/* $OpenBSD: rtsx.c,v 1.21 2017/10/09 20:06:36 stsp Exp $ */ /* * Copyright (c) 2006 Uwe Stuehler * Copyright (c) 2012 Stefan Sperling * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Realtek RTS52xx/RTL84xx Card Reader driver. */ #include #include #include #include #include #include #include #include /* * We use three DMA buffers: a command buffer, a data buffer, and a buffer for * ADMA transfer descriptors which describe scatter-gather (SG) I/O operations. * * The command buffer contains a command queue for the host controller, * which describes SD/MMC commands to run, and other parameters. The chip * runs the command queue when a special bit in the RTSX_HCBAR register is * set and signals completion with the TRANS_OK interrupt. * Each command is encoded as a 4 byte sequence containing command number * (read, write, or check a host controller register), a register address, * and a data bit-mask and value. * SD/MMC commands which do not transfer any data from/to the card only use * the command buffer. * * The smmmc stack provides DMA-safe buffers with data transfer commands. * In this case we write a list of descriptors to the ADMA descriptor buffer, * instructing the chip to transfer data directly from/to sdmmc DMA buffers. * * However, some sdmmc commands used during card initialization also carry * data, and these don't come with DMA-safe buffers. In this case, we transfer * data from/to the SD card via a DMA data bounce buffer. * * In both cases, data transfer is controlled via the RTSX_HDBAR register * and completion is signalled by the TRANS_OK interrupt. * * The chip is unable to perform DMA above 4GB. */ #define RTSX_DMA_MAX_SEGSIZE 0x80000 #define RTSX_HOSTCMD_MAX 256 #define RTSX_HOSTCMD_BUFSIZE (sizeof(u_int32_t) * RTSX_HOSTCMD_MAX) #define RTSX_DMA_DATA_BUFSIZE MAXPHYS #define RTSX_ADMA_DESC_SIZE (sizeof(uint64_t) * SDMMC_MAXNSEGS) #define READ4(sc, reg) \ (bus_space_read_4((sc)->iot, (sc)->ioh, (reg))) #define WRITE4(sc, reg, val) \ bus_space_write_4((sc)->iot, (sc)->ioh, (reg), (val)) #define RTSX_READ(sc, reg, val) \ do { \ int err = rtsx_read((sc), (reg), (val)); \ if (err) \ return (err); \ } while (0) #define RTSX_WRITE(sc, reg, val) \ do { \ int err = rtsx_write((sc), (reg), 0xff, (val)); \ if (err) \ return (err); \ } while (0) #define RTSX_CLR(sc, reg, bits) \ do { \ int err = rtsx_write((sc), (reg), (bits), 0); \ if (err) \ return (err); \ } while (0) #define RTSX_SET(sc, reg, bits) \ do { \ int err = rtsx_write((sc), (reg), (bits), 0xff);\ if (err) \ return (err); \ } while (0) int rtsx_host_reset(sdmmc_chipset_handle_t); u_int32_t rtsx_host_ocr(sdmmc_chipset_handle_t); int