/* $OpenBSD: re.c,v 1.3 2005/01/15 05:24:11 brad Exp $ */ /* $FreeBSD: if_re.c,v 1.31 2004/09/04 07:54:05 ru Exp $ */ /* * Copyright (c) 1997, 1998-2003 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /* * RealTek 8139C+/8169/8169S/8110S PCI NIC driver * * Written by Bill Paul * Senior Networking Software Engineer * Wind River Systems */ /* * This driver is designed to support RealTek's next generation of * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S * and the RTL8110S. * * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible * with the older 8139 family, however it also supports a special * C+ mode of operation that provides several new performance enhancing * features. These include: * * o Descriptor based DMA mechanism. Each descriptor represents * a single packet fragment. Data buffers may be aligned on * any byte boundary. * * o 64-bit DMA * * o TCP/IP checksum offload for both RX and TX * * o High and normal priority transmit DMA rings * * o VLAN tag insertion and extraction * * o TCP large send (segmentation offload) * * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+ * programming API is fairly straightforward. The RX filtering, EEPROM * access and PHY access is the same as it is on the older 8139 series * chips. * * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the * same programming API and feature set as the 8139C+ with the following * differences and additions: * * o 1000Mbps mode * * o Jumbo frames * * o GMII and TBI ports/registers for interfacing with copper * or fiber PHYs * * o RX and TX DMA rings can have up to 1024 descriptors * (the 8139C+ allows a maximum of 64) * * o Slight differences in register layout from the 8139C+ * * The TX start and timer interrupt registers are at different locations * on the 8169 than they are on the 8139C+. Also, the status word in the * RX descriptor has a slightly different bit layout. The 8169 does not * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska' * copper gigE PHY. * * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs * (the 'S' stands for 'single-chip'). These devices have the same * programming API as the older 8169, but also have some vendor-specific * registers for the on-board PHY. The 8110S is a LAN-on-motherboard * part designed to be pin-compatible with the RealTek 8100 10/100 chip. * * This driver takes advantage of the RX and TX checksum offload and * VLAN tag insertion/extraction features. It also implements TX * interrupt moderation using the timer interrupt registers, which * significantly reduces TX interrupt load. There is also support * for jumbo frames, however the 8169/8169S/8110S can not transmit * jumbo frames larger than 7.5K, so the max MTU possible with this * driver is 7500 bytes. */ #include "bpfilter.h" #include "vlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #if NVLAN > 0 #include #include #endif #if NBPFILTER > 0 #include #endif #include #include #include #include /*#define RE_CSUM_OFFLOAD */ #include int redebug = 0; #define DPRINTF(x) if (redebug) printf x void re_attach_common (struct rl_softc *); int re_encap (struct rl_softc *, struct mbuf *, int *); int re_allocmem (struct rl_softc *); int re_newbuf (struct rl_softc *, int, struct mbuf *); int re_rx_list_init (struct rl_softc *); int re_tx_list_init (struct rl_softc *); void re_rxeof (struct rl_softc *); void re_txeof (struct rl_softc *); int re_intr (void *); void re_tick (void *); void re_start (struct ifnet *); int re_ioctl (struct ifnet *, u_long, caddr_t); int re_init (struct ifnet *); void re_stop (struct rl_softc *); void re_watchdog (struct ifnet *); int re_ifmedia_upd (struct ifnet *); void re_ifmedia_sts (struct ifnet *, struct ifmediareq *); void re_eeprom_putbyte (struct rl_softc *, int); void re_eeprom_getword (struct rl_softc *, int, u_int16_t *); void re_read_eeprom (struct rl_softc *, caddr_t, int, int, int); int re_gmii_readreg (struct device *, int, int); void re_gmii_writereg (struct device *, int, int, int); int re_miibus_readreg (struct device *, int, int); void re_miibus_writereg (struct device *, int, int, int); void re_miibus_statchg (struct device *); void re_setmulti (struct rl_softc *); void re_reset (struct rl_softc *); int re_diag (struct rl_softc *); struct cfdriver re_cd = { 0, "re", DV_IFNET }; #define EE_SET(x) \ CSR_WRITE_1(sc, RL_EECMD, \ CSR_READ_1(sc, RL_EECMD) | x) #define EE_CLR(x) \ CSR_WRITE_1(sc, RL_EECMD, \ CSR_READ_1(sc, RL_EECMD) & ~x) /* * Send a read command and address to the EEPROM, check for ACK. */ void re_eeprom_putbyte(sc, addr) struct rl_softc *sc; int addr; { register int d, i; d = addr | sc->rl_eecmd_read; /* * Feed in each bit and strobe the clock. */ for (i = 0x400; i; i >>= 1) { if (d & i) { EE_SET(RL_EE_DATAIN); } else { EE_CLR(RL_EE_DATAIN); } DELAY(100); EE_SET(RL_EE_CLK); DELAY(150); EE_CLR(RL_EE_CLK); DELAY(100); } } /* * Read a word of data stored in the EEPROM at address 'addr.' */ void re_eeprom_getword(sc, addr, dest) struct rl_softc *sc; int addr; u_int16_t *dest; { register int i; u_int16_t word = 0; /* Enter EEPROM access mode. */ CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL); /* * Send address of word we want to read. */ re_eeprom_putbyte(sc, addr); CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL); /* * Start