/* $OpenBSD: rt2860.c,v 1.38 2009/12/10 21:01:29 oga Exp $ */ /*- * Copyright (c) 2007, 2008 * Damien Bergamini * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /*- * Ralink Technology RT2860 chipset driver * http://www.ralinktech.com/ */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef RAL_DEBUG #define DPRINTF(x) do { if (rt2860_debug > 0) printf x; } while (0) #define DPRINTFN(n, x) do { if (rt2860_debug >= (n)) printf x; } while (0) int rt2860_debug = 1; #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif int rt2860_alloc_tx_ring(struct rt2860_softc *, struct rt2860_tx_ring *); void rt2860_reset_tx_ring(struct rt2860_softc *, struct rt2860_tx_ring *); void rt2860_free_tx_ring(struct rt2860_softc *, struct rt2860_tx_ring *); int rt2860_alloc_tx_pool(struct rt2860_softc *); void rt2860_free_tx_pool(struct rt2860_softc *); int rt2860_alloc_rx_ring(struct rt2860_softc *, struct rt2860_rx_ring *); void rt2860_reset_rx_ring(struct rt2860_softc *, struct rt2860_rx_ring *); void rt2860_free_rx_ring(struct rt2860_softc *, struct rt2860_rx_ring *); struct ieee80211_node *rt2860_node_alloc(struct ieee80211com *); int rt2860_media_change(struct ifnet *); void rt2860_iter_func(void *, struct ieee80211_node *); void rt2860_updatestats(struct rt2860_softc *); void rt2860_newassoc(struct ieee80211com *, struct ieee80211_node *, int); int rt2860_newstate(struct ieee80211com *, enum ieee80211_state, int); uint16_t rt2860_eeprom_read(struct rt2860_softc *, uint8_t); void rt2860_intr_coherent(struct rt2860_softc *); void rt2860_drain_stats_fifo(struct rt2860_softc *); void rt2860_tx_intr(struct rt2860_softc *, int); void rt2860_rx_intr(struct rt2860_softc *); void rt2860_tbtt_intr(struct rt2860_softc *); void rt2860_gp_intr(struct rt2860_softc *); int rt2860_tx(struct rt2860_softc *, struct mbuf *, struct ieee80211_node *); void rt2860_start(struct ifnet *); void rt2860_watchdog(struct ifnet *); int rt2860_ioctl(struct ifnet *, u_long, caddr_t); void rt2860_mcu_bbp_write(struct rt2860_softc *, uint8_t, uint8_t); uint8_t rt2860_mcu_bbp_read(struct rt2860_softc *, uint8_t); void rt2860_rf_write(struct rt2860_softc *, uint8_t, uint32_t); int rt2860_mcu_cmd(struct rt2860_softc *, uint8_t, uint16_t); void rt2860_enable_mrr(struct rt2860_softc *); void rt2860_set_txpreamble(struct rt2860_softc *); void rt2860_set_basicrates(struct rt2860_softc *); void rt2860_select_chan_group(struct rt2860_softc *, int); void rt2860_set_chan(struct rt2860_softc *, struct ieee80211_channel *); void rt2860_set_leds(struct rt2860_softc *, uint16_t); void rt2860_set_gp_timer(struct rt2860_softc *, int); void rt2860_set_bssid(struct rt2860_softc *, const uint8_t *); void rt2860_set_macaddr(struct rt2860_softc *, const uint8_t *); void rt2860_updateslot(struct ieee80211com *); void rt2860_updateprot(struct ieee80211com *); void rt2860_updateedca(struct ieee80211com *); int rt2860_set_key(struct ieee80211com *, struct ieee80211_node *, struct ieee80211_key *); void rt2860_delete_key(struct ieee80211com *, struct ieee80211_node *, struct ieee80211_key *); #if NBPFILTER > 0 int8_t rt2860_rssi2dbm(struct rt2860_softc *, uint8_t, uint8_t); #endif const char * rt2860_get_rf(uint8_t); int rt2860_read_eeprom(struct rt2860_softc *); int rt2860_bbp_init(struct rt2860_softc *); int rt2860_txrx_enable(struct rt2860_softc *); int rt2860_init(struct ifnet *); void rt2860_stop(struct ifnet *, int); int rt2860_load_microcode(struct rt2860_softc *); void rt2860_calib(struct rt2860_softc *); #ifndef IEEE80211_STA_ONLY int rt2860_setup_beacon(struct rt2860_softc *); #endif void rt2860_enable_tsf_sync(struct rt2860_softc *); void rt2860_power(int, void *); static const struct { uint32_t reg; uint32_t val; } rt2860_def_mac[] = { RT2860_DEF_MAC }; static const struct { uint8_t reg; uint8_t val; } rt2860_def_bbp[] = { RT2860_DEF_BBP }; static const struct rfprog { uint8_t chan; uint32_t r1, r2, r3, r4; } rt2860_rf2850[] = { RT2860_RF2850 }; int rt2860_attach(void *xsc, int id) { struct rt2860_softc *sc = xsc; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; int i, qid, ntries, error; sc->amrr.amrr_min_success_threshold = 1; sc->amrr.amrr_max_success_threshold = 15; /* wait for NIC to initialize */ for (ntries = 0; ntries < 100; ntries++) { sc->mac_rev = RAL_READ(sc, RT2860_ASIC_VER_ID); if (sc->mac_rev != 0 && sc->mac_rev != 0xffffffff) break; DELAY(10); } if (ntries == 100) { printf("%s: timeout waiting for NIC to initialize\n", sc->sc_dev.dv_xname); return ETIMEDOUT; } if ((sc->mac_rev >> 16) != 0x2860 && (id == PCI_PRODUCT_RALINK_RT2890 || id == PCI_PRODUCT_RALINK_RT2790 || id == PCI_PRODUCT_AWT_RT2890)) sc->sc_flags |= RT2860_ADVANCED_PS; /* retrieve RF rev. no and various other things from EEPROM */ rt2860_read_eeprom(sc); printf(", address %s\n", ether_sprintf(ic->ic_myaddr)); printf("%s: MAC/BBP RT%X (rev 0x%04X), RF %s (MIMO %dT%dR)\n", sc->sc_dev.dv_xname, sc->mac_rev >> 16, sc->mac_rev & 0xffff, rt2860_get_rf(sc->rf_rev), sc->ntxchains, sc->nrxchains); /* * Allocate Tx (4 EDCAs + HCCA + Mgt) and Rx rings. */ for (qid = 0; qid < 6; qid++) { if ((error = rt2860_alloc_tx_ring(sc, &sc->txq[qid])) != 0) { printf("%s: could not allocate Tx ring %d\n", sc->sc_dev.dv_xname, qid); goto fail1; } } if ((error = rt2860_alloc_rx_ring(sc, &sc->rxq)) != 0) { printf("%s: could not allocate Rx ring\n", sc->sc_dev.dv_xname); goto fail1; } if ((error = rt2860_alloc_tx_pool(sc)) != 0) { printf("%s: could not allocate Tx pool\n", sc->sc_dev.dv_xname); goto fail2; } /* mgmt ring is broken on RT2860C, use EDCA AC VO ring instead */ sc->mgtqid = (sc->mac_rev == 0x28600100) ? EDCA_AC_VO : 5; ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ ic->ic_state = IEEE80211_S_INIT; /* set device capabilities */ ic->ic_caps = IEEE80211_C_MONITOR | /* monitor mode supported */ #ifndef IEEE80211_STA_ONLY IEEE80211_C_IBSS | /* IBSS mode supported */ IEEE80211_C_HOSTAP | /* HostAP mode supported */ #ifdef notyet IEEE80211_C_APPMGT | /* HostAP power management */ #endif #endif IEEE80211_C_SHPREAMBLE | /* short preamble supported */ IEEE80211_C_SHSLOT | /* short slot time supported */ IEEE80211_C_WEP | /* s/w WEP */ IEEE80211_C_RSN; /* WPA/RSN */ if (sc->rf_rev == RT2860_RF_2750 || sc->rf_rev == RT2860_RF_2850) { /* set supported .11a rates */ ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a; /* set supported .11a channels */ for (i = 14; i < nitems(rt2860_rf2850); i++) { uint8_t chan = rt2860_rf2850[i].chan; ic->ic_channels[chan].ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A; } } /* set supported .11b and .11g rates */ ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; /* set supported .11b and .11g channels (1 through 14) */ for (i = 1; i <= 14; i++) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } /* HW supports up to 255 STAs (0-254) in HostAP and IBSS modes */ ic->ic_max_aid = min(IEEE80211_AID_MAX, RT2860_WCID_MAX); ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = rt2860_init; ifp->if_ioctl = rt2860_ioctl; ifp->if_start = rt2860_start; ifp->if_watchdog = rt2860_watchdog; IFQ_SET_READY(&ifp->if_snd); memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); if_attach(ifp); ieee80211_ifattach(ifp); ic->ic_node_alloc = rt2860_node_alloc; ic->ic_newassoc = rt2860_newassoc; ic->ic_updateslot = rt2860_updateslot; ic->ic_updateedca = rt2860_updateedca; ic->ic_set_key = rt2860_set_key; ic->ic_delete_key = rt2860_delete_key; /* override state transition machine */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = rt2860_newstate; ieee80211_media_init(ifp, rt2860_media_change, ieee80211_media_status); #if NBPFILTER > 0 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, sizeof (struct ieee80211_frame) + 64); sc->sc_rxtap_len = sizeof sc->sc_rxtapu; sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2860_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof sc->sc_txtapu; sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(RT2860_TX_RADIOTAP_PRESENT); #endif sc->sc_powerhook = powerhook_establish(rt2860_power, sc); if (sc->sc_powerhook == NULL) { printf("%s: WARNING: unable to establish power hook\n", sc->sc_dev.dv_xname); } return 0; fail2: rt2860_free_rx_ring(sc, &sc->rxq); fail1: while (--qid >= 0) rt2860_free_tx_ring(sc, &sc->txq[qid]); return error; } int rt2860_detach(void *xsc) { struct rt2860_softc *sc = xsc; struct ifnet *ifp = &sc->sc_ic.ic_if; int qid; if (sc->sc_powerhook != NULL) powerhook_disestablish(sc->sc_powerhook); ieee80211_ifdetach(ifp); /* free all nodes */ if_detach(ifp); for (qid = 0; qid < 6; qid++) rt2860_free_tx_ring(sc, &sc->txq[qid]); rt2860_free_rx_ring(sc, &sc->rxq); rt2860_free_tx_pool(sc); return 0; } int rt2860_alloc_tx_ring(struct rt2860_softc *sc, struct rt2860_tx_ring *ring) { int nsegs, size, error; size = RT2860_TX_RING_COUNT * sizeof (struct rt2860_txd); error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT, &ring->map); if (error != 0) { printf("%s: could not create DMA map\n", sc->sc_dev.dv_xname); goto fail; } /* Tx rings must be 4-DWORD aligned */ error = bus_dmamem_alloc(sc->sc_dmat, size, 16, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not allocate DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, size, (caddr_t *)&ring->txd, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: can't map DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->txd, size, NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not load DMA map\n", sc->sc_dev.dv_xname); goto fail; } memset(ring->txd, 0, size); bus_dmamap_sync(sc->sc_dmat, ring->map, 0, size, BUS_DMASYNC_PREWRITE); ring->paddr = ring->map->dm_segs[0].ds_addr; return 0; fail: rt2860_free_tx_ring(sc, ring); return error; } void rt2860_reset_tx_ring(struct rt2860_softc *sc, struct rt2860_tx_ring *ring) { struct rt2860_tx_data *data; int i; for (i = 0; i < RT2860_TX_RING_COUNT; i++) { if ((data = ring->data[i]) == NULL) continue; /* nothing mapped in this slot */ bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); data->m= NULL; data->ni = NULL; /* node already freed */ SLIST_INSERT_HEAD(&sc->data_pool, data, next); ring->data[i] = NULL; } ring->queued = 0; ring->cur = ring->next = 0; } void rt2860_free_tx_ring(struct rt2860_softc *sc, struct rt2860_tx_ring *ring) { struct rt2860_tx_data *data; int i; if (ring->txd != NULL) { bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, ring->map); bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->txd, RT2860_TX_RING_COUNT * sizeof (struct rt2860_txd)); bus_dmamem_free(sc->sc_dmat, &ring->seg, 1); } if (ring->map != NULL) bus_dmamap_destroy(sc->sc_dmat, ring->map); for (i = 0; i < RT2860_TX_RING_COUNT; i++) { if ((data = ring->data[i]) == NULL) continue; /* nothing mapped in this slot */ bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); SLIST_INSERT_HEAD(&sc->data_pool, data, next); } } /* * Allocate a pool of TX Wireless Information blocks. */ int rt2860_alloc_tx_pool(struct rt2860_softc *sc) { caddr_t vaddr; bus_addr_t paddr; int i, nsegs, size, error; size = RT2860_TX_POOL_COUNT * RT2860_TXWI_DMASZ; /* init data_pool early in case of failure.. */ SLIST_INIT(&sc->data_pool); error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT, &sc->txwi_map); if (error != 0) { printf("%s: could not create DMA map\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &sc->txwi_seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not allocate DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_map(sc->sc_dmat, &sc->txwi_seg, nsegs, size, &sc->txwi_vaddr, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: can't map DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamap_load(sc->sc_dmat, sc->txwi_map, sc->txwi_vaddr, size, NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not load DMA map\n", sc->sc_dev.dv_xname); goto fail; } memset(sc->txwi_vaddr, 0, size); bus_dmamap_sync(sc->sc_dmat, sc->txwi_map, 0, size, BUS_DMASYNC_PREWRITE); vaddr = sc->txwi_vaddr; paddr = sc->txwi_map->dm_segs[0].ds_addr; for (i = 0; i < RT2860_TX_POOL_COUNT; i++) { struct rt2860_tx_data *data = &sc->data[i]; error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, RT2860_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map); if (error != 0) { printf("%s: could not create DMA map\n", sc->sc_dev.dv_xname); goto fail; } data->txwi = (struct rt2860_txwi *)vaddr; data->paddr = paddr; vaddr += RT2860_TXWI_DMASZ; paddr += RT2860_TXWI_DMASZ; SLIST_INSERT_HEAD(&sc->data_pool, data, next); } return 0; fail: rt2860_free_tx_pool(sc); return error; } void rt2860_free_tx_pool(struct rt2860_softc *sc) { if (sc->txwi_vaddr != NULL) { bus_dmamap_sync(sc->sc_dmat, sc->txwi_map, 0, sc->txwi_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, sc->txwi_map); bus_dmamem_unmap(sc->sc_dmat, sc->txwi_vaddr, RT2860_TX_POOL_COUNT * RT2860_TXWI_DMASZ); bus_dmamem_free(sc->sc_dmat, &sc->txwi_seg, 1); } if (sc->txwi_map != NULL) bus_dmamap_destroy(sc->sc_dmat, sc->txwi_map); while (!SLIST_EMPTY(&sc->data_pool)) { struct rt2860_tx_data *data; data = SLIST_FIRST(&sc->data_pool); bus_dmamap_destroy(sc->sc_dmat, data->map); SLIST_REMOVE_HEAD(&sc->data_pool, next); } } int rt2860_alloc_rx_ring(struct rt2860_softc *sc, struct rt2860_rx_ring *ring) { int i, nsegs, size, error; size = RT2860_RX_RING_COUNT * sizeof (struct rt2860_rxd); error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT, &ring->map); if (error != 0) { printf("%s: could not create DMA map\n", sc->sc_dev.dv_xname); goto fail; } /* Rx ring must be 4-DWORD aligned */ error = bus_dmamem_alloc(sc->sc_dmat, size, 16, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not allocate DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, size, (caddr_t *)&ring->rxd, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: can't map DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->rxd, size, NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not load DMA map\n", sc->sc_dev.dv_xname); goto fail; } memset(ring->rxd, 0, size); ring->paddr = ring->map->dm_segs[0].ds_addr; for (i = 0; i < RT2860_RX_RING_COUNT; i++) { struct rt2860_rx_data *data = &ring->data[i]; struct rt2860_rxd *rxd = &ring->rxd[i]; error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map); if (error != 0) { printf("%s: could not create DMA map\n", sc->sc_dev.dv_xname); goto fail; } MGETHDR(data->m, M_DONTWAIT, MT_DATA); if (data->m == NULL) { printf("%s: could not allocate Rx mbuf\n", sc->sc_dev.dv_xname); error = ENOBUFS; goto fail; } MCLGET(data->m, M_DONTWAIT); if (!(data->m->m_flags & M_EXT)) { printf("%s: could not allocate Rx mbuf cluster\n", sc->sc_dev.dv_xname); error = ENOBUFS; goto fail; } error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not load DMA map\n", sc->sc_dev.dv_xname); goto fail; } rxd->sdp0 = htole32(data->map->dm_segs[0].ds_addr); rxd->sdl0 = htole16(MCLBYTES); } bus_dmamap_sync(sc->sc_dmat, ring->map, 0, size, BUS_DMASYNC_PREWRITE); return 0; fail: rt2860_free_rx_ring(sc, ring); return error; } void rt2860_reset_rx_ring(struct rt2860_softc *sc, struct rt2860_rx_ring *ring) { int i; for (i = 0; i < RT2860_RX_RING_COUNT; i++) ring->rxd[i].sdl0 &= ~htole16(RT2860_RX_DDONE); bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_PREWRITE); ring->cur = 0; } void rt2860_free_rx_ring(struct rt2860_softc *sc, struct rt2860_rx_ring *ring) { int i; if (ring->rxd != NULL) { bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, ring->map); bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->rxd, RT2860_RX_RING_COUNT * sizeof (struct rt2860_rxd)); bus_dmamem_free(sc->sc_dmat, &ring->seg, 1); } if (ring->map != NULL) bus_dmamap_destroy(sc->sc_dmat, ring->map); for (i = 0; i < RT2860_RX_RING_COUNT; i++) { struct rt2860_rx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); } if (data->map != NULL) bus_dmamap_destroy(sc->sc_dmat, data->map); } } struct ieee80211_node * rt2860_node_alloc(struct ieee80211com *ic) { return malloc(sizeof (struct rt2860_node), M_DEVBUF, M_NOWAIT | M_ZERO); } int rt2860_media_change(struct ifnet *ifp) { struct rt2860_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; uint8_t rate, ridx; int error; error = ieee80211_media_change(ifp); if (error != ENETRESET) return error; if (ic->ic_fixed_rate != -1) { rate = ic->ic_sup_rates[ic->ic_curmode]. rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL; for (ridx = 0; ridx <= RT2860_RIDX_MAX; ridx++) if (rt2860_rates[ridx].rate == rate) break; sc->fixed_ridx = ridx; } if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) rt2860_init(ifp); return 0; } void rt2860_iter_func(void *arg, struct ieee80211_node *ni) { struct rt2860_softc *sc = arg; uint8_t wcid; wcid = RT2860_AID2WCID(ni->ni_associd); ieee80211_amrr_choose(&sc->amrr, ni, &sc->amn[wcid]); } void rt2860_updatestats(struct rt2860_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; #ifndef IEEE80211_STA_ONLY /* * In IBSS or HostAP modes (when the hardware sends beacons), the * MAC can run into a livelock and start sending CTS-to-self frames * like crazy if protection is enabled. Fortunately, we can detect * when such a situation occurs and reset the MAC. */ if (ic->ic_curmode != IEEE80211_M_STA) { /* check if we're in a livelock situation.. */ uint32_t tmp = RAL_READ(sc, RT2860_DEBUG); if ((tmp & (1 << 29)) && (tmp & (1 << 7 | 1 << 5))) { /* ..and reset MAC/BBP for a while.. */ DPRINTF(("CTS-to-self livelock detected\n")); RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_SRST); RAL_BARRIER_WRITE(sc); DELAY(1); RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_RX_EN | RT2860_MAC_TX_EN); } } #endif if (ic->ic_opmode == IEEE80211_M_STA) rt2860_iter_func(sc, ic->ic_bss); #ifndef IEEE80211_STA_ONLY else ieee80211_iterate_nodes(ic, rt2860_iter_func, sc); #endif } void rt2860_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) { struct rt2860_softc *sc = ic->ic_softc; struct rt2860_node *rn = (void *)ni; struct ieee80211_rateset *rs = &ni->ni_rates; uint8_t rate, wcid = 0; int ridx, i, j; if (isnew && ni->ni_associd != 0) { /* only interested in true associations */ wcid = RT2860_AID2WCID(ni->ni_associd); /* init WCID table entry */ RAL_WRITE_REGION_1(sc, RT2860_WCID_ENTRY(wcid), ni->ni_macaddr, IEEE80211_ADDR_LEN); } DPRINTF(("new assoc isnew=%d addr=%s WCID=%d\n", isnew, ether_sprintf(ni->ni_macaddr), wcid)); ieee80211_amrr_node_init(&sc->amrr, &sc->amn[wcid]); /* start at lowest available bit-rate, AMRR will raise */ ni->ni_txrate = 0; for (i = 0; i < rs->rs_nrates; i++) { rate = rs->rs_rates[i] & IEEE80211_RATE_VAL; /* convert 802.11 rate to hardware rate index */ for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++) if (rt2860_rates[ridx].rate == rate) break; rn->ridx[i] = ridx; /* determine rate of control response frames */ for (j = i; j >= 0; j--) { if ((rs->rs_rates[j] & IEEE80211_RATE_BASIC) && rt2860_rates[rn->ridx[i]].phy == rt2860_rates[rn->ridx[j]].phy) break; } if (j >= 0) { rn->ctl_ridx[i] = rn->ridx[j]; } else { /* no basic rate found, use mandatory one */ rn->ctl_ridx[i] = rt2860_rates[ridx].ctl_ridx; } DPRINTF(("rate=0x%02x ridx=%d ctl_ridx=%d\n", rs->rs_rates[i], rn->ridx[i], rn->ctl_ridx[i])); } } int rt2860_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct rt2860_softc *sc = ic->ic_if.if_softc; enum ieee80211_state ostate; uint32_t tmp; ostate = ic->ic_state; if (ostate == IEEE80211_S_RUN) { /* turn link LED off */ rt2860_set_leds(sc, RT2860_LED_RADIO); } switch (nstate) { case IEEE80211_S_INIT: if (ostate == IEEE80211_S_RUN) { /* abort TSF