if (req->dmap->dm_nsegs > MPT_NSGL_FIRST(mpt)) { int seg, i, nleft = req->dmap->dm_nsegs; uint32_t flags; SGE_CHAIN32 *ce; seg = 0; mpt_req->DataLength = xs->datalen; flags = MPI_SGE_FLAGS_SIMPLE_ELEMENT; if (xs->flags & SCSI_DATA_OUT) flags |= MPI_SGE_FLAGS_HOST_TO_IOC; se = (SGE_SIMPLE32 *) &mpt_req->SGL; for (i = 0; i < MPT_NSGL_FIRST(mpt) - 1; i++, se++, seg++) { uint32_t tf; bzero(se, sizeof(*se)); se->Address = req->dmap->dm_segs[seg].ds_addr; MPI_pSGE_SET_LENGTH(se, req->dmap->dm_segs[seg].ds_len); tf = flags; if (i == MPT_NSGL_FIRST(mpt) - 2) tf |= MPI_SGE_FLAGS_LAST_ELEMENT; MPI_pSGE_SET_FLAGS(se, tf); nleft--; } /* * Tell the IOC where to find the first chain element. */ mpt_req->ChainOffset = ((char *)se - (char *)mpt_req) >> 2; /* * Until we're finished with all segments... */ while (nleft) { int ntodo; /* * Construct the chain element that points to * the next segment. */ ce = (SGE_CHAIN32 *) se++; if (nleft > MPT_NSGL(mpt)) { ntodo = MPT_NSGL(mpt) - 1; ce->NextChainOffset = (MPT_RQSL(mpt) - sizeof(SGE_SIMPLE32)) >> 2; ce->Length = MPT_NSGL(mpt) * sizeof(SGE_SIMPLE32); } else { ntodo = nleft; ce->NextChainOffset = 0; ce->Length = ntodo * sizeof(SGE_SIMPLE32); } ce->Address = req->req_pbuf + ((char *)se - (char *)mpt_req); ce->Flags = MPI_SGE_FLAGS_CHAIN_ELEMENT; for (i = 0; i < ntodo; i++, se++, seg++) { uint32_t tf; bzero(se, sizeof(*se)); se->Address = req->dmap->dm_segs[seg].ds_addr; MPI_pSGE_SET_LENGTH(se, req->dmap->dm_segs[seg].ds_len); tf = flags; if (i == ntodo - 1) { tf |= MPI_SGE_FLAGS_LAST_ELEMENT; if (ce->NextChainOffset == 0) { tf |= MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_END_OF_BUFFER; } } MPI_pSGE_SET_FLAGS(se, tf); nleft--; } } bus_dmamap_sync(mpt->sc_dmat, req->dmap, 0, req->dmap->dm_mapsize, (xs->flags & SCSI_DATA_IN) ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE); } else { int i; uint32_t flags; mpt_req->DataLength = xs->datalen; flags = MPI_SGE_FLAGS_SIMPLE_ELEMENT; if (xs->flags & SCSI_DATA_OUT) flags |= MPI_SGE_FLAGS_HOST_TO_IOC; /* Copy the segments into our SG list. */ se = (SGE_SIMPLE32 *) &mpt_req->SGL; for (i = 0; i < req->dmap->dm_nsegs; i++, se++) { uint32_t tf; bzero(se, sizeof(*se)); se->Address = req->dmap->dm_segs[i].ds_addr; MPI_pSGE_SET_LENGTH(se, req->dmap->dm_segs[i].ds_len); tf = flags; if (i == req->dmap->dm_nsegs - 1) { tf |= MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER | MPI_SGE_FLAGS_END_OF_LIST; } MPI_pSGE_SET_FLAGS(se, tf); } bus_dmamap_sync(mpt->sc_dmat, req->dmap, 0, req->dmap->dm_mapsize, (xs->flags & SCSI_DATA_IN) ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE); } } else { /* * No data to transfer; just make a single simple SGL * with zero length. */ SGE_SIMPLE32 *se = (SGE_SIMPLE32 *) &mpt_req->SGL; bzero(se, sizeof(*se)); MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER | MPI_SGE_FLAGS_SIMPLE_ELEMENT | MPI_SGE_FLAGS_END_OF_LIST)); } if (mpt->verbose > 1) mpt_print_scsi_io_request(mpt_req); s = splbio(); /* Always reset xs->stimeout, lest we timeout_del() with trash */ timeout_set(&xs->stimeout, mpt_timeout, req); if ((xs->flags & SCSI_POLL) == 0) timeout_add(&xs->stimeout, mstohz(xs->timeout)); mpt_send_cmd(mpt, req); splx(s); if ((xs->flags & SCSI_POLL) == 0) { return (SUCCESSFULLY_QUEUED); } /* * If we can't use interrupts, poll on completion. */ if (mpt_poll(mpt, xs, xs->timeout)) { mpt_timeout(req); /* XXX scsi_done called return (TRY_AGAIN_LATER); */ return (COMPLETE); } return (COMPLETE); } void mpt_ctlop(mpt_softc_t *mpt, void *vmsg, uint32_t reply) { MSG_DEFAULT_REPLY *dmsg = vmsg; switch (dmsg->Function) { case MPI_FUNCTION_EVENT_NOTIFICATION: mpt_event_notify_reply(mpt, vmsg); mpt_free_reply(mpt, (reply << 1)); break; case MPI_FUNCTION_EVENT_ACK: mpt_free_reply(mpt, (reply << 1)); break; case MPI_FUNCTION_PORT_ENABLE: { MSG_PORT_ENABLE_REPLY *msg = vmsg; int index = msg->MsgContext & ~0x80000000; if (mpt->verbose > 1) mpt_prt(mpt, "enable port reply index %d", index); if (index >= 0 && index < MPT_MAX_REQUESTS(mpt)) { request_t *req = &mpt->request_pool[index]; req->debug = REQ_DONE; } mpt_free_reply(mpt, (reply << 1)); break; } case MPI_FUNCTION_CONFIG: { MSG_CONFIG_REPLY *msg = vmsg; int index = msg->MsgContext & ~0x80000000; if (index >= 0 && index < MPT_MAX_REQUESTS(mpt)) { request_t *req = &mpt->request_pool[index]; req->debug = REQ_DONE; req->sequence = reply; } else mpt_free_reply(mpt, (reply << 1)); break; } default: mpt_prt(mpt, "unknown ctlop: 0x%x", dmsg->Function); } } void mpt_event_notify_reply(mpt_softc_t *mpt, MSG_EVENT_NOTIFY_REPLY *msg) { switch (msg->Event) { case MPI_EVENT_LOG_DATA: { int i; /* Some error occurrerd that the Fusion wants logged. */ mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x", msg->IOCLogInfo); mpt_prt(mpt, "EvtLogData: Event Data:"); for (i = 0; i < msg->EventDataLength; i++) { if ((i % 4) == 0) printf("%s:\t", mpt->mpt_dev.dv_xname); printf("0x%08x%c", msg->Data[i], ((i % 4) == 3) ? '\n' : ' '); } if ((i % 4) != 0) printf("\n"); break; } case MPI_EVENT_UNIT_ATTENTION: mpt_prt(mpt, "Unit Attn: Bus 0x%02x Target 0x%02x", (msg->Data[0] >> 8) & 0xff, msg->Data[0] & 0xff); break; case MPI_EVENT_IOC_BUS_RESET: /* We generated a bus reset. */ mpt_prt(mpt, "IOC Bus Reset Port %d", (msg->Data[0] >> 8) & 0xff); break; case MPI_EVENT_EXT_BUS_RESET: /* Someone else generated a bus reset. */ mpt_prt(mpt, "External Bus Reset"); /* * These replies don't return EventData like the MPI * spec says they do. */ /* XXX Send an async event? */ break; case MPI_EVENT_RESCAN: /* * In general, thise means a device has been added * to the loop. */ mpt_prt(mpt, "Rescan Port %d", (msg->Data[0] >> 8) & 0xff); /* XXX Send an async event? */ break; case MPI_EVENT_LINK_STATUS_CHANGE: mpt_prt(mpt, "Port %d: Link state %s", (msg->Data[1] >> 8) & 0xff, (msg->Data[0] & 0xff) == 0 ? "Failed" : "Active"); break; case MPI_EVENT_LOOP_STATE_CHANGE: switch ((msg->Data[0] >> 16) & 0xff) { case 0x01: mpt_prt(mpt, "Port %d: FC Link Event: LIP(%02x,%02x) " "(Loop Initialization)", (msg->Data[1] >> 8) & 0xff, (msg->Data[0] >> 8) & 0xff, (msg->Data[0] ) & 0xff); switch ((msg->Data[0] >> 8) & 0xff) { case 0xf7: if ((msg->Data[0] & 0xff) == 0xf7) mpt_prt(mpt, "\tDevice needs AL_PA"); else mpt_prt(mpt, "\tDevice %02x doesn't " "like FC performance", msg->Data[0] & 0xff); break; case 0xf8: if ((msg->Data[0] & 0xff) == 0xf7) mpt_prt(mpt, "\tDevice detected loop " "failure before acquiring AL_PA"); else mpt_prt(mpt, "\tDevice %02x detected " "loop failure", msg->Data[0] & 0xff); break; default: mpt_prt(mpt, "\tDevice %02x requests that " "device %02x reset itself", msg->Data[0] & 0xff, (msg->Data[0] >> 8) & 0xff); break; } break; case 0x02: mpt_prt(mpt, "Port %d: FC Link Event: LPE(%02x,%02x) " "(Loop Port Enable)", (msg->Data[1] >> 8) & 0xff, (msg->Data[0] >> 8) & 0xff, (msg->Data[0] ) & 0xff); break; case 0x03: mpt_prt(mpt, "Port %d: FC Link Event: LPB(%02x,%02x) " "(Loop Port Bypass)", (msg->Data[1] >> 8) & 0xff, (msg->Data[0] >> 8) & 0xff, (msg->Data[0] ) & 0xff); break; default: mpt_prt(mpt, "Port %d: FC Link Event: " "Unknown event (%02x %02x %02x)", (msg->Data[1] >> 8) & 0xff, (msg->Data[0] >> 16) & 0xff, (msg->Data[0] >> 8) & 0xff, (msg->Data[0] ) & 0xff); break; } break; case MPI_EVENT_LOGOUT: mpt_prt(mpt, "Port %d: FC Logout: N_PortID: %02x", (msg->Data[1] >> 8) & 0xff, msg->Data[0]); break; case MPI_EVENT_EVENT_CHANGE: /* * This is just an acknowledgement of our * mpt_send_event_request(). */ break; default: mpt_prt(mpt, "Unknown async event: 0x%x", msg->Event); break; } if (msg->AckRequired) { MSG_EVENT_ACK *ackp; request_t *req; if ((req = mpt_get_request(mpt)) == NULL) { /* XXX XXX XXX XXXJRT */ panic("mpt_event_notify_reply: unable to allocate " "request structure"); } ackp = (MSG_EVENT_ACK *) req->req_vbuf; bzero(ackp, sizeof(*ackp)); ackp->Function = MPI_FUNCTION_EVENT_ACK; ackp->Event = msg->Event; ackp->EventContext = msg->EventContext; ackp->MsgContext = req->index | 0x80000000; mpt_check_doorbell(mpt); mpt_send_cmd(mpt, req); } } void mpt_check_xfer_settings(mpt_softc_t *mpt, struct scsi_xfer *xs, MSG_SCSI_IO_REQUEST *mpt_req) { if (mpt->is_fc) { /* * SCSI transport settings don't make any sense for * Fibre Channel; silently ignore the request. */ return; } /* * XXX never do these commands with tags. Should really be * in a higher layer. */ if (xs->cmd->opcode == INQUIRY || xs->cmd->opcode == TEST_UNIT_READY || xs->cmd->opcode == REQUEST_SENSE) return; /* Set the queue behavior. */ if (mpt->is_fc || (mpt->mpt_tag_enable & (1 << xs->sc_link->target))) { mpt_req->Control |= MPI_SCSIIO_CONTROL_SIMPLEQ; } else { mpt_req->Control |= MPI_SCSIIO_CONTROL_UNTAGGED; mpt_req->Control |= MPI_SCSIIO_CONTROL_NO_DISCONNECT; } #if 0 if (mpt->is_fc == 0 && (mpt->mpt_disc_enable & (1 << linkp->target)) == 0) mpt_req->Control |= MPI_SCSIIO_CONTROL_NO_DISCONNECT; #endif return; } /* XXXJRT mpt_bus_reset() */ /***************************************************************************** * SCSI interface routines *****************************************************************************/ int mpt_action(struct scsi_xfer *xfer) { mpt_softc_t *mpt = (void *) xfer->sc_link->adapter_softc; int ret; ret = mpt_run_xfer(mpt, xfer); return ret; #if 0 switch (req) { case ADAPTER_REQ_RUN_XFER: mpt_run_xfer(mpt, (struct scsipi_xfer *) arg); return; case ADAPTER_REQ_GROW_RESOURCES: /* Not supported. */ return; case ADAPTER_REQ_SET_XFER_MODE: mpt_set_xfer_mode(mpt, (struct scsipi_xfer_mode *) arg); return; } #endif } void