reading bits from EEPROM. */ for (i = 0x8000; i; i >>= 1) { EE_SET(RL_EE_CLK); DELAY(100); if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT) word |= i; EE_CLR(RL_EE_CLK); DELAY(100); } /* Turn off EEPROM access mode. */ CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); *dest = word; } /* * Read a sequence of words from the EEPROM. */ void re_read_eeprom(sc, dest, off, cnt, swap) struct rl_softc *sc; caddr_t dest; int off; int cnt; int swap; { int i; u_int16_t word = 0, *ptr; for (i = 0; i < cnt; i++) { re_eeprom_getword(sc, off + i, &word); ptr = (u_int16_t *)(dest + (i * 2)); if (swap) *ptr = ntohs(word); else *ptr = word; } } int re_gmii_readreg(struct device *self, int phy, int reg) { struct rl_softc *sc = (struct rl_softc *)self; u_int32_t rval; int i; if (phy != 7) return (0); /* Let the rgephy driver read the GMEDIASTAT register */ if (reg == RL_GMEDIASTAT) { rval = CSR_READ_1(sc, RL_GMEDIASTAT); return (rval); } CSR_WRITE_4(sc, RL_PHYAR, reg << 16); DELAY(1000); for (i = 0; i < RL_TIMEOUT; i++) { rval = CSR_READ_4(sc, RL_PHYAR); if (rval & RL_PHYAR_BUSY) break; DELAY(100); } if (i == RL_TIMEOUT) { printf ("%s: PHY read failed\n", sc->sc_dev.dv_xname); return (0); } return (rval & RL_PHYAR_PHYDATA); } void re_gmii_writereg(struct device *dev, int phy, int reg, int data) { struct rl_softc *sc = (struct rl_softc *)dev; u_int32_t rval; int i; CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) | (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY); DELAY(1000); for (i = 0; i < RL_TIMEOUT; i++) { rval = CSR_READ_4(sc, RL_PHYAR); if (!(rval & RL_PHYAR_BUSY)) break; DELAY(100); } if (i == RL_TIMEOUT) { printf ("%s: PHY write failed\n", sc->sc_dev.dv_xname); } } int re_miibus_readreg(struct device *dev, int phy, int reg) { struct rl_softc *sc = (struct rl_softc *)dev; u_int16_t rval = 0; u_int16_t re8139_reg = 0; int s; s = splimp(); if (sc->rl_type == RL_8169) { rval = re_gmii_readreg(dev, phy, reg); splx(s); return (rval); } /* Pretend the internal PHY is only at address 0 */ if (phy) { splx(s); return (0); } switch(reg) { case MII_BMCR: re8139_reg = RL_BMCR; break; case MII_BMSR: re8139_reg = RL_BMSR; break; case MII_ANAR: re8139_reg = RL_ANAR; break; case MII_ANER: re8139_reg = RL_ANER; break; case MII_ANLPAR: re8139_reg = RL_LPAR; break; case MII_PHYIDR1: case MII_PHYIDR2: splx(s); return (0); /* * Allow the rlphy driver to read the media status * register. If we have a link partner which does not * support NWAY, this is the register which will tell * us the results of parallel detection. */ case RL_MEDIASTAT: rval = CSR_READ_1(sc, RL_MEDIASTAT); splx(s); return (rval); default: printf("%s: bad phy register\n", sc->sc_dev.dv_xname); splx(s); return (0); } rval = CSR_READ_2(sc, re8139_reg); splx(s); return (rval); } void re_miibus_writereg(struct device *dev, int phy, int reg, int data) { struct rl_softc *sc = (struct rl_softc *)dev; u_int16_t re8139_reg = 0; int s; s = splimp(); if (sc->rl_type == RL_8169) { re_gmii_writereg(dev, phy, reg, data); splx(s); return; } /* Pretend the internal PHY is only at address 0 */ if (phy) { splx(s); return; } switch(reg) { case MII_BMCR: re8139_reg = RL_BMCR; break; case MII_BMSR: re8139_reg = RL_BMSR; break; case MII_ANAR: re8139_reg = RL_ANAR; break; case MII_ANER: re8139_reg = RL_ANER; break; case MII_ANLPAR: re8139_reg = RL_LPAR; break; case MII_PHYIDR1: case MII_PHYIDR2: splx(s); return; break; default: printf("%s: bad phy register\n", sc->sc_dev.dv_xname); splx(s); return; } CSR_WRITE_2(sc, re8139_reg, data); splx(s); } void re_miibus_statchg(struct device *dev) { } /* * Program the 64-bit multicast hash filter. */ void re_setmulti(sc) struct rl_softc *sc; { struct ifnet *ifp; int h = 0; u_int32_t hashes[2] = { 0, 0 }; u_int32_t rxfilt; int mcnt = 0; struct arpcom *ac = &sc->sc_arpcom; struct ether_multi *enm; struct ether_multistep step; ifp = &sc->sc_arpcom.ac_if; rxfilt = CSR_READ_4(sc, RL_RXCFG); if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { rxfilt |= RL_RXCFG_RX_MULTI; CSR_WRITE_4(sc, RL_RXCFG, rxfilt); CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF); CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF); return; } /* first, zot all the existing hash bits */ CSR_WRITE_4(sc, RL_MAR0, 0); CSR_WRITE_4(sc, RL_MAR4, 0); /* now program new ones */ ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { ifp->if_flags |= IFF_ALLMULTI; mcnt = MAX_NUM_MULTICAST_ADDRESSES; } if (mcnt == MAX_NUM_MULTICAST_ADDRESSES) break; h = (ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26) & 0x0000003F; if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); mcnt++; ETHER_NEXT_MULTI(step, enm); } if (mcnt) rxfilt |= RL_RXCFG_RX_MULTI; else rxfilt &= ~RL_RXCFG_RX_MULTI; CSR_WRITE_4(sc, RL_RXCFG, rxfilt); CSR_WRITE_4(sc, RL_MAR0, hashes[0]); CSR_WRITE_4(sc, RL_MAR4, hashes[1]); } void re_reset(sc) struct rl_softc *sc; { register int i; CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET); for (i = 0; i < RL_TIMEOUT; i++) { DELAY(10); if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET)) break; } if (i == RL_TIMEOUT) printf("%s: reset never completed!