synchronization */ tmp = RAL_READ(sc, RT2860_BCN_TIME_CFG); RAL_WRITE(sc, RT2860_BCN_TIME_CFG, tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN)); } rt2860_set_gp_timer(sc, 0); break; case IEEE80211_S_SCAN: rt2860_set_chan(sc, ic->ic_bss->ni_chan); if (ostate != IEEE80211_S_SCAN) rt2860_set_gp_timer(sc, 150); break; case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: rt2860_set_gp_timer(sc, 0); rt2860_set_chan(sc, ic->ic_bss->ni_chan); break; case IEEE80211_S_RUN: rt2860_set_gp_timer(sc, 0); rt2860_set_chan(sc, ic->ic_bss->ni_chan); if (ic->ic_opmode != IEEE80211_M_MONITOR) { rt2860_updateslot(ic); rt2860_enable_mrr(sc); rt2860_set_txpreamble(sc); rt2860_set_basicrates(sc); rt2860_set_bssid(sc, ic->ic_bss->ni_bssid); } #ifndef IEEE80211_STA_ONLY if (ic->ic_opmode == IEEE80211_M_HOSTAP || ic->ic_opmode == IEEE80211_M_IBSS) (void)rt2860_setup_beacon(sc); #endif if (ic->ic_opmode == IEEE80211_M_STA) { /* fake a join to init the tx rate */ rt2860_newassoc(ic, ic->ic_bss, 1); } if (ic->ic_opmode != IEEE80211_M_MONITOR) { rt2860_enable_tsf_sync(sc); rt2860_set_gp_timer(sc, 500); } /* turn link LED on */ rt2860_set_leds(sc, RT2860_LED_RADIO | (IEEE80211_IS_CHAN_2GHZ(ic->ic_bss->ni_chan) ? RT2860_LED_LINK_2GHZ : RT2860_LED_LINK_5GHZ)); break; } return sc->sc_newstate(ic, nstate, arg); } /* * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46, * 93C66 or 93C86). */ uint16_t rt2860_eeprom_read(struct rt2860_softc *sc, uint8_t addr) { uint32_t tmp; uint16_t val; int n; /* clock C once before the first command */ RT2860_EEPROM_CTL(sc, 0); RT2860_EEPROM_CTL(sc, RT2860_S); RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_C); RT2860_EEPROM_CTL(sc, RT2860_S); /* write start bit (1) */ RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_D); RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_D | RT2860_C); /* write READ opcode (10) */ RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_D); RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_D | RT2860_C); RT2860_EEPROM_CTL(sc, RT2860_S); RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_C); /* write address (A5-A0 or A7-A0) */ n = ((RAL_READ(sc, RT2860_PCI_EECTRL) & 0x30) == 0) ? 5 : 7; for (; n >= 0; n--) { RT2860_EEPROM_CTL(sc, RT2860_S | (((addr >> n) & 1) << RT2860_SHIFT_D)); RT2860_EEPROM_CTL(sc, RT2860_S | (((addr >> n) & 1) << RT2860_SHIFT_D) | RT2860_C); } RT2860_EEPROM_CTL(sc, RT2860_S); /* read data Q15-Q0 */ val = 0; for (n = 15; n >= 0; n--) { RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_C); tmp = RAL_READ(sc, RT2860_PCI_EECTRL); val |= ((tmp & RT2860_Q) >> RT2860_SHIFT_Q) << n; RT2860_EEPROM_CTL(sc, RT2860_S); } RT2860_EEPROM_CTL(sc, 0); /* clear Chip Select and clock C */ RT2860_EEPROM_CTL(sc, RT2860_S); RT2860_EEPROM_CTL(sc, 0); RT2860_EEPROM_CTL(sc, RT2860_C); return val; } void rt2860_intr_coherent(struct rt2860_softc *sc) { uint32_t tmp; /* DMA finds data coherent event when checking the DDONE bit */ DPRINTF(("Tx/Rx Coherent interrupt\n")); /* restart DMA engine */ tmp = RAL_READ(sc, RT2860_WPDMA_GLO_CFG); tmp &= ~(RT2860_TX_WB_DDONE | RT2860_RX_DMA_EN | RT2860_TX_DMA_EN); RAL_WRITE(sc, RT2860_WPDMA_GLO_CFG, tmp); (void)rt2860_txrx_enable(sc); } void rt2860_drain_stats_fifo(struct rt2860_softc *sc) { struct ifnet *ifp = &sc->sc_ic.ic_if; struct ieee80211_amrr_node *amn; uint32_t stat; uint8_t wcid, mcs, pid; /* drain Tx status FIFO (maxsize = 16) */ while ((stat = RAL_READ(sc, RT2860_TX_STAT_FIFO)) & RT2860_TXQ_VLD) { DPRINTFN(4, ("tx stat 0x%08x\n", stat)); wcid = (stat >> RT2860_TXQ_WCID_SHIFT) & 0xff; /* if no ACK was requested, no feedback is available */ if (!(stat & RT2860_TXQ_ACKREQ) || wcid == 0xff) continue; /* update per-STA AMRR stats */ amn = &sc->amn[wcid]; amn->amn_txcnt++; if (stat & RT2860_TXQ_OK) { /* * Check if there were retries, ie if the Tx success * rate is different from the requested rate. Note * that it works only because we do not allow rate * fallback from OFDM to CCK. */ mcs = (stat >> RT2860_TXQ_MCS_SHIFT) & 0x7f; pid = (stat >> RT2860_TXQ_PID_SHIFT) & 0xf; if (mcs + 1 != pid) amn->amn_retrycnt++; } else { amn->amn_retrycnt++; ifp->if_oerrors++; } } } void rt2860_tx_intr(struct rt2860_softc *sc, int qid) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct rt2860_tx_ring *ring = &sc->txq[qid]; uint32_t hw; rt2860_drain_stats_fifo(sc); hw = RAL_READ(sc, RT2860_TX_DTX_IDX(qid)); while (ring->next != hw) { struct rt2860_tx_data *data = ring->data[ring->next]; if (data != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); data->m= NULL; ieee80211_release_node(ic, data->ni); data->ni = NULL; SLIST_INSERT_HEAD(&sc->data_pool, data, next); ring->data[ring->next] = NULL; ifp->if_opackets++; } ring->queued--; ring->next = (ring->next + 1) % RT2860_TX_RING_COUNT; } sc->sc_tx_timer = 0; if (ring->queued < RT2860_TX_RING_COUNT) sc->qfullmsk &= ~(1 << qid); ifp->if_flags &= ~IFF_OACTIVE; rt2860_start(ifp); } /* * Return the Rx chain with the highest RSSI for a given frame. */ static __inline uint8_t rt2860_maxrssi_chain(struct rt2860_softc *sc, const struct rt2860_rxwi *rxwi) { uint8_t rxchain = 0; if (sc->nrxchains > 1) { if (rxwi->rssi[1] > rxwi->rssi[rxchain]) rxchain = 1; if (sc->nrxchains > 2) if (rxwi->rssi[2] > rxwi->rssi[rxchain]) rxchain = 2; } return rxchain; } void rt2860_rx_intr(struct rt2860_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct ieee80211_frame *wh; struct ieee80211_rxinfo rxi; struct ieee80211_node *ni; struct mbuf *m, *m1; uint32_t hw; uint8_t ant, rssi; int error; #if NBPFILTER > 0 struct rt2860_rx_radiotap_header *tap; struct mbuf mb; uint16_t phy; #endif hw = RAL_READ(sc, RT2860_FS_DRX_IDX) & 0xfff; while (sc->rxq.cur != hw) { struct rt2860_rx_data *data = &sc->rxq.data[sc->rxq.cur]; struct rt2860_rxd *rxd = &sc->rxq.rxd[sc->rxq.cur]; struct rt2860_rxwi *rxwi; bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, sc->rxq.cur * sizeof (struct rt2860_rxd), sizeof (struct rt2860_rxd), BUS_DMASYNC_POSTREAD); if (__predict_false(!(rxd->sdl0 & htole16(RT2860_RX_DDONE)))) { DPRINTF(("RXD DDONE bit not set!\n")); break; /* should not happen */ } if (__predict_false(rxd->flags & htole32(RT2860_RX_CRCERR | RT2860_RX_ICVERR))) { ifp->if_ierrors++; goto skip; } if (__predict_false(rxd->flags & htole32(RT2860_RX_MICERR))) { /* report MIC failures to net80211 for TKIP */ ic->ic_stats.is_rx_locmicfail++; ieee80211_michael_mic_failure(ic, 0/* XXX */); ifp->if_ierrors++; goto skip; } MGETHDR(m1, M_DONTWAIT, MT_DATA); if (__predict_false(m1 == NULL)) { ifp->if_ierrors++; goto skip; } MCLGET(m1, M_DONTWAIT); if (__predict_false(!(m1->m_flags & M_EXT))) { m_freem(m1); ifp->if_ierrors++; goto skip; } bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, data->map); error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *), MCLBYTES, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT); if (__predict_false(error != 0)) { m_freem(m1); /* try to reload the old mbuf */ error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT); if (__predict_false(error != 0)) { panic("%s: could not load old rx mbuf", sc->sc_dev.dv_xname); } /* physical address may have changed */ rxd->sdp0 = htole32(data->map->dm_segs[0].ds_addr); ifp->if_ierrors++; goto skip; } /* * New mbuf successfully loaded, update Rx ring and continue * processing. */ m = data->m; data->m = m1; rxd->sdp0 = htole32(data->map->dm_segs[0].ds_addr); rxwi = mtod(m, struct rt2860_rxwi *); /* finalize mbuf */ m->m_pkthdr.rcvif = ifp; m->m_data = (caddr_t)(rxwi + 1); m->m_pkthdr.len = m->m_len = letoh16(rxwi->len) & 0xfff; wh = mtod(m, struct ieee80211_frame *); rxi.rxi_flags = 0; if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { /* frame is decrypted by hardware */ wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED; rxi.rxi_flags |= IEEE80211_RXI_HWDEC; } /* HW may insert 2 padding bytes after 802.11 header */ if (rxd->flags & htole32(RT2860_RX_L2PAD)) { u_int hdrlen = ieee80211_get_hdrlen(wh); ovbcopy(wh, (caddr_t)wh + 2, hdrlen); m->m_data += 2; wh = mtod(m, struct ieee80211_frame *); } ant = rt2860_maxrssi_chain(sc, rxwi); rssi = rxwi->rssi[ant]; #if NBPFILTER > 0 if (__predict_true(sc->sc_drvbpf == NULL)) goto skipbpf; tap = &sc->sc_rxtap; tap->wr_flags = 0; tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq); tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags); tap->wr_antsignal = rssi; tap->wr_antenna = ant; tap->wr_dbm_antsignal = rt2860_rssi2dbm(sc, rssi, ant); tap->wr_rate = 2; /* in case it can't be found below */ phy = letoh16(rxwi->phy); switch (phy & RT2860_PHY_MODE) { case RT2860_PHY_CCK: switch ((phy & RT2860_PHY_MCS) & ~RT2860_PHY_SHPRE) { case 0: tap->wr_rate = 2; break; case 1: tap->wr_rate = 4; break; case 2: tap->wr_rate = 11; break; case 3: tap->wr_rate = 22; break; } if (phy & RT2860_PHY_SHPRE) tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; break; case RT2860_PHY_OFDM: switch (phy & RT2860_PHY_MCS) { case 0: tap->wr_rate = 12; break; case 1: tap->wr_rate = 18; break; case 2: tap->wr_rate = 24; break; case 3: tap->wr_rate = 36; break; case 4: tap->wr_rate = 48; break; case 5: tap->wr_rate = 72; break; case 6: tap->wr_rate = 96; break; case 7: tap->wr_rate = 108; break; } break; } mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_rxtap_len; mb.m_next = m; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); skipbpf: #endif /* grab a reference to the source node */ ni = ieee80211_find_rxnode(ic, wh); /* send the frame to the 802.11 layer */ rxi.rxi_rssi = rssi; rxi.rxi_tstamp = 0; /* unused */ ieee80211_input(ifp, m, ni, &rxi); /* node is no longer needed */ ieee80211_release_node(ic, ni); skip: rxd->sdl0 &= ~htole16(RT2860_RX_DDONE); bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, sc->rxq.cur * sizeof (struct rt2860_rxd), sizeof (struct rt2860_rxd), BUS_DMASYNC_PREWRITE); sc->rxq.cur = (sc->rxq.cur + 1) % RT2860_RX_RING_COUNT; } /* tell HW what we have processed */ RAL_WRITE(sc, RT2860_RX_CALC_IDX, (sc->rxq.cur - 1) % RT2860_RX_RING_COUNT); } void rt2860_tbtt_intr(struct rt2860_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; #ifndef IEEE80211_STA_ONLY if (ic->ic_opmode == IEEE80211_M_HOSTAP) { /* one less beacon until next DTIM */ if (ic->ic_dtim_count == 0) ic->ic_dtim_count = ic->ic_dtim_period - 1; else ic->ic_dtim_count--; /* update dynamic parts of beacon */ rt2860_setup_beacon(sc); /* flush buffered multicast frames */ if (ic->ic_dtim_count == 0) ieee80211_notify_dtim(ic); } #endif /* check if protection mode has changed */ if ((sc->sc_ic_flags ^ ic->ic_flags) & IEEE80211_F_USEPROT) { rt2860_updateprot(ic); sc->sc_ic_flags = ic->ic_flags; } } void rt2860_gp_intr(struct rt2860_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; DPRINTFN(2, ("GP timeout state=%d\n", ic->ic_state)); if (ic->ic_state == IEEE80211_S_SCAN) ieee80211_next_scan(&ic->ic_if); else if (ic->ic_state == IEEE80211_S_RUN) rt2860_updatestats(sc); } int rt2860_intr(void *arg) { struct rt2860_softc *sc = arg; uint32_t r; r = RAL_READ(sc, RT2860_INT_STATUS); if (__predict_false(r == 0xffffffff)) return 0; /* device likely went away */ if (r == 0) return 0; /* not for us */ /* acknowledge interrupts */ RAL_WRITE(sc, RT2860_INT_STATUS, r); if (r & RT2860_TX_RX_COHERENT) rt2860_intr_coherent(sc); if (r & RT2860_MAC_INT_2) /* TX status */ rt2860_drain_stats_fifo(sc); if (r & RT2860_TX_DONE_INT5) rt2860_tx_intr(sc, 5); if (r & RT2860_RX_DONE_INT) rt2860_rx_intr(sc); if (r & RT2860_TX_DONE_INT4) rt2860_tx_intr(sc, 4); if (r & RT2860_TX_DONE_INT3) rt2860_tx_intr(sc, 3); if (r & RT2860_TX_DONE_INT2) rt2860_tx_intr(sc, 2); if (r & RT2860_TX_DONE_INT1) rt2860_tx_intr(sc, 1); if (r & RT2860_TX_DONE_INT0) rt2860_tx_intr(sc, 0); if (r & RT2860_MAC_INT_0) /* TBTT */ rt2860_tbtt_intr(sc); if (r & RT2860_MAC_INT_3) /* Auto wakeup */ /* TBD wakeup */; if (r & RT2860_MAC_INT_4) /* GP timer */ rt2860_gp_intr(sc); return 1; } int rt2860_tx(struct rt2860_softc *sc, struct mbuf *m, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct rt2860_node *rn = (void *)ni; struct rt2860_tx_ring *ring; struct rt2860_tx_data *data; struct rt2860_txd *txd; struct rt2860_txwi *txwi; struct ieee80211_frame *wh; struct mbuf *m1; bus_dma_segment_t *seg; u_int hdrlen; uint16_t qos, dur; uint8_t type, qsel, mcs, pid, tid, qid; int nsegs, ntxds, hasqos, ridx, ctl_ridx, error; /* the data pool contains at least one element, pick the first */ data = SLIST_FIRST(&sc->data_pool); wh = mtod(m, struct ieee80211_frame *); hdrlen = ieee80211_get_hdrlen(wh); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; if ((hasqos = ieee80211_has_qos(wh))) { qos = ieee80211_get_qos(wh); tid = qos & IEEE80211_QOS_TID; qid = ieee80211_up_to_ac(ic, tid); } else { tid = 0; qid = (type == IEEE80211_FC0_TYPE_MGT) ? sc->mgtqid : EDCA_AC_BE; } ring = &sc->txq[qid]; /* pickup a rate index */ if (IEEE80211_IS_MULTICAST(wh->i_addr1) || type != IEEE80211_FC0_TYPE_DATA) { ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1; ctl_ridx = rt2860_rates[ridx].ctl_ridx; } else if (ic->ic_fixed_rate != -1) { ridx = sc->fixed_ridx; ctl_ridx = rt2860_rates[ridx].ctl_ridx; } else { ridx = rn->ridx[ni->ni_txrate]; ctl_ridx = rn->ctl_ridx[ni->ni_txrate]; } /* get MCS code from rate index */ mcs = rt2860_rates[ridx].mcs; /* setup TX Wireless Information */ txwi = data->txwi; txwi->flags = 0; txwi->xflags = 0; txwi->wcid = (type == IEEE80211_FC0_TYPE_DATA) ? RT2860_AID2WCID(ni->ni_associd) : 0xff; txwi->len = htole16(m->m_pkthdr.len); if (rt2860_rates[ridx].phy == IEEE80211_T_DS) { txwi->phy = htole16(RT2860_PHY_CCK); if (ridx != RT2860_RIDX_CCK1 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) mcs |= RT2860_PHY_SHPRE; } else txwi->phy = htole16(RT2860_PHY_OFDM); txwi->phy |= htole16(mcs); /* * We store the MCS code into the driver-private PacketID field. * The PacketID is latched into TX_STAT_FIFO when Tx completes so * that we know at which initial rate the frame was transmitted. * We add 1 to the MCS code because setting the PacketID field to * 0 means that we don't want feedback in TX_STAT_FIFO. */ pid = (mcs + 1) & 0xf; txwi->len |= htole16(pid << RT2860_TX_PID_SHIFT); /* check if RTS/CTS or CTS-to-self protection is required */ if (!IEEE80211_IS_MULTICAST(wh->i_addr1) && (m->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold || ((ic->ic_flags & IEEE80211_F_USEPROT) && rt2860_rates[ridx].phy == IEEE80211_T_OFDM))) txwi->txop = RT2860_TX_TXOP_HT; else txwi->txop = RT2860_TX_TXOP_BACKOFF; if (!IEEE80211_IS_MULTICAST(wh->i_addr1) && (!hasqos || (qos & IEEE80211_QOS_ACK_POLICY_MASK) != IEEE80211_QOS_ACK_POLICY_NOACK)) { txwi->xflags |= RT2860_TX_ACK; if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) dur = rt2860_rates[ctl_ridx].sp_ack_dur; else dur = rt2860_rates[ctl_ridx].lp_ack_dur; *(uint16_t *)wh->i_dur = htole16(dur + sc->sifs); } #ifndef IEEE80211_STA_ONLY /* ask MAC to insert timestamp into probe responses */ if ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) /* NOTE: beacons do not pass through tx_data() */ txwi->flags |= RT2860_TX_TS; #endif #if NBPFILTER > 0 if (__predict_false(sc->sc_drvbpf != NULL)) { struct rt2860_tx_radiotap_header *tap = &sc->sc_txtap; struct mbuf mb; tap->wt_flags = 0; tap->wt_rate = rt2860_rates[ridx].rate; tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags); tap->wt_hwqueue = qid; if (mcs & RT2860_PHY_SHPRE) tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_txtap_len; mb.m_next = m; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); } #endif /* copy and trim 802.11 header */ memcpy(txwi + 1, wh, hdrlen); m_adj(m, hdrlen); error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, BUS_DMA_NOWAIT); if (__predict_false(error != 0 && error != EFBIG)) { printf("%s: can't map mbuf (error %d)\n", sc->sc_dev.dv_xname, error); m_freem(m); return error; } if (__predict_true(error == 0)) { /* determine how many TXDs are required */ ntxds = 1 + (data->map->dm_nsegs / 2); if (ring->queued + ntxds >= RT2860_TX_RING_COUNT) { /* not enough free TXDs, force mbuf defrag */ bus_dmamap_unload(sc->sc_dmat, data->map); error = EFBIG; } } if (__predict_false(error != 0)) { /* too many fragments, linearize */ MGETHDR(m1, M_DONTWAIT, MT_DATA); if (m1 == NULL) { m_freem(m); return ENOBUFS; } if (m->m_pkthdr.len > MHLEN) { MCLGET(m1, M_DONTWAIT); if (!(m1->m_flags & M_EXT)) { m_freem(m); m_freem(m1); return ENOBUFS; } } m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, caddr_t)); m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len; m_freem(m); m = m1; error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, BUS_DMA_NOWAIT); if (__predict_false(error != 0)) { printf("%s: can't map mbuf (error %d)\n", sc->sc_dev.dv_xname, error); m_freem(m); return error; } /* determine how many TXDs are now required */ ntxds = 1 + (data->map->dm_nsegs / 2); if (ring->queued + ntxds >= RT2860_TX_RING_COUNT) { /* this is a hopeless case, drop the mbuf! */ bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(m); return ENOBUFS; } } qsel = (qid < EDCA_NUM_AC) ? RT2860_TX_QSEL_EDCA : RT2860_TX_QSEL_MGMT; /* first segment is TXWI + 802.11 header */ txd = &ring->txd[ring->cur]; txd->sdp0 = htole32(data->paddr); txd->sdl0 = htole16(sizeof (struct rt2860_txwi) + hdrlen); txd->flags = qsel; /* setup payload segments */ seg = data->map->dm_segs; for (nsegs = data->map->dm_nsegs; nsegs >= 2; nsegs -= 2) { txd->sdp1 = htole32(seg->ds_addr); txd->sdl1 = htole16(seg->ds_len); seg++; ring->cur = (ring->cur + 1) % RT2860_TX_RING_COUNT; /* grab a new Tx descriptor */ txd = &ring->txd[ring->cur]; txd->sdp0 = htole32(seg->ds_addr); txd->sdl0 = htole16(seg->ds_len); txd->flags = qsel; seg++; } /* finalize last segment */ if (nsegs > 0) { txd->sdp1 = htole32(seg->ds_addr); txd->sdl1 = htole16(seg->ds_len | RT2860_TX_LS1); } else { txd->sdl0 |= htole16(RT2860_TX_LS0); txd->sdl1 = 0; } /* remove from the free pool and link it into the SW Tx slot */ SLIST_REMOVE_HEAD(&sc->data_pool, next); data->m = m; data->ni = ni; ring->data[ring->cur] = data; bus_dmamap_sync(sc->sc_dmat, sc->txwi_map, (caddr_t)txwi - sc->txwi_vaddr, RT2860_TXWI_DMASZ, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_PREWRITE); DPRINTFN(4, ("sending frame qid=%d wcid=%d nsegs=%d ridx=%d\n", qid, txwi->wcid, data->map->dm_nsegs, ridx)); ring->cur = (ring->cur + 1) % RT2860_TX_RING_COUNT; ring->queued += ntxds; if (ring->queued >= RT2860_TX_RING_COUNT) sc->qfullmsk |= 1 << qid; /* kick Tx */ RAL_WRITE(sc, RT2860_TX_CTX_IDX(qid), ring->cur); return 0; } void rt2860_start(struct ifnet *ifp) { struct rt2860_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; struct mbuf *m; if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; for (;;) { if (SLIST_EMPTY(&sc->data_pool) || sc->qfullmsk != 0) { ifp->if_flags |= IFF_OACTIVE; break; } /* send pending management frames first */ IF_DEQUEUE(&ic->ic_mgtq, m); if (m != NULL) { ni = (void *)m->m_pkthdr.rcvif; goto sendit; } if (ic->ic_state != IEEE80211_S_RUN) break; /* send buffered frames for power-save mode */ IF_DEQUEUE(&ic->ic_pwrsaveq, m); if (m != NULL) { ni = (void *)m->m_pkthdr.rcvif; goto sendit; } /* encapsulate and send data frames */ IFQ_DEQUEUE(&ifp->if_snd, m); if (m == NULL) break; #if NBPFILTER > 0 if (ifp->if_bpf != NULL) bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT); #endif if ((m = ieee80211_encap(ifp, m, &ni)) == NULL) continue; sendit: #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT); #endif if (rt2860_tx(sc, m, ni) != 0) { ieee80211_release_node(ic, ni); ifp->if_oerrors++; continue; } sc->sc_tx_timer = 5; ifp->if_timer = 1; } } void rt2860_watchdog(struct ifnet *ifp) { struct rt2860_softc *sc = ifp->if_softc; ifp->if_timer = 0; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { printf("%s: device timeout\n", sc->sc_dev.dv_xname); rt2860_init(ifp); ifp->if_oerrors++; return; } ifp->if_timer = 1; } ieee80211_watchdog(ifp); } int rt2860_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct rt2860_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ifaddr *ifa; struct ifreq *ifr; int s, error = 0; s = splnet(); switch (cmd) { case SIOCSIFADDR: ifa = (struct ifaddr *)data; ifp->if_flags |= IFF_UP; #ifdef INET if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(&ic->ic_ac, ifa); #endif /* FALLTHROUGH */ case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (!(ifp->if_flags & IFF_RUNNING)) rt2860_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) rt2860_stop(ifp, 1); } break; case SIOCADDMULTI: case SIOCDELMULTI: ifr = (struct ifreq *)data; error = (cmd == SIOCADDMULTI) ? ether_addmulti(ifr, &ic->ic_ac) : ether_delmulti(ifr, &ic->ic_ac); if (error == ENETRESET) error = 0; break; case SIOCS80211CHANNEL: /* * This allows for fast channel switching in monitor mode * (used by kismet). In IBSS mode, we must explicitly reset * the interface to generate a new beacon frame. */ error = ieee80211_ioctl(ifp, cmd, data); if (error == ENETRESET && ic->ic_opmode == IEEE80211_M_MONITOR) { if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) rt2860_set_chan(sc, ic->ic_ibss_chan); error = 0; } break; default: error = ieee80211_ioctl(ifp, cmd, data); } if (error == ENETRESET) { if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) rt2860_init(ifp); error = 0; } splx(s); return error; } /* * Reading and writing from/to the BBP is different from RT2560 and RT2661. * We access the BBP through the 8051 microcontroller unit which means that * the microcode must be loaded first. */ void rt2860_mcu_bbp_write(struct rt2860_softc *sc, uint8_t reg, uint8_t val) { int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RT2860_H2M_BBPAGENT) & RT2860_BBP_CSR_KICK)) break; DELAY(1); } if (ntries == 100) { printf("%s: could not write to BBP through MCU\n", sc->sc_dev.dv_xname); return; } RAL_WRITE(sc, RT2860_H2M_BBPAGENT, RT2860_BBP_RW_PARALLEL | RT2860_BBP_CSR_KICK | reg << 8 | val); RAL_BARRIER_WRITE(sc); (void)rt2860_mcu_cmd(sc, RT2860_MCU_CMD_BBP, 0); DELAY(1000); } uint8_t rt2860_mcu_bbp_read(struct rt2860_softc *sc, uint8_t reg) { uint32_t val; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RT2860_H2M_BBPAGENT) & RT2860_BBP_CSR_KICK)) break; DELAY(1); } if (ntries == 100) { printf("%s: could not read from BBP through MCU\n", sc->sc_dev.dv_xname); return 0; } RAL_WRITE(sc, RT2860_H2M_BBPAGENT, RT2860_BBP_RW_PARALLEL | RT2860_BBP_CSR_KICK | RT2860_BBP_CSR_READ | reg << 8); RAL_BARRIER_WRITE(sc); (void)rt2860_mcu_cmd(sc, RT2860_MCU_CMD_BBP, 0); DELAY(1000); for (ntries = 0; ntries < 100; ntries++) { val = RAL_READ(sc, RT2860_H2M_BBPAGENT); if (!(val & RT2860_BBP_CSR_KICK)) return val & 0xff; DELAY(1); } printf("%s: could not read from BBP through MCU\n", sc->sc_dev.dv_xname); return 0; } /* * Write to one of the 4 programmable 24-bit RF registers. */ void rt2860_rf_write(struct rt2860_softc *sc, uint8_t reg, uint32_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RT2860_RF_CSR_CFG0) & RT2860_RF_REG_CTRL)) break; DELAY(1); } if (ntries == 100) { printf("%s: could not write to RF\n", sc->sc_dev.dv_xname); return; } /* RF registers are 24-bit on the RT2860 */ tmp = RT2860_RF_REG_CTRL | 24 << RT2860_RF_REG_WIDTH_SHIFT | (val & 0x3fffff) << 2 | (reg & 3); RAL_WRITE(sc, RT2860_RF_CSR_CFG0, tmp); } /* * Send a command to the 8051 microcontroller unit. */ int rt2860_mcu_cmd(struct rt2860_softc *sc, uint8_t cmd, uint16_t arg) { int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RT2860_H2M_MAILBOX) & RT2860_H2M_BUSY)) break; DELAY(2); } if (ntries == 100) return EIO; RAL_WRITE(sc, RT2860_H2M_MAILBOX, RT2860_H2M_BUSY | RT2860_TOKEN_NO_INTR << 16 | arg); RAL_BARRIER_WRITE(sc); RAL_WRITE(sc, RT2860_HOST_CMD, cmd); return 0; } void rt2860_enable_mrr(struct rt2860_softc *sc) { #define CCK(mcs) (mcs) #define OFDM(mcs) (1 << 3 | (mcs)) RAL_WRITE(sc, RT2860_LG_FBK_CFG0, OFDM(6) << 28 | /* 54->48 */ OFDM(5) << 24 | /* 48->36 */ OFDM(4) << 20 | /* 36->24 */ OFDM(3) << 16 | /* 24->18 */ OFDM(2) << 12 | /* 18->12 */ OFDM(1) << 8 | /* 12-> 9 */ OFDM(0) << 4 | /* 9-> 6 */ OFDM(0)); /* 6-> 6 */ RAL_WRITE(sc, RT2860_LG_FBK_CFG1, CCK(2) << 12 | /* 11->5.5 */ CCK(1) << 8 | /* 5.5-> 2 */ CCK(0) << 4 | /* 2-> 1 */ CCK(0)); /* 1-> 1 */ #undef OFDM #undef CCK } void rt2860_set_txpreamble(struct rt2860_softc *sc) { uint32_t tmp; tmp = RAL_READ(sc, RT2860_AUTO_RSP_CFG); tmp &= ~RT2860_CCK_SHORT_EN; if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) tmp |= RT2860_CCK_SHORT_EN; RAL_WRITE(sc, RT2860_AUTO_RSP_CFG, tmp); } void rt2860_set_basicrates(struct rt2860_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; /* set basic rates mask */ if (ic->ic_curmode == IEEE80211_MODE_11B) RAL_WRITE(sc, RT2860_LEGACY_BASIC_RATE, 0x003); else if (ic->ic_curmode == IEEE80211_MODE_11A) RAL_WRITE(sc, RT2860_LEGACY_BASIC_RATE, 0x150); else /* 11g */ RAL_WRITE(sc, RT2860_LEGACY_BASIC_RATE, 0x15f); } void rt2860_select_chan_group(struct rt2860_softc *sc, int group) { uint32_t tmp; rt2860_mcu_bbp_write(sc, 62, 0x37 - sc->lna[group]); rt2860_mcu_bbp_write(sc, 63, 0x37 - sc->lna[group]); rt2860_mcu_bbp_write(sc, 64, 0x37 - sc->lna[group]); rt2860_mcu_bbp_write(sc, 86, 0x00); if (group == 0) { if (sc->ext_2ghz_lna) { rt2860_mcu_bbp_write(sc, 82, 0x62); rt2860_mcu_bbp_write(sc, 75, 0x46); } else { rt2860_mcu_bbp_write(sc, 82, 0x84); rt2860_mcu_bbp_write(sc, 75, 0x50); } } else { if (sc->ext_5ghz_lna) { rt2860_mcu_bbp_write(sc, 82, 0xf2); rt2860_mcu_bbp_write(sc, 75, 0x46); } else { rt2860_mcu_bbp_write(sc, 82, 0xf2); rt2860_mcu_bbp_write(sc, 75, 0x50); } } tmp = RAL_READ(sc, RT2860_TX_BAND_CFG); tmp &= ~(RT2860_5G_BAND_SEL_N | RT2860_5G_BAND_SEL_P); tmp |= (group == 0) ? RT2860_5G_BAND_SEL_N : RT2860_5G_BAND_SEL_P; RAL_WRITE(sc, RT2860_TX_BAND_CFG, tmp); /* enable appropriate Power Amplifiers and Low Noise Amplifiers */ tmp = RT2860_RFTR_EN | RT2860_TRSW_EN; if (group == 0) { /* 2GHz */ tmp |= RT2860_PA_PE_G0_EN | RT2860_LNA_PE_G0_EN; if (sc->ntxchains > 1) tmp |= RT2860_PA_PE_G1_EN; if (sc->nrxchains > 1) tmp |= RT2860_LNA_PE_G1_EN; } else { /* 5GHz */ tmp |= RT2860_PA_PE_A0_EN | RT2860_LNA_PE_A0_EN; if (sc->ntxchains > 1) tmp |= RT2860_PA_PE_A1_EN; if (sc->nrxchains > 1) tmp |= RT2860_LNA_PE_A1_EN; } RAL_WRITE(sc, RT2860_TX_PIN_CFG, tmp); /* set initial AGC value */ if (group == 0) rt2860_mcu_bbp_write(sc, 66, 0x2e + sc->lna[0]); else rt2860_mcu_bbp_write(sc, 66, 0x32 + (sc->lna[group] * 5) / 3); } void rt2860_set_chan(struct rt2860_softc *sc, struct ieee80211_channel *c) { struct ieee80211com *ic = &sc->sc_ic; const struct rfprog *rfprog = rt2860_rf2850; uint32_t r2, r3, r4; int8_t txpow1, txpow2; u_int i, chan, group; chan = ieee80211_chan2ieee(ic, c); if (chan == 0 || chan == IEEE80211_CHAN_ANY) return; /* find the settings for this channel (we know it exists) */ for (i = 0; rfprog[i].chan != chan; i++); r2 = rfprog[i].r2; if (sc->ntxchains == 1) r2 |= 1 << 12; /* 1T: disable Tx chain 2 */ if (sc->nrxchains == 1) r2 |= 1 << 15 | 1 << 4; /* 1R: disable Rx chains 2 & 3 */ else if (sc->nrxchains == 2) r2 |= 1 << 4; /* 2R: disable Rx chain 3 */ /* use Tx power values from EEPROM */ txpow1 = sc->txpow1[i]; txpow2 = sc->txpow2[i]; if (IEEE80211_IS_CHAN_5GHZ(c)) { if (txpow1 >= 0) txpow1 = txpow1 << 1; else txpow1 = (7 + txpow1) << 1 | 1; if (txpow2 >= 0) txpow2 = txpow2 << 1; else txpow2 = (7 + txpow2) << 1 | 1; } r3 = rfprog[i].r3 | txpow1 << 7; r4 = rfprog[i].r4 | sc->freq << 13 | txpow2 << 4; rt2860_rf_write(sc, RT2860_RF1, rfprog[i].r1); rt2860_rf_write(sc, RT2860_RF2, r2); rt2860_rf_write(sc, RT2860_RF3, r3); rt2860_rf_write(sc, RT2860_RF4, r4); DELAY(200); rt2860_rf_write(sc, RT2860_RF1, rfprog[i].r1); rt2860_rf_write(sc, RT2860_RF2, r2); rt2860_rf_write(sc, RT2860_RF3, r3 | 1); rt2860_rf_write(sc, RT2860_RF4, r4); DELAY(200); rt2860_rf_write(sc, RT2860_RF1, rfprog[i].r1); rt2860_rf_write(sc, RT2860_RF2, r2); rt2860_rf_write(sc, RT2860_RF3, r3); rt2860_rf_write(sc, RT2860_RF4, r4); /* 802.11a uses a 16 microseconds short interframe space */ sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10; /* determine channel group */ if (chan <= 14) group = 0; else if (chan <= 64) group = 1; else if (chan <= 128) group = 2; else group = 3; /* XXX necessary only when group has changed! */ rt2860_select_chan_group(sc, group); DELAY(1000); } void rt2860_set_leds(struct rt2860_softc *sc, uint16_t which) { (void)rt2860_mcu_cmd(sc, RT2860_MCU_CMD_LEDS, which | (sc->leds & 0x7f)); } /* * Hardware has a general-purpose programmable timer interrupt that can * periodically raise MAC_INT_4. */ void rt2860_set_gp_timer(struct rt2860_softc *sc, int ms) { uint32_t tmp; /* disable GP timer before reprogramming it */ tmp = RAL_READ(sc, RT2860_INT_TIMER_EN); RAL_WRITE(sc, RT2860_INT_TIMER_EN, tmp & ~RT2860_GP_TIMER_EN); if (ms == 0) return; tmp = RAL_READ(sc, RT2860_INT_TIMER_CFG); ms *= 16; /* Unit: 64us */ tmp = (tmp & 0xffff) | ms << RT2860_GP_TIMER_SHIFT; RAL_WRITE(sc, RT2860_INT_TIMER_CFG, tmp); /* enable GP timer */ tmp = RAL_READ(sc, RT2860_INT_TIMER_EN); RAL_WRITE(sc, RT2860_INT_TIMER_EN, tmp | RT2860_GP_TIMER_EN); } void rt2860_set_bssid(struct rt2860_softc *sc, const uint8_t *bssid) { RAL_WRITE(sc, RT2860_MAC_BSSID_DW0, bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24); RAL_WRITE(sc, RT2860_MAC_BSSID_DW1, bssid[4] | bssid[5] << 