/* $OpenBSD: rt2560.c,v 1.47 2010/04/20 22:05:43 tedu Exp $ */ /*- * Copyright (c) 2005, 2006 * Damien Bergamini * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /*- * Ralink Technology RT2560 chipset driver * http://www.ralinktech.com/ */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef RAL_DEBUG #define DPRINTF(x) do { if (rt2560_debug > 0) printf x; } while (0) #define DPRINTFN(n, x) do { if (rt2560_debug >= (n)) printf x; } while (0) int rt2560_debug = 1; #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif int rt2560_alloc_tx_ring(struct rt2560_softc *, struct rt2560_tx_ring *, int); void rt2560_reset_tx_ring(struct rt2560_softc *, struct rt2560_tx_ring *); void rt2560_free_tx_ring(struct rt2560_softc *, struct rt2560_tx_ring *); int rt2560_alloc_rx_ring(struct rt2560_softc *, struct rt2560_rx_ring *, int); void rt2560_reset_rx_ring(struct rt2560_softc *, struct rt2560_rx_ring *); void rt2560_free_rx_ring(struct rt2560_softc *, struct rt2560_rx_ring *); struct ieee80211_node *rt2560_node_alloc(struct ieee80211com *); int rt2560_media_change(struct ifnet *); void rt2560_next_scan(void *); void rt2560_iter_func(void *, struct ieee80211_node *); void rt2560_amrr_timeout(void *); void rt2560_newassoc(struct ieee80211com *, struct ieee80211_node *, int); int rt2560_newstate(struct ieee80211com *, enum ieee80211_state, int); uint16_t rt2560_eeprom_read(struct rt2560_softc *, uint8_t); void rt2560_encryption_intr(struct rt2560_softc *); void rt2560_tx_intr(struct rt2560_softc *); void rt2560_prio_intr(struct rt2560_softc *); void rt2560_decryption_intr(struct rt2560_softc *); void rt2560_rx_intr(struct rt2560_softc *); #ifndef IEEE80211_STA_ONLY void rt2560_beacon_expire(struct rt2560_softc *); #endif void rt2560_wakeup_expire(struct rt2560_softc *); #if NBPFILTER > 0 uint8_t rt2560_rxrate(const struct rt2560_rx_desc *); #endif int rt2560_ack_rate(struct ieee80211com *, int); uint16_t rt2560_txtime(int, int, uint32_t); uint8_t rt2560_plcp_signal(int); void rt2560_setup_tx_desc(struct rt2560_softc *, struct rt2560_tx_desc *, uint32_t, int, int, int, bus_addr_t); #ifndef IEEE80211_STA_ONLY int rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *, struct ieee80211_node *); #endif int rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *, struct ieee80211_node *); int rt2560_tx_data(struct rt2560_softc *, struct mbuf *, struct ieee80211_node *); void rt2560_start(struct ifnet *); void rt2560_watchdog(struct ifnet *); int rt2560_ioctl(struct ifnet *, u_long, caddr_t); void rt2560_bbp_write(struct rt2560_softc *, uint8_t, uint8_t); uint8_t rt2560_bbp_read(struct rt2560_softc *, uint8_t); void rt2560_rf_write(struct rt2560_softc *, uint8_t, uint32_t); void rt2560_set_chan(struct rt2560_softc *, struct ieee80211_channel *); void rt2560_disable_rf_tune(struct rt2560_softc *); void rt2560_enable_tsf_sync(struct rt2560_softc *); void rt2560_update_plcp(struct rt2560_softc *); void rt2560_updateslot(struct ieee80211com *); void rt2560_set_slottime(struct rt2560_softc *); void rt2560_set_basicrates(struct rt2560_softc *); void rt2560_update_led(struct rt2560_softc *, int, int); void rt2560_set_bssid(struct rt2560_softc *, uint8_t *); void rt2560_set_macaddr(struct rt2560_softc *, uint8_t *); void rt2560_get_macaddr(struct rt2560_softc *, uint8_t *); void rt2560_update_promisc(struct rt2560_softc *); void rt2560_set_txantenna(struct rt2560_softc *, int); void rt2560_set_rxantenna(struct rt2560_softc *, int); const char *rt2560_get_rf(int); void rt2560_read_eeprom(struct rt2560_softc *); int rt2560_bbp_init(struct rt2560_softc *); int rt2560_init(struct ifnet *); void rt2560_stop(struct ifnet *, int); void rt2560_power(int, void *); static const struct { uint32_t reg; uint32_t val; } rt2560_def_mac[] = { RT2560_DEF_MAC }; static const struct { uint8_t reg; uint8_t val; } rt2560_def_bbp[] = { RT2560_DEF_BBP }; static const uint32_t rt2560_rf2522_r2[] = RT2560_RF2522_R2; static const uint32_t rt2560_rf2523_r2[] = RT2560_RF2523_R2; static const uint32_t rt2560_rf2524_r2[] = RT2560_RF2524_R2; static const uint32_t rt2560_rf2525_r2[] = RT2560_RF2525_R2; static const uint32_t rt2560_rf2525_hi_r2[] = RT2560_RF2525_HI_R2; static const uint32_t rt2560_rf2525e_r2[] = RT2560_RF2525E_R2; static const uint32_t rt2560_rf2526_r2[] = RT2560_RF2526_R2; static const uint32_t rt2560_rf2526_hi_r2[] = RT2560_RF2526_HI_R2; int rt2560_attach(void *xsc, int id) { struct rt2560_softc *sc = xsc; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; int error, i; sc->amrr.amrr_min_success_threshold = 1; sc->amrr.amrr_max_success_threshold = 15; timeout_set(&sc->amrr_to, rt2560_amrr_timeout, sc); timeout_set(&sc->scan_to, rt2560_next_scan, sc); /* retrieve RT2560 rev. no */ sc->asic_rev = RAL_READ(sc, RT2560_CSR0); /* retrieve MAC address */ rt2560_get_macaddr(sc, ic->ic_myaddr); printf(", address %s\n", ether_sprintf(ic->ic_myaddr)); /* retrieve RF rev. no and various other things from EEPROM */ rt2560_read_eeprom(sc); printf("%s: MAC/BBP RT2560 (rev 0x%02x), RF %s\n", sc->sc_dev.dv_xname, sc->asic_rev, rt2560_get_rf(sc->rf_rev)); /* * Allocate Tx and Rx rings. */ error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT); if (error != 0) { printf("%s: could not allocate Tx ring\n", sc->sc_dev.dv_xname); goto fail1; } error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT); if (error != 0) { printf("%s: could not allocate ATIM ring\n", sc->sc_dev.dv_xname); goto fail2; } error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT); if (error != 0) { printf("%s: could not allocate Prio ring\n", sc->sc_dev.dv_xname); goto fail3; } error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT); if (error != 0) { printf("%s: could not allocate Beacon ring\n", sc->sc_dev.dv_xname); goto fail4; } error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT); if (error != 0) { printf("%s: could not allocate Rx ring\n", sc->sc_dev.dv_xname); goto fail5; } ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ ic->ic_state = IEEE80211_S_INIT; /* set device capabilities */ ic->ic_caps = IEEE80211_C_MONITOR | /* monitor mode supported */ #ifndef IEEE80211_STA_ONLY IEEE80211_C_IBSS | /* IBSS mode supported */ IEEE80211_C_HOSTAP | /* HostAp mode supported */ #endif IEEE80211_C_TXPMGT | /* tx power management */ IEEE80211_C_SHPREAMBLE | /* short preamble supported */ IEEE80211_C_SHSLOT | /* short slot time supported */ IEEE80211_C_WEP | /* s/w WEP */ IEEE80211_C_RSN; /* WPA/RSN */ /* set supported .11b and .11g rates */ ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; /* set supported .11b and .11g channels (1 through 14) */ for (i = 1; i <= 14; i++) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = rt2560_init; ifp->if_ioctl = rt2560_ioctl; ifp->if_start = rt2560_start; ifp->if_watchdog = rt2560_watchdog; IFQ_SET_READY(&ifp->if_snd); memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); if_attach(ifp); ieee80211_ifattach(ifp); ic->ic_node_alloc = rt2560_node_alloc; ic->ic_newassoc = rt2560_newassoc; ic->ic_updateslot = rt2560_updateslot; /* override state transition machine */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = rt2560_newstate; ieee80211_media_init(ifp, rt2560_media_change, ieee80211_media_status); #if NBPFILTER > 0 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, sizeof (struct ieee80211_frame) + 64); sc->sc_rxtap_len = sizeof sc->sc_rxtapu; sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof sc->sc_txtapu; sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT); #endif sc->sc_powerhook = powerhook_establish(rt2560_power, sc); if (sc->sc_powerhook == NULL) { printf("%s: WARNING: unable to establish power hook\n", sc->sc_dev.dv_xname); } return 0; fail5: rt2560_free_tx_ring(sc, &sc->bcnq); fail4: rt2560_free_tx_ring(sc, &sc->prioq); fail3: rt2560_free_tx_ring(sc, &sc->atimq); fail2: rt2560_free_tx_ring(sc, &sc->txq); fail1: return ENXIO; } int rt2560_detach(void *xsc) { struct rt2560_softc *sc = xsc; struct ifnet *ifp = &sc->sc_ic.ic_if; timeout_del(&sc->scan_to); timeout_del(&sc->amrr_to); if (sc->sc_powerhook != NULL) powerhook_disestablish(sc->sc_powerhook); ieee80211_ifdetach(ifp); /* free all nodes */ if_detach(ifp); rt2560_free_tx_ring(sc, &sc->txq); rt2560_free_tx_ring(sc, &sc->atimq); rt2560_free_tx_ring(sc, &sc->prioq); rt2560_free_tx_ring(sc, &sc->bcnq); rt2560_free_rx_ring(sc, &sc->rxq); return 0; } int rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring, int count) { int i, nsegs, error; ring->count = count; ring->queued = 0; ring->cur = ring->next = 0; ring->cur_encrypt = ring->next_encrypt = 0; error = bus_dmamap_create(sc->sc_dmat, count * RT2560_TX_DESC_SIZE, 1, count * RT2560_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map); if (error != 0) { printf("%s: could not create desc DMA map\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_TX_DESC_SIZE, PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not allocate DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, count * RT2560_TX_DESC_SIZE, (caddr_t *)&ring->desc, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: can't map desc DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc, count * RT2560_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not load desc DMA map\n", sc->sc_dev.dv_xname); goto fail; } memset(ring->desc, 0, count * RT2560_TX_DESC_SIZE); ring->physaddr = ring->map->dm_segs->ds_addr; ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF, M_NOWAIT | M_ZERO); if (ring->data == NULL) { printf("%s: could not allocate soft data\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } for (i = 0; i < count; i++) { error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, RT2560_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT, &ring->data[i].map); if (error != 0) { printf("%s: could not create DMA map\n", sc->sc_dev.dv_xname); goto fail; } } return 0; fail: rt2560_free_tx_ring(sc, ring); return error; } void rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring) { int i; for (i = 0; i < ring->count; i++) { struct rt2560_tx_desc *desc = &ring->desc[i]; struct rt2560_tx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); data->m = NULL; } /* * The node has already been freed at that point so don't call * ieee80211_release_node() here. */ data->ni = NULL; desc->flags = 0; } bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_PREWRITE); ring->queued = 0; ring->cur = ring->next = 0; ring->cur_encrypt = ring->next_encrypt = 0; } void rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring) { int i; if (ring->desc != NULL) { bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, ring->map); bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc, ring->count * RT2560_TX_DESC_SIZE); bus_dmamem_free(sc->sc_dmat, &ring->seg, 1); } if (ring->data != NULL) { for (i = 0; i < ring->count; i++) { struct rt2560_tx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); } /* * The node has already been freed at that point so * don't call ieee80211_release_node() here. */ data->ni = NULL; if (data->map != NULL) bus_dmamap_destroy(sc->sc_dmat, data->map); } free(ring->data, M_DEVBUF); } } int rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring, int count) { int i, nsegs, error; ring->count = count; ring->cur = ring->next = 0; ring->cur_decrypt = 0; error = bus_dmamap_create(sc->sc_dmat, count * RT2560_RX_DESC_SIZE, 1, count * RT2560_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map); if (error != 0) { printf("%s: could not create desc DMA map\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_RX_DESC_SIZE, PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not allocate DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, count * RT2560_RX_DESC_SIZE, (caddr_t *)&ring->desc, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: can't map desc DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc, count * RT2560_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not load desc DMA map\n", sc->sc_dev.dv_xname); goto fail; } memset(ring->desc, 0, count * RT2560_RX_DESC_SIZE); ring->physaddr = ring->map->dm_segs->ds_addr; ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF, M_NOWAIT | M_ZERO); if (ring->data == NULL) { printf("%s: could not allocate soft data\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } /* * Pre-allocate Rx buffers and populate Rx ring. */ for (i = 0; i < count; i++) { struct rt2560_rx_desc *desc = &sc->rxq.desc[i]; struct rt2560_rx_data *data = &sc->rxq.data[i]; error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map); if (error != 0) { printf("%s: could not create DMA map\n", sc->sc_dev.dv_xname); goto fail; } MGETHDR(data->m, M_DONTWAIT, MT_DATA); if (data->m == NULL) { printf("%s: could not allocate rx mbuf\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } MCLGET(data->m, M_DONTWAIT); if (!(data->m->m_flags & M_EXT)) { printf("%s: could not allocate rx mbuf cluster\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not load rx buf DMA map", sc->sc_dev.dv_xname); goto fail; } desc->flags = htole32(RT2560_RX_BUSY); desc->physaddr = htole32(data->map->dm_segs->ds_addr); } bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_PREWRITE); return 0; fail: rt2560_free_rx_ring(sc, ring); return error; } void rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring) { int i; for (i = 0; i < ring->count; i++) { ring->desc[i].flags = htole32(RT2560_RX_BUSY); ring->data[i].drop = 0; } bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_PREWRITE); ring->cur = ring->next = 0; ring->cur_decrypt = 0; } void rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring) { int i; if (ring->desc != NULL) { bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, ring->map); bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc, ring->count * RT2560_RX_DESC_SIZE); bus_dmamem_free(sc->sc_dmat, &ring->seg, 1); } if (ring->data != NULL) { for (i = 0; i < ring->count; i++) { struct rt2560_rx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); } if (data->map != NULL) bus_dmamap_destroy(sc->sc_dmat, data->map); } free(ring->data, M_DEVBUF); } } struct ieee80211_node * rt2560_node_alloc(struct ieee80211com *ic) { return malloc(sizeof (struct rt2560_node), M_DEVBUF, M_NOWAIT | M_ZERO); } int rt2560_media_change(struct ifnet *ifp) { int error; error = ieee80211_media_change(ifp); if (error != ENETRESET) return error; if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) rt2560_init(ifp); return 0; } /* * This function is called periodically (every 200ms) during scanning to * switch from one channel to another. */ void rt2560_next_scan(void *arg) { struct rt2560_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; int s; s = splnet(); if (ic->ic_state == IEEE80211_S_SCAN) ieee80211_next_scan(ifp); splx(s); } /* * This function is called for each neighbor node. */ void rt2560_iter_func(void *arg, struct ieee80211_node *ni) { struct rt2560_softc *sc = arg; struct rt2560_node *rn = (struct rt2560_node *)ni; ieee80211_amrr_choose(&sc->amrr, ni, &rn->amn); } void rt2560_amrr_timeout(void *arg) { struct rt2560_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; int s; s = splnet(); if (ic->ic_opmode == IEEE80211_M_STA) rt2560_iter_func(sc, ic->ic_bss); #ifndef IEEE80211_STA_ONLY else ieee80211_iterate_nodes(ic, rt2560_iter_func, sc); #endif splx(s); timeout_add_msec(&sc->amrr_to, 500); } void rt2560_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) { struct rt2560_softc *sc = ic->ic_softc; int i; ieee80211_amrr_node_init(&sc->amrr, &((struct rt2560_node *)ni)->amn); /* set rate to some reasonable initial value */ for (i = ni->ni_rates.rs_nrates - 1; i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; i--); ni->ni_txrate = i; } int rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct rt2560_softc *sc = ic->ic_if.if_softc; enum ieee80211_state ostate; struct ieee80211_node *ni; int error = 0; ostate = ic->ic_state; timeout_del(&sc->scan_to); timeout_del(&sc->amrr_to); switch (nstate) { case IEEE80211_S_INIT: if (ostate == IEEE80211_S_RUN) { /* abort TSF synchronization */ RAL_WRITE(sc, RT2560_CSR14, 0); /* turn association led off */ rt2560_update_led(sc, 0, 0); } break; case IEEE80211_S_SCAN: rt2560_set_chan(sc, ic->ic_bss->ni_chan); timeout_add_msec(&sc->scan_to, 200); break; case IEEE80211_S_AUTH: rt2560_set_chan(sc, ic->ic_bss->ni_chan); break; case IEEE80211_S_ASSOC: rt2560_set_chan(sc, ic->ic_bss->ni_chan); break; case IEEE80211_S_RUN: rt2560_set_chan(sc, ic->ic_bss->ni_chan); ni = ic->ic_bss; if (ic->ic_opmode != IEEE80211_M_MONITOR) { rt2560_update_plcp(sc); rt2560_set_slottime(sc); rt2560_set_basicrates(sc); rt2560_set_bssid(sc, ni->ni_bssid); } #ifndef IEEE80211_STA_ONLY if (ic->ic_opmode == IEEE80211_M_HOSTAP || ic->ic_opmode == IEEE80211_M_IBSS) { struct mbuf *m = ieee80211_beacon_alloc(ic, ni); if (m == NULL) { printf("%s: could not allocate beacon\n", sc->sc_dev.dv_xname); error = ENOBUFS; break; } error = rt2560_tx_bcn(sc, m, ni); if (error != 0) break; } #endif /* turn assocation led on */ rt2560_update_led(sc, 1, 0); if (ic->ic_opmode == IEEE80211_M_STA) { /* fake a join to init the tx rate */ rt2560_newassoc(ic, ni, 1); } if (ic->ic_opmode != IEEE80211_M_MONITOR) { /* start automatic rate control timer */ if (ic->ic_fixed_rate == -1) timeout_add_msec(&sc->amrr_to, 500); rt2560_enable_tsf_sync(sc); } break; } return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg); } /* * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or * 93C66). */ uint16_t rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr) { uint32_t tmp; uint16_t val; int n; /* clock C once before the first command */ RT2560_EEPROM_CTL(sc, 0); RT2560_EEPROM_CTL(sc, RT2560_S); RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C); RT2560_EEPROM_CTL(sc, RT2560_S); /* write start bit (1) */ RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D); RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C); /* write READ opcode (10) */ RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D); RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C); RT2560_EEPROM_CTL(sc, RT2560_S); RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C); /* write address (A5-A0 or A7-A0) */ n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7; for (; n >= 0; n--) { RT2560_EEPROM_CTL(sc, RT2560_S | (((addr >> n) & 1) << RT2560_SHIFT_D)); RT2560_EEPROM_CTL(sc, RT2560_S | (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C); } RT2560_EEPROM_CTL(sc, RT2560_S); /* read data Q15-Q0 */ val = 0; for (n = 15; n >= 0; n--) { RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C); tmp = RAL_READ(sc, RT2560_CSR21); val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n; RT2560_EEPROM_CTL(sc, RT2560_S); } RT2560_EEPROM_CTL(sc, 0); /* clear Chip Select and clock C */ RT2560_EEPROM_CTL(sc, RT2560_S); RT2560_EEPROM_CTL(sc, 0); RT2560_EEPROM_CTL(sc, RT2560_C); return val; } /* * Some frames were processed by the hardware cipher engine and are ready for * transmission. */ void rt2560_encryption_intr(struct rt2560_softc *sc) { int hw; /* retrieve last descriptor index processed by cipher engine */ hw = (RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr) / RT2560_TX_DESC_SIZE; for (; sc->txq.next_encrypt != hw;) { struct rt2560_tx_desc *desc = &sc->txq.desc[sc->txq.next_encrypt]; bus_dmamap_sync(sc->sc_dmat, sc->txq.map, sc->txq.next_encrypt * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD); if (letoh32(desc->flags) & (RT2560_TX_BUSY | RT2560_TX_CIPHER_BUSY)) break; /* for TKIP, swap eiv field to fix a bug in ASIC */ if ((letoh32(desc->flags) & RT2560_TX_CIPHER_MASK) == RT2560_TX_CIPHER_TKIP) desc->eiv = swap32(desc->eiv); /* mark the frame ready for transmission */ desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID); bus_dmamap_sync(sc->sc_dmat, sc->txq.map, sc->txq.next_encrypt * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE); DPRINTFN(15, ("encryption done idx=%u\n", sc->txq.next_encrypt)); sc->txq.next_encrypt = (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT; } /* kick Tx */ RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX); } void rt2560_tx_intr(struct rt2560_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; for (;;) { struct rt2560_tx_desc *desc = &sc->txq.desc[sc->txq.next]; struct rt2560_tx_data *data = &sc->txq.data[sc->txq.next]; struct rt2560_node *rn; bus_dmamap_sync(sc->sc_dmat, sc->txq.map, sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD); if ((letoh32(desc->flags) & RT2560_TX_BUSY) || (letoh32(desc->flags) & RT2560_TX_CIPHER_BUSY) || !(letoh32(desc->flags) & RT2560_TX_VALID)) break; rn = (struct rt2560_node *)data->ni; switch (letoh32(desc->flags) & RT2560_TX_RESULT_MASK) { case RT2560_TX_SUCCESS: DPRINTFN(10, ("data frame sent successfully\n")); rn->amn.amn_txcnt++; ifp->if_opackets++; break; case RT2560_TX_SUCCESS_RETRY: DPRINTFN(9, ("data frame sent after %u retries\n", (letoh32(desc->flags) >> 5) & 0x7)); rn->amn.amn_txcnt++; rn->amn.amn_retrycnt++; ifp->if_opackets++; break; case RT2560_TX_FAIL_RETRY: DPRINTFN(9, ("sending data frame failed (too much " "retries)\n")); rn->amn.amn_txcnt++; rn->amn.amn_retrycnt++; ifp->if_oerrors++; break; case RT2560_TX_FAIL_INVALID: case RT2560_TX_FAIL_OTHER: default: printf("%s: sending data frame failed 0x%08x\n", sc->sc_dev.dv_xname, letoh32(desc->flags)); ifp->if_oerrors++; } bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); data->m = NULL; ieee80211_release_node(ic, data->ni); data->ni = NULL; /* descriptor is no longer valid */ desc->flags &= ~htole32(RT2560_TX_VALID); bus_dmamap_sync(sc->sc_dmat, sc->txq.map, sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE); DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next)); sc->txq.queued--; sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT; } sc->sc_tx_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; rt2560_start(ifp); } void rt2560_prio_intr(struct rt2560_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; for (;;) { struct rt2560_tx_desc *desc = &sc->prioq.desc[sc->prioq.next]; struct rt2560_tx_data *data = &sc->prioq.data[sc->prioq.next]; bus_dmamap_sync(sc->sc_dmat, sc->prioq.map, sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD); if ((letoh32(desc->flags) & RT2560_TX_BUSY) || !