/* $OpenBSD: re.c,v 1.136 2011/06/15 13:19:19 jsg Exp $ */ /* $FreeBSD: if_re.c,v 1.31 2004/09/04 07:54:05 ru Exp $ */ /* * Copyright (c) 1997, 1998-2003 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /* * RealTek 8139C+/8169/8169S/8110S PCI NIC driver * * Written by Bill Paul * Senior Networking Software Engineer * Wind River Systems */ /* * This driver is designed to support RealTek's next generation of * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S, * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E. * * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible * with the older 8139 family, however it also supports a special * C+ mode of operation that provides several new performance enhancing * features. These include: * * o Descriptor based DMA mechanism. Each descriptor represents * a single packet fragment. Data buffers may be aligned on * any byte boundary. * * o 64-bit DMA * * o TCP/IP checksum offload for both RX and TX * * o High and normal priority transmit DMA rings * * o VLAN tag insertion and extraction * * o TCP large send (segmentation offload) * * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+ * programming API is fairly straightforward. The RX filtering, EEPROM * access and PHY access is the same as it is on the older 8139 series * chips. * * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the * same programming API and feature set as the 8139C+ with the following * differences and additions: * * o 1000Mbps mode * * o Jumbo frames * * o GMII and TBI ports/registers for interfacing with copper * or fiber PHYs * * o RX and TX DMA rings can have up to 1024 descriptors * (the 8139C+ allows a maximum of 64) * * o Slight differences in register layout from the 8139C+ * * The TX start and timer interrupt registers are at different locations * on the 8169 than they are on the 8139C+. Also, the status word in the * RX descriptor has a slightly different bit layout. The 8169 does not * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska' * copper gigE PHY. * * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs * (the 'S' stands for 'single-chip'). These devices have the same * programming API as the older 8169, but also have some vendor-specific * registers for the on-board PHY. The 8110S is a LAN-on-motherboard * part designed to be pin-compatible with the RealTek 8100 10/100 chip. * * This driver takes advantage of the RX and TX checksum offload and * VLAN tag insertion/extraction features. It also implements TX * interrupt moderation using the timer interrupt registers, which * significantly reduces TX interrupt load. There is also support * for jumbo frames, however the 8169/8169S/8110S can not transmit * jumbo frames larger than 7440, so the max MTU possible with this * driver is 7422 bytes. */ #include "bpfilter.h" #include "vlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #if NVLAN > 0 #include #include #endif #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #ifdef RE_DEBUG int redebug = 0; #define DPRINTF(x) do { if (redebug) printf x; } while (0) #else #define DPRINTF(x) #endif static inline void re_set_bufaddr(struct rl_desc *, bus_addr_t); int re_encap(struct rl_softc *, struct mbuf *, int *); int re_newbuf(struct rl_softc *); int re_rx_list_init(struct rl_softc *); void re_rx_list_fill(struct rl_softc *); int re_tx_list_init(struct rl_softc *); int re_rxeof(struct rl_softc *); int re_txeof(struct rl_softc *); void re_tick(void *); void re_start(struct ifnet *); int re_ioctl(struct ifnet *, u_long, caddr_t); void re_watchdog(struct ifnet *); int re_ifmedia_upd(struct ifnet *); void re_ifmedia_sts(struct ifnet *, struct ifmediareq *); void re_eeprom_putbyte(struct rl_softc *, int); void re_eeprom_getword(struct rl_softc *, int, u_int16_t *); void re_read_eeprom(struct rl_softc *, caddr_t, int, int); int re_gmii_readreg(struct device *, int, int); void re_gmii_writereg(struct device *, int, int, int); int re_miibus_readreg(struct device *, int, int); void re_miibus_writereg(struct device *, int, int, int); void re_miibus_statchg(struct device *); void re_iff(struct rl_softc *); void re_setup_hw_im(struct rl_softc *); void re_setup_sim_im(struct rl_softc *); void re_disable_hw_im(struct rl_softc *); void re_disable_sim_im(struct rl_softc *); void re_config_imtype(struct rl_softc *, int); void re_setup_intr(struct rl_softc *, int, int); #ifndef SMALL_KERNEL int re_wol(struct ifnet*, int); #endif #ifdef RE_DIAG int re_diag(struct rl_softc *); #endif struct cfdriver re_cd = { 0, "re", DV_IFNET }; #define EE_SET(x) \ CSR_WRITE_1(sc, RL_EECMD, \ CSR_READ_1(sc, RL_EECMD) | x) #define EE_CLR(x) \ CSR_WRITE_1(sc, RL_EECMD, \ CSR_READ_1(sc, RL_EECMD) & ~x) static const struct re_revision { u_int32_t re_chipid; const char *re_name; } re_revisions[] = { { RL_HWREV_8100, "RTL8100" }, { RL_HWREV_8100E_SPIN1, "RTL8100E 1" }, { RL_HWREV_8100E_SPIN2, "RTL8100E 2" }, { RL_HWREV_8101, "RTL8101" }, { RL_HWREV_8101E, "RTL8101E" }, { RL_HWREV_8102E, "RTL8102E" }, { RL_HWREV_8401E, "RTL8401E" }, { RL_HWREV_8102EL, "RTL8102EL" }, { RL_HWREV_8102EL_SPIN1, "RTL8102EL 1" }, { RL_HWREV_8103E, "RTL8103E" }, { RL_HWREV_8110S, "RTL8110S" }, { RL_HWREV_8139CPLUS, "RTL8139C+" }, { RL_HWREV_8168_SPIN1, "RTL8168 1" }, { RL_HWREV_8168_SPIN2, "RTL8168 2" }, { RL_HWREV_8168_SPIN3, "RTL8168 3" }, { RL_HWREV_8168C, "RTL8168C/8111C" }, { RL_HWREV_8168C_SPIN2, "RTL8168C/8111C" }, { RL_HWREV_8168CP, "RTL8168CP/8111CP" }, { RL_HWREV_8105E, "RTL8105E" }, { RL_HWREV_8168D, "RTL8168D/8111D" }, { RL_HWREV_8168DP, "RTL8168DP/8111DP" }, { RL_HWREV_8168E, "RTL8168E/8111E" }, { RL_HWREV_8168E_VL, "RTL8168E/8111E-VL" }, { RL_HWREV_8169, "RTL8169" }, { RL_HWREV_8169_8110SB, "RTL8169/8110SB" }, { RL_HWREV_8169_8110SBL, "RTL8169SBL" }, { RL_HWREV_8169_8110SCd, "RTL8169/8110SCd" }, { RL_HWREV_8169_8110SCe, "RTL8169/8110SCe" }, { RL_HWREV_8169S, "RTL8169S" }, { 0, NULL } }; static inline void re_set_bufaddr(struct rl_desc *d, bus_addr_t addr) { d->rl_bufaddr_lo = htole32((uint32_t)addr); if (sizeof(bus_addr_t) == sizeof(uint64_t)) d->rl_bufaddr_hi = htole32((uint64_t)addr >> 32); else d->rl_bufaddr_hi = 0; } /* * Send a read command and address to the EEPROM, check for ACK. */ void re_eeprom_putbyte(struct rl_softc *sc, int addr) { int d, i; d = addr | (RL_9346_READ << sc->rl_eewidth); /* * Feed in each bit and strobe the clock. */ for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) { if (d & i) EE_SET(RL_EE_DATAIN); else EE_CLR(RL_EE_DATAIN); DELAY(100); EE_SET(RL_EE_CLK); DELAY(150); EE_CLR(RL_EE_CLK); DELAY(100); } } /* * Read a word of data stored in the EEPROM at address 'addr.' */ void re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest) { int i; u_int16_t word = 0; /* * Send address of word we want to read. */ re_eeprom_putbyte(sc, addr); /* * Start reading bits from EEPROM. */ for (i = 0x8000; i; i >>= 1) { EE_SET(RL_EE_CLK); DELAY(100); if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT) word |= i; EE_CLR(RL_EE_CLK); DELAY(100); } *dest = word; } /* * Read a sequence of words from the EEPROM. */ void re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt) { int i; u_int16_t word = 0, *ptr; CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM); DELAY(100); for (i = 0; i < cnt; i++) { CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL); re_eeprom_getword(sc, off + i, &word); CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL); ptr = (u_int16_t *)(dest + (i * 2)); *ptr = word; } CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM); } int re_gmii_readreg(struct device *self, int phy, int reg) { struct rl_softc *sc = (struct rl_softc *)self; u_int32_t rval; int i; if (phy != 7) return (0); /* Let the rgephy driver read the GMEDIASTAT register */ if (reg == RL_GMEDIASTAT) { rval = CSR_READ_1(sc, RL_GMEDIASTAT); return (rval); } CSR_WRITE_4(sc, RL_PHYAR, reg << 16); for (i = 0; i < RL_PHY_TIMEOUT; i++) { rval = CSR_READ_4(sc, RL_PHYAR); if (rval & RL_PHYAR_BUSY) break; DELAY(25); } if (i == RL_PHY_TIMEOUT) { printf ("%s: PHY read failed\n", sc->sc_dev.dv_xname); return (0); } DELAY(20); return (rval & RL_PHYAR_PHYDATA); } void re_gmii_writereg(struct device *dev, int phy, int reg, int data) { struct rl_softc *sc = (struct rl_softc *)dev; u_int32_t rval; int i; CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) | (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY); for (i = 0; i < RL_PHY_TIMEOUT; i++) { rval = CSR_READ_4(sc, RL_PHYAR); if (!(rval & RL_PHYAR_BUSY)) break; DELAY(25); } if (i == RL_PHY_TIMEOUT) printf ("%s: PHY write failed\n", sc->sc_dev.dv_xname); DELAY(20); } int re_miibus_readreg(struct device *dev, int phy, int reg) { struct rl_softc *sc = (struct rl_softc *)dev; u_int16_t rval = 0; u_int16_t re8139_reg = 0; int s; s = splnet(); if (sc->sc_hwrev != RL_HWREV_8139CPLUS) { rval = re_gmii_readreg(dev, phy, reg); splx(s); return (rval); } /* Pretend the internal PHY is only at address 0 */ if (phy) { splx(s); return (0); } switch(reg) { case MII_BMCR: re8139_reg = RL_BMCR; break; case MII_BMSR: re8139_reg = RL_BMSR; break; case MII_ANAR: re8139_reg = RL_ANAR; break; case MII_ANER: re8139_reg = RL_ANER; break; case MII_ANLPAR: re8139_reg = RL_LPAR; break; case MII_PHYIDR1: case MII_PHYIDR2: splx(s); return (0); /* * Allow the rlphy driver to read the media status * register. If we have a link partner which does not * support NWAY, this is the register which will tell * us the results of parallel detection. */ case RL_MEDIASTAT: rval = CSR_READ_1(sc, RL_MEDIASTAT); splx(s); return (rval); default: printf("%s: bad phy register %x\n", sc->sc_dev.dv_xname, reg); splx(s); return (0); } rval = CSR_READ_2(sc, re8139_reg); if (re8139_reg == RL_BMCR) { /* 8139C+ has different bit layout. */ rval &= ~(BMCR_LOOP | BMCR_ISO); } splx(s); return (rval); } void re_miibus_writereg(struct device *dev, int phy, int reg, int data) { struct rl_softc *sc = (struct rl_softc *)dev; u_int16_t re8139_reg = 0; int s; s = splnet(); if (sc->sc_hwrev != RL_HWREV_8139CPLUS) { re_gmii_writereg(dev, phy, reg, data); splx(s); return; } /* Pretend the internal PHY is only at address 0 */ if (phy) { splx(s); return; } switch(reg) { case MII_BMCR: re8139_reg = RL_BMCR; /* 8139C+ has different bit layout. */ data &= ~(BMCR_LOOP | BMCR_ISO); break; case MII_BMSR: re8139_reg = RL_BMSR; break; case MII_ANAR: re8139_reg = RL_ANAR; break; case MII_ANER: re8139_reg = RL_ANER; break; case MII_ANLPAR: re8139_reg = RL_LPAR; break; case MII_PHYIDR1: case MII_PHYIDR2: splx(s); return; break; default: printf("%s: bad phy register %x\n", sc->sc_dev.dv_xname, reg); splx(s); return; } CSR_WRITE_2(sc, re8139_reg, data); splx(s); } void re_miibus_statchg(struct device *dev) { } void re_iff(struct rl_softc *sc) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; int h = 0; u_int32_t hashes[2]; u_int32_t rxfilt; struct arpcom *ac = &sc->sc_arpcom; struct ether_multi *enm; struct ether_multistep step; rxfilt = CSR_READ_4(sc, RL_RXCFG); rxfilt &= ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_BROAD | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_MULTI); ifp->if_flags &= ~IFF_ALLMULTI; /* * Always accept frames destined to our station address. * Always accept broadcast frames. */ rxfilt |= RL_RXCFG_RX_INDIV | RL_RXCFG_RX_BROAD; if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) { ifp->if_flags |= IFF_ALLMULTI; rxfilt |= RL_RXCFG_RX_MULTI; if (ifp->if_flags & IFF_PROMISC) rxfilt |= RL_RXCFG_RX_ALLPHYS; hashes[0] = hashes[1] = 0xFFFFFFFF; } else { rxfilt |= RL_RXCFG_RX_MULTI; /* Program new filter. */ bzero(hashes, sizeof(hashes)); ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26; if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); ETHER_NEXT_MULTI(step, enm); } } /* * For some unfathomable reason, RealTek decided to reverse * the order of the multicast hash registers in the PCI Express * parts. This means we have to write the hash pattern in reverse * order for those devices. */ if (sc->rl_flags & RL_FLAG_INVMAR) { CSR_WRITE_4(sc, RL_MAR0, swap32(hashes[1])); CSR_WRITE_4(sc, RL_MAR4, swap32(hashes[0])); } else { CSR_WRITE_4(sc, RL_MAR0, hashes[0]); CSR_WRITE_4(sc, RL_MAR4, hashes[1]); } CSR_WRITE_4(sc, RL_RXCFG, rxfilt); } void re_reset(struct rl_softc *sc) { int i; CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET); for (i = 0; i < RL_TIMEOUT; i++) { DELAY(10); if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET)) break; } if (i == RL_TIMEOUT) printf("%s: reset never completed!\n", sc->sc_dev.dv_xname); if (sc->rl_flags & RL_FLAG_MACLDPS) CSR_WRITE_1(sc, RL_LDPS, 1); } #ifdef RE_DIAG /* * The following routine is designed to test for a defect on some * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64# * lines connected to the bus, however for a 32-bit only card, they * should be pulled high. The result of this defect is that the * NIC will not work right if you plug it into a 64-bit slot: DMA * operations will be done with 64-bit transfers, which will fail * because the 64-bit data lines aren't connected. * * There's no way to work around this (short of talking a soldering * iron to the board), however we can detect it. The method we use * here is to put the NIC into digital loopback mode, set the receiver * to promiscuous mode, and then try to send a frame. We then compare * the frame data we sent to what was received. If the data matches, * then the NIC is working correctly, otherwise we know the user has * a defective NIC which has been mistakenly plugged into a 64-bit PCI * slot. In the latter case, there's no way the NIC can work correctly, * so we print out a message on the console and abort the device attach. */ int re_diag(struct rl_softc *sc) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct mbuf *m0; struct ether_header *eh; struct rl_rxsoft *rxs; struct rl_desc *cur_rx; bus_dmamap_t dmamap; u_int16_t status; u_int32_t rxstat; int total_len, i, s, error = 0, phyaddr; u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' }; u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' }; DPRINTF(("inside re_diag\n")); /* Allocate a single mbuf */ MGETHDR(m0, M_DONTWAIT, MT_DATA); if (m0 == NULL) return (ENOBUFS); /* * Initialize the NIC in test mode. This sets the chip up * so that it can send and receive frames, but performs the * following special functions: * - Puts receiver in promiscuous mode * - Enables digital loopback mode * - Leaves interrupts turned off */ ifp->if_flags |= IFF_PROMISC; sc->rl_testmode = 1; re_reset(sc); re_init(ifp); sc->rl_flags |= RL_FLAG_LINK; if (sc->sc_hwrev == RL_HWREV_8139CPLUS) phyaddr = 0; else phyaddr = 1; re_miibus_writereg((struct device *)sc, phyaddr, MII_BMCR, BMCR_RESET); for (i = 0; i < RL_TIMEOUT; i++) { status = re_miibus_readreg((struct device *)sc, phyaddr, MII_BMCR); if (!