8); } void rt2860_set_macaddr(struct rt2860_softc *sc, const uint8_t *addr) { RAL_WRITE(sc, RT2860_MAC_ADDR_DW0, addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24); RAL_WRITE(sc, RT2860_MAC_ADDR_DW1, addr[4] | addr[5] << 8 | 0xff << 16); } void rt2860_updateslot(struct ieee80211com *ic) { struct rt2860_softc *sc = ic->ic_softc; uint32_t tmp; tmp = RAL_READ(sc, RT2860_BKOFF_SLOT_CFG); tmp &= ~0xff; tmp |= (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; RAL_WRITE(sc, RT2860_BKOFF_SLOT_CFG, tmp); } void rt2860_updateprot(struct ieee80211com *ic) { struct rt2860_softc *sc = ic->ic_softc; uint32_t tmp; tmp = RT2860_RTSTH_EN | RT2860_PROT_NAV_SHORT | RT2860_TXOP_ALLOW_ALL; /* setup protection frame rate (MCS code) */ tmp |= (ic->ic_curmode == IEEE80211_MODE_11A) ? rt2860_rates[RT2860_RIDX_OFDM6].mcs : rt2860_rates[RT2860_RIDX_CCK11].mcs; /* CCK frames don't require protection */ RAL_WRITE(sc, RT2860_CCK_PROT_CFG, tmp); if (ic->ic_flags & IEEE80211_F_USEPROT) { if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) tmp |= RT2860_PROT_CTRL_RTS_CTS; else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) tmp |= RT2860_PROT_CTRL_CTS; } RAL_WRITE(sc, RT2860_OFDM_PROT_CFG, tmp); } void rt2860_updateedca(struct ieee80211com *ic) { struct rt2860_softc *sc = ic->ic_softc; int aci; /* update MAC TX configuration registers */ for (aci = 0; aci < EDCA_NUM_AC; aci++) { RAL_WRITE(sc, RT2860_EDCA_AC_CFG(aci), ic->ic_edca_ac[aci].ac_ecwmax << 16 | ic->ic_edca_ac[aci].ac_ecwmin << 12 | ic->ic_edca_ac[aci].ac_aifsn << 8 | ic->ic_edca_ac[aci].ac_txoplimit); } /* update SCH/DMA registers too */ RAL_WRITE(sc, RT2860_WMM_AIFSN_CFG, ic->ic_edca_ac[EDCA_AC_VO].ac_aifsn << 12 | ic->ic_edca_ac[EDCA_AC_VI].ac_aifsn << 8 | ic->ic_edca_ac[EDCA_AC_BK].ac_aifsn << 4 | ic->ic_edca_ac[EDCA_AC_BE].ac_aifsn); RAL_WRITE(sc, RT2860_WMM_CWMIN_CFG, ic->ic_edca_ac[EDCA_AC_VO].ac_ecwmin << 12 | ic->ic_edca_ac[EDCA_AC_VI].ac_ecwmin << 8 | ic->ic_edca_ac[EDCA_AC_BK].ac_ecwmin << 4 | ic->ic_edca_ac[EDCA_AC_BE].ac_ecwmin); RAL_WRITE(sc, RT2860_WMM_CWMAX_CFG, ic->ic_edca_ac[EDCA_AC_VO].ac_ecwmax << 12 | ic->ic_edca_ac[EDCA_AC_VI].ac_ecwmax << 8 | ic->ic_edca_ac[EDCA_AC_BK].ac_ecwmax << 4 | ic->ic_edca_ac[EDCA_AC_BE].ac_ecwmax); RAL_WRITE(sc, RT2860_WMM_TXOP0_CFG, ic->ic_edca_ac[EDCA_AC_BK].ac_txoplimit << 16 | ic->ic_edca_ac[EDCA_AC_BE].ac_txoplimit); RAL_WRITE(sc, RT2860_WMM_TXOP1_CFG, ic->ic_edca_ac[EDCA_AC_VO].ac_txoplimit << 16 | ic->ic_edca_ac[EDCA_AC_VI].ac_txoplimit); } int rt2860_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, struct ieee80211_key *k) { struct rt2860_softc *sc = ic->ic_softc; bus_size_t base; uint32_t attr; uint8_t mode, wcid, iv[8]; /* defer setting of WEP keys until interface is brought up */ if ((ic->ic_if.if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) return 0; /* map net80211 cipher to RT2860 security mode */ switch (k->k_cipher) { case IEEE80211_CIPHER_WEP40: mode = RT2860_MODE_WEP40; break; case IEEE80211_CIPHER_WEP104: mode = RT2860_MODE_WEP104; break; case IEEE80211_CIPHER_TKIP: mode = RT2860_MODE_TKIP; break; case IEEE80211_CIPHER_CCMP: mode = RT2860_MODE_AES_CCMP; break; default: return EINVAL; } if (k->k_flags & IEEE80211_KEY_GROUP) { wcid = 0; /* NB: update WCID0 for group keys */ base = RT2860_SKEY(0, k->k_id); } else { wcid = RT2860_AID2WCID(ni->ni_associd); base = RT2860_PKEY(wcid); } if (k->k_cipher == IEEE80211_CIPHER_TKIP) { RAL_WRITE_REGION_1(sc, base, k->k_key, 16); #ifndef IEEE80211_STA_ONLY if (ic->ic_opmode == IEEE80211_M_HOSTAP) { RAL_WRITE_REGION_1(sc, base + 16, &k->k_key[16], 8); RAL_WRITE_REGION_1(sc, base + 24, &k->k_key[24], 8); } else #endif { RAL_WRITE_REGION_1(sc, base + 16, &k->k_key[24], 8); RAL_WRITE_REGION_1(sc, base + 24, &k->k_key[16], 8); } } else RAL_WRITE_REGION_1(sc, base, k->k_key, k->k_len); if (!(k->k_flags & IEEE80211_KEY_GROUP) || (k->k_flags & IEEE80211_KEY_TX)) { /* set initial packet number in IV+EIV */ if (k->k_cipher == IEEE80211_CIPHER_WEP40 || k->k_cipher == IEEE80211_CIPHER_WEP104) { uint32_t val = arc4random(); /* skip weak IVs from Fluhrer/Mantin/Shamir */ if (val >= 0x03ff00 && (val & 0xf8ff00) == 0x00ff00) val += 0x000100; iv[0] = val; iv[1] = val >> 8; iv[2] = val >> 16; iv[3] = k->k_id << 6; iv[4] = iv[5] = iv[6] = iv[7] = 0; } else { if (k->k_cipher == IEEE80211_CIPHER_TKIP) { iv[0] = k->k_tsc >> 8; iv[1] = (iv[0] | 0x20) & 0x7f; iv[2] = k->k_tsc; } else /* CCMP */ { iv[0] = k->k_tsc; iv[1] = k->k_tsc >> 8; iv[2] = 0; } iv[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV; iv[4] = k->k_tsc >> 16; iv[5] = k->k_tsc >> 24; iv[6] = k->k_tsc >> 32; iv[7] = k->k_tsc >> 40; } RAL_WRITE_REGION_1(sc, RT2860_IVEIV(wcid), iv, 8); } if (k->k_flags & IEEE80211_KEY_GROUP) { /* install group key */ attr = RAL_READ(sc, RT2860_SKEY_MODE_0_7); attr &= ~(0xf << (k->k_id * 4)); attr |= mode << (k->k_id * 4); RAL_WRITE(sc, RT2860_SKEY_MODE_0_7, attr); } else { /* install pairwise key */ attr = RAL_READ(sc, RT2860_WCID_ATTR(wcid)); attr = (attr & ~0xf) | (mode << 1) | RT2860_RX_PKEY_EN; RAL_WRITE(sc, RT2860_WCID_ATTR(wcid), attr); } return 0; } void rt2860_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni, struct ieee80211_key *k) { struct rt2860_softc *sc = ic->ic_softc; uint32_t attr; uint8_t wcid; if (k->k_flags & IEEE80211_KEY_GROUP) { /* remove group key */ attr = RAL_READ(sc, RT2860_SKEY_MODE_0_7); attr &= ~(0xf << (k->k_id * 4)); RAL_WRITE(sc, RT2860_SKEY_MODE_0_7, attr); } else { /* remove pairwise key */ wcid = RT2860_AID2WCID(ni->ni_associd); attr = RAL_READ(sc, RT2860_WCID_ATTR(wcid)); attr &= ~0xf; RAL_WRITE(sc, RT2860_WCID_ATTR(wcid), attr); } } #if NBPFILTER > 0 int8_t rt2860_rssi2dbm(struct rt2860_softc *sc, uint8_t rssi, uint8_t rxchain) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_channel *c = ic->ic_ibss_chan; int delta; if (IEEE80211_IS_CHAN_5GHZ(c)) { u_int chan = ieee80211_chan2ieee(ic, c); delta = sc->rssi_5ghz[rxchain]; /* determine channel group */ if (chan <= 64) delta -= sc->lna[1]; else if (chan <= 128) delta -= sc->lna[2]; else delta -= sc->lna[3]; } else delta = sc->rssi_2ghz[rxchain] - sc->lna[0]; return -12 - delta - rssi; } #endif /* * Add `delta' (signed) to each 4-bit sub-word of a 32-bit word. * Used to adjust per-rate Tx power registers. */ static __inline uint32_t b4inc(uint32_t b32, int8_t delta) { int8_t i, b4; for (i = 0; i < 8; i++) { b4 = b32 & 0xf; b4 += delta; if (b4 < 0) b4 = 0; else if (b4 > 0xf) b4 = 0xf; b32 = b32 >> 4 | b4 << 28; } return b32; } const char * rt2860_get_rf(uint8_t rev) { switch (rev) { case RT2860_RF_2820: return "RT2820"; case RT2860_RF_2850: return "RT2850"; case RT2860_RF_2720: return "RT2720"; case RT2860_RF_2750: return "RT2750"; default: return "unknown"; } } int rt2860_read_eeprom(struct rt2860_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint16_t val; int8_t delta_2ghz, delta_5ghz; int ridx, ant, i; /* read EEPROM version */ val = rt2860_eeprom_read(sc, RT2860_EEPROM_VERSION); DPRINTF(("EEPROM rev=%d, FAE=%d\n", val & 0xff, val >> 8)); /* read MAC address */ val = rt2860_eeprom_read(sc, RT2860_EEPROM_MAC01); ic->ic_myaddr[0] = val & 0xff; ic->ic_myaddr[1] = val >> 8; val = rt2860_eeprom_read(sc, RT2860_EEPROM_MAC23); ic->ic_myaddr[2] = val & 0xff; ic->ic_myaddr[3] = val >> 8; val = rt2860_eeprom_read(sc, RT2860_EEPROM_MAC45); ic->ic_myaddr[4] = val & 0xff; ic->ic_myaddr[5] = val >> 8; /* read country code */ val = rt2860_eeprom_read(sc, RT2860_EEPROM_COUNTRY); DPRINTF(("EEPROM region code=0x%04x\n", val)); /* read default BBP settings */ for (i = 0; i < 8; i++) { val = rt2860_eeprom_read(sc, RT2860_EEPROM_BBP_BASE + i); sc->bbp[i].val = val & 0xff; sc->bbp[i].reg = val >> 8; DPRINTF(("BBP%d=0x%02x\n", sc->bbp[i].reg, sc->bbp[i].val)); } /* read RF frequency offset from EEPROM */ val = rt2860_eeprom_read(sc, RT2860_EEPROM_FREQ_LEDS); sc->freq = ((val & 0xff) != 0xff) ? val & 0xff : 0; DPRINTF(("EEPROM freq offset %d\n", sc->freq & 0xff)); if ((sc->leds = val >> 8) != 0xff) { /* read LEDs operating mode */ sc->led[0] = rt2860_eeprom_read(sc, RT2860_EEPROM_LED1); sc->led[1] = rt2860_eeprom_read(sc, RT2860_EEPROM_LED2); sc->led[2] = rt2860_eeprom_read(sc, RT2860_EEPROM_LED3); } else { /* broken EEPROM, use default settings */ sc->leds = 0x01; sc->led[0] = 0x5555; sc->led[1] = 0x2221; sc->led[2] = 0xa9f8; } DPRINTF(("EEPROM LED mode=0x%02x, LEDs=0x%04x/0x%04x/0x%04x\n", sc->leds, sc->led[0], sc->led[1], sc->led[2])); /* read RF information */ val = rt2860_eeprom_read(sc, RT2860_EEPROM_ANTENNA); if (val == 0xffff) { /* broken EEPROM, default to RF2820 1T2R */ DPRINTF(("invalid EEPROM antenna info, using default\n")); sc->rf_rev = RT2860_RF_2820; sc->ntxchains = 1; sc->nrxchains = 2; } else { sc->rf_rev = (val >> 8) & 0xf; sc->ntxchains = (val >> 4) & 0xf; sc->nrxchains = val & 0xf; } DPRINTF(("EEPROM RF rev=0x%02x chains=%dT%dR\n", sc->rf_rev, sc->ntxchains, sc->nrxchains)); /* check if RF supports automatic Tx access gain control */ val = rt2860_eeprom_read(sc, RT2860_EEPROM_CONFIG); DPRINTF(("EEPROM CFG 0x%04x\n", val)); if ((val & 0xff) != 0xff) { sc->ext_5ghz_lna = (val >> 3) & 1; sc->ext_2ghz_lna = (val >> 2) & 1; sc->calib_2ghz = sc->calib_5ghz = 0; /* XXX (val >> 1) & 1 */; } if (sc->sc_flags & RT2860_ADVANCED_PS) { /* read PCIe power save level */ val = rt2860_eeprom_read(sc, RT2860_EEPROM_PCIE_PSLEVEL); if ((val & 0xff) != 0xff) { sc->pslevel = val & 0x3; val = rt2860_eeprom_read(sc, RT2860_EEPROM_REV); if (val >> 8 != 0x92 || !