(letoh32(desc->flags) & RT2560_TX_VALID)) break; switch (letoh32(desc->flags) & RT2560_TX_RESULT_MASK) { case RT2560_TX_SUCCESS: DPRINTFN(10, ("mgt frame sent successfully\n")); break; case RT2560_TX_SUCCESS_RETRY: DPRINTFN(9, ("mgt frame sent after %u retries\n", (letoh32(desc->flags) >> 5) & 0x7)); break; case RT2560_TX_FAIL_RETRY: DPRINTFN(9, ("sending mgt frame failed (too much " "retries)\n")); break; case RT2560_TX_FAIL_INVALID: case RT2560_TX_FAIL_OTHER: default: printf("%s: sending mgt frame failed 0x%08x\n", sc->sc_dev.dv_xname, letoh32(desc->flags)); } bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); data->m = NULL; ieee80211_release_node(ic, data->ni); data->ni = NULL; /* descriptor is no longer valid */ desc->flags &= ~htole32(RT2560_TX_VALID); bus_dmamap_sync(sc->sc_dmat, sc->prioq.map, sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE); DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next)); sc->prioq.queued--; sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT; } sc->sc_tx_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; rt2560_start(ifp); } /* * Some frames were processed by the hardware cipher engine and are ready for * transmission to the IEEE802.11 layer. */ void rt2560_decryption_intr(struct rt2560_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct ieee80211_frame *wh; struct ieee80211_rxinfo rxi; struct ieee80211_node *ni; struct mbuf *mnew, *m; int hw, error; /* retrieve last decriptor index processed by cipher engine */ hw = (RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr) / RT2560_RX_DESC_SIZE; for (; sc->rxq.cur_decrypt != hw;) { struct rt2560_rx_desc *desc = &sc->rxq.desc[sc->rxq.cur_decrypt]; struct rt2560_rx_data *data = &sc->rxq.data[sc->rxq.cur_decrypt]; bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD); if (letoh32(desc->flags) & (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY)) break; if (data->drop) { ifp->if_ierrors++; goto skip; } if ((letoh32(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 && (letoh32(desc->flags) & RT2560_RX_ICV_ERROR)) { ifp->if_ierrors++; goto skip; } /* * Try to allocate a new mbuf for this ring element and load it * before processing the current mbuf. If the ring element * cannot be loaded, drop the received packet and reuse the old * mbuf. In the unlikely case that the old mbuf can't be * reloaded either, explicitly panic. */ MGETHDR(mnew, M_DONTWAIT, MT_DATA); if (mnew == NULL) { ifp->if_ierrors++; goto skip; } MCLGET(mnew, M_DONTWAIT); if (!(mnew->m_flags & M_EXT)) { m_freem(mnew); ifp->if_ierrors++; goto skip; } bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, data->map); error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT); if (error != 0) { m_freem(mnew); /* try to reload the old mbuf */ error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT); if (error != 0) { /* very unlikely that it will fail... */ panic("%s: could not load old rx mbuf", sc->sc_dev.dv_xname); } /* physical address may have changed */ desc->physaddr = htole32(data->map->dm_segs->ds_addr); ifp->if_ierrors++; goto skip; } /* * New mbuf successfully loaded, update Rx ring and continue * processing. */ m = data->m; data->m = mnew; desc->physaddr = htole32(data->map->dm_segs->ds_addr); /* finalize mbuf */ m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = (letoh32(desc->flags) >> 16) & 0xfff; #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct mbuf mb; struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap; uint32_t tsf_lo, tsf_hi; /* get timestamp (low and high 32 bits) */ tsf_hi = RAL_READ(sc, RT2560_CSR17); tsf_lo = RAL_READ(sc, RT2560_CSR16); tap->wr_tsf = htole64(((uint64_t)tsf_hi << 32) | tsf_lo); tap->wr_flags = 0; tap->wr_rate = rt2560_rxrate(desc); tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq); tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags); tap->wr_antenna = sc->rx_ant; tap->wr_antsignal = desc->rssi; mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_txtap_len; mb.m_next = m; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); } #endif wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, wh); /* send the frame to the 802.11 layer */ rxi.rxi_flags = 0; rxi.rxi_rssi = desc->rssi; rxi.rxi_tstamp = 0; /* unused */ ieee80211_input(ifp, m, ni, &rxi); /* node is no longer needed */ ieee80211_release_node(ic, ni); skip: desc->flags = htole32(RT2560_RX_BUSY); bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE); DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt)); sc->rxq.cur_decrypt = (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT; } } /* * Some frames were received. Pass them to the hardware cipher engine before * sending them to the 802.11 layer. */ void rt2560_rx_intr(struct rt2560_softc *sc) { for (;;) { struct rt2560_rx_desc *desc = &sc->rxq.desc[sc->rxq.cur]; struct rt2560_rx_data *data = &sc->rxq.data[sc->rxq.cur]; bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE, BUS_DMASYNC_POSTREAD); if (letoh32(desc->flags) & (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY)) break; data->drop = 0; if (letoh32(desc->flags) & (RT2560_RX_PHY_ERROR | RT2560_RX_CRC_ERROR)) { /* * This should not happen since we did not request * to receive those frames when we filled RXCSR0. */ DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n", letoh32(desc->flags))); data->drop = 1; } if (((letoh32(desc->flags) >> 16) & 0xfff) > MCLBYTES) { DPRINTFN(5, ("bad length\n")); data->drop = 1; } /* mark the frame for decryption */ desc->flags |= htole32(RT2560_RX_CIPHER_BUSY); bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE, BUS_DMASYNC_PREWRITE); DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur)); sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT; } /* kick decrypt */ RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT); } #ifndef IEEE80211_STA_ONLY /* * This function is called in HostAP or IBSS modes when it's time to send a * new beacon (every ni_intval milliseconds). */ void rt2560_beacon_expire(struct rt2560_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct rt2560_tx_data *data; if (ic->ic_opmode != IEEE80211_M_IBSS && ic->ic_opmode != IEEE80211_M_HOSTAP) return; data = &sc->bcnq.data[sc->bcnq.next]; if (sc->sc_flags & RT2560_UPDATE_SLOT) { sc->sc_flags &= ~RT2560_UPDATE_SLOT; sc->sc_flags |= RT2560_SET_SLOTTIME; } else if (sc->sc_flags & RT2560_SET_SLOTTIME) { sc->sc_flags &= ~RT2560_SET_SLOTTIME; rt2560_set_slottime(sc); } if (ic->ic_curmode == IEEE80211_MODE_11G) { /* update ERP Information Element */ *sc->erp = ic->ic_bss->ni_erp; bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_PREWRITE); } #if defined(RT2560_DEBUG) && NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, data->m, BPF_DIRECTION_OUT); #endif DPRINTFN(15, ("beacon expired\n")); } #endif void rt2560_wakeup_expire(struct rt2560_softc *sc) { DPRINTFN(15, ("wakeup expired\n")); } int rt2560_intr(void *arg) { struct rt2560_softc *sc = arg; struct ifnet *ifp = &sc->sc_ic.ic_if; uint32_t r; if ((r = RAL_READ(sc, RT2560_CSR7)) == 0) return 0; /* not for us */ /* disable interrupts */ RAL_WRITE(sc, RT2560_CSR8, 0xffffffff); /* acknowledge interrupts */ RAL_WRITE(sc, RT2560_CSR7, r); /* don't re-enable interrupts if we're shutting down */ if (!