(status & BMCR_RESET)) break; } re_miibus_writereg((struct device *)sc, phyaddr, MII_BMCR, BMCR_LOOP); CSR_WRITE_2(sc, RL_ISR, RL_INTRS); DELAY(100000); /* Put some data in the mbuf */ eh = mtod(m0, struct ether_header *); bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN); bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN); eh->ether_type = htons(ETHERTYPE_IP); m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN; /* * Queue the packet, start transmission. */ CSR_WRITE_2(sc, RL_ISR, 0xFFFF); s = splnet(); IFQ_ENQUEUE(&ifp->if_snd, m0, NULL, error); re_start(ifp); splx(s); m0 = NULL; DPRINTF(("re_diag: transmission started\n")); /* Wait for it to propagate through the chip */ DELAY(100000); for (i = 0; i < RL_TIMEOUT; i++) { status = CSR_READ_2(sc, RL_ISR); CSR_WRITE_2(sc, RL_ISR, status); if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) == (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) break; DELAY(10); } if (i == RL_TIMEOUT) { printf("%s: diagnostic failed, failed to receive packet " "in loopback mode\n", sc->sc_dev.dv_xname); error = EIO; goto done; } /* * The packet should have been dumped into the first * entry in the RX DMA ring. Grab it from there. */ rxs = &sc->rl_ldata.rl_rxsoft[0]; dmamap = rxs->rxs_dmamap; bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, dmamap); m0 = rxs->rxs_mbuf; rxs->rxs_mbuf = NULL; eh = mtod(m0, struct ether_header *); RL_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); cur_rx = &sc->rl_ldata.rl_rx_list[0]; rxstat = letoh32(cur_rx->rl_cmdstat); total_len = rxstat & sc->rl_rxlenmask; if (total_len != ETHER_MIN_LEN) { printf("%s: diagnostic failed, received short packet\n", sc->sc_dev.dv_xname); error = EIO; goto done; } DPRINTF(("re_diag: packet received\n")); /* Test that the received packet data matches what we sent. */ if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) || bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) || ntohs(eh->ether_type) != ETHERTYPE_IP) { printf("%s: WARNING, DMA FAILURE!\n", sc->sc_dev.dv_xname); printf("%s: expected TX data: %s", sc->sc_dev.dv_xname, ether_sprintf(dst)); printf("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP); printf("%s: received RX data: %s", sc->sc_dev.dv_xname, ether_sprintf(eh->ether_dhost)); printf("/%s/0x%x\n", ether_sprintf(eh->ether_shost), ntohs(eh->ether_type)); printf("%s: You may have a defective 32-bit NIC plugged " "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname); printf("%s: Please re-install the NIC in a 32-bit slot " "for proper operation.\n", sc->sc_dev.dv_xname); printf("%s: Read the re(4) man page for more details.\n", sc->sc_dev.dv_xname); error = EIO; } done: /* Turn interface off, release resources */ sc->rl_testmode = 0; sc->rl_flags &= ~RL_FLAG_LINK; ifp->if_flags &= ~IFF_PROMISC; re_stop(ifp); if (m0 != NULL) m_freem(m0); DPRINTF(("leaving re_diag\n")); return (error); } #endif #ifdef __armish__ /* * Thecus N2100 doesn't store the full mac address in eeprom * so we read the old mac address from the device before the reset * in hopes that the proper mac address is already there. */ union { u_int32_t eaddr_word[2]; u_char eaddr[ETHER_ADDR_LEN]; } boot_eaddr; int boot_eaddr_valid; #endif /* __armish__ */ /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ int re_attach(struct rl_softc *sc, const char *intrstr) { u_char eaddr[ETHER_ADDR_LEN]; u_int16_t as[ETHER_ADDR_LEN / 2]; struct ifnet *ifp; u_int16_t re_did = 0; int error = 0, i; const struct re_revision *rr; const char *re_name = NULL; sc->sc_hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV; switch (sc->sc_hwrev) { case RL_HWREV_8139CPLUS: sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_AUTOPAD; break; case RL_HWREV_8100E_SPIN1: case RL_HWREV_8100E_SPIN2: case RL_HWREV_8101E: sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_INVMAR | RL_FLAG_PHYWAKE; break; case RL_HWREV_8103E: sc->rl_flags |= RL_FLAG_MACSLEEP; /* FALLTHROUGH */ case RL_HWREV_8102E: case RL_HWREV_8102EL: case RL_HWREV_8102EL_SPIN1: sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_INVMAR | RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD; break; case RL_HWREV_8401E: case RL_HWREV_8105E: sc->rl_flags |= RL_FLAG_INVMAR | RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM | RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD; break; case RL_HWREV_8168_SPIN1: case RL_HWREV_8168_SPIN2: case RL_HWREV_8168_SPIN3: sc->rl_flags |= RL_FLAG_INVMAR | RL_FLAG_PHYWAKE | RL_FLAG_MACSTAT | RL_FLAG_HWIM; break; case RL_HWREV_8168C_SPIN2: sc->rl_flags |= RL_FLAG_MACSLEEP; /* FALLTHROUGH */ case RL_HWREV_8168C: case RL_HWREV_8168CP: case RL_HWREV_8168D: case RL_HWREV_8168DP: sc->rl_flags |= RL_FLAG_INVMAR | RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_HWIM | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD; /* * These controllers support jumbo frame but it seems * that enabling it requires touching additional magic * registers. Depending on MAC revisions some * controllers need to disable checksum offload. So * disable jumbo frame until I have better idea what * it really requires to make it support. * RTL8168C/CP : supports up to 6KB jumbo frame. * RTL8111C/CP : supports up to 9KB jumbo frame. */ sc->rl_flags |= RL_FLAG_NOJUMBO; break; case RL_HWREV_8168E: sc->rl_flags |= RL_FLAG_INVMAR | RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM | RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_HWIM | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_NOJUMBO; break; case RL_HWREV_8168E_VL: sc->rl_flags |= RL_FLAG_INVMAR | RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_NOJUMBO; break; case RL_HWREV_8169_8110SB: case RL_HWREV_8169_8110SBL: case RL_HWREV_8169_8110SCd: case RL_HWREV_8169_8110SCe: sc->rl_flags |= RL_FLAG_PHYWAKE; /* FALLTHROUGH */ case RL_HWREV_8169: case RL_HWREV_8169S: case RL_HWREV_8110S: sc->rl_flags |= RL_FLAG_MACLDPS; break; default: break; } /* Reset the adapter. */ re_reset(sc); sc->rl_tx_time = 5; /* 125us */ sc->rl_rx_time = 2; /* 50us */ if (sc->rl_flags & RL_FLAG_PCIE) sc->rl_sim_time = 75; /* 75us */ else sc->rl_sim_time = 125; /* 125us */ sc->rl_imtype = RL_IMTYPE_SIM; /* simulated interrupt moderation */ if (sc->sc_hwrev == RL_HWREV_8139CPLUS) sc->rl_bus_speed = 33; /* XXX */ else if (sc->rl_flags & RL_FLAG_PCIE) sc->rl_bus_speed = 125; else { u_int8_t cfg2; cfg2 = CSR_READ_1(sc, RL_CFG2); switch (cfg2 & RL_CFG2_PCI_MASK) { case RL_CFG2_PCI_33MHZ: sc->rl_bus_speed = 33; break; case RL_CFG2_PCI_66MHZ: sc->rl_bus_speed = 66; break; default: printf("%s: unknown bus speed, assume 33MHz\n", sc->sc_dev.dv_xname); sc->rl_bus_speed = 33; break; } if (cfg2 & RL_CFG2_PCI_64BIT) sc->rl_flags |= RL_FLAG_PCI64; } re_config_imtype(sc, sc->rl_imtype); if (sc->rl_flags & RL_FLAG_PAR) { /* * XXX Should have a better way to extract station * address from EEPROM. */ for (i = 0; i < ETHER_ADDR_LEN; i++) eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i); } else { sc->rl_eewidth = RL_9356_ADDR_LEN; re_read_eeprom(sc, (caddr_t)&re_did, 0, 1); if (re_did != 0x8129) sc->rl_eewidth = RL_9346_ADDR_LEN; /* * Get station address from the EEPROM. */ re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3); for (i = 0; i < ETHER_ADDR_LEN / 2; i++) as[i] = letoh16(as[i]); bcopy(as, eaddr, sizeof(eaddr)); #ifdef __armish__ /* * On the Thecus N2100, the MAC address in the EEPROM is * always 00:14:fd:10:00:00. The proper MAC address is * stored in flash. Fortunately RedBoot configures the * proper MAC address (for the first onboard interface) * which we can read from the IDR. */ if (eaddr[0] == 0x00 && eaddr[1] == 0x14 && eaddr[2] == 0xfd && eaddr[3] == 0x10 && eaddr[4] == 0x00 && eaddr[5] == 0x00) { if (boot_eaddr_valid == 0) { boot_eaddr.eaddr_word[1] = letoh32(CSR_READ_4(sc, RL_IDR4)); boot_eaddr.eaddr_word[0] = letoh32(CSR_READ_4(sc, RL_IDR0)); boot_eaddr_valid = 1; } bcopy(boot_eaddr.eaddr, eaddr, sizeof(eaddr)); eaddr[5] += sc->sc_dev.dv_unit; } #endif } /* * Set RX length mask, TX poll request register * and TX descriptor count. */ if (sc->sc_hwrev == RL_HWREV_8139CPLUS) { sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN; sc->rl_txstart = RL_TXSTART; sc->rl_ldata.rl_tx_desc_cnt = RL_TX_DESC_CNT_8139; } else { sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN; sc->rl_txstart = RL_GTXSTART; sc->rl_ldata.rl_tx_desc_cnt = RL_TX_DESC_CNT_8169; } bcopy(eaddr, (char *)&sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN); for (rr = re_revisions; rr->re_name != NULL; rr++) { if (rr->re_chipid == sc->sc_hwrev) re_name = rr->re_name; } if (re_name == NULL) printf(": unknown ASIC (0x%04x)", sc->sc_hwrev >> 16); else printf(": %s (0x%04x)", re_name, sc->sc_hwrev >> 16); printf(", %s, address %s\n", intrstr, ether_sprintf(sc->sc_arpcom.ac_enaddr)); if (sc->rl_ldata.rl_tx_desc_cnt > PAGE_SIZE / sizeof(struct rl_desc)) { sc->rl_ldata.rl_tx_desc_cnt = PAGE_SIZE / sizeof(struct rl_desc); } /* Allocate DMA'able memory for the TX ring */ if ((error = bus_dmamem_alloc(sc->sc_dmat, RL_TX_LIST_SZ(sc), RL_RING_ALIGN, 0, &sc->rl_ldata.rl_tx_listseg, 1, &sc->rl_ldata.rl_tx_listnseg, BUS_DMA_NOWAIT | BUS_DMA_ZERO)) != 0) { printf("%s: can't allocate tx listseg, error = %d\n", sc->sc_dev.dv_xname, error); goto fail_0; } /* Load the map for the TX ring. */ if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rl_ldata.rl_tx_listseg, sc->rl_ldata.rl_tx_listnseg, RL_TX_LIST_SZ(sc), (caddr_t *)&sc->rl_ldata.rl_tx_list, BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) { printf("%s: can't map tx list, error = %d\n", sc->sc_dev.dv_xname, error); goto fail_1; } if ((error = bus_dmamap_create(sc->sc_dmat, RL_TX_LIST_SZ(sc), 1, RL_TX_LIST_SZ(sc), 0, 0, &sc->rl_ldata.rl_tx_list_map)) != 0) { printf("%s: can't create tx list map, error = %d\n", sc->sc_dev.dv_xname, error); goto fail_2; } if ((error = bus_dmamap_load(sc->sc_dmat, sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) { printf("%s: can't load tx list, error = %d\n", sc->sc_dev.dv_xname, error); goto fail_3; } /* Create DMA maps for TX buffers */ for (i = 0; i < RL_TX_QLEN; i++) { error = bus_dmamap_create(sc->sc_dmat, RL_JUMBO_FRAMELEN, RL_TX_DESC_CNT(sc) - RL_NTXDESC_RSVD, RL_TDESC_CMD_FRAGLEN, 0, 0, &sc->rl_ldata.rl_txq[i].txq_dmamap); if (error) { printf("%s: can't create DMA map for TX\n", sc->sc_dev.dv_xname); goto fail_4; } } /* Allocate DMA'able memory for the RX ring */ if ((error = bus_dmamem_alloc(sc->sc_dmat, RL_RX_DMAMEM_SZ, RL_RING_ALIGN, 0, &sc->rl_ldata.rl_rx_listseg, 1, &sc->rl_ldata.rl_rx_listnseg, BUS_DMA_NOWAIT | BUS_DMA_ZERO)) != 0) { printf("%s: can't allocate rx listnseg, error = %d\n", sc->sc_dev.dv_xname, error); goto fail_4; } /* Load the map for the RX ring. */ if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rl_ldata.rl_rx_listseg, sc->rl_ldata.rl_rx_listnseg, RL_RX_DMAMEM_SZ, (caddr_t *)&sc->rl_ldata.rl_rx_list, BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) { printf("%s: can't map rx list, error = %d\n", sc->sc_dev.dv_xname, error); goto fail_5; } if ((error = bus_dmamap_create(sc->sc_dmat, RL_RX_DMAMEM_SZ, 1, RL_RX_DMAMEM_SZ, 0, 0, &sc->rl_ldata.rl_rx_list_map)) != 0) { printf("%s: can't create rx list map, error = %d\n", sc->sc_dev.dv_xname, error); goto fail_6; } if ((error = bus_dmamap_load(sc->sc_dmat, sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list, RL_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) { printf("%s: can't load rx list, error = %d\n", sc->sc_dev.dv_xname, error); goto fail_7; } /* Create DMA maps for RX buffers */ for (i = 0; i < RL_RX_DESC_CNT; i++) { error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0, &sc->rl_ldata.rl_rxsoft[i].rxs_dmamap); if (error) { printf("%s: can't create DMA map for RX\n", sc->sc_dev.dv_xname); goto fail_8; } } ifp = &sc->sc_arpcom.ac_if; ifp->if_softc = sc; strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = re_ioctl; ifp->if_start = re_start; ifp->if_watchdog = re_watchdog; if ((sc->rl_flags & RL_FLAG_NOJUMBO) == 0) ifp->if_hardmtu = RL_JUMBO_MTU; IFQ_SET_MAXLEN(&ifp->if_snd, RL_TX_QLEN); IFQ_SET_READY(&ifp->if_snd); m_clsetwms(ifp, MCLBYTES, 2, RL_RX_DESC_CNT); ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4; #if NVLAN > 0 ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING; #endif #ifndef SMALL_KERNEL ifp->if_capabilities |= IFCAP_WOL; ifp->if_wol = re_wol; re_wol(ifp, 0); #endif timeout_set(&sc->timer_handle, re_tick, sc); /* Take PHY out of power down mode. */ if (sc->rl_flags & RL_FLAG_PHYWAKE_PM) { CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) | 0x80); if (sc->sc_hwrev == RL_HWREV_8401E) CSR_WRITE_1(sc, 0xD1, CSR_READ_1(sc, 0xD1) & ~0x08); } if (sc->rl_flags & RL_FLAG_PHYWAKE) { re_gmii_writereg((struct device *)sc, 1, 0x1f, 0); re_gmii_writereg((struct device *)sc, 1, 0x0e, 0); } /* Do MII setup */ sc->sc_mii.mii_ifp = ifp; sc->sc_mii.mii_readreg = re_miibus_readreg; sc->sc_mii.mii_writereg = re_miibus_writereg; sc->sc_mii.mii_statchg = re_miibus_statchg; ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, re_ifmedia_upd, re_ifmedia_sts); mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, MIIF_DOPAUSE); if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { printf("%s: no PHY found!