(val & 0x80)) sc->pslevel = MIN(sc->pslevel, 1); DPRINTF(("EEPROM PCIe PS Level=%d\n", sc->pslevel)); } } /* read power settings for 2GHz channels */ for (i = 0; i < 14; i += 2) { val = rt2860_eeprom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE1 + i / 2); sc->txpow1[i + 0] = (int8_t)(val & 0xff); sc->txpow1[i + 1] = (int8_t)(val >> 8); val = rt2860_eeprom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE2 + i / 2); sc->txpow2[i + 0] = (int8_t)(val & 0xff); sc->txpow2[i + 1] = (int8_t)(val >> 8); } /* fix broken Tx power entries */ for (i = 0; i < 14; i++) { if (sc->txpow1[i] < 0 || sc->txpow1[i] > 31) sc->txpow1[i] = 5; if (sc->txpow2[i] < 0 || sc->txpow2[i] > 31) sc->txpow2[i] = 5; DPRINTF(("chan %d: power1=%d, power2=%d\n", rt2860_rf2850[i].chan, sc->txpow1[i], sc->txpow2[i])); } /* read power settings for 5GHz channels */ for (i = 0; i < 36; i += 2) { val = rt2860_eeprom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE1 + i / 2); sc->txpow1[i + 14] = (int8_t)(val & 0xff); sc->txpow1[i + 15] = (int8_t)(val >> 8); val = rt2860_eeprom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE2 + i / 2); sc->txpow2[i + 14] = (int8_t)(val & 0xff); sc->txpow2[i + 15] = (int8_t)(val >> 8); } /* fix broken Tx power entries */ for (i = 0; i < 36; i++) { if (sc->txpow1[14 + i] < -7 || sc->txpow1[14 + i] > 15) sc->txpow1[14 + i] = 5; if (sc->txpow2[14 + i] < -7 || sc->txpow2[14 + i] > 15) sc->txpow2[14 + i] = 5; DPRINTF(("chan %d: power1=%d, power2=%d\n", rt2860_rf2850[14 + i].chan, sc->txpow1[14 + i], sc->txpow2[14 + i])); } /* read Tx power compensation for each Tx rate */ val = rt2860_eeprom_read(sc, RT2860_EEPROM_DELTAPWR); delta_2ghz = delta_5ghz = 0; if ((val & 0xff) != 0xff && (val & 0x80)) { delta_2ghz = val & 0xf; if (!(val & 0x40)) /* negative number */ delta_2ghz = -delta_2ghz; } val >>= 8; if ((val & 0xff) != 0xff && (val & 0x80)) { delta_5ghz = val & 0xf; if (!(val & 0x40)) /* negative number */ delta_5ghz = -delta_5ghz; } DPRINTF(("power compensation=%d (2GHz), %d (5GHz)\n", delta_2ghz, delta_5ghz)); for (ridx = 0; ridx < 5; ridx++) { uint32_t reg; val = rt2860_eeprom_read(sc, RT2860_EEPROM_RPWR + ridx); reg = (uint32_t)val << 16; val = rt2860_eeprom_read(sc, RT2860_EEPROM_RPWR + ridx + 1); reg |= val; sc->txpow20mhz[ridx] = reg; sc->txpow40mhz_2ghz[ridx] = b4inc(reg, delta_2ghz); sc->txpow40mhz_5ghz[ridx] = b4inc(reg, delta_5ghz); DPRINTF(("ridx %d: power 20MHz=0x%08x, 40MHz/2GHz=0x%08x, " "40MHz/5GHz=0x%08x\n", ridx, sc->txpow20mhz[ridx], sc->txpow40mhz_2ghz[ridx], sc->txpow40mhz_5ghz[ridx])); } /* read factory-calibrated samples for temperature compensation */ val = rt2860_eeprom_read(sc, RT2860_EEPROM_TSSI1_2GHZ); sc->tssi_2ghz[0] = val & 0xff; /* [-4] */ sc->tssi_2ghz[1] = val >> 8; /* [-3] */ val = rt2860_eeprom_read(sc, RT2860_EEPROM_TSSI2_2GHZ); sc->tssi_2ghz[2] = val & 0xff; /* [-2] */ sc->tssi_2ghz[3] = val >> 8; /* [-1] */ val = rt2860_eeprom_read(sc, RT2860_EEPROM_TSSI3_2GHZ); sc->tssi_2ghz[4] = val & 0xff; /* [+0] */ sc->tssi_2ghz[5] = val >> 8; /* [+1] */ val = rt2860_eeprom_read(sc, RT2860_EEPROM_TSSI4_2GHZ); sc->tssi_2ghz[6] = val & 0xff; /* [+2] */ sc->tssi_2ghz[7] = val >> 8; /* [+3] */ val = rt2860_eeprom_read(sc, RT2860_EEPROM_TSSI5_2GHZ); sc->tssi_2ghz[8] = val & 0xff; /* [+4] */ sc->step_2ghz = val >> 8; DPRINTF(("TSSI 2GHz: 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x " "0x%02x 0x%02x step=%d\n", sc->tssi_2ghz[0], sc->tssi_2ghz[1], sc->tssi_2ghz[2], sc->tssi_2ghz[3], sc->tssi_2ghz[4], sc->tssi_2ghz[5], sc->tssi_2ghz[6], sc->tssi_2ghz[7], sc->tssi_2ghz[8], sc->step_2ghz)); /* check that ref value is correct, otherwise disable calibration */ if (sc->tssi_2ghz[4] == 0xff) sc->calib_2ghz = 0; val = rt2860_eeprom_read(sc, RT2860_EEPROM_TSSI1_5GHZ); sc->tssi_5ghz[0] = val & 0xff; /* [-4] */ sc->tssi_5ghz[1] = val >> 8; /* [-3] */ val = rt2860_eeprom_read(sc, RT2860_EEPROM_TSSI2_5GHZ); sc->tssi_5ghz[2] = val & 0xff; /* [-2] */ sc->tssi_5ghz[3] = val >> 8; /* [-1] */ val = rt2860_eeprom_read(sc, RT2860_EEPROM_TSSI3_5GHZ); sc->tssi_5ghz[4] = val & 0xff; /* [+0] */ sc->tssi_5ghz[5] = val >> 8; /* [+1] */ val = rt2860_eeprom_read(sc, RT2860_EEPROM_TSSI4_5GHZ); sc->tssi_5ghz[6] = val & 0xff; /* [+2] */ sc->tssi_5ghz[7] = val >> 8; /* [+3] */ val = rt2860_eeprom_read(sc, RT2860_EEPROM_TSSI5_5GHZ); sc->tssi_5ghz[8] = val & 0xff; /* [+4] */ sc->step_5ghz = val >> 8; DPRINTF(("TSSI 5GHz: 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x " "0x%02x 0x%02x step=%d\n", sc->tssi_5ghz[0], sc->tssi_5ghz[1], sc->tssi_5ghz[2], sc->tssi_5ghz[3], sc->tssi_5ghz[4], sc->tssi_5ghz[5], sc->tssi_5ghz[6], sc->tssi_5ghz[7], sc->tssi_5ghz[8], sc->step_5ghz)); /* check that ref value is correct, otherwise disable calibration */ if (sc->tssi_5ghz[4] == 0xff) sc->calib_5ghz = 0; /* read RSSI offsets and LNA gains from EEPROM */ val = rt2860_eeprom_read(sc, RT2860_EEPROM_RSSI1_2GHZ); sc->rssi_2ghz[0] = val & 0xff; /* Ant A */ sc->rssi_2ghz[1] = val >> 8; /* Ant B */ val = rt2860_eeprom_read(sc, RT2860_EEPROM_RSSI2_2GHZ); sc->rssi_2ghz[2] = val & 0xff; /* Ant C */ sc->lna[2] = val >> 8; /* channel group 2 */ val = rt2860_eeprom_read(sc, RT2860_EEPROM_RSSI1_5GHZ); sc->rssi_5ghz[0] = val & 0xff; /* Ant A */ sc->rssi_5ghz[1] = val >> 8; /* Ant B */ val = rt2860_eeprom_read(sc, RT2860_EEPROM_RSSI2_5GHZ); sc->rssi_5ghz[2] = val & 0xff; /* Ant C */ sc->lna[3] = val >> 8; /* channel group 3 */ val = rt2860_eeprom_read(sc, RT2860_EEPROM_LNA); sc->lna[0] = val & 0xff; /* channel group 0 */ sc->lna[1] = val >> 8; /* channel group 1 */ /* fix broken 5GHz LNA entries */ if (sc->lna[2] == 0 || sc->lna[2] == 0xff) { DPRINTF(("invalid LNA for channel group %d\n", 2)); sc->lna[2] = sc->lna[1]; } if (sc->lna[3] == 0 || sc->lna[3] == 0xff) { DPRINTF(("invalid LNA for channel group %d\n", 3)); sc->lna[3] = sc->lna[1]; } /* fix broken RSSI offset entries */ for (ant = 0; ant < 3; ant++) { if (sc->rssi_2ghz[ant] < -10 || sc->rssi_2ghz[ant] > 10) { DPRINTF(("invalid RSSI%d offset: %d (2GHz)\n", ant + 1, sc->rssi_2ghz[ant])); sc->rssi_2ghz[ant] = 0; } if (sc->rssi_5ghz[ant] < -10 || sc->rssi_5ghz[ant] > 10) { DPRINTF(("invalid RSSI%d offset: %d (5GHz)\n", ant + 1, sc->rssi_5ghz[ant])); sc->rssi_5ghz[ant] = 0; } } return 0; } int rt2860_bbp_init(struct rt2860_softc *sc) { int i, ntries; /* wait for BBP to wake up */ for (ntries = 0; ntries < 20; ntries++) { uint8_t bbp0 = rt2860_mcu_bbp_read(sc, 0); if (bbp0 != 0 && bbp0 != 0xff) break; } if (ntries == 20) { printf("%s: timeout waiting for BBP to wake up\n", sc->sc_dev.dv_xname); return ETIMEDOUT; } /* initialize BBP registers to default values */ for (i = 0; i < nitems(rt2860_def_bbp); i++) { rt2860_mcu_bbp_write(sc, rt2860_def_bbp[i].reg, rt2860_def_bbp[i].val); } /* fix BBP84 for RT2860E */ if ((sc->mac_rev & 0xffff) != 0x0101) rt2860_mcu_bbp_write(sc, 84, 0x19); /* fix BBP69 and BBP73 for RT2860C */ if (sc->mac_rev == 0x28600100) { rt2860_mcu_bbp_write(sc, 69, 0x16); rt2860_mcu_bbp_write(sc, 73, 0x12); } return 0; } int rt2860_txrx_enable(struct rt2860_softc *sc) { uint32_t tmp; int ntries; /* enable Tx/Rx DMA engine */ RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_TX_EN); RAL_BARRIER_READ_WRITE(sc); for (ntries = 0; ntries < 200; ntries++) { tmp = RAL_READ(sc, RT2860_WPDMA_GLO_CFG); if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0) break; DELAY(1000); } if (ntries == 200) { printf("%s: timeout waiting for DMA engine\n", sc->sc_dev.dv_xname); return ETIMEDOUT; } DELAY(50); tmp |= RT2860_RX_DMA_EN | RT2860_TX_DMA_EN | RT2860_WPDMA_BT_SIZE64 << RT2860_WPDMA_BT_SIZE_SHIFT; RAL_WRITE(sc, RT2860_WPDMA_GLO_CFG, tmp); /* set Rx filter */ tmp = RT2860_DROP_CRC_ERR | RT2860_DROP_PHY_ERR; if (sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR) { tmp |= RT2860_DROP_UC_NOME | RT2860_DROP_DUPL | RT2860_DROP_CTS | RT2860_DROP_BA | RT2860_DROP_ACK | RT2860_DROP_VER_ERR | RT2860_DROP_CTRL_RSV | RT2860_DROP_CFACK | RT2860_DROP_CFEND; if (sc->sc_ic.ic_opmode == IEEE80211_M_STA) tmp |= RT2860_DROP_RTS | RT2860_DROP_PSPOLL; } RAL_WRITE(sc, RT2860_RX_FILTR_CFG, tmp); RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_RX_EN | RT2860_MAC_TX_EN); return 0; } int rt2860_init(struct ifnet *ifp) { struct rt2860_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; uint8_t bbp1, bbp3; int i, qid, ridx, ntries, error; /* for CardBus, power on the socket */ if (!(sc->sc_flags & RT2860_ENABLED)) { if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) { printf("%s: could not enable device\n", sc->sc_dev.dv_xname); return EIO; } sc->sc_flags |= RT2860_ENABLED; } rt2860_stop(ifp, 0); tmp = RAL_READ(sc, RT2860_WPDMA_GLO_CFG); tmp &= 0xff0; RAL_WRITE(sc, RT2860_WPDMA_GLO_CFG, tmp); RAL_WRITE(sc, RT2860_WPDMA_RST_IDX, 0xffffffff); /* PBF hardware reset */ RAL_WRITE(sc, RT2860_SYS_CTRL, 0xe1f); RAL_BARRIER_WRITE(sc); RAL_WRITE(sc, RT2860_SYS_CTRL, 0xe00); if (!