/* $OpenBSD: rtl81x9.c,v 1.13 2002/02/15 20:45:31 nordin Exp $ */ /* * Copyright (c) 1997, 1998 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /* * RealTek 8129/8139 PCI NIC driver * * Supports several extremely cheap PCI 10/100 adapters based on * the RealTek chipset. Datasheets can be obtained from * www.realtek.com.tw. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is * probably the worst PCI ethernet controller ever made, with the possible * exception of the FEAST chip made by SMC. The 8139 supports bus-master * DMA, but it has a terrible interface that nullifies any performance * gains that bus-master DMA usually offers. * * For transmission, the chip offers a series of four TX descriptor * registers. Each transmit frame must be in a contiguous buffer, aligned * on a longword (32-bit) boundary. This means we almost always have to * do mbuf copies in order to transmit a frame, except in the unlikely * case where a) the packet fits into a single mbuf, and b) the packet * is 32-bit aligned within the mbuf's data area. The presence of only * four descriptor registers means that we can never have more than four * packets queued for transmission at any one time. * * Reception is not much better. The driver has to allocate a single large * buffer area (up to 64K in size) into which the chip will DMA received * frames. Because we don't know where within this region received packets * will begin or end, we have no choice but to copy data from the buffer * area into mbufs in order to pass the packets up to the higher protocol * levels. * * It's impossible given this rotten design to really achieve decent * performance at 100Mbps, unless you happen to have a 400Mhz PII or * some equally overmuscled CPU to drive it. * * On the bright side, the 8139 does have a built-in PHY, although * rather than using an MDIO serial interface like most other NICs, the * PHY registers are directly accessible through the 8139's register * space. The 8139 supports autonegotiation, as well as a 64-bit multicast * filter. * * The 8129 chip is an older version of the 8139 that uses an external PHY * chip. The 8129 has a serial MDIO interface for accessing the MII where * the 8139 lets you directly access the on-board PHY registers. We need * to select which interface to use depending on the chip type. */ #include "bpfilter.h" #include "vlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #include #if NBPFILTER > 0 #include #endif #include /* for vtophys */ #include #include #include #include #include #include #include /* * Various supported PHY vendors/types and their names. Note that * this driver will work with pretty much any MII-compliant PHY, * so failure to positively identify the chip is not a fatal error. */ void rl_tick __P((void *)); void rl_shutdown __P((void *)); int rl_encap __P((struct rl_softc *, struct mbuf * )); void rl_rxeof __P((struct rl_softc *)); void rl_txeof __P((struct rl_softc *)); void rl_start __P((struct ifnet *)); int rl_ioctl __P((struct ifnet *, u_long, caddr_t)); void rl_init __P((void *)); void rl_stop __P((struct rl_softc *)); void rl_watchdog __P((struct ifnet *)); int rl_ifmedia_upd __P((struct ifnet *)); void rl_ifmedia_sts __P((struct ifnet *, struct ifmediareq *)); void rl_eeprom_putbyte __P((struct rl_softc *, int)); void rl_eeprom_getword __P((struct rl_softc *, int, u_int16_t *)); void rl_read_eeprom __P((struct rl_softc *, caddr_t, int, int, int)); void rl_mii_sync __P((struct rl_softc *)); void rl_mii_send __P((struct rl_softc *, u_int32_t, int)); int rl_mii_readreg __P((struct rl_softc *, struct rl_mii_frame *)); int rl_mii_writereg __P((struct rl_softc *, struct rl_mii_frame *)); int rl_miibus_readreg __P((struct device *, int, int)); void rl_miibus_writereg __P((struct device *, int, int, int)); void rl_miibus_statchg __P((struct device *)); u_int8_t rl_calchash __P((caddr_t)); void rl_setmulti __P((struct rl_softc *)); void rl_reset __P((struct rl_softc *)); int rl_list_tx_init __P((struct rl_softc *)); #define EE_SET(x) \ CSR_WRITE_1(sc, RL_EECMD, \ CSR_READ_1(sc, RL_EECMD) | x) #define EE_CLR(x) \ CSR_WRITE_1(sc, RL_EECMD, \ CSR_READ_1(sc, RL_EECMD) & ~x) /* * Send a read command and address to the EEPROM, check for ACK. */ void rl_eeprom_putbyte(sc, addr) struct rl_softc *sc; int addr; { register int d, i; d = addr | RL_EECMD_READ; /* * Feed in each bit and strobe the clock. */ for (i = 0x400; i; i >>= 1) { if (d & i) EE_SET(RL_EE_DATAIN); else EE_CLR(RL_EE_DATAIN); DELAY(100); EE_SET(RL_EE_CLK); DELAY(150); EE_CLR(RL_EE_CLK); DELAY(100); } } /* * Read a word of data stored in the EEPROM at address 'addr.' */ void rl_eeprom_getword(sc, addr, dest) struct rl_softc *sc; int addr; u_int16_t *dest; { register int i; u_int16_t word = 0; /* Enter EEPROM access mode. */ CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL); /* * Send address of word we want to read. */ rl_eeprom_putbyte(sc, addr); CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL); /* * Start reading bits from EEPROM. */ for (i = 0x8000; i; i >>= 1) { EE_SET(RL_EE_CLK); DELAY(100); if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT) word |= i; EE_CLR(RL_EE_CLK); DELAY(100); } /* Turn off EEPROM access mode. */ CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); *dest = word; } /* * Read a sequence of words from the EEPROM. */ void rl_read_eeprom(sc, dest, off, cnt, swap) struct rl_softc *sc; caddr_t dest; int off; int cnt; int swap; { int i; u_int16_t word = 0, *ptr; for (i = 0; i < cnt; i++) { rl_eeprom_getword(sc, off + i, &word); ptr = (u_int16_t *)(dest + (i * 2)); if (swap) *ptr = ntohs(word); else *ptr = word; } } /* * MII access routines are provided for the 8129, which * doesn't have a built-in PHY. For the 8139, we fake things * up by diverting rl_phy_readreg()/rl_phy_writereg() to the * direct access PHY registers. */ #define MII_SET(x) \ CSR_WRITE_1(sc, RL_MII, \ CSR_READ_1(sc, RL_MII) | x) #define MII_CLR(x) \ CSR_WRITE_1(sc, RL_MII, \ CSR_READ_1(sc, RL_MII) & ~x) /* * Sync the PHYs by setting data bit and strobing the clock 32 times. */ void rl_mii_sync(sc) struct rl_softc *sc; { register int i; MII_SET(RL_MII_DIR|RL_MII_DATAOUT); for (i = 0; i < 32; i++) { MII_SET(RL_MII_CLK); DELAY(1); MII_CLR(RL_MII_CLK); DELAY(1); } } /* * Clock a series of bits through the MII. */ void rl_mii_send(sc, bits, cnt) struct rl_softc *sc; u_int32_t bits; int cnt; { int i; MII_CLR(RL_MII_CLK); for (i = (0x1 << (cnt - 1)); i; i >>= 1) { if (bits & i) MII_SET(RL_MII_DATAOUT); else MII_CLR(RL_MII_DATAOUT); DELAY(1); MII_CLR(RL_MII_CLK); DELAY(1); MII_SET(RL_MII_CLK); } } /* * Read an PHY register through the MII. */ int rl_mii_readreg(sc, frame) struct rl_softc *sc; struct rl_mii_frame *frame; { int i, ack, s; s = splimp(); /* * Set up frame for RX. */ frame->mii_stdelim = RL_MII_STARTDELIM; frame->mii_opcode = RL_MII_READOP; frame->mii_turnaround = 0; frame->mii_data = 0; CSR_WRITE_2(sc, RL_MII, 0); /* * Turn on data xmit. */ MII_SET(RL_MII_DIR); rl_mii_sync(sc); /* * Send