rtsx_host_maxblklen(sdmmc_chipset_handle_t); int rtsx_card_detect(sdmmc_chipset_handle_t); int rtsx_bus_power(sdmmc_chipset_handle_t, u_int32_t); int rtsx_bus_clock(sdmmc_chipset_handle_t, int, int); int rtsx_bus_width(sdmmc_chipset_handle_t, int); void rtsx_exec_command(sdmmc_chipset_handle_t, struct sdmmc_command *); int rtsx_init(struct rtsx_softc *, int); void rtsx_soft_reset(struct rtsx_softc *); int rtsx_bus_power_off(struct rtsx_softc *); int rtsx_bus_power_on(struct rtsx_softc *); int rtsx_set_bus_width(struct rtsx_softc *, int); int rtsx_stop_sd_clock(struct rtsx_softc *); int rtsx_switch_sd_clock(struct rtsx_softc *, u_int8_t, int, int); int rtsx_wait_intr(struct rtsx_softc *, int, int); int rtsx_read(struct rtsx_softc *, u_int16_t, u_int8_t *); int rtsx_write(struct rtsx_softc *, u_int16_t, u_int8_t, u_int8_t); #ifdef notyet int rtsx_read_phy(struct rtsx_softc *, u_int8_t, u_int16_t *); #endif int rtsx_write_phy(struct rtsx_softc *, u_int8_t, u_int16_t); int rtsx_read_cfg(struct rtsx_softc *, u_int8_t, u_int16_t, u_int32_t *); #ifdef notyet int rtsx_write_cfg(struct rtsx_softc *, u_int8_t, u_int16_t, u_int32_t, u_int32_t); #endif void rtsx_hostcmd(u_int32_t *, int *, u_int8_t, u_int16_t, u_int8_t, u_int8_t); int rtsx_hostcmd_send(struct rtsx_softc *, int); u_int8_t rtsx_response_type(u_int16_t); int rtsx_xfer_exec(struct rtsx_softc *, bus_dmamap_t, int); int rtsx_xfer(struct rtsx_softc *, struct sdmmc_command *, u_int32_t *); int rtsx_xfer_bounce(struct rtsx_softc *, struct sdmmc_command *); int rtsx_xfer_adma(struct rtsx_softc *, struct sdmmc_command *); void rtsx_card_insert(struct rtsx_softc *); void rtsx_card_eject(struct rtsx_softc *); int rtsx_led_enable(struct rtsx_softc *); int rtsx_led_disable(struct rtsx_softc *); void rtsx_save_regs(struct rtsx_softc *); void rtsx_restore_regs(struct rtsx_softc *); #ifdef RTSX_DEBUG int rtsxdebug = 0; #define DPRINTF(n,s) do { if ((n) <= rtsxdebug) printf s; } while (0) #else #define DPRINTF(n,s) do {} while(0) #endif struct sdmmc_chip_functions rtsx_functions = { /* host controller reset */ rtsx_host_reset, /* host controller capabilities */ rtsx_host_ocr, rtsx_host_maxblklen, /* card detection */ rtsx_card_detect, /* bus power and clock frequency */ rtsx_bus_power, rtsx_bus_clock, rtsx_bus_width, /* command execution */ rtsx_exec_command, /* card interrupt */ NULL, NULL }; struct cfdriver rtsx_cd = { NULL, "rtsx", DV_DULL }; /* * Called by attachment driver. */ int rtsx_attach(struct rtsx_softc *sc, bus_space_tag_t iot, bus_space_handle_t ioh, bus_size_t iosize, bus_dma_tag_t dmat, int flags) { struct sdmmcbus_attach_args saa; u_int32_t sdio_cfg; int rsegs; sc->iot = iot; sc->ioh = ioh; sc->dmat = dmat; sc->flags = flags; if (rtsx_init(sc, 1)) return 1; if (rtsx_read_cfg(sc, 0, RTSX_SDIOCFG_REG, &sdio_cfg) == 0) { if ((sdio_cfg & RTSX_SDIOCFG_SDIO_ONLY) || (sdio_cfg & RTSX_SDIOCFG_HAVE_SDIO)) sc->flags |= RTSX_F_SDIO_SUPPORT; } if (bus_dmamap_create(sc->dmat, RTSX_HOSTCMD_BUFSIZE, 1, RTSX_DMA_MAX_SEGSIZE, 0, BUS_DMA_NOWAIT, &sc->dmap_cmd) != 0) return 1; if (bus_dmamap_create(sc->dmat, RTSX_DMA_DATA_BUFSIZE, 1, RTSX_DMA_MAX_SEGSIZE, 0, BUS_DMA_NOWAIT, &sc->dmap_data) != 0) goto destroy_cmd; if (bus_dmamap_create(sc->dmat, RTSX_ADMA_DESC_SIZE, 1, RTSX_DMA_MAX_SEGSIZE, 0, BUS_DMA_NOWAIT, &sc->dmap_adma) != 0) goto destroy_data; if (bus_dmamem_alloc(sc->dmat, RTSX_ADMA_DESC_SIZE, 0, 0, sc->adma_segs, 1, &rsegs, BUS_DMA_WAITOK|BUS_DMA_ZERO)) goto destroy_adma; if (bus_dmamem_map(sc->dmat, sc->adma_segs, rsegs, RTSX_ADMA_DESC_SIZE, &sc->admabuf, BUS_DMA_WAITOK|BUS_DMA_COHERENT)) goto free_adma; /* * Attach the generic SD/MMC bus driver. (The bus driver must * not invoke any chipset functions before it is attached.) */ bzero(&saa, sizeof(saa)); saa.saa_busname = "sdmmc"; saa.sct = &rtsx_functions; saa.sch = sc; saa.flags = SMF_STOP_AFTER_MULTIPLE; saa.caps = SMC_CAPS_4BIT_MODE | SMC_CAPS_DMA; saa.dmat = sc->dmat; sc->sdmmc = config_found(&sc->sc_dev, &saa, NULL); if (sc->sdmmc == NULL) goto unmap_adma; /* Now handle cards discovered during attachment. */ if (ISSET(sc->flags, RTSX_F_CARD_PRESENT)) rtsx_card_insert(sc); return 0; unmap_adma: bus_dmamem_unmap(sc->dmat, sc->admabuf, RTSX_ADMA_DESC_SIZE); free_adma: bus_dmamem_free(sc->dmat, sc->adma_segs, rsegs); destroy_adma: bus_dmamap_destroy(sc->dmat, sc->dmap_adma); destroy_data: bus_dmamap_destroy(sc->dmat, sc->dmap_data); destroy_cmd: bus_dmamap_destroy(sc->dmat, sc->dmap_cmd); return 1; } int rtsx_init(struct rtsx_softc *sc, int attaching) { u_int32_t status; u_int8_t version; int error; /* Read IC version from dummy register. */ if (sc->flags & RTSX_F_5229) { RTSX_READ(sc, RTSX_DUMMY_REG, &version); switch (version & 0x0F) { case RTSX_IC_VERSION_A: case RTSX_IC_VERSION_B: case RTSX_IC_VERSION_D: break; case RTSX_IC_VERSION_C: sc->flags |= RTSX_F_5229_TYPE_C; break; default: printf("rtsx_init: unknown ic %02x\n", version); return (1); } } /* Enable interrupt write-clear (default is read-clear). */ RTSX_CLR(sc, RTSX_NFTS_TX_CTRL, RTSX_INT_READ_CLR); /* Clear any pending interrupts. */ status = READ4(sc, RTSX_BIPR); WRITE4(sc, RTSX_BIPR, status); /* Check for cards already inserted at attach time. */ if (attaching && (status & RTSX_SD_EXIST)) sc->flags |= RTSX_F_CARD_PRESENT; /* Enable interrupts. */ WRITE4(sc, RTSX_BIER, RTSX_TRANS_OK_INT_EN | RTSX_TRANS_FAIL_INT_EN | RTSX_SD_INT_EN); /* Power on SSC clock. */ RTSX_CLR(sc, RTSX_FPDCTL, RTSX_SSC_POWER_DOWN); delay(200); /* XXX magic numbers from linux driver */ if (sc->flags & RTSX_F_5209) error = rtsx_write_phy(sc, 0x00, 0xB966); else error = rtsx_write_phy(sc, 0x00, 0xBA42); if (error) { printf("%s: cannot write phy register\n", DEVNAME(sc)); return (1); } RTSX_SET(sc, RTSX_CLK_DIV, 0x07); /* Disable sleep mode. */ RTSX_CLR(sc, RTSX_HOST_SLEEP_STATE, RTSX_HOST_ENTER_S1 | RTSX_HOST_ENTER_S3); /* Disable card clock. */ RTSX_CLR(sc, RTSX_CARD_CLK_EN, RTSX_CARD_CLK_EN_ALL); RTSX_CLR(sc, RTSX_CHANGE_LINK_STATE, RTSX_FORCE_RST_CORE_EN | RTSX_NON_STICKY_RST_N_DBG | 0x04); RTSX_WRITE(sc, RTSX_SD30_DRIVE_SEL, RTSX_SD30_DRIVE_SEL_3V3); /* Enable SSC clock. */ RTSX_WRITE(sc, RTSX_SSC_CTL1, RTSX_SSC_8X_EN | RTSX_SSC_SEL_4M); RTSX_WRITE(sc, RTSX_SSC_CTL2, 0x12); RTSX_SET(sc, RTSX_CHANGE_LINK_STATE, RTSX_MAC_PHY_RST_N_DBG); RTSX_SET(sc, RTSX_IRQSTAT0, RTSX_LINK_READY_INT); RTSX_WRITE(sc, RTSX_PERST_GLITCH_WIDTH, 0x80); /* Set RC oscillator to 400K. */ RTSX_CLR(sc, RTSX_RCCTL, RTSX_RCCTL_F_2M); /* Request clock by driving CLKREQ pin to zero. */ RTSX_SET(sc, RTSX_PETXCFG, RTSX_PETXCFG_CLKREQ_PIN); /* Set up LED GPIO. */ if (sc->flags & RTSX_F_5209) { RTSX_WRITE(sc, RTSX_CARD_GPIO, 0x03); RTSX_WRITE(sc, RTSX_CARD_GPIO_DIR, 0x03); } else { RTSX_SET(sc, RTSX_GPIO_CTL, RTSX_GPIO_LED_ON); /* Switch LDO3318 source from DV33 to 3V3. */ RTSX_CLR(sc, RTSX_LDO_PWR_SEL, RTSX_LDO_PWR_SEL_DV33); RTSX_SET(sc, RTSX_LDO_PWR_SEL, RTSX_LDO_PWR_SEL_3V3); /* Set default OLT blink period. */ RTSX_SET(sc, RTSX_OLT_LED_CTL, RTSX_OLT_LED_PERIOD); } return (0); } int rtsx_activate(struct device *self, int act) { struct rtsx_softc *sc = (struct rtsx_softc *)self; int rv = 0; switch (act) { case DVACT_SUSPEND: rv = config_activate_children(self, act); rtsx_save_regs(sc); break; case DVACT_RESUME: rtsx_restore_regs(sc); /* Handle cards ejected/inserted during suspend. */ if (READ4(sc, RTSX_BIPR) & RTSX_SD_EXIST) rtsx_card_insert(sc); else rtsx_card_eject(sc); rv = config_activate_children(self, act); break; default: rv = config_activate_children(self, act); break; } return (rv); } int rtsx_led_enable(struct rtsx_softc *sc) { if (sc->flags & RTSX_F_5209) { RTSX_CLR(sc, RTSX_CARD_GPIO, RTSX_CARD_GPIO_LED_OFF); RTSX_WRITE(sc, RTSX_CARD_AUTO_BLINK, RTSX_LED_BLINK_EN | RTSX_LED_BLINK_SPEED); } else { RTSX_SET(sc, RTSX_GPIO_CTL, RTSX_GPIO_LED_ON); RTSX_SET(sc, RTSX_OLT_LED_CTL, RTSX_OLT_LED_AUTOBLINK); } return 0; } int rtsx_led_disable(struct rtsx_softc *sc) { if (sc->flags & RTSX_F_5209) { RTSX_CLR(sc, RTSX_CARD_AUTO_BLINK, RTSX_LED_BLINK_EN); RTSX_WRITE(sc, RTSX_CARD_GPIO, RTSX_CARD_GPIO_LED_OFF); } else { RTSX_CLR(sc, RTSX_OLT_LED_CTL, RTSX_OLT_LED_AUTOBLINK); RTSX_CLR(sc, RTSX_GPIO_CTL, RTSX_GPIO_LED_ON); } return 0; } /* * Reset the host controller. Called during initialization, when * cards are removed, upon resume, and during error recovery. */ int rtsx_host_reset(sdmmc_chipset_handle_t sch) { struct rtsx_softc *sc = sch; int s; DPRINTF(1,("%s: host reset\n", DEVNAME(sc))); s = splsdmmc(); if (ISSET(sc->flags, RTSX_F_CARD_PRESENT)) rtsx_soft_reset(sc); if (rtsx_init(sc, 0)) { splx(s); return 1; } splx(s); return 0; } u_int32_t rtsx_host_ocr(sdmmc_chipset_handle_t sch) { return RTSX_SUPPORT_VOLTAGE; } int rtsx_host_maxblklen(sdmmc_chipset_handle_t sch) { return 512; } /* * Return non-zero if the card is currently inserted. */ int rtsx_card_detect(sdmmc_chipset_handle_t sch) { struct rtsx_softc *sc = sch; return ISSET(sc->flags, RTSX_F_CARD_PRESENT); } /* * Notice that the meaning of RTSX_PWR_GATE_CTRL changes between RTS5209 and * RTS5229. In RTS5209 it is a mask of disabled power gates, while in RTS5229 * it is a mask of *enabled* gates. */ int rtsx_bus_power_off(struct rtsx_softc *sc) { int error; u_int8_t disable3; error = rtsx_stop_sd_clock(sc); if (error) return error; /* Disable SD output. */ RTSX_CLR(sc, RTSX_CARD_OE, RTSX_CARD_OUTPUT_EN); /* Turn off power. */ disable3 = RTSX_PULL_CTL_DISABLE3; if (sc->flags & RTSX_F_5209) RTSX_SET(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_OFF); else { RTSX_CLR(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_VCC1 | RTSX_LDO3318_VCC2); if (sc->flags & RTSX_F_5229_TYPE_C) disable3 = RTSX_PULL_CTL_DISABLE3_TYPE_C; } RTSX_SET(sc, RTSX_CARD_PWR_CTL, RTSX_SD_PWR_OFF); RTSX_CLR(sc, RTSX_CARD_PWR_CTL, RTSX_PMOS_STRG_800mA); /* Disable pull control. */ RTSX_WRITE(sc, RTSX_CARD_PULL_CTL1, RTSX_PULL_CTL_DISABLE12); RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, RTSX_PULL_CTL_DISABLE12); RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, disable3); return 0; } int rtsx_bus_power_on(struct rtsx_softc *sc) { u_int8_t enable3; int err; if (sc->flags & RTSX_F_525A) { err = rtsx_write(sc, RTSX_LDO_VCC_CFG1, RTSX_LDO_VCC_TUNE_MASK, RTSX_LDO_VCC_3V3); if (err) return (err); } /* Select SD card. */ RTSX_WRITE(sc, RTSX_CARD_SELECT, RTSX_SD_MOD_SEL); RTSX_WRITE(sc, RTSX_CARD_SHARE_MODE, RTSX_CARD_SHARE_48_SD); RTSX_SET(sc, RTSX_CARD_CLK_EN, RTSX_SD_CLK_EN); /* Enable pull control. */ RTSX_WRITE(sc, RTSX_CARD_PULL_CTL1, RTSX_PULL_CTL_ENABLE12); RTSX_WRITE(sc, RTSX_CARD_PULL_CTL2, RTSX_PULL_CTL_ENABLE12); if (sc->flags & RTSX_F_5229_TYPE_C) enable3 = RTSX_PULL_CTL_ENABLE3_TYPE_C; else enable3 = RTSX_PULL_CTL_ENABLE3; RTSX_WRITE(sc, RTSX_CARD_PULL_CTL3, enable3); /* * To avoid a current peak, enable card power in two phases with a * delay in between. */ /* Partial power. */ RTSX_SET(sc, RTSX_CARD_PWR_CTL, RTSX_SD_PARTIAL_PWR_ON); if (sc->flags & RTSX_F_5209) RTSX_SET(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_SUSPEND); else RTSX_SET(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_VCC1); delay(200); /* Full power. */ RTSX_CLR(sc, RTSX_CARD_PWR_CTL, RTSX_SD_PWR_OFF); if (sc->flags & RTSX_F_5209) RTSX_CLR(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_OFF); else RTSX_SET(sc, RTSX_PWR_GATE_CTRL, RTSX_LDO3318_VCC2); /* Enable SD card output. */ RTSX_WRITE(sc, RTSX_CARD_OE, RTSX_SD_OUTPUT_EN); return 0; } int rtsx_set_bus_width(struct rtsx_softc *sc, int w) { u_int32_t bus_width; int error; switch (w) { case 8: bus_width = RTSX_BUS_WIDTH_8; break; case 4: bus_width = RTSX_BUS_WIDTH_4; break; case 1: default: bus_width = RTSX_BUS_WIDTH_1; break; } error = rtsx_write(sc, RTSX_SD_CFG1, RTSX_BUS_WIDTH_MASK, bus_width); return error; } int rtsx_stop_sd_clock(struct rtsx_softc *sc) { RTSX_CLR(sc, RTSX_CARD_CLK_EN, RTSX_CARD_CLK_EN_ALL); RTSX_SET(sc, RTSX_SD_BUS_STAT, RTSX_SD_CLK_FORCE_STOP); return 0; } int rtsx_switch_sd_clock(struct rtsx_softc *sc, u_int8_t n, int div, int mcu) { /* Enable SD 2.0 mode. */ RTSX_CLR(sc, RTSX_SD_CFG1, RTSX_SD_MODE_MASK); RTSX_SET(sc, RTSX_CLK_CTL, RTSX_CLK_LOW_FREQ); RTSX_WRITE(sc, RTSX_CARD_CLK_SOURCE, RTSX_CRC_FIX_CLK | RTSX_SD30_VAR_CLK0 | RTSX_SAMPLE_VAR_CLK1); RTSX_CLR(sc, RTSX_SD_SAMPLE_POINT_CTL, RTSX_SD20_RX_SEL_MASK); RTSX_WRITE(sc, RTSX_SD_PUSH_POINT_CTL, RTSX_SD20_TX_NEG_EDGE); RTSX_WRITE(sc, RTSX_CLK_DIV, (div << 4) | mcu); RTSX_CLR(sc, RTSX_SSC_CTL1, RTSX_RSTB); RTSX_CLR(sc, RTSX_SSC_CTL2, RTSX_SSC_DEPTH_MASK); RTSX_WRITE(sc, RTSX_SSC_DIV_N_0, n); RTSX_SET(sc, RTSX_SSC_CTL1, RTSX_RSTB); delay(100); RTSX_CLR(sc, RTSX_CLK_CTL, RTSX_CLK_LOW_FREQ); return 0; } /* * Set or change SD bus voltage and enable or disable SD bus power. * Return zero on success. */ int rtsx_bus_power(sdmmc_chipset_handle_t sch, u_int32_t ocr) { struct rtsx_softc *sc = sch; int s, error = 0; DPRINTF(1,("%s: voltage change ocr=0x%x\n", DEVNAME(sc), ocr)); s = splsdmmc(); /* * Disable bus power before voltage change. */ error = rtsx_bus_power_off(sc); if (error) goto ret; delay(200); /* If power is disabled, reset the host and return now. */ if (ocr == 0) { splx(s); (void)rtsx_host_reset(sc); return 0; } if (!ISSET(ocr, RTSX_SUPPORT_VOLTAGE)) { /* Unsupported voltage level requested. */ DPRINTF(1,("%s: unsupported voltage ocr=0x%x\n", DEVNAME(sc), ocr)); error = EINVAL; goto ret; } error = rtsx_bus_power_on(sc); if (error) goto ret; error = rtsx_set_bus_width(sc, 1); ret: splx(s); return error; } /* * Set or change SDCLK frequency or disable the SD clock. * Return zero on success. */ int rtsx_bus_clock(sdmmc_chipset_handle_t sch, int freq, int timing) { struct rtsx_softc *sc = sch; int s; u_int8_t n; int div; int mcu; int error = 0; s = splsdmmc(); if (freq == SDMMC_SDCLK_OFF) { error = rtsx_stop_sd_clock(sc); goto ret; } /* Round down to a supported frequency. */ if (freq >= SDMMC_SDCLK_50MHZ) freq = SDMMC_SDCLK_50MHZ; else if (freq >= SDMMC_SDCLK_25MHZ) freq = SDMMC_SDCLK_25MHZ; else freq = SDMMC_SDCLK_400KHZ; /* * Configure the clock frequency. */ switch (freq) { case SDMMC_SDCLK_400KHZ: n = 80; /* minimum */ div = RTSX_CLK_DIV_8; mcu = 7; RTSX_SET(sc, RTSX_SD_CFG1, RTSX_CLK_DIVIDE_128); break; case SDMMC_SDCLK_25MHZ: n = 100; div = RTSX_CLK_DIV_4; mcu = 7; RTSX_CLR(sc, RTSX_SD_CFG1, RTSX_CLK_DIVIDE_MASK); break; case SDMMC_SDCLK_50MHZ: n = 100; div = RTSX_CLK_DIV_2; mcu = 7; RTSX_CLR(sc, RTSX_SD_CFG1, RTSX_CLK_DIVIDE_MASK); break; default: error = EINVAL; goto ret; } /* * Enable SD clock. */ error = rtsx_switch_sd_clock(sc, n, div, mcu); ret: splx(s); return error; } int rtsx_bus_width(sdmmc_chipset_handle_t sch, int width) { struct rtsx_softc *sc = sch; return rtsx_set_bus_width(sc, width); } int rtsx_read(struct rtsx_softc *sc, u_int16_t addr, u_int8_t *val) { int tries = 1024; u_int32_t reg; WRITE4(sc, RTSX_HAIMR, RTSX_HAIMR_BUSY | (u_int32_t)((addr & 0x3FFF) << 16)); while (tries--) { reg = READ4(sc, RTSX_HAIMR); if (!(reg & RTSX_HAIMR_BUSY)) break; } *val = (reg & 0xff); return (tries == 0) ? ETIMEDOUT : 0; } int rtsx_write(struct rtsx_softc *sc, u_int16_t addr, u_int8_t mask, u_int8_t val) { int tries = 1024; u_int32_t reg; WRITE4(sc, RTSX_HAIMR, RTSX_HAIMR_BUSY | RTSX_HAIMR_WRITE | (u_int32_t)(((addr & 0x3FFF) << 16) | (mask << 8) | val)); while (tries--) { reg = READ4(sc, RTSX_HAIMR); if (!(reg & RTSX_HAIMR_BUSY)) { if (val != (reg & 0xff)) return EIO; return 0; } } return ETIMEDOUT; } #ifdef notyet int rtsx_read_phy(struct rtsx_softc *sc, u_int8_t addr, u_int16_t *val) { int timeout = 100000; u_int8_t data0; u_int8_t data1; u_int8_t rwctl; RTSX_WRITE(sc, RTSX_PHY_ADDR, addr); RTSX_WRITE(sc, RTSX_PHY_RWCTL, RTSX_PHY_BUSY|RTSX_PHY_READ); while (timeout--) { RTSX_READ(sc, RTSX_PHY_RWCTL, &rwctl); if (!(rwctl & RTSX_PHY_BUSY)) break; } if (timeout == 0) return ETIMEDOUT; RTSX_READ(sc, RTSX_PHY_DATA0, &data0); RTSX_READ(sc, RTSX_PHY_DATA1, &data1); *val = data0 | (data1 << 8); return 0; } #endif int rtsx_write_phy(struct rtsx_softc *sc, u_int8_t addr, u_int16_t val) { int timeout = 100000; u_int8_t rwctl; RTSX_WRITE(sc, RTSX_PHY_DATA0, val); RTSX_WRITE(sc, RTSX_PHY_DATA1, val >> 8); RTSX_WRITE(sc, RTSX_PHY_ADDR, addr); RTSX_WRITE(sc, RTSX_PHY_RWCTL, RTSX_PHY_BUSY|RTSX_PHY_WRITE); while (timeout--) { RTSX_READ(sc, RTSX_PHY_RWCTL, &rwctl); if (!