\n", sc->sc_dev.dv_xname); CSR_WRITE_1(sc, 0x82, 1); } /* * The following routine is designed to test for a defect on some * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64# * lines connected to the bus, however for a 32-bit only card, they * should be pulled high. The result of this defect is that the * NIC will not work right if you plug it into a 64-bit slot: DMA * operations will be done with 64-bit transfers, which will fail * because the 64-bit data lines aren't connected. * * There's no way to work around this (short of talking a soldering * iron to the board), however we can detect it. The method we use * here is to put the NIC into digital loopback mode, set the receiver * to promiscuous mode, and then try to send a frame. We then compare * the frame data we sent to what was received. If the data matches, * then the NIC is working correctly, otherwise we know the user has * a defective NIC which has been mistakenly plugged into a 64-bit PCI * slot. In the latter case, there's no way the NIC can work correctly, * so we print out a message on the console and abort the device attach. */ int re_diag(sc) struct rl_softc *sc; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct mbuf *m0; struct ether_header *eh; struct rl_desc *cur_rx; bus_dmamap_t dmamap; u_int16_t status; u_int32_t rxstat; int total_len, i, s, error = 0; u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' }; u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' }; DPRINTF(("inside re_diag\n")); /* Allocate a single mbuf */ MGETHDR(m0, M_DONTWAIT, MT_DATA); if (m0 == NULL) return (ENOBUFS); /* * Initialize the NIC in test mode. This sets the chip up * so that it can send and receive frames, but performs the * following special functions: * - Puts receiver in promiscuous mode * - Enables digital loopback mode * - Leaves interrupts turned off */ ifp->if_flags |= IFF_PROMISC; sc->rl_testmode = 1; re_init(ifp); re_stop(sc); DELAY(100000); re_init(ifp); /* Put some data in the mbuf */ eh = mtod(m0, struct ether_header *); bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN); bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN); eh->ether_type = htons(ETHERTYPE_IP); m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN; /* * Queue the packet, start transmission. */ CSR_WRITE_2(sc, RL_ISR, 0xFFFF); s = splnet(); IF_ENQUEUE(&ifp->if_snd, m0); re_start(ifp); splx(s); m0 = NULL; DPRINTF(("re_diag: transmission started\n")); /* Wait for it to propagate through the chip */ DELAY(100000); for (i = 0; i < RL_TIMEOUT; i++) { status = CSR_READ_2(sc, RL_ISR); if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) == (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) break; DELAY(10); } if (i == RL_TIMEOUT) { printf("%s: diagnostic failed, failed to receive packet " "in loopback mode\n", sc->sc_dev.dv_xname); error = EIO; goto done; } /* * The packet should have been dumped into the first * entry in the RX DMA ring. Grab it from there. */ dmamap = sc->rl_ldata.rl_rx_list_map; bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); dmamap = sc->rl_ldata.rl_rx_dmamap[0]; bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, sc->rl_ldata.rl_rx_dmamap[0]); m0 = sc->rl_ldata.rl_rx_mbuf[0]; sc->rl_ldata.rl_rx_mbuf[0] = NULL; eh = mtod(m0, struct ether_header *); cur_rx = &sc->rl_ldata.rl_rx_list[0]; total_len = RL_RXBYTES(cur_rx); rxstat = letoh32(cur_rx->rl_cmdstat); if (total_len != ETHER_MIN_LEN) { printf("%s: diagnostic failed, received short packet\n", sc->sc_dev.dv_xname); error = EIO; goto done; } DPRINTF(("re_diag: packet received\n")); /* Test that the received packet data matches what we sent. */ if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) || bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) || ntohs(eh->ether_type) != ETHERTYPE_IP) { printf("%s: WARNING, DMA FAILURE!\n", sc->sc_dev.dv_xname); printf("%s: expected TX data: %s", sc->sc_dev.dv_xname, ether_sprintf(dst)); printf("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP); printf("%s: received RX data: %s", sc->sc_dev.dv_xname, ether_sprintf(eh->ether_dhost)); printf("/%s/0x%x\n", ether_sprintf(eh->ether_shost), ntohs(eh->ether_type)); printf("%s: You may have a defective 32-bit NIC plugged " "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname); printf("%s: Please re-install the NIC in a 32-bit slot " "for proper operation.\n", sc->sc_dev.dv_xname); printf("%s: Read the re(4) man page for more details.\n", sc->sc_dev.dv_xname); error = EIO; } done: /* Turn interface off, release resources */ sc->rl_testmode = 0; ifp->if_flags &= ~IFF_PROMISC; re_stop(sc); if (m0 != NULL) m_freem(m0); DPRINTF(("leaving re_diag\n")); return (error); } int re_allocmem(struct rl_softc *sc) { int error; int nseg, rseg; int i; nseg = 32; /* Allocate DMA'able memory for the TX ring */ error = bus_dmamap_create(sc->sc_dmat, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, 0, BUS_DMA_ALLOCNOW, &sc->rl_ldata.rl_tx_list_map); if (error) return (ENOMEM); error = bus_dmamem_alloc(sc->sc_dmat, RL_TX_LIST_SZ, ETHER_ALIGN, 0, &sc->rl_ldata.rl_tx_listseg, 1, &rseg, BUS_DMA_NOWAIT); if (error) return (ENOMEM); /* Load the map for the TX ring. */ error = bus_dmamem_map(sc->sc_dmat, &sc->rl_ldata.rl_tx_listseg, 1, RL_TX_LIST_SZ, (caddr_t *)&sc->rl_ldata.rl_tx_list, BUS_DMA_NOWAIT); if (error) return (ENOMEM); memset(sc->rl_ldata.rl_tx_list, 