\n", sc->sc_dev.dv_xname); ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); } else ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); /* * Call MI attach routine. */ re_reset(sc); if_attach(ifp); ether_ifattach(ifp); #ifdef RE_DIAG /* * Perform hardware diagnostic on the original RTL8169. * Some 32-bit cards were incorrectly wired and would * malfunction if plugged into a 64-bit slot. */ if (sc->sc_hwrev == RL_HWREV_8169) { error = re_diag(sc); if (error) { printf("%s: attach aborted due to hardware diag failure\n", sc->sc_dev.dv_xname); ether_ifdetach(ifp); goto fail_8; } } #endif return (0); fail_8: /* Destroy DMA maps for RX buffers. */ for (i = 0; i < RL_RX_DESC_CNT; i++) { if (sc->rl_ldata.rl_rxsoft[i].rxs_dmamap != NULL) bus_dmamap_destroy(sc->sc_dmat, sc->rl_ldata.rl_rxsoft[i].rxs_dmamap); } /* Free DMA'able memory for the RX ring. */ bus_dmamap_unload(sc->sc_dmat, sc->rl_ldata.rl_rx_list_map); fail_7: bus_dmamap_destroy(sc->sc_dmat, sc->rl_ldata.rl_rx_list_map); fail_6: bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rl_ldata.rl_rx_list, RL_RX_DMAMEM_SZ); fail_5: bus_dmamem_free(sc->sc_dmat, &sc->rl_ldata.rl_rx_listseg, sc->rl_ldata.rl_rx_listnseg); fail_4: /* Destroy DMA maps for TX buffers. */ for (i = 0; i < RL_TX_QLEN; i++) { if (sc->rl_ldata.rl_txq[i].txq_dmamap != NULL) bus_dmamap_destroy(sc->sc_dmat, sc->rl_ldata.rl_txq[i].txq_dmamap); } /* Free DMA'able memory for the TX ring. */ bus_dmamap_unload(sc->sc_dmat, sc->rl_ldata.rl_tx_list_map); fail_3: bus_dmamap_destroy(sc->sc_dmat, sc->rl_ldata.rl_tx_list_map); fail_2: bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ(sc)); fail_1: bus_dmamem_free(sc->sc_dmat, &sc->rl_ldata.rl_tx_listseg, sc->rl_ldata.rl_tx_listnseg); fail_0: return (1); } int re_newbuf(struct rl_softc *sc) { struct mbuf *m; bus_dmamap_t map; struct rl_desc *d; struct rl_rxsoft *rxs; u_int32_t cmdstat; int error, idx; m = MCLGETI(NULL, M_DONTWAIT, &sc->sc_arpcom.ac_if, MCLBYTES); if (!m) return (ENOBUFS); /* * Initialize mbuf length fields and fixup * alignment so that the frame payload is * longword aligned on strict alignment archs. */ m->m_len = m->m_pkthdr.len = RE_RX_DESC_BUFLEN; m->m_data += RE_ETHER_ALIGN; idx = sc->rl_ldata.rl_rx_prodidx; rxs = &sc->rl_ldata.rl_rxsoft[idx]; map = rxs->rxs_dmamap; error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_READ|BUS_DMA_NOWAIT); if (error) { m_freem(m); return (ENOBUFS); } bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, BUS_DMASYNC_PREREAD); d = &sc->rl_ldata.rl_rx_list[idx]; RL_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); cmdstat = letoh32(d->rl_cmdstat); RL_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD); if (cmdstat & RL_RDESC_STAT_OWN) { printf("%s: tried to map busy RX descriptor\n", sc->sc_dev.dv_xname); m_freem(m); return (ENOBUFS); } rxs->rxs_mbuf = m; d->rl_vlanctl = 0; cmdstat = map->dm_segs[0].ds_len; if (idx == (RL_RX_DESC_CNT - 1)) cmdstat |= RL_RDESC_CMD_EOR; re_set_bufaddr(d, map->dm_segs[0].ds_addr); d->rl_cmdstat = htole32(cmdstat); RL_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); cmdstat |= RL_RDESC_CMD_OWN; d->rl_cmdstat = htole32(cmdstat); RL_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); sc->rl_ldata.rl_rx_prodidx = RL_NEXT_RX_DESC(sc, idx); sc->rl_ldata.rl_rx_cnt++; return (0); } int re_tx_list_init(struct rl_softc *sc) { int i; memset(sc->rl_ldata.rl_tx_list, 0, RL_TX_LIST_SZ(sc)); for (i = 0; i < RL_TX_QLEN; i++) { sc->rl_ldata.rl_txq[i].txq_mbuf = NULL; } bus_dmamap_sync(sc->sc_dmat, sc->rl_ldata.rl_tx_list_map, 0, sc->rl_ldata.rl_tx_list_map->dm_mapsize, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); sc->rl_ldata.rl_txq_prodidx = 0; sc->rl_ldata.rl_txq_considx = 0; sc->rl_ldata.rl_tx_free = RL_TX_DESC_CNT(sc); sc->rl_ldata.rl_tx_nextfree = 0; return (0); } int re_rx_list_init(struct rl_softc *sc) { bzero(sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ); sc->rl_ldata.rl_rx_prodidx = 0; sc->rl_ldata.rl_rx_considx = 0; sc->rl_ldata.rl_rx_cnt = 0; sc->rl_head = sc->rl_tail = NULL; re_rx_list_fill(sc); return (0); } void re_rx_list_fill(struct rl_softc *sc) { while (sc->rl_ldata.rl_rx_cnt < RL_RX_DESC_CNT) { if (re_newbuf(sc) == ENOBUFS) break; } } /* * RX handler for C+ and 8169. For the gigE chips, we support * the reception of jumbo frames that have been fragmented * across multiple 2K mbuf cluster buffers. */ int re_rxeof(struct rl_softc *sc) { struct mbuf *m; struct ifnet *ifp; int i, total_len, rx = 0; struct rl_desc *cur_rx; struct rl_rxsoft *rxs; u_int32_t rxstat, rxvlan; ifp = &sc->sc_arpcom.ac_if; for (i = sc->rl_ldata.rl_rx_considx; sc->rl_ldata.rl_rx_cnt > 0; i = RL_NEXT_RX_DESC(sc, i)) { cur_rx = &sc->rl_ldata.rl_rx_list[i]; RL_RXDESCSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); rxstat = letoh32(cur_rx->rl_cmdstat); rxvlan = letoh32(cur_rx->rl_vlanctl); RL_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD); if ((rxstat & RL_RDESC_STAT_OWN) != 0) break; total_len = rxstat & sc->rl_rxlenmask; rxs = &sc->rl_ldata.rl_rxsoft[i]; m = rxs->rxs_mbuf; rxs->rxs_mbuf = NULL; sc->rl_ldata.rl_rx_cnt--; rx = 1; /* Invalidate the RX mbuf and unload its map */ bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); if (!(rxstat & RL_RDESC_STAT_EOF)) { m->m_len = RE_RX_DESC_BUFLEN; if (sc->rl_head == NULL) sc->rl_head = sc->rl_tail = m; else { m->m_flags &= ~M_PKTHDR; sc->rl_tail->m_next = m; sc->rl_tail = m; } continue; } /* * NOTE: for the 8139C+, the frame length field * is always 12 bits in size, but for the gigE chips, * it is 13 bits (since the max RX frame length is 16K). * Unfortunately, all 32 bits in the status word * were already used, so to make room for the extra * length bit, RealTek took out the 'frame alignment * error' bit and shifted the other status bits * over one slot. The OWN, EOR, FS and LS bits are * still in the same places. We have already extracted * the frame length and checked the OWN bit, so rather * than using an alternate bit mapping, we shift the * status bits one space to the right so we can evaluate * them using the 8169 status as though it was in the * same format as that of the 8139C+. */ if (sc->sc_hwrev != RL_HWREV_8139CPLUS) rxstat >>= 1; /* * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be * set, but if CRC is clear, it will still be a valid frame. */ if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 && (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) { ifp->if_ierrors++; /* * If this is part of a multi-fragment packet, * discard all the pieces. */ if (sc->rl_head != NULL) { m_freem(sc->rl_head); sc->rl_head = sc->rl_tail = NULL; } continue; } if (sc->rl_head != NULL) { m->m_len = total_len % RE_RX_DESC_BUFLEN; if (m->m_len == 0) m->m_len = RE_RX_DESC_BUFLEN; /* * Special case: if there's 4 bytes or less * in this buffer, the mbuf can be discarded: * the last 4 bytes is the CRC, which we don't * care about anyway. */ if (m->m_len <= ETHER_CRC_LEN) { sc->rl_tail->m_len -= (ETHER_CRC_LEN - m->m_len); m_freem(m); } else { m->m_len -= ETHER_CRC_LEN; m->m_flags &= ~M_PKTHDR; sc->rl_tail->m_next = m; } m = sc->rl_head; sc->rl_head = sc->rl_tail = NULL; m->m_pkthdr.len = total_len - ETHER_CRC_LEN; } else m->m_pkthdr.len = m->m_len = (total_len - ETHER_CRC_LEN); ifp->if_ipackets++; m->m_pkthdr.rcvif = ifp; /* Do RX checksumming */ if (sc->rl_flags & RL_FLAG_DESCV2) { /* Check IP header checksum */ if ((rxvlan & RL_RDESC_IPV4) && !