(sc->sc_flags & RT2860_FWLOADED)) { if ((error = rt2860_load_microcode(sc)) != 0) { printf("%s: could not load 8051 microcode\n", sc->sc_dev.dv_xname); rt2860_stop(ifp, 1); return error; } sc->sc_flags |= RT2860_FWLOADED; } IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); rt2860_set_macaddr(sc, ic->ic_myaddr); /* init Tx power for all Tx rates (from EEPROM) */ for (ridx = 0; ridx < 5; ridx++) { if (sc->txpow20mhz[ridx] == 0xffffffff) continue; RAL_WRITE(sc, RT2860_TX_PWR_CFG(ridx), sc->txpow20mhz[ridx]); } for (ntries = 0; ntries < 100; ntries++) { tmp = RAL_READ(sc, RT2860_WPDMA_GLO_CFG); if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0) break; DELAY(1000); } if (ntries == 100) { printf("%s: timeout waiting for DMA engine\n", sc->sc_dev.dv_xname); rt2860_stop(ifp, 1); return ETIMEDOUT; } tmp &= 0xff0; RAL_WRITE(sc, RT2860_WPDMA_GLO_CFG, tmp); /* reset Rx ring and all 6 Tx rings */ RAL_WRITE(sc, RT2860_WPDMA_RST_IDX, 0x1003f); /* PBF hardware reset */ RAL_WRITE(sc, RT2860_SYS_CTRL, 0xe1f); RAL_BARRIER_WRITE(sc); RAL_WRITE(sc, RT2860_SYS_CTRL, 0xe00); RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, RT2860_BBP_HRST | RT2860_MAC_SRST); RAL_BARRIER_WRITE(sc); RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, 0); for (i = 0; i < nitems(rt2860_def_mac); i++) RAL_WRITE(sc, rt2860_def_mac[i].reg, rt2860_def_mac[i].val); /* wait while MAC is busy */ for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RT2860_MAC_STATUS_REG) & (RT2860_RX_STATUS_BUSY | RT2860_TX_STATUS_BUSY))) break; DELAY(1000); } if (ntries == 100) { printf("%s: timeout waiting for MAC\n", sc->sc_dev.dv_xname); rt2860_stop(ifp, 1); return ETIMEDOUT; } /* clear Host to MCU mailbox */ RAL_WRITE(sc, RT2860_H2M_BBPAGENT, 0); RAL_WRITE(sc, RT2860_H2M_MAILBOX, 0); if ((error = rt2860_bbp_init(sc)) != 0) { rt2860_stop(ifp, 1); return error; } /* clear RX WCID search table */ RAL_SET_REGION_4(sc, RT2860_WCID_ENTRY(0), 0, 512); /* clear pairwise key table */ RAL_SET_REGION_4(sc, RT2860_PKEY(0), 0, 2048); /* clear IV/EIV table */ RAL_SET_REGION_4(sc, RT2860_IVEIV(0), 0, 512); /* clear WCID attribute table */ RAL_SET_REGION_4(sc, RT2860_WCID_ATTR(0), 0, 256); /* clear shared key table */ RAL_SET_REGION_4(sc, RT2860_SKEY(0, 0), 0, 8 * 32); /* clear shared key mode */ RAL_SET_REGION_4(sc, RT2860_SKEY_MODE_0_7, 0, 4); /* init Tx rings (4 EDCAs + HCCA + Mgt) */ for (qid = 0; qid < 6; qid++) { RAL_WRITE(sc, RT2860_TX_BASE_PTR(qid), sc->txq[qid].paddr); RAL_WRITE(sc, RT2860_TX_MAX_CNT(qid), RT2860_TX_RING_COUNT); RAL_WRITE(sc, RT2860_TX_CTX_IDX(qid), 0); } /* init Rx ring */ RAL_WRITE(sc, RT2860_RX_BASE_PTR, sc->rxq.paddr); RAL_WRITE(sc, RT2860_RX_MAX_CNT, RT2860_RX_RING_COUNT); RAL_WRITE(sc, RT2860_RX_CALC_IDX, RT2860_RX_RING_COUNT - 1); /* setup maximum buffer sizes */ RAL_WRITE(sc, RT2860_MAX_LEN_CFG, 1 << 12 | (MCLBYTES - sizeof (struct rt2860_rxwi) - 2)); for (ntries = 0; ntries < 100; ntries++) { tmp = RAL_READ(sc, RT2860_WPDMA_GLO_CFG); if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0) break; DELAY(1000); } if (ntries == 100) { printf("%s: timeout waiting for DMA engine\n", sc->sc_dev.dv_xname); rt2860_stop(ifp, 1); return ETIMEDOUT; } tmp &= 0xff0; RAL_WRITE(sc, RT2860_WPDMA_GLO_CFG, tmp); /* disable interrupts mitigation */ RAL_WRITE(sc, RT2860_DELAY_INT_CFG, 0); /* write vendor-specific BBP values (from EEPROM) */ for (i = 0; i < 8; i++) { if (sc->bbp[i].reg == 0 || sc->bbp[i].reg == 0xff) continue; rt2860_mcu_bbp_write(sc, sc->bbp[i].reg, sc->bbp[i].val); } /* send LEDs operating mode to microcontroller */ (void)rt2860_mcu_cmd(sc, RT2860_MCU_CMD_LED1, sc->led[0]); (void)rt2860_mcu_cmd(sc, RT2860_MCU_CMD_LED2, sc->led[1]); (void)rt2860_mcu_cmd(sc, RT2860_MCU_CMD_LED3, sc->led[2]); /* disable non-existing Rx chains */ bbp3 = rt2860_mcu_bbp_read(sc, 3); bbp3 &= ~(1 << 3 | 1 << 4); if (sc->nrxchains == 2) bbp3 |= 1 << 3; else if (sc->nrxchains == 3) bbp3 |= 1 << 4; rt2860_mcu_bbp_write(sc, 3, bbp3); /* disable non-existing Tx chains */ bbp1 = rt2860_mcu_bbp_read(sc, 1); if (sc->ntxchains == 1) bbp1 &= ~(1 << 3 | 1 << 4); rt2860_mcu_bbp_write(sc, 1, bbp1); /* select default channel */ ic->ic_bss->ni_chan = ic->ic_ibss_chan; rt2860_set_chan(sc, ic->ic_ibss_chan); /* XXX not clear what the following 8051 command does.. */ (void)rt2860_mcu_cmd(sc, RT2860_MCU_CMD_BOOT, 0); /* set RTS threshold */ tmp = RAL_READ(sc, RT2860_TX_RTS_CFG); tmp &= ~0xffff00; tmp |= ic->ic_rtsthreshold << 8; RAL_WRITE(sc, RT2860_TX_RTS_CFG, tmp); /* setup initial protection mode */ sc->sc_ic_flags = ic->ic_flags; rt2860_updateprot(ic); /* turn radio LED on */ rt2860_set_leds(sc, RT2860_LED_RADIO); /* enable Tx/Rx DMA engine */ if ((error = rt2860_txrx_enable(sc)) != 0) { rt2860_stop(ifp, 1); return error; } /* clear pending interrupts */ RAL_WRITE(sc, RT2860_INT_STATUS, 0xffffffff); /* enable interrupts */ RAL_WRITE(sc, RT2860_INT_MASK, 0x3fffc); if (sc->sc_flags & RT2860_ADVANCED_PS) (void)rt2860_mcu_cmd(sc, RT2860_MCU_CMD_PSLEVEL, sc->pslevel); ifp->if_flags &= ~IFF_OACTIVE; ifp->if_flags |= IFF_RUNNING; if (ic->ic_flags & IEEE80211_F_WEPON) { /* install WEP keys */ for (i = 0; i < IEEE80211_WEP_NKID; i++) (void)rt2860_set_key(ic, NULL, &ic->ic_nw_keys[i]); } if (ic->ic_opmode != IEEE80211_M_MONITOR) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); else ieee80211_new_state(ic, IEEE80211_S_RUN, -1); return 0; } void rt2860_stop(struct ifnet *ifp, int disable) { struct rt2860_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; int qid; if (ifp->if_flags & IFF_RUNNING) rt2860_set_leds(sc, 0); /* turn all LEDs off */ sc->sc_tx_timer = 0; ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ /* disable interrupts */ RAL_WRITE(sc, RT2860_INT_MASK, 0); /* disable GP timer */ rt2860_set_gp_timer(sc, 0); /* disable Rx */ tmp = RAL_READ(sc, RT2860_MAC_SYS_CTRL); tmp &= ~(RT2860_MAC_RX_EN | RT2860_MAC_TX_EN); RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, tmp); /* reset adapter */ RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, RT2860_BBP_HRST | RT2860_MAC_SRST); RAL_BARRIER_WRITE(sc); RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, 0); /* reset Tx and Rx rings (and reclaim TXWIs) */ sc->qfullmsk = 0; for (qid = 0; qid < 6; qid++) rt2860_reset_tx_ring(sc, &sc->txq[qid]); rt2860_reset_rx_ring(sc, &sc->rxq); /* for CardBus, power down the socket */ if (disable && sc->sc_disable != NULL) { if (sc->sc_flags & RT2860_ENABLED) { (*sc->sc_disable)(sc); sc->sc_flags &= ~(RT2860_ENABLED | RT2860_FWLOADED); } } } int rt2860_load_microcode(struct rt2860_softc *sc) { u_char *ucode; size_t size; int error, ntries; if ((error = loadfirmware("ral-rt2860", &ucode, &size)) != 0) { printf("%s: error %d, could not read firmware file %s\n", sc->sc_dev.dv_xname, error, "ral-rt2860"); return error; } /* set "host program ram write selection" bit */ RAL_WRITE(sc, RT2860_SYS_CTRL, RT2860_HST_PM_SEL); /* write microcode image */ RAL_WRITE_REGION_1(sc, RT2860_FW_BASE, ucode, size); /* kick microcontroller unit */ RAL_WRITE(sc, RT2860_SYS_CTRL, 0); RAL_BARRIER_WRITE(sc); RAL_WRITE(sc, RT2860_SYS_CTRL, RT2860_MCU_RESET); RAL_WRITE(sc, RT2860_H2M_BBPAGENT, 0); RAL_WRITE(sc, RT2860_H2M_MAILBOX, 0); free(ucode, M_DEVBUF); /* wait until microcontroller is ready */ RAL_BARRIER_READ_WRITE(sc); for (ntries = 0; ntries < 1000; ntries++) { if (RAL_READ(sc, RT2860_SYS_CTRL) & RT2860_MCU_READY) break; DELAY(1000); } if (ntries == 1000) { printf("%s: timeout waiting for MCU to initialize\n", sc->sc_dev.dv_xname); return ETIMEDOUT; } return 0; } /* * This function is called periodically to adjust Tx power based on * temperature variation. */ void rt2860_calib(struct rt2860_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; const uint8_t *tssi; uint8_t step, bbp49; int8_t ridx, d; /* read current temperature */ bbp49 = rt2860_mcu_bbp_read(sc, 49); if (IEEE80211_IS_CHAN_2GHZ(ic->ic_bss->ni_chan)) { tssi = &sc->tssi_2ghz[4]; step = sc->step_2ghz; } else { tssi = &sc->tssi_5ghz[4]; step = sc->step_5ghz; } if (bbp49 < tssi[0]) { /* lower than reference */ /* use higher Tx power than default */ for (d = 0; d > -4 && bbp49 <= tssi[d - 1]; d--); } else if (bbp49 > tssi[0]) { /* greater than reference */ /* use lower Tx power than default */ for (d = 0; d < +4 && bbp49 >= tssi[d + 1]; d++); } else { /* use default Tx power */ d = 0; } d *= step; DPRINTF(("BBP49=0x%02x, adjusting Tx power by %d\n", bbp49, d)); /* write adjusted Tx power values for each Tx rate */ for (ridx = 0; ridx < 5; ridx++) { if (sc->txpow20mhz[ridx] == 0xffffffff) continue; RAL_WRITE(sc, RT2860_TX_PWR_CFG(ridx), b4inc(sc->txpow20mhz[ridx], d)); } } #ifndef IEEE80211_STA_ONLY int rt2860_setup_beacon(struct rt2860_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct rt2860_txwi txwi; struct mbuf *m; int ridx; if ((m = ieee80211_beacon_alloc(ic, ic->ic_bss)) == NULL) return ENOBUFS; memset(&txwi, 0, sizeof txwi); txwi.wcid = 0xff; txwi.len = htole16(m->m_pkthdr.len); /* send beacons at the lowest available rate */ ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1; txwi.phy = htole16(rt2860_rates[ridx].mcs); if (rt2860_rates[ridx].phy == IEEE80211_T_OFDM) txwi.phy |= htole16(RT2860_PHY_OFDM); txwi.txop = RT2860_TX_TXOP_HT; txwi.flags = RT2860_TX_TS; RAL_WRITE_REGION_1(sc, RT2860_BCN_BASE(0), (uint8_t *)&txwi, sizeof txwi); RAL_WRITE_REGION_1(sc, RT2860_BCN_BASE(0) + sizeof txwi, mtod(m, uint8_t *), m->m_pkthdr.len); m_freem(m); return 0; } #endif void rt2860_enable_tsf_sync(struct rt2860_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; tmp = RAL_READ(sc, RT2860_BCN_TIME_CFG); tmp &= ~0x1fffff; tmp |= ic->ic_bss->ni_intval * 16; tmp |= RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN; if (ic->ic_opmode == IEEE80211_M_STA) { /* * Local TSF is always updated with remote TSF on beacon * reception. */ tmp |= 1 << RT2860_TSF_SYNC_MODE_SHIFT; } #ifndef IEEE80211_STA_ONLY else if (ic->ic_opmode == IEEE80211_M_IBSS) { tmp |= RT2860_BCN_TX_EN; /* * Local TSF is updated with remote TSF on beacon reception * only if the remote TSF is greater than local TSF. */ tmp |= 2 << RT2860_TSF_SYNC_MODE_SHIFT; } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) { tmp |= RT2860_BCN_TX_EN; /* SYNC with nobody */ tmp |= 3 << RT2860_TSF_SYNC_MODE_SHIFT; } #endif RAL_WRITE(sc, RT2860_BCN_TIME_CFG, tmp); } void rt2860_power(int why, void *arg) { struct rt2860_softc *sc = arg; struct ifnet *ifp = &sc->sc_ic.ic_if; int s; DPRINTF(("%s: rt2860_power(%d)\n", sc->sc_dev.dv_xname, why)); s = splnet(); switch (why) { case PWR_SUSPEND: case PWR_STANDBY: rt2860_stop(ifp, 1); sc->sc_flags &= ~RT2860_FWLOADED; if (sc->sc_power != NULL) (*sc->sc_power)(sc, why); break; case PWR_RESUME: if (ifp->if_flags & IFF_UP) { rt2860_init(ifp); if (sc->sc_power != NULL) (*sc->sc_power)(sc, why); if (ifp->if_flags & IFF_RUNNING) rt2860_start(ifp); } break; } splx(s); }