0, RL_TX_LIST_SZ); error = bus_dmamap_load(sc->sc_dmat, sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT); if (error) return (ENOMEM); /* Create DMA maps for TX buffers */ for (i = 0; i < RL_TX_DESC_CNT; i++) { error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * nseg, nseg, MCLBYTES, 0, BUS_DMA_ALLOCNOW, &sc->rl_ldata.rl_tx_dmamap[i]); if (error) { printf("%s: can't create DMA map for TX\n", sc->sc_dev.dv_xname); return (ENOMEM); } } /* Allocate DMA'able memory for the RX ring */ error = bus_dmamap_create(sc->sc_dmat, RL_RX_LIST_SZ, 1, RL_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW, &sc->rl_ldata.rl_rx_list_map); if (error) return (ENOMEM); error = bus_dmamem_alloc(sc->sc_dmat, RL_RX_LIST_SZ, RL_RING_ALIGN, 0, &sc->rl_ldata.rl_rx_listseg, 1, &rseg, BUS_DMA_NOWAIT); if (error) return (ENOMEM); /* Load the map for the RX ring. */ error = bus_dmamem_map(sc->sc_dmat, &sc->rl_ldata.rl_rx_listseg, 1, RL_RX_LIST_SZ, (caddr_t *)&sc->rl_ldata.rl_rx_list, BUS_DMA_NOWAIT); if (error) return (ENOMEM); memset(sc->rl_ldata.rl_rx_list, 0, RL_RX_LIST_SZ); error = bus_dmamap_load(sc->sc_dmat, sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT); if (error) return (ENOMEM); /* Create DMA maps for RX buffers */ for (i = 0; i < RL_RX_DESC_CNT; i++) { error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * nseg, nseg, MCLBYTES, 0, BUS_DMA_ALLOCNOW, &sc->rl_ldata.rl_rx_dmamap[i]); if (error) { printf("%s: can't create DMA map for RX\n", sc->sc_dev.dv_xname); return (ENOMEM); } } return (0); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ void re_attach_common(struct rl_softc *sc) { u_char eaddr[ETHER_ADDR_LEN]; u_int16_t as[3]; struct ifnet *ifp; u_int16_t re_did = 0; int error = 0, i; /* Reset the adapter. */ re_reset(sc); sc->rl_type = RL_8169; if (sc->rl_type == RL_8169) { /* Set RX length mask */ sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN; /* Force station address autoload from the EEPROM */ CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_AUTOLOAD); for (i = 0; i < RL_TIMEOUT; i++) { if (!(CSR_READ_1(sc, RL_EECMD) & RL_EEMODE_AUTOLOAD)) break; DELAY(100); } if (i == RL_TIMEOUT) printf ("%s: eeprom autoload timed out\n", sc->sc_dev.dv_xname); for (i = 0; i < ETHER_ADDR_LEN; i++) eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i); } else { /* Set RX length mask */ sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN; sc->rl_eecmd_read = RL_EECMD_READ_6BIT; re_read_eeprom(sc, (caddr_t)&re_did, 0, 1, 0); if (re_did != 0x8129) sc->rl_eecmd_read = RL_EECMD_READ_8BIT; /* * Get station address from the EEPROM. */ re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0); for (i = 0; i < 3; i++) { eaddr[(i * 2) + 0] = as[i] & 0xff; eaddr[(i * 2) + 1] = as[i] >> 8; } } bcopy(eaddr, (char *)&sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN); printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr)); error = re_allocmem(sc); if (error) return; ifp = &sc->sc_arpcom.ac_if; ifp->if_softc = sc; strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = re_ioctl; #ifdef VLANXXX sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING; #endif ifp->if_start = re_start; #ifdef RE_CSUM_OFFLOAD ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4; #endif ifp->if_watchdog = re_watchdog; ifp->if_init = re_init; if (sc->rl_type == RL_8169) ifp->if_baudrate = 1000000000; else ifp->if_baudrate = 100000000; ifp->if_snd.ifq_maxlen = RL_IFQ_MAXLEN; IFQ_SET_READY(&ifp->if_snd); timeout_set(&sc->timer_handle, re_tick, sc); /* Do MII setup */ sc->sc_mii.mii_ifp = ifp; sc->sc_mii.mii_readreg = re_miibus_readreg; sc->sc_mii.mii_writereg = re_miibus_writereg; sc->sc_mii.mii_statchg = re_miibus_statchg; ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, re_ifmedia_upd, re_ifmedia_sts); DPRINTF(("calling mii_attach\n")); mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { printf("%s: no PHY found!\n", sc->sc_dev.dv_xname); ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); } else ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); /* * Call MI attach routine. */ re_reset(sc); if_attach(ifp); ether_ifattach(ifp); /* Perform hardware diagnostic. */ error = re_diag(sc); if (error) { printf("%s: attach aborted due to hardware diag failure\n", sc->sc_dev.dv_xname); ether_ifdetach(ifp); return; } DPRINTF(("leaving re_attach\n")); } int re_newbuf(sc, idx, m) struct rl_softc *sc; int idx; struct mbuf *m; { struct mbuf *n = NULL; bus_dmamap_t map; struct rl_desc *d; u_int32_t cmdstat; int error; if (m == NULL) { MGETHDR(n, M_DONTWAIT, MT_DATA); if (n == NULL) return (ENOBUFS); m = n; MCLGET(m, M_DONTWAIT); if (! (m->m_flags & M_EXT)) { m_freem(m); return (ENOBUFS); } } else m->m_data = m->m_ext.ext_buf; /* * Initialize mbuf length fields and fixup * alignment so that the frame payload is * longword aligned. */ m->m_len = m->m_pkthdr.len = MCLBYTES; m_adj(m, ETHER_ALIGN); map = sc->rl_ldata.rl_rx_dmamap[idx]; error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT); if (map->dm_nsegs > 1) goto out; if (error) goto out; d = &sc->rl_ldata.rl_rx_list[idx]; if (letoh32(d->rl_cmdstat) & RL_RDESC_STAT_OWN) goto out; cmdstat = map->dm_segs[0].ds_len; d->rl_bufaddr_lo = htole32(RL_ADDR_LO(map->dm_segs[0].ds_addr)); d->rl_bufaddr_hi = htole32(RL_ADDR_HI(map->dm_segs[0].ds_addr)); cmdstat |= RL_TDESC_CMD_SOF; if (idx == (RL_RX_DESC_CNT - 1)) cmdstat |= RL_TDESC_CMD_EOR; d->rl_cmdstat = htole32(cmdstat); d->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF); sc->rl_ldata.rl_rx_list[idx].rl_cmdstat |= htole32(RL_RDESC_CMD_OWN); sc->rl_ldata.rl_rx_mbuf[idx] = m; bus_dmamap_sync(sc->sc_dmat, sc->rl_ldata.rl_rx_dmamap[idx], 0, sc->rl_ldata.rl_rx_dmamap[idx]->dm_mapsize, BUS_DMASYNC_PREREAD); return (0); out: if (n != NULL) m_freem(n); return (ENOMEM); } int re_tx_list_init(sc) struct rl_softc *sc; { memset((char *)sc->rl_ldata.rl_tx_list, 0, RL_TX_LIST_SZ); memset((char *)&sc->rl_ldata.rl_tx_mbuf, 0, (RL_TX_DESC_CNT * sizeof(struct mbuf *))); bus_dmamap_sync(sc->sc_dmat, sc->rl_ldata.rl_tx_list_map, 0, sc->rl_ldata.rl_tx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE); sc->rl_ldata.rl_tx_prodidx = 0; sc->rl_ldata.rl_tx_considx = 0; sc->rl_ldata.rl_tx_free = RL_TX_DESC_CNT; return (0); } int re_rx_list_init(sc) struct rl_softc *sc; { int i; memset((char *)sc->rl_ldata.rl_rx_list, 0, RL_RX_LIST_SZ); memset((char *)&sc->rl_ldata.rl_rx_mbuf, 0, (RL_RX_DESC_CNT * sizeof(struct mbuf *))); for (i = 0; i < RL_RX_DESC_CNT; i++) { if (re_newbuf(sc, i, NULL) == ENOBUFS) return (ENOBUFS); } /* Flush the RX descriptors */ bus_dmamap_sync(sc->sc_dmat, sc->rl_ldata.rl_rx_list_map, 0, sc->rl_ldata.rl_rx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); sc->rl_ldata.rl_rx_prodidx = 0; sc->rl_head = sc->rl_tail = NULL; return (0); } /* * RX handler for C+ and 8169. For the gigE chips, we support * the reception of jumbo frames that have been fragmented * across multiple 2K mbuf cluster buffers. */ void re_rxeof(sc) struct rl_softc *sc; { struct mbuf *m; struct ifnet *ifp; int i, total_len; struct rl_desc *cur_rx; #ifdef VLANXXX struct m_tag *mtag; #endif u_int32_t rxstat, rxvlan; ifp = &sc->sc_arpcom.ac_if; i = sc->rl_ldata.rl_rx_prodidx; /* Invalidate the descriptor memory */ bus_dmamap_sync(sc->sc_dmat, sc->rl_ldata.rl_rx_list_map, 0, sc->rl_ldata.rl_rx_list_map->dm_mapsize, BUS_DMASYNC_POSTREAD); while (!RL_OWN(&sc->rl_ldata.rl_rx_list[i])) { cur_rx = &sc->rl_ldata.rl_rx_list[i]; m = sc->rl_ldata.rl_rx_mbuf[i]; total_len = RL_RXBYTES(cur_rx); rxstat = letoh32(cur_rx->rl_cmdstat); rxvlan = letoh32(cur_rx->rl_vlanctl); /* Invalidate the RX mbuf and unload its map */ bus_dmamap_sync(sc->sc_dmat, sc->rl_ldata.rl_rx_dmamap[i], 0, sc->rl_ldata.rl_rx_dmamap[i]->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, sc->rl_ldata.rl_rx_dmamap[i]); if (!(rxstat & RL_RDESC_STAT_EOF)) { m->m_len = MCLBYTES - ETHER_ALIGN; if (sc->rl_head == NULL) sc->rl_head = sc->rl_tail = m; else { m->m_flags &= ~M_PKTHDR; sc->rl_tail->m_next = m; sc->rl_tail = m; } re_newbuf(sc, i, NULL); RL_DESC_INC(i); continue; } /* * NOTE: for the 8139C+, the frame length field * is always 12 bits in size, but for the gigE chips, * it is 13 bits (since the max RX frame length is 16K). * Unfortunately, all 32 bits in the status word * were already used, so to make room for the extra * length bit, RealTek took out the 'frame alignment * error' bit and shifted the other status bits * over one slot. The OWN, EOR, FS and LS bits are * still in the same places. We have already extracted * the frame length and checked the OWN bit, so rather * than using an alternate bit mapping, we shift the * status bits one space to the right so we can evaluate * them using the 8169 status as though it was in the * same format as that of the 8139C+. */ if (sc->rl_type == RL_8169) rxstat >>= 1; if (rxstat & RL_RDESC_STAT_RXERRSUM) { ifp->if_ierrors++; /* * If this is part of a multi-fragment packet, * discard all the pieces. */ if (sc->rl_head != NULL) { m_freem(sc->rl_head); sc->rl_head = sc->rl_tail = NULL; } re_newbuf(sc, i, m); RL_DESC_INC(i); continue; } /* * If allocating a replacement mbuf fails, * reload the current one. */ if (re_newbuf(sc, i, NULL)) { ifp->if_ierrors++; if (sc->rl_head != NULL) { m_freem(sc->rl_head); sc->rl_head = sc->rl_tail = NULL; } re_newbuf(sc, i, m); RL_DESC_INC(i); continue; } RL_DESC_INC(i); if (sc->rl_head != NULL) { m->m_len = total_len % (MCLBYTES - ETHER_ALIGN); /* * Special case: if there's 4 bytes or less * in this buffer, the mbuf can be discarded: * the last 4 bytes is the CRC, which we don't * care about anyway. */ if (m->m_len <= ETHER_CRC_LEN) { sc->rl_tail->m_len -= (ETHER_CRC_LEN - m->m_len); m_freem(m); } else { m->m_len -= ETHER_CRC_LEN; m->m_flags &= ~M_PKTHDR; sc->rl_tail->m_next = m; } m = sc->rl_head; sc->rl_head = sc->rl_tail = NULL; m->m_pkthdr.len = total_len - ETHER_CRC_LEN; } else m->m_pkthdr.len = m->m_len = (total_len - ETHER_CRC_LEN); ifp->if_ipackets++; m->m_pkthdr.rcvif = ifp; /* Do RX checksumming if enabled */ #ifdef RE_CSUM_OFFLOAD if (ifp->if_capenable & IFCAP_CSUM_IPv4) { /* Check IP header checksum */ if (rxstat & RL_RDESC_STAT_PROTOID) m->m_pkthdr.csum_flags |= M_CSUM_IPv4;; if (rxstat & RL_RDESC_STAT_IPSUMBAD) m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; } /* Check TCP/UDP checksum */ if (RL_TCPPKT(rxstat) && (ifp->if_capenable & IFCAP_CSUM_TCPv4)) { m->m_pkthdr.csum_flags |= M_CSUM_TCPv4; if (rxstat & RL_RDESC_STAT_TCPSUMBAD) m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD; } if (RL_UDPPKT(rxstat) && (ifp->if_capenable & IFCAP_CSUM_UDPv4)) { m->m_pkthdr.csum_flags |= M_CSUM_UDPv4; if (rxstat & RL_RDESC_STAT_UDPSUMBAD) m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD; } #endif #ifdef VLANXXX if (rxvlan & RL_RDESC_VLANCTL_TAG) { mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), M_NOWAIT); if (mtag == NULL) { ifp->if_ierrors++; m_freem(m); continue; } *(u_int *)(mtag + 1) = be16toh(rxvlan & RL_RDESC_VLANCTL_DATA); m_tag_prepend(m, mtag); } #endif #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif ether_input_mbuf(ifp, m); } /* Flush the RX DMA ring */ bus_dmamap_sync(sc->sc_dmat, sc->rl_ldata.rl_rx_list_map, 0, sc->rl_ldata.rl_rx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); sc->rl_ldata.rl_rx_prodidx = i; } void re_txeof(sc) struct rl_softc *sc; { struct ifnet *ifp; u_int32_t txstat; int idx; ifp = &sc->sc_arpcom.ac_if; idx = sc->rl_ldata.rl_tx_considx; /* Invalidate the TX descriptor list */ bus_dmamap_sync(sc->sc_dmat, sc->rl_ldata.rl_tx_list_map, 0, sc->rl_ldata.rl_tx_list_map->dm_mapsize, BUS_DMASYNC_POSTREAD); while (idx != sc->rl_ldata.rl_tx_prodidx) { txstat = letoh32(sc->rl_ldata.rl_tx_list[idx].rl_cmdstat); if (txstat & RL_TDESC_CMD_OWN) break; /* * We only stash mbufs in the last descriptor * in a fragment chain, which also happens to * be the only place where the TX status bits * are valid. */ if (txstat & RL_TDESC_CMD_EOF) { m_freem(sc->rl_ldata.rl_tx_mbuf[idx]); sc->rl_ldata.rl_tx_mbuf[idx] = NULL; bus_dmamap_unload(sc->sc_dmat, sc->rl_ldata.rl_tx_dmamap[idx]); if (txstat & (RL_TDESC_STAT_EXCESSCOL| RL_TDESC_STAT_COLCNT)) ifp->if_collisions++; if (txstat & RL_TDESC_STAT_TXERRSUM) ifp->if_oerrors++; else ifp->if_opackets++; } sc->rl_ldata.rl_tx_free++; RL_DESC_INC(idx); } /* No changes made to the TX ring, so no flush needed */ if (idx != sc->rl_ldata.rl_tx_considx) { sc->rl_ldata.rl_tx_considx = idx; ifp->if_flags &= ~IFF_OACTIVE; ifp->if_timer = 0; } /* * If not all descriptors have been released reaped yet, * reload the timer so that we will eventually get another * interrupt that will cause us to re-enter this routine. * This is done in case the transmitter has gone idle. */ if (sc->rl_ldata.rl_tx_free != RL_TX_DESC_CNT) CSR_WRITE_4(sc, RL_TIMERCNT, 1); } void re_tick(xsc) void *xsc; { struct rl_softc *sc = xsc; int s = splnet(); mii_tick(&sc->sc_mii); splx(s); timeout_add(&sc->timer_handle, hz); } #ifdef DEVICE_POLLING void re_poll (struct ifnet *ifp, enum poll_cmd cmd, int count) { struct rl_softc *sc = ifp->if_softc; RL_LOCK(sc); if (!(ifp->if_capenable & IFCAP_POLLING)) { ether_poll_deregister(ifp); cmd = POLL_DEREGISTER; } if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */ CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS); goto done; } sc->rxcycles = count; re_rxeof(sc); re_txeof(sc); if (ifp->if_snd.ifq_head != NULL) (*ifp->if_start)(ifp); if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */ u_int16_t status; status = CSR_READ_2(sc, RL_ISR); if (status == 0xffff) goto done; if (status) CSR_WRITE_2(sc, RL_ISR, status); /* * XXX check behaviour on receiver stalls. */ if (status & RL_ISR_SYSTEM_ERR) { re_reset(sc); re_init(ifp); } } done: RL_UNLOCK(sc); } #endif /* DEVICE_POLLING */ int re_intr(arg) void *arg; { struct rl_softc *sc = arg; struct ifnet *ifp; u_int16_t status; int claimed = 0; ifp = &sc->sc_arpcom.ac_if; if (!(ifp->if_flags & IFF_UP)) return (0); #ifdef DEVICE_POLLING if (ifp->if_flags & IFF_POLLING) goto done; if ((ifp->if_capenable & IFCAP_POLLING) && ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */ CSR_WRITE_2(sc, RL_IMR, 0x0000); re_poll(ifp, 0, 1); goto done; } #endif /* DEVICE_POLLING */ for (;;) { status = CSR_READ_2(sc, RL_ISR); /* If the card has gone away the read returns 0xffff. */ if (status == 0xffff) break; if (status) { claimed = 1; CSR_WRITE_2(sc, RL_ISR, status); } if ((status & RL_INTRS_CPLUS) == 0) break; if ((status & RL_ISR_RX_OK) || (status & RL_ISR_RX_ERR)) re_rxeof(sc); if ((status & RL_ISR_TIMEOUT_EXPIRED) || (status & RL_ISR_TX_ERR) || (status & RL_ISR_TX_DESC_UNAVAIL)) re_txeof(sc); if (status & RL_ISR_SYSTEM_ERR) { re_reset(sc); re_init(ifp); } if (status & RL_ISR_LINKCHG) { timeout_del(&sc->timer_handle); re_tick(sc); } } if (ifp->if_snd.ifq_head != NULL) (*ifp->if_start)(ifp); #ifdef DEVICE_POLLING done: #endif return (claimed); } int re_encap(sc, m_head, idx) struct rl_softc *sc; struct mbuf *m_head; int *idx; { bus_dmamap_t map; int error, i, curidx; #ifdef VLANXXX struct m_tag *mtag; #endif struct rl_desc *d; u_int32_t cmdstat, rl_flags; if (sc->rl_ldata.rl_tx_free <= 4) return (EFBIG); /* * Set up checksum offload. Note: checksum offload bits must * appear in all descriptors of a multi-descriptor transmit * attempt. (This is according to testing done with an 8169 * chip. I'm not sure if this is a requirement or a bug.) */ rl_flags = 0; #ifdef RE_CSUM_OFFLOAD if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) rl_flags |= RL_TDESC_CMD_IPCSUM; if (m_head->m_pkthdr.csum_flags & M_CSUM_TCPv4) rl_flags |= RL_TDESC_CMD_TCPCSUM; if (m_head->m_pkthdr.csum_flags & M_CSUM_UDPv4) rl_flags |= RL_TDESC_CMD_UDPCSUM; #endif map = sc->rl_ldata.rl_tx_dmamap[*idx]; error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head, BUS_DMA_NOWAIT); if (error) { printf("%s: can't map mbuf (error %d)\n", sc->sc_dev.dv_xname, error); return (ENOBUFS); } if (map->dm_nsegs > sc->rl_ldata.rl_tx_free - 4) return (ENOBUFS); /* * Map the segment array into descriptors. Note that we set the * start-of-frame and end-of-frame markers for either TX or RX, but * they really only have meaning in the TX case. (In the RX case, * it's the chip that tells us where packets begin and end.) * We also keep track of the end of the ring and set the * end-of-ring bits as needed, and we set the ownership bits * in all except the very first descriptor. (The caller will * set this descriptor later when it start transmission or * reception.) */ i = 0; curidx = *idx; while (1) { d = &sc->rl_ldata.rl_tx_list[curidx]; if (letoh32(d->rl_cmdstat) & RL_RDESC_STAT_OWN) return (ENOBUFS); cmdstat = map->dm_segs[i].ds_len; d->rl_bufaddr_lo = htole32(RL_ADDR_LO(map->dm_segs[i].ds_addr)); d->rl_bufaddr_hi = htole32(RL_ADDR_HI(map->dm_segs[i].ds_addr)); if (i == 0) cmdstat |= RL_TDESC_CMD_SOF; else cmdstat |= RL_TDESC_CMD_OWN; if (curidx == (RL_RX_DESC_CNT - 1)) cmdstat |= RL_TDESC_CMD_EOR; d->rl_cmdstat = htole32(cmdstat | rl_flags); i++; if (i == map->dm_nsegs) break; RL_DESC_INC(curidx); } d->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF); /* * Ensure that the map for this transmission * is placed at the array index of the last descriptor * in this chain. */ sc->rl_ldata.rl_tx_dmamap[*idx] = sc->rl_ldata.rl_tx_dmamap[curidx]; sc->rl_ldata.rl_tx_dmamap[curidx] = map; sc->rl_ldata.rl_tx_mbuf[curidx] = m_head; sc->rl_ldata.rl_tx_free -= map->dm_nsegs; /* * Set up hardware VLAN tagging. Note: vlan tag info must * appear in the first descriptor of a multi-descriptor * transmission attempt. */ #ifdef VLANXXX if (sc->ethercom.ec_nvlans && (mtag = m_tag_find(m_head, PACKET_TAG_VLAN, NULL)) != NULL) sc->rl_ldata.rl_tx_list[*idx].rl_vlanctl = htole32(htons(*(u_int *)(mtag + 1)) | RL_TDESC_VLANCTL_TAG); #endif /* Transfer ownership of packet to the chip. */ sc->rl_ldata.rl_tx_list[curidx].rl_cmdstat |= htole32(RL_TDESC_CMD_OWN); if (*idx != curidx) sc->rl_ldata.rl_tx_list[*idx].rl_cmdstat |= htole32(RL_TDESC_CMD_OWN); RL_DESC_INC(curidx); *idx = curidx; return (0); } /* * Main transmit routine for C+ and gigE NICs. */ void re_start(ifp) struct ifnet *ifp; { struct rl_softc *sc; struct mbuf *m_head = NULL; int idx; sc = ifp->if_softc; idx = sc->rl_ldata.rl_tx_prodidx; while (sc->rl_ldata.rl_tx_mbuf[idx] == NULL) { IF_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; if (re_encap(sc, m_head, &idx)) { IF_PREPEND(&ifp->if_snd, m_head); ifp->if_flags |= IFF_OACTIVE; break; } #if NBPFILTER > 0 /* * If there's a BPF listener, bounce a copy of this frame * to him. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m_head); #endif } /* Flush the TX descriptors */ bus_dmamap_sync(sc->sc_dmat, sc->rl_ldata.rl_tx_list_map, 0, sc->rl_ldata.rl_tx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); sc->rl_ldata.rl_tx_prodidx = idx; /* * RealTek put the TX poll request register in a different * location on the 8169 gigE chip. I don't know why. */ if (sc->rl_type == RL_8169) CSR_WRITE_2(sc, RL_GTXSTART, RL_TXSTART_START); else CSR_WRITE_2(sc, RL_TXSTART, RL_TXSTART_START); /* * Use the countdown timer for interrupt moderation. * 'TX done' interrupts are disabled. Instead, we reset the * countdown timer, which will begin counting until it hits * the value in the TIMERINT register, and then trigger an * interrupt. Each time we write to the TIMERCNT register, * the timer count is reset to 0. */ CSR_WRITE_4(sc, RL_TIMERCNT, 1); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } int re_init(struct ifnet *ifp) { struct rl_softc *sc = ifp->if_softc; u_int32_t rxcfg = 0; u_int32_t reg; int s; s = splimp(); /* * Cancel pending I/O and free all RX/TX buffers. */ re_stop(sc); /* * Enable C+ RX and TX mode, as well as VLAN stripping and * RX checksum offload. We must configure the C+ register * before all others. */ #ifdef RE_CSUM_OFFLOAD CSR_WRITE_2(sc, RL_CPLUS_CMD, RL_CPLUSCMD_RXENB| RL_CPLUSCMD_TXENB|RL_CPLUSCMD_PCI_MRW| RL_CPLUSCMD_VLANSTRIP| (ifp->if_capenable & (IFCAP_CSUM_IPv4 |IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4) ? RL_CPLUSCMD_RXCSUM_ENB : 0)); #else CSR_WRITE_2(sc, RL_CPLUS_CMD, RL_CPLUSCMD_RXENB| RL_CPLUSCMD_TXENB|RL_CPLUSCMD_PCI_MRW| RL_CPLUSCMD_VLANSTRIP); #endif /* * Init our MAC address. Even though the chipset * documentation doesn't mention it, we need to enter "Config * register write enable" mode to modify the ID registers. */ CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG); memcpy(®, LLADDR(ifp->if_sadl), 4); CSR_WRITE_4(sc, RL_IDR0, htole32(reg)); reg = 0; memcpy(®, LLADDR(ifp->if_sadl) + 4, 4); CSR_WRITE_4(sc, RL_IDR4, htole32(reg)); CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); /* * For C+ mode, initialize the RX descriptors and mbufs. */ re_rx_list_init(sc); re_tx_list_init(sc); /* * Enable transmit and receive. */ CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB); /* * Set the initial TX and RX configuration. */ if (sc->rl_testmode) { if (sc->rl_type == RL_8169) CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG|RL_LOOPTEST_ON); else CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS); } else CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG); CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG); /* Set the individual bit to receive frames for this host only. */ rxcfg = CSR_READ_4(sc, RL_RXCFG); rxcfg |= RL_RXCFG_RX_INDIV; /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) rxcfg |= RL_RXCFG_RX_ALLPHYS; else rxcfg &= ~RL_RXCFG_RX_ALLPHYS; CSR_WRITE_4(sc, RL_RXCFG, rxcfg); /* * Set capture broadcast bit to capture broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) rxcfg |= RL_RXCFG_RX_BROAD; else rxcfg &= ~RL_RXCFG_RX_BROAD; CSR_WRITE_4(sc, RL_RXCFG, rxcfg); /* * Program the multicast filter, if necessary. */ re_setmulti(sc); #ifdef DEVICE_POLLING /* * Disable interrupts if we are polling. */ if (ifp->if_flags & IFF_POLLING) CSR_WRITE_2(sc, RL_IMR, 0); else /* otherwise ... */ #endif /* DEVICE_POLLING */ /* * Enable interrupts. */ if (sc->rl_testmode) CSR_WRITE_2(sc, RL_IMR, 0); else CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS); /* Start RX/TX process. */ CSR_WRITE_4(sc, RL_MISSEDPKT, 0); #ifdef notdef /* Enable receiver and transmitter. */ CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB); #endif /* * Load the addresses of the RX and TX lists into the chip. */ CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI, RL_ADDR_HI(sc->rl_ldata.rl_rx_listseg.ds_addr)); CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO, RL_ADDR_LO(sc->rl_ldata.rl_rx_listseg.ds_addr)); CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI, RL_ADDR_HI(sc->rl_ldata.rl_tx_listseg.ds_addr)); CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO, RL_ADDR_LO(sc->rl_ldata.rl_tx_listseg.ds_addr)); CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16); /* * Initialize the timer interrupt register so that * a timer interrupt will be generated once the timer * reaches a certain number of ticks. The timer is * reloaded on each transmit. This gives us TX interrupt * moderation, which dramatically improves TX frame rate. */ if (sc->rl_type == RL_8169) CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800); else CSR_WRITE_4(sc, RL_TIMERINT, 0x400); /* * For 8169 gigE NICs, set the max allowed RX packet * size so we can receive jumbo frames. */ if (sc->rl_type == RL_8169) CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383); if (sc->rl_testmode) return (0); mii_mediachg(&sc->sc_mii); CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; splx(s); timeout_add(&sc->timer_handle, hz); return (0); } /* * Set media options. */ int re_ifmedia_upd(ifp) struct ifnet *ifp; { struct rl_softc *sc; sc = ifp->if_softc; return (mii_mediachg(&sc->sc_mii)); } /* * Report current media status. */ void re_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct rl_softc *sc; sc = ifp->if_softc; mii_pollstat(&sc->sc_mii); ifmr->ifm_active = sc->sc_mii.mii_media_active; ifmr->ifm_status = sc->sc_mii.mii_media_status; } int re_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct rl_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct ifaddr *ifa = (struct ifaddr *)data; int s, error = 0; s = splimp(); if ((error = ether_ioctl(ifp, &sc->sc_arpcom, command, data)) > 0) { splx(s); return (error); } switch(command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: re_init(ifp); arp_ifinit(&sc->sc_arpcom, ifa); break; #endif /* INET */ default: re_init(ifp); break; } break; case SIOCSIFMTU: if (ifr->ifr_mtu > ETHERMTU_JUMBO) error = EINVAL; ifp->if_mtu = ifr->ifr_mtu; break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { re_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) re_stop(sc); } error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: error = (command == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->sc_arpcom) : ether_delmulti(ifr, &sc->sc_arpcom); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware * filter accordingly. */ if (ifp->if_flags & IFF_RUNNING) re_setmulti(sc); error = 0; } break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command); break; default: error = EINVAL; break; } splx(s); return (error); } void re_watchdog(ifp) struct ifnet *ifp; { struct rl_softc *sc; int s; sc = ifp->if_softc; s = splnet(); printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname); ifp->if_oerrors++; re_txeof(sc); re_rxeof(sc); re_init(ifp); splx(s); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ void re_stop(sc) struct rl_softc *sc; { register int i; struct ifnet *ifp; ifp = &sc->sc_arpcom.ac_if; ifp->if_timer = 0; timeout_del(&sc->timer_handle); ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); #ifdef DEVICE_POLLING ether_poll_deregister(ifp); #endif /* DEVICE_POLLING */ CSR_WRITE_1(sc, RL_COMMAND, 0x00); CSR_WRITE_2(sc, RL_IMR, 0x0000); if (sc->rl_head != NULL) { m_freem(sc->rl_head); sc->rl_head = sc->rl_tail = NULL; } /* Free the TX list buffers. */ for (i = 0; i < RL_TX_DESC_CNT; i++) { if (sc->rl_ldata.rl_tx_mbuf[i] != NULL) { bus_dmamap_unload(sc->sc_dmat, sc->rl_ldata.rl_tx_dmamap[i]); m_freem(sc->rl_ldata.rl_tx_mbuf[i]); sc->rl_ldata.rl_tx_mbuf[i] = NULL; } } /* Free the RX list buffers. */ for (i = 0; i < RL_RX_DESC_CNT; i++) { if (sc->rl_ldata.rl_rx_mbuf[i] != NULL) { bus_dmamap_unload(sc->sc_dmat, sc->rl_ldata.rl_rx_dmamap[i]); m_freem(sc->rl_ldata.rl_rx_mbuf[i]); sc->rl_ldata.rl_rx_mbuf[i] = NULL; } } }