command/address info. */ rl_mii_send(sc, frame->mii_stdelim, 2); rl_mii_send(sc, frame->mii_opcode, 2); rl_mii_send(sc, frame->mii_phyaddr, 5); rl_mii_send(sc, frame->mii_regaddr, 5); /* Idle bit */ MII_CLR((RL_MII_CLK|RL_MII_DATAOUT)); DELAY(1); MII_SET(RL_MII_CLK); DELAY(1); /* Turn off xmit. */ MII_CLR(RL_MII_DIR); /* Check for ack */ MII_CLR(RL_MII_CLK); DELAY(1); MII_SET(RL_MII_CLK); DELAY(1); ack = CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN; /* * Now try reading data bits. If the ack failed, we still * need to clock through 16 cycles to keep the PHY(s) in sync. */ if (ack) { for(i = 0; i < 16; i++) { MII_CLR(RL_MII_CLK); DELAY(1); MII_SET(RL_MII_CLK); DELAY(1); } goto fail; } for (i = 0x8000; i; i >>= 1) { MII_CLR(RL_MII_CLK); DELAY(1); if (!ack) { if (CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN) frame->mii_data |= i; DELAY(1); } MII_SET(RL_MII_CLK); DELAY(1); } fail: MII_CLR(RL_MII_CLK); DELAY(1); MII_SET(RL_MII_CLK); DELAY(1); splx(s); if (ack) return(1); return(0); } /* * Write to a PHY register through the MII. */ int rl_mii_writereg(sc, frame) struct rl_softc *sc; struct rl_mii_frame *frame; { int s; s = splimp(); /* * Set up frame for TX. */ frame->mii_stdelim = RL_MII_STARTDELIM; frame->mii_opcode = RL_MII_WRITEOP; frame->mii_turnaround = RL_MII_TURNAROUND; /* * Turn on data output. */ MII_SET(RL_MII_DIR); rl_mii_sync(sc); rl_mii_send(sc, frame->mii_stdelim, 2); rl_mii_send(sc, frame->mii_opcode, 2); rl_mii_send(sc, frame->mii_phyaddr, 5); rl_mii_send(sc, frame->mii_regaddr, 5); rl_mii_send(sc, frame->mii_turnaround, 2); rl_mii_send(sc, frame->mii_data, 16); /* Idle bit. */ MII_SET(RL_MII_CLK); DELAY(1); MII_CLR(RL_MII_CLK); DELAY(1); /* * Turn off xmit. */ MII_CLR(RL_MII_DIR); splx(s); return(0); } /* * Calculate CRC of a multicast group address, return the upper 6 bits. */ u_int8_t rl_calchash(addr) caddr_t addr; { u_int32_t crc, carry; int i, j; u_int8_t c; /* Compute CRC for the address value. */ crc = 0xFFFFFFFF; /* initial value */ for (i = 0; i < 6; i++) { c = *(addr + i); for (j = 0; j < 8; j++) { carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01); crc <<= 1; c >>= 1; if (carry) crc = (crc ^ 0x04c11db6) | carry; } } /* return the filter bit position */ return(crc >> 26); } /* * Program the 64-bit multicast hash filter. */ void rl_setmulti(sc) struct rl_softc *sc; { struct ifnet *ifp; int h = 0; u_int32_t hashes[2] = { 0, 0 }; struct arpcom *ac = &sc->arpcom; struct ether_multi *enm; struct ether_multistep step; u_int32_t rxfilt; int mcnt = 0; ifp = &sc->arpcom.ac_if; rxfilt = CSR_READ_4(sc, RL_RXCFG); if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { rxfilt |= RL_RXCFG_RX_MULTI; CSR_WRITE_4(sc, RL_RXCFG, rxfilt); CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF); CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF); return; } /* first, zot all the existing hash bits */ CSR_WRITE_4(sc, RL_MAR0, 0); CSR_WRITE_4(sc, RL_MAR4, 0); /* now program new ones */ ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { mcnt++; h = rl_calchash(enm->enm_addrlo); if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); mcnt++; ETHER_NEXT_MULTI(step, enm); } if (mcnt) rxfilt |= RL_RXCFG_RX_MULTI; else rxfilt &= ~RL_RXCFG_RX_MULTI; CSR_WRITE_4(sc, RL_RXCFG, rxfilt); CSR_WRITE_4(sc, RL_MAR0, hashes[0]); CSR_WRITE_4(sc, RL_MAR4, hashes[1]); } void rl_reset(sc) struct rl_softc *sc; { register int i; CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET); for (i = 0; i < RL_TIMEOUT; i++) { DELAY(10); if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET)) break; } if (i == RL_TIMEOUT) printf("%s: reset never completed!