(rxstat & RL_RDESC_STAT_IPSUMBAD)) m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK; /* Check TCP/UDP checksum */ if ((rxvlan & (RL_RDESC_IPV4|RL_RDESC_IPV6)) && (((rxstat & RL_RDESC_STAT_TCP) && !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) || ((rxstat & RL_RDESC_STAT_UDP) && !(rxstat & RL_RDESC_STAT_UDPSUMBAD)))) m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK; } else { /* Check IP header checksum */ if ((rxstat & RL_RDESC_STAT_PROTOID) && !(rxstat & RL_RDESC_STAT_IPSUMBAD)) m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK; /* Check TCP/UDP checksum */ if ((RL_TCPPKT(rxstat) && !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) || (RL_UDPPKT(rxstat) && !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK; } #if NVLAN > 0 if (rxvlan & RL_RDESC_VLANCTL_TAG) { m->m_pkthdr.ether_vtag = ntohs((rxvlan & RL_RDESC_VLANCTL_DATA)); m->m_flags |= M_VLANTAG; } #endif #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_IN); #endif ether_input_mbuf(ifp, m); } sc->rl_ldata.rl_rx_considx = i; re_rx_list_fill(sc); return (rx); } int re_txeof(struct rl_softc *sc) { struct ifnet *ifp; struct rl_txq *txq; uint32_t txstat; int idx, descidx, tx = 0; ifp = &sc->sc_arpcom.ac_if; for (idx = sc->rl_ldata.rl_txq_considx;; idx = RL_NEXT_TXQ(sc, idx)) { txq = &sc->rl_ldata.rl_txq[idx]; if (txq->txq_mbuf == NULL) { KASSERT(idx == sc->rl_ldata.rl_txq_prodidx); break; } descidx = txq->txq_descidx; RL_TXDESCSYNC(sc, descidx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); txstat = letoh32(sc->rl_ldata.rl_tx_list[descidx].rl_cmdstat); RL_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD); KASSERT((txstat & RL_TDESC_CMD_EOF) != 0); if (txstat & RL_TDESC_CMD_OWN) break; tx = 1; sc->rl_ldata.rl_tx_free += txq->txq_nsegs; KASSERT(sc->rl_ldata.rl_tx_free <= RL_TX_DESC_CNT(sc)); bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap, 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap); m_freem(txq->txq_mbuf); txq->txq_mbuf = NULL; if (txstat & (RL_TDESC_STAT_EXCESSCOL | RL_TDESC_STAT_COLCNT)) ifp->if_collisions++; if (txstat & RL_TDESC_STAT_TXERRSUM) ifp->if_oerrors++; else ifp->if_opackets++; } sc->rl_ldata.rl_txq_considx = idx; if (sc->rl_ldata.rl_tx_free > RL_NTXDESC_RSVD) ifp->if_flags &= ~IFF_OACTIVE; /* * Some chips will ignore a second TX request issued while an * existing transmission is in progress. If the transmitter goes * idle but there are still packets waiting to be sent, we need * to restart the channel here to flush them out. This only * seems to be required with the PCIe devices. */ if (sc->rl_ldata.rl_tx_free < RL_TX_DESC_CNT(sc)) CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START); else ifp->if_timer = 0; return (tx); } void re_tick(void *xsc) { struct rl_softc *sc = xsc; struct mii_data *mii; struct ifnet *ifp; int s; ifp = &sc->sc_arpcom.ac_if; mii = &sc->sc_mii; s = splnet(); mii_tick(mii); if (sc->rl_flags & RL_FLAG_LINK) { if (!(mii->mii_media_status & IFM_ACTIVE)) sc->rl_flags &= ~RL_FLAG_LINK; } else { if (mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { sc->rl_flags |= RL_FLAG_LINK; if (!IFQ_IS_EMPTY(&ifp->if_snd)) re_start(ifp); } } splx(s); timeout_add_sec(&sc->timer_handle, 1); } int re_intr(void *arg) { struct rl_softc *sc = arg; struct ifnet *ifp; u_int16_t status; int claimed = 0, rx, tx; ifp = &sc->sc_arpcom.ac_if; if (!(ifp->if_flags & IFF_RUNNING)) return (0); rx = tx = 0; status = CSR_READ_2(sc, RL_ISR); /* If the card has gone away the read returns 0xffff. */ if (status == 0xffff) return (0); if (status) CSR_WRITE_2(sc, RL_ISR, status); if (status & RL_ISR_TIMEOUT_EXPIRED) claimed = 1; if (status & RL_INTRS_CPLUS) { if (status & (sc->rl_rx_ack | RL_ISR_RX_ERR)) { rx |= re_rxeof(sc); claimed = 1; } if (status & (sc->rl_tx_ack | RL_ISR_TX_ERR)) { tx |= re_txeof(sc); claimed = 1; } if (status & RL_ISR_SYSTEM_ERR) { re_reset(sc); re_init(ifp); claimed = 1; } if (status & RL_ISR_LINKCHG) { timeout_del(&sc->timer_handle); re_tick(sc); claimed = 1; } } if (sc->rl_imtype == RL_IMTYPE_SIM) { if ((sc->rl_flags & RL_FLAG_TIMERINTR)) { if ((tx | rx) == 0) { /* * Nothing needs to be processed, fallback * to use TX/RX interrupts. */ re_setup_intr(sc, 1, RL_IMTYPE_NONE); /* * Recollect, mainly to avoid the possible * race introduced by changing interrupt * masks. */ re_rxeof(sc); tx = re_txeof(sc); } else CSR_WRITE_4(sc, RL_TIMERCNT, 1); /* reload */ } else if (tx | rx) { /* * Assume that using simulated interrupt moderation * (hardware timer based) could reduce the interrupt * rate. */ re_setup_intr(sc, 1, RL_IMTYPE_SIM); } } if (tx && !IFQ_IS_EMPTY(&ifp->if_snd)) re_start(ifp); return (claimed); } int re_encap(struct rl_softc *sc, struct mbuf *m, int *idx) { bus_dmamap_t map; int error, seg, nsegs, uidx, startidx, curidx, lastidx, pad; struct rl_desc *d; u_int32_t cmdstat, vlanctl = 0, csum_flags = 0; struct rl_txq *txq; if (sc->rl_ldata.rl_tx_free <= RL_NTXDESC_RSVD) return (EFBIG); /* * Set up checksum offload. Note: checksum offload bits must * appear in all descriptors of a multi-descriptor transmit * attempt. This is according to testing done with an 8169 * chip. This is a requirement. */ /* * Set RL_TDESC_CMD_IPCSUM if any checksum offloading * is requested. Otherwise, RL_TDESC_CMD_TCPCSUM/ * RL_TDESC_CMD_UDPCSUM does not take affect. */ if ((m->m_pkthdr.csum_flags & (M_IPV4_CSUM_OUT|M_TCP_CSUM_OUT|M_UDP_CSUM_OUT)) != 0) { if (sc->rl_flags & RL_FLAG_DESCV2) { vlanctl |= RL_TDESC_CMD_IPCSUMV2; if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT) vlanctl |= RL_TDESC_CMD_TCPCSUMV2; if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT) vlanctl |= RL_TDESC_CMD_UDPCSUMV2; } else { csum_flags |= RL_TDESC_CMD_IPCSUM; if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT) csum_flags |= RL_TDESC_CMD_TCPCSUM; if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT) csum_flags |= RL_TDESC_CMD_UDPCSUM; } } txq = &sc->rl_ldata.rl_txq[*idx]; map = txq->txq_dmamap; error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT); if (error) { /* XXX try to defrag if EFBIG? */ printf("%s: can't map mbuf (error %d)\n", sc->sc_dev.dv_xname, error); return (error); } nsegs = map->dm_nsegs; pad = 0; if ((sc->rl_flags & RL_FLAG_DESCV2) == 0 && m->m_pkthdr.len <= RL_IP4CSUMTX_PADLEN && (csum_flags & RL_TDESC_CMD_IPCSUM) != 0) { pad = 1; nsegs++; } if (nsegs > sc->rl_ldata.rl_tx_free - RL_NTXDESC_RSVD) { error = EFBIG; goto fail_unload; } /* * Make sure that the caches are synchronized before we * ask the chip to start DMA for the packet data. */ bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, BUS_DMASYNC_PREWRITE); /* * Set up hardware VLAN tagging. Note: vlan tag info must * appear in all descriptors of a multi-descriptor * transmission attempt. */ #if NVLAN > 0 if (m->m_flags & M_VLANTAG) vlanctl |= swap16(m->m_pkthdr.ether_vtag) | RL_TDESC_VLANCTL_TAG; #endif /* * Map the segment array into descriptors. Note that we set the * start-of-frame and end-of-frame markers for either TX or RX, but * they really only have meaning in the TX case. (In the RX case, * it's the chip that tells us where packets begin and end.) * We also keep track of the end of the ring and set the * end-of-ring bits as needed, and we set the ownership bits * in all except the very first descriptor. (The caller will * set this descriptor later when it start transmission or * reception.) */ curidx = startidx = sc->rl_ldata.rl_tx_nextfree; lastidx = -1; for (seg = 0; seg < map->dm_nsegs; seg++, curidx = RL_NEXT_TX_DESC(sc, curidx)) { d = &sc->rl_ldata.rl_tx_list[curidx]; RL_TXDESCSYNC(sc, curidx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); cmdstat = letoh32(d->rl_cmdstat); RL_TXDESCSYNC(sc, curidx, BUS_DMASYNC_PREREAD); if (cmdstat & RL_TDESC_STAT_OWN) { printf("%s: tried to map busy TX descriptor\n", sc->sc_dev.dv_xname); for (; seg > 0; seg --) { uidx = (curidx + RL_TX_DESC_CNT(sc) - seg) % RL_TX_DESC_CNT(sc); sc->rl_ldata.rl_tx_list[uidx].rl_cmdstat = 0; RL_TXDESCSYNC(sc, uidx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); } error = ENOBUFS; goto fail_unload; } d->rl_vlanctl = htole32(vlanctl); re_set_bufaddr(d, map->dm_segs[seg].ds_addr); cmdstat = csum_flags | map->dm_segs[seg].ds_len; if (seg == 0) cmdstat |= RL_TDESC_CMD_SOF; else cmdstat |= RL_TDESC_CMD_OWN; if (curidx == (RL_TX_DESC_CNT(sc) - 1)) cmdstat |= RL_TDESC_CMD_EOR; if (seg == nsegs - 1) { cmdstat |= RL_TDESC_CMD_EOF; lastidx = curidx; } d->rl_cmdstat = htole32(cmdstat); RL_TXDESCSYNC(sc, curidx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); } if (pad) { d = &sc->rl_ldata.rl_tx_list[curidx]; d->rl_vlanctl = htole32(vlanctl); re_set_bufaddr(d, RL_TXPADDADDR(sc)); cmdstat = csum_flags | RL_TDESC_CMD_OWN | RL_TDESC_CMD_EOF | (RL_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len); if (curidx == (RL_TX_DESC_CNT(sc) - 1)) cmdstat |= RL_TDESC_CMD_EOR; d->rl_cmdstat = htole32(cmdstat); RL_TXDESCSYNC(sc, curidx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); lastidx = curidx; curidx = RL_NEXT_TX_DESC(sc, curidx); } KASSERT(lastidx != -1); /* Transfer ownership of packet to the chip. */ sc->rl_ldata.rl_tx_list[startidx].rl_cmdstat |= htole32(RL_TDESC_CMD_OWN); RL_TXDESCSYNC(sc, startidx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); /* update info of TX queue and descriptors */ txq->txq_mbuf = m; txq->txq_descidx = lastidx; txq->txq_nsegs = nsegs; sc->rl_ldata.rl_tx_free -= nsegs; sc->rl_ldata.rl_tx_nextfree = curidx; *idx = RL_NEXT_TXQ(sc, *idx); return (0); fail_unload: bus_dmamap_unload(sc->sc_dmat, map); return (error); } /* * Main transmit routine for C+ and gigE NICs. */ void re_start(struct ifnet *ifp) { struct rl_softc *sc; int idx, queued = 0; sc = ifp->if_softc; if (ifp->if_flags & IFF_OACTIVE) return; if ((sc->rl_flags & RL_FLAG_LINK) == 0) return; idx = sc->rl_ldata.rl_txq_prodidx; for (;;) { struct mbuf *m; int error; IFQ_POLL(&ifp->if_snd, m); if (m == NULL) break; if (sc->rl_ldata.rl_txq[idx].txq_mbuf != NULL) { KASSERT(idx == sc->rl_ldata.rl_txq_considx); ifp->if_flags |= IFF_OACTIVE; break; } error = re_encap(sc, m, &idx); if (error == EFBIG && sc->rl_ldata.rl_tx_free == RL_TX_DESC_CNT(sc)) { IFQ_DEQUEUE(&ifp->if_snd, m); m_freem(m); ifp->if_oerrors++; continue; } if (error) { ifp->if_flags |= IFF_OACTIVE; break; } IFQ_DEQUEUE(&ifp->if_snd, m); queued++; #if NBPFILTER > 0 /* * If there's a BPF listener, bounce a copy of this frame * to him. */ if (ifp->if_bpf) bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_OUT); #endif } if (queued == 0) return; sc->rl_ldata.rl_txq_prodidx = idx; CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } int re_init(struct ifnet *ifp) { struct rl_softc *sc = ifp->if_softc; u_int16_t cfg; int s; union { u_int32_t align_dummy; u_char eaddr[ETHER_ADDR_LEN]; } eaddr; s = splnet(); /* * Cancel pending I/O and free all RX/TX buffers. */ re_stop(ifp); /* * Enable C+ RX and TX mode, as well as RX checksum offload. * We must configure the C+ register before all others. */ cfg = RL_CPLUSCMD_TXENB | RL_CPLUSCMD_PCI_MRW; if (ifp->if_capabilities & IFCAP_CSUM_IPv4) cfg |= RL_CPLUSCMD_RXCSUM_ENB; if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) cfg |= RL_CPLUSCMD_VLANSTRIP; if (sc->rl_flags & RL_FLAG_MACSTAT) cfg |= RL_CPLUSCMD_MACSTAT_DIS; else cfg |= RL_CPLUSCMD_RXENB; CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg); /* * Init our MAC address. Even though the chipset * documentation doesn't mention it, we need to enter "Config * register write enable" mode to modify the ID registers. */ bcopy(sc->sc_arpcom.ac_enaddr, eaddr.eaddr, ETHER_ADDR_LEN); CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG); CSR_WRITE_4(sc, RL_IDR4, htole32(*(u_int32_t *)(&eaddr.eaddr[4]))); CSR_WRITE_4(sc, RL_IDR0, htole32(*(u_int32_t *)(&eaddr.eaddr[0]))); CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); /* * For C+ mode, initialize the RX descriptors and mbufs. */ re_rx_list_init(sc); re_tx_list_init(sc); /* * Load the addresses of the RX and TX lists into the chip. */ CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI, RL_ADDR_HI(sc->rl_ldata.rl_rx_list_map->dm_segs[0].ds_addr)); CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO, RL_ADDR_LO(sc->rl_ldata.rl_rx_list_map->dm_segs[0].ds_addr)); CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI, RL_ADDR_HI(sc->rl_ldata.rl_tx_list_map->dm_segs[0].ds_addr)); CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO, RL_ADDR_LO(sc->rl_ldata.rl_tx_list_map->dm_segs[0].ds_addr)); /* * Enable transmit and receive. */ CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB); /* * Set the initial TX and RX configuration. */ if (sc->rl_testmode) { if (sc->sc_hwrev == RL_HWREV_8139CPLUS) CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS); else CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG|RL_LOOPTEST_ON); } else CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG); CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16); CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG); /* Program promiscuous mode and multicast filters. */ re_iff(sc); /* * Enable interrupts. */ if (sc->rl_testmode) CSR_WRITE_2(sc, RL_IMR, 0); else re_setup_intr(sc, 1, sc->rl_imtype); CSR_WRITE_2(sc, RL_ISR, sc->rl_imtype); /* Start RX/TX process. */ CSR_WRITE_4(sc, RL_MISSEDPKT, 0); #ifdef notdef /* Enable receiver and transmitter. */ CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB); #endif /* * For 8169 gigE NICs, set the max allowed RX packet * size so we can receive jumbo frames. */ if (sc->sc_hwrev != RL_HWREV_8139CPLUS) CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383); if (sc->rl_testmode) { splx(s); return (0); } mii_mediachg(&sc->sc_mii); CSR_WRITE_1(sc, RL_CFG1, CSR_READ_1(sc, RL_CFG1) | RL_CFG1_DRVLOAD); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; splx(s); sc->rl_flags &= ~RL_FLAG_LINK; timeout_add_sec(&sc->timer_handle, 1); return (0); } /* * Set media options. */ int re_ifmedia_upd(struct ifnet *ifp) { struct rl_softc *sc; sc = ifp->if_softc; return (mii_mediachg(&sc->sc_mii)); } /* * Report current media status. */ void re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct rl_softc *sc; sc = ifp->if_softc; mii_pollstat(&sc->sc_mii); ifmr->ifm_active = sc->sc_mii.mii_media_active; ifmr->ifm_status = sc->sc_mii.mii_media_status; } int re_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct rl_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct ifaddr *ifa = (struct ifaddr *)data; int s, error = 0; s = splnet(); switch(command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; if (!(ifp->if_flags & IFF_RUNNING)) re_init(ifp); #ifdef INET if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(&sc->sc_arpcom, ifa); #endif /* INET */ break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING) error = ENETRESET; else re_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) re_stop(ifp); } break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command); break; default: error = ether_ioctl(ifp, &sc->sc_arpcom, command, data); } if (error == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) re_iff(sc); error = 0; } splx(s); return (error); } void re_watchdog(struct ifnet *ifp) { struct rl_softc *sc; int s; sc = ifp->if_softc; s = splnet(); printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname); ifp->if_oerrors++; re_txeof(sc); re_rxeof(sc); re_init(ifp); splx(s); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ void re_stop(struct ifnet *ifp) { struct rl_softc *sc; int i; sc = ifp->if_softc; ifp->if_timer = 0; sc->rl_flags &= ~(RL_FLAG_LINK|RL_FLAG_TIMERINTR); timeout_del(&sc->timer_handle); ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); mii_down(&sc->sc_mii); CSR_WRITE_1(sc, RL_COMMAND, 0x00); CSR_WRITE_2(sc, RL_IMR, 0x0000); CSR_WRITE_2(sc, RL_ISR, 0xFFFF); if (sc->rl_head != NULL) { m_freem(sc->rl_head); sc->rl_head = sc->rl_tail = NULL; } /* Free the TX list buffers. */ for (i = 0; i < RL_TX_QLEN; i++) { if (sc->rl_ldata.rl_txq[i].txq_mbuf != NULL) { bus_dmamap_unload(sc->sc_dmat, sc->rl_ldata.rl_txq[i].txq_dmamap); m_freem(sc->rl_ldata.rl_txq[i].txq_mbuf); sc->rl_ldata.rl_txq[i].txq_mbuf = NULL; } } /* Free the RX list buffers. */ for (i = 0; i < RL_RX_DESC_CNT; i++) { if (sc->rl_ldata.rl_rxsoft[i].rxs_mbuf != NULL) { bus_dmamap_unload(sc->sc_dmat, sc->rl_ldata.rl_rxsoft[i].rxs_dmamap); m_freem(sc->rl_ldata.rl_rxsoft[i].rxs_mbuf); sc->rl_ldata.rl_rxsoft[i].rxs_mbuf = NULL; } } } void re_setup_hw_im(struct rl_softc *sc) { KASSERT(sc->rl_flags & RL_FLAG_HWIM); /* * Interrupt moderation * * 0xABCD * A - unknown (maybe TX related) * B - TX timer (unit: 25us) * C - unknown (maybe RX related) * D - RX timer (unit: 25us) * * * re(4)'s interrupt moderation is actually controlled by * two variables, like most other NICs (bge, bnx etc.) * o timer * o number of packets [P] * * The logic relationship between these two variables is * similar to other NICs too: * if (timer expire || packets > [P]) * Interrupt is delivered * * Currently we only know how to set 'timer', but not * 'number of packets', which should be ~30, as far as I * tested (sink ~900Kpps, interrupt rate is 30KHz) */ CSR_WRITE_2(sc, RL_IM, RL_IM_RXTIME(sc->rl_rx_time) | RL_IM_TXTIME(sc->rl_tx_time) | RL_IM_MAGIC); } void re_disable_hw_im(struct rl_softc *sc) { if (sc->rl_flags & RL_FLAG_HWIM) CSR_WRITE_2(sc, RL_IM, 0); } void re_setup_sim_im(struct rl_softc *sc) { if (sc->sc_hwrev == RL_HWREV_8139CPLUS) CSR_WRITE_4(sc, RL_TIMERINT, 0x400); /* XXX */ else { u_int32_t ticks; /* * Datasheet says tick decreases at bus speed, * but it seems the clock runs a little bit * faster, so we do some compensation here. */ ticks = (sc->rl_sim_time * sc->rl_bus_speed * 8) / 5; CSR_WRITE_4(sc, RL_TIMERINT_8169, ticks); } CSR_WRITE_4(sc, RL_TIMERCNT, 1); /* reload */ sc->rl_flags |= RL_FLAG_TIMERINTR; } void re_disable_sim_im(struct rl_softc *sc) { if (sc->sc_hwrev == RL_HWREV_8139CPLUS) CSR_WRITE_4(sc, RL_TIMERINT, 0); else CSR_WRITE_4(sc, RL_TIMERINT_8169, 0); sc->rl_flags &= ~RL_FLAG_TIMERINTR; } void re_config_imtype(struct rl_softc *sc, int imtype) { switch (imtype) { case RL_IMTYPE_HW: KASSERT(sc->rl_flags & RL_FLAG_HWIM); /* FALLTHROUGH */ case RL_IMTYPE_NONE: sc->rl_intrs = RL_INTRS_CPLUS; sc->rl_rx_ack = RL_ISR_RX_OK | RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN; sc->rl_tx_ack = RL_ISR_TX_OK; break; case RL_IMTYPE_SIM: sc->rl_intrs = RL_INTRS_TIMER; sc->rl_rx_ack = RL_ISR_TIMEOUT_EXPIRED; sc->rl_tx_ack = RL_ISR_TIMEOUT_EXPIRED; break; default: panic("%s: unknown imtype %d", sc->sc_dev.dv_xname, imtype); } } void re_setup_intr(struct rl_softc *sc, int enable_intrs, int imtype) { re_config_imtype(sc, imtype); if (enable_intrs) CSR_WRITE_2(sc, RL_IMR, sc->rl_intrs); else CSR_WRITE_2(sc, RL_IMR, 0); switch (imtype) { case RL_IMTYPE_NONE: re_disable_sim_im(sc); re_disable_hw_im(sc); break; case RL_IMTYPE_HW: KASSERT(sc->rl_flags & RL_FLAG_HWIM); re_disable_sim_im(sc); re_setup_hw_im(sc); break; case RL_IMTYPE_SIM: re_disable_hw_im(sc); re_setup_sim_im(sc); break; default: panic("%s: unknown imtype %d", sc->sc_dev.dv_xname, imtype); } } #ifndef SMALL_KERNEL int re_wol(struct ifnet *ifp, int enable) { struct rl_softc *sc = ifp->if_softc; int i; u_int8_t val; struct re_wolcfg { u_int8_t enable; u_int8_t reg; u_int8_t bit; } re_wolcfg[] = { /* Always disable all wake events expect magic packet. */ { 0, RL_CFG5, RL_CFG5_WOL_UCAST }, { 0, RL_CFG5, RL_CFG5_WOL_MCAST }, { 0, RL_CFG5, RL_CFG5_WOL_BCAST }, { 1, RL_CFG3, RL_CFG3_WOL_MAGIC }, { 0, RL_CFG3, RL_CFG3_WOL_LINK } }; if (enable) { if ((CSR_READ_1(sc, RL_CFG1) & RL_CFG1_PME) == 0) { printf("%s: power management is disabled, " "cannot do WOL\n", sc->sc_dev.dv_xname); return (ENOTSUP); } if ((CSR_READ_1(sc, RL_CFG2) & RL_CFG2_AUXPWR) == 0) printf("%s: no auxiliary power, cannot do WOL from D3 " "(power-off) state\n", sc->sc_dev.dv_xname); } /* Temporarily enable write to configuration registers. */ CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG); for (i = 0; i < nitems(re_wolcfg); i++) { val = CSR_READ_1(sc, re_wolcfg[i].reg); if (enable && re_wolcfg[i].enable) val |= re_wolcfg[i].bit; else val &= ~re_wolcfg[i].bit; CSR_WRITE_1(sc, re_wolcfg[i].reg, val); } CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); return (0); } #endif