(ifp->if_flags & IFF_RUNNING)) return 0; #ifndef IEEE80211_STA_ONLY if (r & RT2560_BEACON_EXPIRE) rt2560_beacon_expire(sc); #endif if (r & RT2560_WAKEUP_EXPIRE) rt2560_wakeup_expire(sc); if (r & RT2560_ENCRYPTION_DONE) rt2560_encryption_intr(sc); if (r & RT2560_TX_DONE) rt2560_tx_intr(sc); if (r & RT2560_PRIO_DONE) rt2560_prio_intr(sc); if (r & RT2560_DECRYPTION_DONE) rt2560_decryption_intr(sc); if (r & RT2560_RX_DONE) rt2560_rx_intr(sc); /* re-enable interrupts */ RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK); return 1; } /* quickly determine if a given rate is CCK or OFDM */ #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */ #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */ #define RAL_SIFS 10 /* us */ #define RT2560_RXTX_TURNAROUND 10 /* us */ /* * This function is only used by the Rx radiotap code. It returns the rate at * which a given frame was received. */ #if NBPFILTER > 0 uint8_t rt2560_rxrate(const struct rt2560_rx_desc *desc) { if (letoh32(desc->flags) & RT2560_RX_OFDM) { /* reverse function of rt2560_plcp_signal */ switch (desc->rate) { case 0xb: return 12; case 0xf: return 18; case 0xa: return 24; case 0xe: return 36; case 0x9: return 48; case 0xd: return 72; case 0x8: return 96; case 0xc: return 108; } } else { if (desc->rate == 10) return 2; if (desc->rate == 20) return 4; if (desc->rate == 55) return 11; if (desc->rate == 110) return 22; } return 2; /* should not get there */ } #endif /* * Return the expected ack rate for a frame transmitted at rate `rate'. */ int rt2560_ack_rate(struct ieee80211com *ic, int rate) { switch (rate) { /* CCK rates */ case 2: return 2; case 4: case 11: case 22: return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; /* OFDM rates */ case 12: case 18: return 12; case 24: case 36: return 24; case 48: case 72: case 96: case 108: return 48; } /* default to 1Mbps */ return 2; } /* * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. * The function automatically determines the operating mode depending on the * given rate. `flags' indicates whether short preamble is in use or not. */ uint16_t rt2560_txtime(int len, int rate, uint32_t flags) { uint16_t txtime; if (RAL_RATE_IS_OFDM(rate)) { /* IEEE Std 802.11g-2003, pp. 44 */ txtime = (8 + 4 * len + 3 + rate - 1) / rate; txtime = 16 + 4 + 4 * txtime + 6; } else { /* IEEE Std 802.11b-1999, pp. 28 */ txtime = (16 * len + rate - 1) / rate; if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) txtime += 72 + 24; else txtime += 144 + 48; } return txtime; } uint8_t rt2560_plcp_signal(int rate) { switch (rate) { /* CCK rates (returned values are device-dependent) */ case 2: return 0x0; case 4: return 0x1; case 11: return 0x2; case 22: return 0x3; /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ case 12: return 0xb; case 18: return 0xf; case 24: return 0xa; case 36: return 0xe; case 48: return 0x9; case 72: return 0xd; case 96: return 0x8; case 108: return 0xc; /* unsupported rates (should not get there) */ default: return 0xff; } } void rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc, uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr) { struct ieee80211com *ic = &sc->sc_ic; uint16_t plcp_length; int remainder; desc->flags = htole32(flags); desc->flags |= htole32(len << 16); desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) : htole32(RT2560_TX_BUSY | RT2560_TX_VALID); desc->physaddr = htole32(physaddr); desc->wme = htole16( RT2560_AIFSN(2) | RT2560_LOGCWMIN(3) | RT2560_LOGCWMAX(8)); /* setup PLCP fields */ desc->plcp_signal = rt2560_plcp_signal(rate); desc->plcp_service = 4; len += IEEE80211_CRC_LEN; if (RAL_RATE_IS_OFDM(rate)) { desc->flags |= htole32(RT2560_TX_OFDM); plcp_length = len & 0xfff; desc->plcp_length_hi = plcp_length >> 6; desc->plcp_length_lo = plcp_length & 0x3f; } else { plcp_length = (16 * len + rate - 1) / rate; if (rate == 22) { remainder = (16 * len) % 22; if (remainder != 0 && remainder < 7) desc->plcp_service |= RT2560_PLCP_LENGEXT; } desc->plcp_length_hi = plcp_length >> 8; desc->plcp_length_lo = plcp_length & 0xff; if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) desc->plcp_signal |= 0x08; } } #ifndef IEEE80211_STA_ONLY int rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct rt2560_tx_desc *desc; struct rt2560_tx_data *data; int rate = 2, error; desc = &sc->bcnq.desc[sc->bcnq.cur]; data = &sc->bcnq.data[sc->bcnq.cur]; error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: can't map mbuf (error %d)\n", sc->sc_dev.dv_xname, error); m_freem(m0); return error; } data->m = m0; data->ni = ni; rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF | RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0, data->map->dm_segs->ds_addr); bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, sc->bcnq.map, sc->bcnq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE); /* * Store pointer to ERP Information Element so that we can update it * dynamically when the slot time changes. * XXX: this is ugly since it depends on how net80211 builds beacon * frames but ieee80211_beacon_alloc() don't store offsets for us. */ if (ic->ic_curmode == IEEE80211_MODE_11G) { sc->erp = mtod(m0, uint8_t *) + sizeof (struct ieee80211_frame) + 8 + 2 + 2 + ((ic->ic_flags & IEEE80211_F_HIDENWID) ? 1 : 2 + ni->ni_esslen) + 2 + min(ni->ni_rates.rs_nrates, IEEE80211_RATE_SIZE) + 2 + 1 + ((ic->ic_opmode == IEEE80211_M_IBSS) ? 4 : 6) + 2; } return 0; } #endif int rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct rt2560_tx_desc *desc; struct rt2560_tx_data *data; struct ieee80211_frame *wh; uint16_t dur; uint32_t flags = 0; int rate = 2, error; desc = &sc->prioq.desc[sc->prioq.cur]; data = &sc->prioq.data[sc->prioq.cur]; error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: can't map mbuf (error %d)\n", sc->sc_dev.dv_xname, error); m_freem(m0); return error; } #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct mbuf mb; struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags); tap->wt_antenna = sc->tx_ant; mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_txtap_len; mb.m_next = m0; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); } #endif data->m = m0; data->ni = ni; wh = mtod(m0, struct ieee80211_frame *); if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RT2560_TX_NEED_ACK; dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS; *(uint16_t *)wh->i_dur = htole16(dur); #ifndef IEEE80211_STA_ONLY /* tell hardware to set timestamp for probe responses */ if ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) flags |= RT2560_TX_TIMESTAMP; #endif } rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0, data->map->dm_segs->ds_addr); bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, sc->prioq.map, sc->prioq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE); DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n", m0->m_pkthdr.len, sc->prioq.cur, rate)); /* kick prio */ sc->prioq.queued++; sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT; RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO); return 0; } int rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct rt2560_tx_ring *txq = &sc->txq; struct rt2560_tx_desc *desc; struct rt2560_tx_data *data; struct ieee80211_frame *wh; struct ieee80211_key *k; struct mbuf *m1; uint16_t dur; uint32_t flags = 0; int pktlen, rate, needcts = 0, needrts = 0, error; wh = mtod(m0, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_get_txkey(ic, wh, ni); if ((m0 = ieee80211_encrypt(ic, m0, k)) == NULL) return ENOBUFS; /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } /* compute actual packet length (including CRC and crypto overhead) */ pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; /* pickup a rate */ if (IEEE80211_IS_MULTICAST(wh->i_addr1) || ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT)) { /* mgmt/multicast frames are sent at the lowest avail. rate */ rate = ni->ni_rates.rs_rates[0]; } else if (ic->ic_fixed_rate != -1) { rate = ic->ic_sup_rates[ic->ic_curmode]. rs_rates[ic->ic_fixed_rate]; } else rate = ni->ni_rates.rs_rates[ni->ni_txrate]; if (rate == 0) rate = 2; /* XXX should not happen */ rate &= IEEE80211_RATE_VAL; /* * Packet Bursting: backoff after ppb=8 frames to give other STAs a * chance to contend for the wireless medium. */ if (ic->ic_opmode == IEEE80211_M_STA && (ni->ni_txseq & 7)) flags |= RT2560_TX_IFS_SIFS; /* check if RTS/CTS or CTS-to-self protection must be used */ if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { /* multicast frames are not sent at OFDM rates in 802.11b/g */ if (pktlen > ic->ic_rtsthreshold) { needrts = 1; /* RTS/CTS based on frame length */ } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && RAL_RATE_IS_OFDM(rate)) { if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) needcts = 1; /* CTS-to-self */ else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) needrts = 1; /* RTS/CTS */ } } if (needrts || needcts) { struct mbuf *mprot; int protrate, ackrate; protrate = 2; /* XXX */ ackrate = rt2560_ack_rate(ic, rate); dur = rt2560_txtime(pktlen, rate, ic->ic_flags) + rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) + 2 * RAL_SIFS; if (needrts) { dur += rt2560_txtime(RAL_CTS_SIZE, rt2560_ack_rate(ic, protrate), ic->ic_flags) + RAL_SIFS; mprot = ieee80211_get_rts(ic, wh, dur); } else { mprot = ieee80211_get_cts_to_self(ic, dur); } if (mprot == NULL) { printf("%s: could not allocate protection frame\n", sc->sc_dev.dv_xname); m_freem(m0); return ENOBUFS; } desc = &txq->desc[txq->cur_encrypt]; data = &txq->data[txq->cur_encrypt]; error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, mprot, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: can't map mbuf (error %d)\n", sc->sc_dev.dv_xname, error); m_freem(mprot); m_freem(m0); return error; } data->m = mprot; /* avoid multiple free() of the same node for each fragment */ data->ni = ieee80211_ref_node(ni); /* XXX may want to pass the protection frame to BPF */ rt2560_setup_tx_desc(sc, desc, (needrts ? RT2560_TX_NEED_ACK : 0) | RT2560_TX_MORE_FRAG, mprot->m_pkthdr.len, protrate, 1, data->map->dm_segs->ds_addr); bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, txq->map, txq->cur_encrypt * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE); txq->queued++; if (++txq->cur_encrypt >= txq->count) txq->cur_encrypt = 0; flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS; } data = &txq->data[txq->cur_encrypt]; desc = &txq->desc[txq->cur_encrypt]; error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, BUS_DMA_NOWAIT); if (error != 0 && error != EFBIG) { printf("%s: can't map mbuf (error %d)\n", sc->sc_dev.dv_xname, error); m_freem(m0); return error; } if (error != 0) { /* too many fragments, linearize */ MGETHDR(m1, M_DONTWAIT, MT_DATA); if (m1 == NULL) { m_freem(m0); return ENOBUFS; } if (m0->m_pkthdr.len > MHLEN) { MCLGET(m1, M_DONTWAIT); if (!(m1->m_flags & M_EXT)) { m_freem(m0); m_freem(m1); return ENOBUFS; } } m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m1, caddr_t)); m1->m_pkthdr.len = m1->m_len = m0->m_pkthdr.len; m_freem(m0); m0 = m1; error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: can't map mbuf (error %d)\n", sc->sc_dev.dv_xname, error); m_freem(m0); return error; } /* packet header have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct mbuf mb; struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags); tap->wt_antenna = sc->tx_ant; mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_txtap_len; mb.m_next = m0; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); } #endif data->m = m0; data->ni = ni; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RT2560_TX_NEED_ACK; dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate), ic->ic_flags) + RAL_SIFS; *(uint16_t *)wh->i_dur = htole16(dur); } rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1, data->map->dm_segs->ds_addr); bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, txq->map, txq->cur_encrypt * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE); DPRINTFN(10, ("sending frame len=%u idx=%u rate=%u\n", m0->m_pkthdr.len, txq->cur_encrypt, rate)); /* kick encrypt */ txq->queued++; if (++txq->cur_encrypt >= txq->count) txq->cur_encrypt = 0; RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT); return 0; } void rt2560_start(struct ifnet *ifp) { struct rt2560_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct mbuf *m0; struct ieee80211_node *ni; /* * net80211 may still try to send management frames even if the * IFF_RUNNING flag is not set... */ if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; for (;;) { IF_POLL(&ic->ic_mgtq, m0); if (m0 != NULL) { if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) { ifp->if_flags |= IFF_OACTIVE; break; } IF_DEQUEUE(&ic->ic_mgtq, m0); ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; m0->m_pkthdr.rcvif = NULL; #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT); #endif if (rt2560_tx_mgt(sc, m0, ni) != 0) break; } else { if (ic->ic_state != IEEE80211_S_RUN) break; IFQ_POLL(&ifp->if_snd, m0); if (m0 == NULL) break; if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) { ifp->if_flags |= IFF_OACTIVE; break; } IFQ_DEQUEUE(&ifp->if_snd, m0); #if NBPFILTER > 0 if (ifp->if_bpf != NULL) bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT); #endif m0 = ieee80211_encap(ifp, m0, &ni); if (m0 == NULL) continue; #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT); #endif if (rt2560_tx_data(sc, m0, ni) != 0) { if (ni != NULL) ieee80211_release_node(ic, ni); ifp->if_oerrors++; break; } } sc->sc_tx_timer = 5; ifp->if_timer = 1; } } void rt2560_watchdog(struct ifnet *ifp) { struct rt2560_softc *sc = ifp->if_softc; ifp->if_timer = 0; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { printf("%s: device timeout\n", sc->sc_dev.dv_xname); rt2560_init(ifp); ifp->if_oerrors++; return; } ifp->if_timer = 1; } ieee80211_watchdog(ifp); } int rt2560_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct rt2560_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ifaddr *ifa; struct ifreq *ifr; int s, error = 0; s = splnet(); switch (cmd) { case SIOCSIFADDR: ifa = (struct ifaddr *)data; ifp->if_flags |= IFF_UP; #ifdef INET if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(&ic->ic_ac, ifa); #endif /* FALLTHROUGH */ case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING) rt2560_update_promisc(sc); else rt2560_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) rt2560_stop(ifp, 1); } break; case SIOCADDMULTI: case SIOCDELMULTI: ifr = (struct ifreq *)data; error = (cmd == SIOCADDMULTI) ? ether_addmulti(ifr, &ic->ic_ac) : ether_delmulti(ifr, &ic->ic_ac); if (error == ENETRESET) error = 0; break; case SIOCS80211CHANNEL: /* * This allows for fast channel switching in monitor mode * (used by kismet). In IBSS mode, we must explicitly reset * the interface to generate a new beacon frame. */ error = ieee80211_ioctl(ifp, cmd, data); if (error == ENETRESET && ic->ic_opmode == IEEE80211_M_MONITOR) { if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) rt2560_set_chan(sc, ic->ic_ibss_chan); error = 0; } break; default: error = ieee80211_ioctl(ifp, cmd, data); } if (error == ENETRESET) { if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) rt2560_init(ifp); error = 0; } splx(s); return error; } void rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY)) break; DELAY(1); } if (ntries == 100) { printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname); return; } tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val; RAL_WRITE(sc, RT2560_BBPCSR, tmp); DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val)); } uint8_t rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg) { uint32_t val; int ntries; val = RT2560_BBP_BUSY | reg << 8; RAL_WRITE(sc, RT2560_BBPCSR, val); for (ntries = 0; ntries < 100; ntries++) { val = RAL_READ(sc, RT2560_BBPCSR); if (!