\n", sc->sc_dev.dv_xname); } /* * Initialize the transmit descriptors. */ int rl_list_tx_init(sc) struct rl_softc *sc; { struct rl_chain_data *cd; int i; cd = &sc->rl_cdata; for (i = 0; i < RL_TX_LIST_CNT; i++) { cd->rl_tx_chain[i] = NULL; CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(u_int32_t)), 0x0000000); } sc->rl_cdata.cur_tx = 0; sc->rl_cdata.last_tx = 0; return(0); } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. * * You know there's something wrong with a PCI bus-master chip design * when you have to use m_devget(). * * The receive operation is badly documented in the datasheet, so I'll * attempt to document it here. The driver provides a buffer area and * places its base address in the RX buffer start address register. * The chip then begins copying frames into the RX buffer. Each frame * is preceeded by a 32-bit RX status word which specifies the length * of the frame and certain other status bits. Each frame (starting with * the status word) is also 32-bit aligned. The frame length is in the * first 16 bits of the status word; the lower 15 bits correspond with * the 'rx status register' mentioned in the datasheet. * * Note: to make the Alpha happy, the frame payload needs to be aligned * on a 32-bit boundary. To achieve this, we cheat a bit by copying from * the ring buffer starting at an address two bytes before the actual * data location. We can then shave off the first two bytes using m_adj(). * The reason we do this is because m_devget() doesn't let us specify an * offset into the mbuf storage space, so we have to artificially create * one. The ring is allocated in such a way that there are a few unused * bytes of space preceecing it so that it will be safe for us to do the * 2-byte backstep even if reading from the ring at offset 0. */ void rl_rxeof(sc) struct rl_softc *sc; { struct mbuf *m; struct ifnet *ifp; int total_len = 0; u_int32_t rxstat; caddr_t rxbufpos; int wrap = 0; u_int16_t cur_rx; u_int16_t limit; u_int16_t rx_bytes = 0, max_bytes; ifp = &sc->arpcom.ac_if; cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN; /* Do not try to read past this point. */ limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN; if (limit < cur_rx) max_bytes = (RL_RXBUFLEN - cur_rx) + limit; else max_bytes = limit - cur_rx; while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) { rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx; rxstat = *(u_int32_t *)rxbufpos; /* * Here's a totally undocumented fact for you. When the * RealTek chip is in the process of copying a packet into * RAM for you, the length will be 0xfff0. If you spot a * packet header with this value, you need to stop. The * datasheet makes absolutely no mention of this and * RealTek should be shot for this. */ if ((u_int16_t)(rxstat >> 16) == RL_RXSTAT_UNFINISHED) break; if (!