mpt_minphys(struct buf *bp) { /* * Subtract one from the SGL limit, since we need an extra one to handle * an non-page-aligned transfer. */ #define MPT_MAX_XFER ((MPT_SGL_MAX - 1) * PAGE_SIZE) if (bp->b_bcount > MPT_MAX_XFER) bp->b_bcount = MPT_MAX_XFER; minphys(bp); } /* * Allocate DMA resources for FW image * * img_sz : size of image * maxsgl : maximum number of DMA segments */ int mpt_alloc_fw_mem(mpt_softc_t *mpt, uint32_t img_sz, int maxsgl) { int error; error = bus_dmamem_alloc(mpt->sc_dmat, img_sz, PAGE_SIZE, 0, &mpt->fw_seg, maxsgl, &mpt->fw_rseg, 0); if (error) { mpt_prt(mpt, "unable to allocate fw memory, error = %d", error); goto fw_fail0; } error = bus_dmamem_map(mpt->sc_dmat, &mpt->fw_seg, mpt->fw_rseg, img_sz, (caddr_t *)&mpt->fw, BUS_DMA_COHERENT); if (error) { mpt_prt(mpt, "unable to map fw area, error = %d", error); goto fw_fail1; } error = bus_dmamap_create(mpt->sc_dmat, img_sz, maxsgl, img_sz, 0, 0, &mpt->fw_dmap); if (error) { mpt_prt(mpt, "unable to create request DMA map, error = %d", error); goto fw_fail2; } error = bus_dmamap_load(mpt->sc_dmat, mpt->fw_dmap, mpt->fw, img_sz, NULL, 0); if (error) { mpt_prt(mpt, "unable to load request DMA map, error = %d", error); goto fw_fail3; } return(error); fw_fail3: bus_dmamap_unload(mpt->sc_dmat, mpt->fw_dmap); fw_fail2: bus_dmamap_destroy(mpt->sc_dmat, mpt->fw_dmap); fw_fail1: bus_dmamem_unmap(mpt->sc_dmat, (caddr_t)mpt->fw, img_sz); fw_fail0: bus_dmamem_free(mpt->sc_dmat, &mpt->fw_seg, mpt->fw_rseg); mpt->fw = NULL; return (error); } void mpt_free_fw_mem(mpt_softc_t *mpt) { bus_dmamap_unload(mpt->sc_dmat, mpt->fw_dmap); bus_dmamap_destroy(mpt->sc_dmat, mpt->fw_dmap); bus_dmamem_unmap(mpt->sc_dmat, (caddr_t)mpt->fw, mpt->fw_image_size); bus_dmamem_free(mpt->sc_dmat, &mpt->fw_seg, mpt->fw_rseg); } #if NBIO > 0 int mpt_ioctl(dev, cmd, addr) struct device *dev; u_long cmd; caddr_t addr; { int error = 0; int rv; struct mpt_dummy *dummy; struct mpt_mfg0 *pmfg0; fCONFIG_PAGE_MANUFACTURING_0 mfgp0; mpt_softc_t *mpt = (mpt_softc_t *)dev; switch (cmd) { case MPT_IOCTL_DUMMY: dummy = (struct mpt_dummy *)addr; if (mpt->verbose > 2) { printf("%s: MPT_IOCTL_DUMMY %d\n", dev->dv_xname, dummy->x++); } break; /* Retrieve Manufacturing Page 0 */ case MPT_IOCTL_MFG0: mfgp0.Header.PageNumber = 0; mfgp0.Header.PageType = MPI_CONFIG_PAGETYPE_MANUFACTURING; rv = mpt_read_cfg_page(mpt, 0, &mfgp0.Header); if (rv) { mpt_prt(mpt, "Could not retrieve MFG PAGE 0."); error = EINVAL; } else { if (mpt->verbose > 2) { printf("Chip name: %s\n", mfgp0.ChipName); printf("Chip Revision: %s\n", mfgp0.ChipRevision); printf("Board name: %s\n", mfgp0.BoardName); printf("Board assembly: %s\n", mfgp0.BoardAssembly); printf("Board tracer number: %s\n", mfgp0.BoardTracerNumber); } pmfg0 = (struct mpt_mfg0 *)addr; memcpy(&pmfg0->cpm0, &mfgp0, sizeof(fCONFIG_PAGE_MANUFACTURING_0)); } break; /* Retrieve Manufacturing Page 1 */ case MPT_IOCTL_MFG1: break; /* Retrieve Manufacturing Page 2 */ case MPT_IOCTL_MFG2: break; /* Retrieve Manufacturing Page 3 */ case MPT_IOCTL_MFG3: break; /* Retrieve Manufacturing Page 4 */ case MPT_IOCTL_MFG4: break; default: error = EINVAL; } return (error); } #endif