(val & RT2560_BBP_BUSY)) return val & 0xff; DELAY(1); } printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname); return 0; } void rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY)) break; DELAY(1); } if (ntries == 100) { printf("%s: could not write to RF\n", sc->sc_dev.dv_xname); return; } tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3); RAL_WRITE(sc, RT2560_RFCSR, tmp); /* remember last written value in sc */ sc->rf_regs[reg] = val; DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff)); } void rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c) { struct ieee80211com *ic = &sc->sc_ic; uint8_t power, tmp; u_int chan; chan = ieee80211_chan2ieee(ic, c); if (chan == 0 || chan == IEEE80211_CHAN_ANY) return; power = min(sc->txpow[chan - 1], 31); DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power)); switch (sc->rf_rev) { case RT2560_RF_2522: rt2560_rf_write(sc, RT2560_RF1, 0x00814); rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2522_r2[chan - 1]); rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040); break; case RT2560_RF_2523: rt2560_rf_write(sc, RT2560_RF1, 0x08804); rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2523_r2[chan - 1]); rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x38044); rt2560_rf_write(sc, RT2560_RF4, (chan == 14) ? 0x00280 : 0x00286); break; case RT2560_RF_2524: rt2560_rf_write(sc, RT2560_RF1, 0x0c808); rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2524_r2[chan - 1]); rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040); rt2560_rf_write(sc, RT2560_RF4, (chan == 14) ? 0x00280 : 0x00286); break; case RT2560_RF_2525: rt2560_rf_write(sc, RT2560_RF1, 0x08808); rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_hi_r2[chan - 1]); rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044); rt2560_rf_write(sc, RT2560_RF4, (chan == 14) ? 0x00280 : 0x00286); rt2560_rf_write(sc, RT2560_RF1, 0x08808); rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_r2[chan - 1]); rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044); rt2560_rf_write(sc, RT2560_RF4, (chan == 14) ? 0x00280 : 0x00286); break; case RT2560_RF_2525E: rt2560_rf_write(sc, RT2560_RF1, 0x08808); rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525e_r2[chan - 1]); rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044); rt2560_rf_write(sc, RT2560_RF4, (chan == 14) ? 0x00286 : 0x00282); break; case RT2560_RF_2526: rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_hi_r2[chan - 1]); rt2560_rf_write(sc, RT2560_RF4, (chan & 1) ? 0x00386 : 0x00381); rt2560_rf_write(sc, RT2560_RF1, 0x08804); rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_r2[chan - 1]); rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044); rt2560_rf_write(sc, RT2560_RF4, (chan & 1) ? 0x00386 : 0x00381); break; } if (ic->ic_opmode != IEEE80211_M_MONITOR && ic->ic_state != IEEE80211_S_SCAN) { /* set Japan filter bit for channel 14 */ tmp = rt2560_bbp_read(sc, 70); tmp &= ~RT2560_JAPAN_FILTER; if (chan == 14) tmp |= RT2560_JAPAN_FILTER; rt2560_bbp_write(sc, 70, tmp); DELAY(1000); /* RF needs a 1ms delay here */ rt2560_disable_rf_tune(sc); /* clear CRC errors */ RAL_READ(sc, RT2560_CNT0); } } /* * Disable RF auto-tuning. */ void rt2560_disable_rf_tune(struct rt2560_softc *sc) { uint32_t tmp; if (sc->rf_rev != RT2560_RF_2523) { tmp = sc->rf_regs[RT2560_RF1] & ~RT2560_RF1_AUTOTUNE; rt2560_rf_write(sc, RT2560_RF1, tmp); } tmp = sc->rf_regs[RT2560_RF3] & ~RT2560_RF3_AUTOTUNE; rt2560_rf_write(sc, RT2560_RF3, tmp); DPRINTFN(2, ("disabling RF autotune\n")); } /* * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF * synchronization. */ void rt2560_enable_tsf_sync(struct rt2560_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint16_t logcwmin, preload; uint32_t tmp; /* first, disable TSF synchronization */ RAL_WRITE(sc, RT2560_CSR14, 0); tmp = 16 * ic->ic_bss->ni_intval; RAL_WRITE(sc, RT2560_CSR12, tmp); RAL_WRITE(sc, RT2560_CSR13, 0); logcwmin = 5; preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024; tmp = logcwmin << 16 | preload; RAL_WRITE(sc, RT2560_BCNOCSR, tmp); /* finally, enable TSF synchronization */ tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN; if (ic->ic_opmode == IEEE80211_M_STA) tmp |= RT2560_ENABLE_TSF_SYNC(1); #ifndef IEEE80211_STA_ONLY else tmp |= RT2560_ENABLE_TSF_SYNC(2) | RT2560_ENABLE_BEACON_GENERATOR; #endif RAL_WRITE(sc, RT2560_CSR14, tmp); DPRINTF(("enabling TSF synchronization\n")); } void rt2560_update_plcp(struct rt2560_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; /* no short preamble for 1Mbps */ RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400); if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) { /* values taken from the reference driver */ RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380401); RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402); RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b8403); } else { /* same values as above or'ed 0x8 */ RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380409); RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a); RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b840b); } DPRINTF(("updating PLCP for %s preamble\n", (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long")); } void rt2560_updateslot(struct ieee80211com *ic) { struct rt2560_softc *sc = ic->ic_if.if_softc; #ifndef IEEE80211_STA_ONLY if (ic->ic_opmode == IEEE80211_M_HOSTAP) { /* * In HostAP mode, we defer setting of new slot time until * updated ERP Information Element has propagated to all * associated STAs. */ sc->sc_flags |= RT2560_UPDATE_SLOT; } else #endif rt2560_set_slottime(sc); } /* * IEEE 802.11a (and possibly 802.11g) use short slot time. Refer to * IEEE Std 802.11-1999 pp. 85 to know how these values are computed. */ void rt2560_set_slottime(struct rt2560_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint8_t slottime; uint16_t sifs, pifs, difs, eifs; uint32_t tmp; slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; /* define the MAC slot boundaries */ sifs = RAL_SIFS - RT2560_RXTX_TURNAROUND; pifs = sifs + slottime; difs = sifs + 2 * slottime; eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60; tmp = RAL_READ(sc, RT2560_CSR11); tmp = (tmp & ~0x1f00) | slottime << 8; RAL_WRITE(sc, RT2560_CSR11, tmp); tmp = pifs << 16 | sifs; RAL_WRITE(sc, RT2560_CSR18, tmp); tmp = eifs << 16 | difs; RAL_WRITE(sc, RT2560_CSR19, tmp); DPRINTF(("setting slottime to %uus\n", slottime)); } void rt2560_set_basicrates(struct rt2560_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; /* update basic rate set */ if (ic->ic_curmode == IEEE80211_MODE_11B) { /* 11b basic rates: 1, 2Mbps */ RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3); } else { /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0xf); } } void rt2560_update_led(struct rt2560_softc *sc, int led1, int led2) { uint32_t tmp; /* set ON period to 70ms and OFF period to 30ms */ tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30; RAL_WRITE(sc, RT2560_LEDCSR, tmp); } void rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid) { uint32_t tmp; tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; RAL_WRITE(sc, RT2560_CSR5, tmp); tmp = bssid[4] | bssid[5] << 8; RAL_WRITE(sc, RT2560_CSR6, tmp); DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid))); } void rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr) { uint32_t tmp; tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; RAL_WRITE(sc, RT2560_CSR3, tmp); tmp = addr[4] | addr[5] << 8; RAL_WRITE(sc, RT2560_CSR4, tmp); DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr))); } void rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr) { uint32_t tmp; tmp = RAL_READ(sc, RT2560_CSR3); addr[0] = tmp & 0xff; addr[1] = (tmp >> 8) & 0xff; addr[2] = (tmp >> 16) & 0xff; addr[3] = (tmp >> 24); tmp = RAL_READ(sc, RT2560_CSR4); addr[4] = tmp & 0xff; addr[5] = (tmp >> 8) & 0xff; } void rt2560_update_promisc(struct rt2560_softc *sc) { struct ifnet *ifp = &sc->sc_ic.ic_if; uint32_t tmp; tmp = RAL_READ(sc, RT2560_RXCSR0); tmp &= ~RT2560_DROP_NOT_TO_ME; if (!