(rxstat & RL_RXSTAT_RXOK)) { ifp->if_ierrors++; rl_init(sc); return; } /* No errors; receive the packet. */ total_len = rxstat >> 16; rx_bytes += total_len + 4; /* * XXX The RealTek chip includes the CRC with every * received frame, and there's no way to turn this * behavior off (at least, I can't find anything in * the manual that explains how to do it) so we have * to trim off the CRC manually. */ total_len -= ETHER_CRC_LEN; /* * Avoid trying to read more bytes than we know * the chip has prepared for us. */ if (rx_bytes > max_bytes) break; rxbufpos = sc->rl_cdata.rl_rx_buf + ((cur_rx + sizeof(u_int32_t)) % RL_RXBUFLEN); if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN)) rxbufpos = sc->rl_cdata.rl_rx_buf; wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos; if (total_len > wrap) { m = m_devget(rxbufpos - RL_ETHER_ALIGN, wrap + RL_ETHER_ALIGN, 0, ifp, NULL); if (m == NULL) ifp->if_ierrors++; else { m_adj(m, RL_ETHER_ALIGN); m_copyback(m, wrap, total_len - wrap, sc->rl_cdata.rl_rx_buf); m = m_pullup(m, sizeof(struct ether_header)); if (m == NULL) ifp->if_ierrors++; } cur_rx = (total_len - wrap + ETHER_CRC_LEN); } else { m = m_devget(rxbufpos - RL_ETHER_ALIGN, total_len + RL_ETHER_ALIGN, 0, ifp, NULL); if (m == NULL) ifp->if_ierrors++; else m_adj(m, RL_ETHER_ALIGN); cur_rx += total_len + 4 + ETHER_CRC_LEN; } /* * Round up to 32-bit boundary. */ cur_rx = (cur_rx + 3) & ~3; CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16); if (m == NULL) continue; ifp->if_ipackets++; #if NBPFILTER > 0 /* * Handle BPF listeners. Let the BPF user see the packet. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif ether_input_mbuf(ifp, m); } } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ void rl_txeof(sc) struct rl_softc *sc; { struct ifnet *ifp; u_int32_t txstat; ifp = &sc->arpcom.ac_if; /* Clear the timeout timer. */ ifp->if_timer = 0; /* * Go through our tx list and free mbufs for those * frames that have been uploaded. */ do { txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc)); if (!(txstat & (RL_TXSTAT_TX_OK| RL_TXSTAT_TX_UNDERRUN|RL_TXSTAT_TXABRT))) break; ifp->if_collisions += (txstat & RL_TXSTAT_COLLCNT) >> 24; if (RL_LAST_TXMBUF(sc) != NULL) { m_freem(RL_LAST_TXMBUF(sc)); RL_LAST_TXMBUF(sc) = NULL; } if (txstat & RL_TXSTAT_TX_OK) ifp->if_opackets++; else { int oldthresh; ifp->if_oerrors++; if ((txstat & RL_TXSTAT_TXABRT) || (txstat & RL_TXSTAT_OUTOFWIN)) CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG); oldthresh = sc->rl_txthresh; /* error recovery */ rl_reset(sc); rl_init(sc); /* * If there was a transmit underrun, * bump the TX threshold. */ if (txstat & RL_TXSTAT_TX_UNDERRUN) sc->rl_txthresh = oldthresh + 32; return; } RL_INC(sc->rl_cdata.last_tx); ifp->if_flags &= ~IFF_OACTIVE; } while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx); } int rl_intr(arg) void *arg; { struct rl_softc *sc; struct ifnet *ifp; int claimed = 0; u_int16_t status; sc = arg; ifp = &sc->arpcom.ac_if; /* Disable interrupts. */ CSR_WRITE_2(sc, RL_IMR, 0x0000); for (;;) { status = CSR_READ_2(sc, RL_ISR); if (status) CSR_WRITE_2(sc, RL_ISR, status); if ((status & RL_INTRS) == 0) break; if (status & RL_ISR_RX_OK) rl_rxeof(sc); if (status & RL_ISR_RX_ERR) rl_rxeof(sc); if ((status & RL_ISR_TX_OK) || (status & RL_ISR_TX_ERR)) rl_txeof(sc); if (status & RL_ISR_SYSTEM_ERR) { rl_reset(sc); rl_init(sc); } claimed = 1; } /* Re-enable interrupts. */ CSR_WRITE_2(sc, RL_IMR, RL_INTRS); if (!IFQ_IS_EMPTY(&ifp->if_snd)) rl_start(ifp); return (claimed); } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. */ int rl_encap(sc, m_head) struct rl_softc *sc; struct mbuf *m_head; { struct mbuf *m_new = NULL; /* * The RealTek is brain damaged and wants longword-aligned * TX buffers, plus we can only have one fragment buffer * per packet. We have to copy pretty much all the time. */ MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) return(1); if (m_head->m_pkthdr.len > MHLEN) { MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { m_freem(m_new); return(1); } } m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t)); m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len; m_freem(m_head); m_head = m_new; /* Pad frames to at least 60 bytes. */ if (m_head->m_pkthdr.len < RL_MIN_FRAMELEN) { /* * Make security concious people happy: zero out the * bytes in the pad area, since we don't know what * this mbuf cluster buffer's previous user might * have left in it. */ bzero(mtod(m_head, char *) + m_head->m_pkthdr.len, RL_MIN_FRAMELEN - m_head->m_pkthdr.len); m_head->m_pkthdr.len += (RL_MIN_FRAMELEN - m_head->m_pkthdr.len); m_head->m_len = m_head->m_pkthdr.len; } RL_CUR_TXMBUF(sc) = m_head; return(0); } /* * Main transmit routine. */ void rl_start(ifp) struct ifnet *ifp; { struct rl_softc *sc; struct mbuf *m_head = NULL; int pkts = 0; sc = ifp->if_softc; while(RL_CUR_TXMBUF(sc) == NULL) { IFQ_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* Pack the data into the descriptor. */ rl_encap(sc, m_head); pkts++; #if NBPFILTER > 0 /* * If there's a BPF listener, bounce a copy of this frame * to him. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, RL_CUR_TXMBUF(sc)); #endif /* * Transmit the frame. */ CSR_WRITE_4(sc, RL_CUR_TXADDR(sc), vtophys(mtod(RL_CUR_TXMBUF(sc), caddr_t))); CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc), RL_TXTHRESH(sc->rl_txthresh) | RL_CUR_TXMBUF(sc)->m_pkthdr.len); RL_INC(sc->rl_cdata.cur_tx); } if (pkts == 0) return; /* * We broke out of the loop because all our TX slots are * full. Mark the NIC as busy until it drains some of the * packets from the queue. */ if (RL_CUR_TXMBUF(sc) != NULL) ifp->if_flags |= IFF_OACTIVE; /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } void rl_init(xsc) void *xsc; { struct rl_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; int s, i; u_int32_t rxcfg = 0; s = splimp(); /* * Cancel pending I/O and free all RX/TX buffers. */ rl_stop(sc); /* Init our MAC address */ for (i = 0; i < ETHER_ADDR_LEN; i++) { CSR_WRITE_1(sc, RL_IDR0 + i, sc->arpcom.ac_enaddr[i]); } /* Init the RX buffer pointer register. */ CSR_WRITE_4(sc, RL_RXADDR, vtophys(sc->rl_cdata.rl_rx_buf)); /* Init TX descriptors. */ rl_list_tx_init(sc); /* * Enable transmit and receive. */ CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB); /* * Set the inital TX and RX configuration. */ CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG); CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG); /* Set the individual bit to receive frames for this host only. */ rxcfg = CSR_READ_4(sc, RL_RXCFG); rxcfg |= RL_RXCFG_RX_INDIV; /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) rxcfg |= RL_RXCFG_RX_ALLPHYS; else rxcfg &= ~RL_RXCFG_RX_ALLPHYS; CSR_WRITE_4(sc, RL_RXCFG, rxcfg); /* * Set capture broadcast bit to capture broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) rxcfg |= RL_RXCFG_RX_BROAD; else rxcfg &= ~RL_RXCFG_RX_BROAD; CSR_WRITE_4(sc, RL_RXCFG, rxcfg); /* * Program the multicast filter, if necessary. */ rl_setmulti(sc); /* * Enable interrupts. */ CSR_WRITE_2(sc, RL_IMR, RL_INTRS); /* Set initial TX threshold */ sc->rl_txthresh = RL_TX_THRESH_INIT; /* Start RX/TX process. */ CSR_WRITE_4(sc, RL_MISSEDPKT, 0); /* Enable receiver and transmitter. */ CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB); mii_mediachg(&sc->sc_mii); CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; splx(s); timeout_set(&sc->sc_tick_tmo, rl_tick, sc); timeout_add(&sc->sc_tick_tmo, hz); } /* * Set