(ifp->if_flags & IFF_PROMISC)) tmp |= RT2560_DROP_NOT_TO_ME; RAL_WRITE(sc, RT2560_RXCSR0, tmp); DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? "entering" : "leaving")); } void rt2560_set_txantenna(struct rt2560_softc *sc, int antenna) { uint32_t tmp; uint8_t tx; tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK; if (antenna == 1) tx |= RT2560_BBP_ANTA; else if (antenna == 2) tx |= RT2560_BBP_ANTB; else tx |= RT2560_BBP_DIVERSITY; /* need to force I/Q flip for RF 2525e, 2526 and 5222 */ if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 || sc->rf_rev == RT2560_RF_5222) tx |= RT2560_BBP_FLIPIQ; rt2560_bbp_write(sc, RT2560_BBP_TX, tx); /* update values for CCK and OFDM in BBPCSR1 */ tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007; tmp |= (tx & 0x7) << 16 | (tx & 0x7); RAL_WRITE(sc, RT2560_BBPCSR1, tmp); } void rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna) { uint8_t rx; rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK; if (antenna == 1) rx |= RT2560_BBP_ANTA; else if (antenna == 2) rx |= RT2560_BBP_ANTB; else rx |= RT2560_BBP_DIVERSITY; /* need to force no I/Q flip for RF 2525e and 2526 */ if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526) rx &= ~RT2560_BBP_FLIPIQ; rt2560_bbp_write(sc, RT2560_BBP_RX, rx); } const char * rt2560_get_rf(int rev) { switch (rev) { case RT2560_RF_2522: return "RT2522"; case RT2560_RF_2523: return "RT2523"; case RT2560_RF_2524: return "RT2524"; case RT2560_RF_2525: return "RT2525"; case RT2560_RF_2525E: return "RT2525e"; case RT2560_RF_2526: return "RT2526"; case RT2560_RF_5222: return "RT5222"; default: return "unknown"; } } void rt2560_read_eeprom(struct rt2560_softc *sc) { uint16_t val; int i; val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0); sc->rf_rev = (val >> 11) & 0x1f; sc->hw_radio = (val >> 10) & 0x1; sc->led_mode = (val >> 6) & 0x7; sc->rx_ant = (val >> 4) & 0x3; sc->tx_ant = (val >> 2) & 0x3; sc->nb_ant = val & 0x3; /* read default values for BBP registers */ for (i = 0; i < 16; i++) { val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i); sc->bbp_prom[i].reg = val >> 8; sc->bbp_prom[i].val = val & 0xff; } /* read Tx power for all b/g channels */ for (i = 0; i < 14 / 2; i++) { val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i); sc->txpow[i * 2] = val >> 8; sc->txpow[i * 2 + 1] = val & 0xff; } } int rt2560_bbp_init(struct rt2560_softc *sc) { int i, ntries; /* wait for BBP to be ready */ for (ntries = 0; ntries < 100; ntries++) { if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0) break; DELAY(1); } if (ntries == 100) { printf("%s: timeout waiting for BBP\n", sc->sc_dev.dv_xname); return EIO; } /* initialize BBP registers to default values */ for (i = 0; i < nitems(rt2560_def_bbp); i++) { rt2560_bbp_write(sc, rt2560_def_bbp[i].reg, rt2560_def_bbp[i].val); } #if 0 /* initialize BBP registers to values stored in EEPROM */ for (i = 0; i < 16; i++) { if (sc->bbp_prom[i].reg == 0xff) continue; rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); } #endif return 0; } int rt2560_init(struct ifnet *ifp) { struct rt2560_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; int i; /* for CardBus, power on the socket */ if (!(sc->sc_flags & RT2560_ENABLED)) { if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) { printf("%s: could not enable device\n", sc->sc_dev.dv_xname); return EIO; } sc->sc_flags |= RT2560_ENABLED; } rt2560_stop(ifp, 0); /* setup tx rings */ tmp = RT2560_PRIO_RING_COUNT << 24 | RT2560_ATIM_RING_COUNT << 16 | RT2560_TX_RING_COUNT << 8 | RT2560_TX_DESC_SIZE; /* rings _must_ be initialized in this _exact_ order! */ RAL_WRITE(sc, RT2560_TXCSR2, tmp); RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr); RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr); RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr); RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr); /* setup rx ring */ tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE; RAL_WRITE(sc, RT2560_RXCSR1, tmp); RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr); /* initialize MAC registers to default values */ for (i = 0; i < nitems(rt2560_def_mac); i++) RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val); IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); rt2560_set_macaddr(sc, ic->ic_myaddr); /* set basic rate set (will be updated later) */ RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153); rt2560_set_txantenna(sc, 1); rt2560_set_rxantenna(sc, 1); rt2560_set_slottime(sc); rt2560_update_plcp(sc); rt2560_update_led(sc, 0, 0); RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC); RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY); if (rt2560_bbp_init(sc) != 0) { rt2560_stop(ifp, 1); return EIO; } /* set default BSS channel */ ic->ic_bss->ni_chan = ic->ic_ibss_chan; rt2560_set_chan(sc, ic->ic_bss->ni_chan); /* kick Rx */ tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR; if (ic->ic_opmode != IEEE80211_M_MONITOR) { tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR; #ifndef IEEE80211_STA_ONLY if (ic->ic_opmode != IEEE80211_M_HOSTAP) #endif tmp |= RT2560_DROP_TODS; if (!(ifp->if_flags & IFF_PROMISC)) tmp |= RT2560_DROP_NOT_TO_ME; } RAL_WRITE(sc, RT2560_RXCSR0, tmp); /* clear old FCS and Rx FIFO errors */ RAL_READ(sc, RT2560_CNT0); RAL_READ(sc, RT2560_CNT4); /* clear any pending interrupts */ RAL_WRITE(sc, RT2560_CSR7, 0xffffffff); /* enable interrupts */ RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK); ifp->if_flags &= ~IFF_OACTIVE; ifp->if_flags |= IFF_RUNNING; if (ic->ic_opmode == IEEE80211_M_MONITOR) ieee80211_new_state(ic, IEEE80211_S_RUN, -1); else ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); return 0; } void rt2560_stop(struct ifnet *ifp, int disable) { struct rt2560_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; sc->sc_tx_timer = 0; ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ /* abort Tx */ RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX); /* disable Rx */ RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX); /* reset ASIC (and thus, BBP) */ RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC); RAL_WRITE(sc, RT2560_CSR1, 0); /* disable interrupts */ RAL_WRITE(sc, RT2560_CSR8, 0xffffffff); /* clear any pending interrupt */ RAL_WRITE(sc, RT2560_CSR7, 0xffffffff); /* reset Tx and Rx rings */ rt2560_reset_tx_ring(sc, &sc->txq); rt2560_reset_tx_ring(sc, &sc->atimq); rt2560_reset_tx_ring(sc, &sc->prioq); rt2560_reset_tx_ring(sc, &sc->bcnq); rt2560_reset_rx_ring(sc, &sc->rxq); /* for CardBus, power down the socket */ if (disable && sc->sc_disable != NULL) { if (sc->sc_flags & RT2560_ENABLED) { (*sc->sc_disable)(sc); sc->sc_flags &= ~RT2560_ENABLED; } } } void rt2560_power(int why, void *arg) { struct rt2560_softc *sc = arg; struct ifnet *ifp = &sc->sc_ic.ic_if; int s; DPRINTF(("%s: rt2560_power(%d)\n", sc->sc_dev.dv_xname, why)); s = splnet(); switch (why) { case PWR_SUSPEND: case PWR_STANDBY: rt2560_stop(ifp, 1); if (sc->sc_power != NULL) (*sc->sc_power)(sc, why); break; case PWR_RESUME: if (ifp->if_flags & IFF_UP) { rt2560_init(ifp); if (sc->sc_power != NULL) (*sc->sc_power)(sc, why); if (ifp->if_flags & IFF_RUNNING) rt2560_start(ifp); } break; } splx(s); } struct cfdriver ral_cd = { NULL, "ral", DV_IFNET };