media options. */ int rl_ifmedia_upd(ifp) struct ifnet *ifp; { struct rl_softc *sc = (struct rl_softc *)ifp->if_softc; mii_mediachg(&sc->sc_mii); return (0); } /* * Report current media status. */ void rl_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct rl_softc *sc = ifp->if_softc; mii_pollstat(&sc->sc_mii); ifmr->ifm_status = sc->sc_mii.mii_media_status; ifmr->ifm_active = sc->sc_mii.mii_media_active; } int rl_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct rl_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct ifaddr *ifa = (struct ifaddr *)data; int s, error = 0; s = splimp(); if ((error = ether_ioctl(ifp, &sc->arpcom, command, data)) > 0) { splx(s); return error; } switch(command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: rl_init(sc); arp_ifinit(&sc->arpcom, ifa); break; #endif /* INET */ default: rl_init(sc); break; } break; case SIOCSIFMTU: if (ifr->ifr_mtu > ETHERMTU || ifr->ifr_mtu < ETHERMIN) { error = EINVAL; } else if (ifp->if_mtu != ifr->ifr_mtu) { ifp->if_mtu = ifr->ifr_mtu; } break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { rl_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) rl_stop(sc); } error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: error = (command == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->arpcom) : ether_delmulti(ifr, &sc->arpcom); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware * filter accordingly. */ rl_setmulti(sc); error = 0; } break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command); break; default: error = EINVAL; break; } splx(s); return(error); } void rl_watchdog(ifp) struct ifnet *ifp; { struct rl_softc *sc; sc = ifp->if_softc; printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname); ifp->if_oerrors++; rl_txeof(sc); rl_rxeof(sc); rl_init(sc); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ void rl_stop(sc) struct rl_softc *sc; { register int i; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; ifp->if_timer = 0; timeout_del(&sc->sc_tick_tmo); CSR_WRITE_1(sc, RL_COMMAND, 0x00); CSR_WRITE_2(sc, RL_IMR, 0x0000); /* * Free the TX list buffers. */ for (i = 0; i < RL_TX_LIST_CNT; i++) { if (sc->rl_cdata.rl_tx_chain[i] != NULL) { m_freem(sc->rl_cdata.rl_tx_chain[i]); sc->rl_cdata.rl_tx_chain[i] = NULL; CSR_WRITE_4(sc, RL_TXADDR0 + i, 0x00000000); } } ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); } int rl_attach(sc) struct rl_softc *sc; { struct ifnet *ifp = &sc->arpcom.ac_if; bus_dma_segment_t seg; bus_dmamap_t dmamap; int rseg; u_int16_t rl_did; caddr_t kva; rl_reset(sc); rl_read_eeprom(sc, (caddr_t)sc->arpcom.ac_enaddr, RL_EE_EADDR, 3, 0); printf(" address %s\n", ether_sprintf(sc->arpcom.ac_enaddr)); rl_read_eeprom(sc, (caddr_t)&rl_did, RL_EE_PCI_DID, 1, 0); if (rl_did == RT_DEVICEID_8139 || rl_did == ACCTON_DEVICEID_5030 || rl_did == DELTA_DEVICEID_8139 || rl_did == ADDTRON_DEVICEID_8139 || rl_did == DLINK_DEVICEID_8139) sc->rl_type = RL_8139; else if (rl_did == RT_DEVICEID_8129) sc->rl_type = RL_8129; else { printf("\n%s: unknown device id: %x\n", sc->sc_dev.dv_xname, rl_did); return (1); } if (bus_dmamem_alloc(sc->sc_dmat, RL_RXBUFLEN + 32, PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) { printf("\n%s: can't alloc rx buffers\n", sc->sc_dev.dv_xname); return (1); } if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, RL_RXBUFLEN + 32, &kva, BUS_DMA_NOWAIT)) { printf("%s: can't map dma buffers (%d bytes)\n", sc->sc_dev.dv_xname, RL_RXBUFLEN + 32); bus_dmamem_free(sc->sc_dmat, &seg, rseg); return (1); } if (bus_dmamap_create(sc->sc_dmat, RL_RXBUFLEN + 32, 1, RL_RXBUFLEN + 32, 0, BUS_DMA_NOWAIT, &dmamap)) { printf("%s: can't create dma map\n", sc->sc_dev.dv_xname); bus_dmamem_unmap(sc->sc_dmat, kva, RL_RXBUFLEN + 32); bus_dmamem_free(sc->sc_dmat, &seg, rseg); return (1); } if (bus_dmamap_load(sc->sc_dmat, dmamap, kva, RL_RXBUFLEN + 32, NULL, BUS_DMA_NOWAIT)) { printf("%s: can't load dma map\n", sc->sc_dev.dv_xname); bus_dmamap_destroy(sc->sc_dmat, dmamap); bus_dmamem_unmap(sc->sc_dmat, kva, RL_RXBUFLEN + 32); bus_dmamem_free(sc->sc_dmat, &seg, rseg); return (1); } sc->rl_cdata.rl_rx_buf = kva; bzero(sc->rl_cdata.rl_rx_buf, RL_RXBUFLEN + 32); /* Leave a few bytes before the start of the RX ring buffer. */ sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf; sc->rl_cdata.rl_rx_buf += sizeof(u_int64_t); ifp->if_softc = sc; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = rl_ioctl; ifp->if_output = ether_output; ifp->if_start = rl_start; ifp->if_watchdog = rl_watchdog; ifp->if_baudrate = 10000000; IFQ_SET_READY(&ifp->if_snd); bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); #if NVLAN > 0 ifp->if_capabilities |= IFCAP_VLAN_MTU; #endif /* * Initialize our media structures and probe the MII. */ sc->sc_mii.mii_ifp = ifp; sc->sc_mii.mii_readreg = rl_miibus_readreg; sc->sc_mii.mii_writereg = rl_miibus_writereg; sc->sc_mii.mii_statchg = rl_miibus_statchg; ifmedia_init(&sc->sc_mii.mii_media, 0, rl_ifmedia_upd, rl_ifmedia_sts); mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); } else ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); /* * Attach us everywhere */ if_attach(ifp); ether_ifattach(ifp); shutdownhook_establish(rl_shutdown, sc); return (0); } void rl_shutdown(arg) void *arg; { struct rl_softc *sc = (struct rl_softc *)arg; rl_stop(sc); } int rl_miibus_readreg(self, phy, reg) struct device *self; int phy, reg; { struct rl_softc *sc = (struct rl_softc *)self; struct rl_mii_frame frame; u_int16_t rl8139_reg; if (sc->rl_type == RL_8139) { /* * The RTL8139 PHY is mapped into PCI registers, unforunately * it has no phyid, or phyaddr, so assume it is phyaddr 0. */ if (phy != 0) return(0); switch (reg) { case MII_BMCR: rl8139_reg = RL_BMCR; break; case MII_BMSR: rl8139_reg = RL_BMSR; break; case MII_ANAR: rl8139_reg = RL_ANAR; break; case MII_ANER: rl8139_reg = RL_ANER; break; case MII_ANLPAR: rl8139_reg = RL_LPAR; break; case MII_PHYIDR1: case MII_PHYIDR2: return (0); break; } return (CSR_READ_2(sc, rl8139_reg)); } bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; rl_mii_readreg(sc, &frame); return(frame.mii_data); } void rl_miibus_writereg(self, phy, reg, val) struct device *self; int phy, reg, val; { struct rl_softc *sc = (struct rl_softc *)self; struct rl_mii_frame frame; u_int16_t rl8139_reg = 0; if (sc->rl_type == RL_8139) { if (phy) return; switch (reg) { case MII_BMCR: rl8139_reg = RL_BMCR; break; case MII_BMSR: rl8139_reg = RL_BMSR; break; case MII_ANAR: rl8139_reg = RL_ANAR; break; case MII_ANER: rl8139_reg = RL_ANER; break; case MII_ANLPAR: rl8139_reg = RL_LPAR; break; case MII_PHYIDR1: case MII_PHYIDR2: return; } CSR_WRITE_2(sc, rl8139_reg, val); return; } bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; frame.mii_data = val; rl_mii_writereg(sc, &frame); } void rl_miibus_statchg(self) struct device *self; { } void rl_tick(v) void *v; { struct rl_softc *sc = v; mii_tick(&sc->sc_mii); timeout_add(&sc->sc_tick_tmo, hz); } struct cfdriver rl_cd = { 0, "rl", DV_IFNET };