(rwctl & RTSX_PHY_BUSY)) break; } if (timeout == 0) return ETIMEDOUT; return 0; } int rtsx_read_cfg(struct rtsx_softc *sc, u_int8_t func, u_int16_t addr, u_int32_t *val) { int tries = 1024; u_int8_t data0, data1, data2, data3, rwctl; RTSX_WRITE(sc, RTSX_CFGADDR0, addr); RTSX_WRITE(sc, RTSX_CFGADDR1, addr >> 8); RTSX_WRITE(sc, RTSX_CFGRWCTL, RTSX_CFG_BUSY | (func & 0x03 << 4)); while (tries--) { RTSX_READ(sc, RTSX_CFGRWCTL, &rwctl); if (!(rwctl & RTSX_CFG_BUSY)) break; } if (tries == 0) return EIO; RTSX_READ(sc, RTSX_CFGDATA0, &data0); RTSX_READ(sc, RTSX_CFGDATA1, &data1); RTSX_READ(sc, RTSX_CFGDATA2, &data2); RTSX_READ(sc, RTSX_CFGDATA3, &data3); *val = (data3 << 24) | (data2 << 16) | (data1 << 8) | data0; return 0; } #ifdef notyet int rtsx_write_cfg(struct rtsx_softc *sc, u_int8_t func, u_int16_t addr, u_int32_t mask, u_int32_t val) { int i, writemask = 0, tries = 1024; u_int8_t rwctl; for (i = 0; i < 4; i++) { if (mask & 0xff) { RTSX_WRITE(sc, RTSX_CFGDATA0 + i, val & mask & 0xff); writemask |= (1 << i); } mask >>= 8; val >>= 8; } if (writemask) { RTSX_WRITE(sc, RTSX_CFGADDR0, addr); RTSX_WRITE(sc, RTSX_CFGADDR1, addr >> 8); RTSX_WRITE(sc, RTSX_CFGRWCTL, RTSX_CFG_BUSY | writemask | (func & 0x03 << 4)); } while (tries--) { RTSX_READ(sc, RTSX_CFGRWCTL, &rwctl); if (!(rwctl & RTSX_CFG_BUSY)) break; } if (tries == 0) return EIO; return 0; } #endif /* Append a properly encoded host command to the host command buffer. */ void rtsx_hostcmd(u_int32_t *cmdbuf, int *n, u_int8_t cmd, u_int16_t reg, u_int8_t mask, u_int8_t data) { KASSERT(*n < RTSX_HOSTCMD_MAX); cmdbuf[(*n)++] = htole32((u_int32_t)(cmd & 0x3) << 30) | ((u_int32_t)(reg & 0x3fff) << 16) | ((u_int32_t)(mask) << 8) | ((u_int32_t)data); } void rtsx_save_regs(struct rtsx_softc *sc) { int s, i; u_int16_t reg; s = splsdmmc(); i = 0; for (reg = 0xFDA0; reg < 0xFDAE; reg++) (void)rtsx_read(sc, reg, &sc->regs[i++]); for (reg = 0xFD52; reg < 0xFD69; reg++) (void)rtsx_read(sc, reg, &sc->regs[i++]); for (reg = 0xFE20; reg < 0xFE34; reg++) (void)rtsx_read(sc, reg, &sc->regs[i++]); sc->regs4[0] = READ4(sc, RTSX_HCBAR); sc->regs4[1] = READ4(sc, RTSX_HCBCTLR); sc->regs4[2] = READ4(sc, RTSX_HDBAR); sc->regs4[3] = READ4(sc, RTSX_HDBCTLR); sc->regs4[4] = READ4(sc, RTSX_HAIMR); sc->regs4[5] = READ4(sc, RTSX_BIER); /* Not saving RTSX_BIPR. */ splx(s); } void rtsx_restore_regs(struct rtsx_softc *sc) { int s, i; u_int16_t reg; s = splsdmmc(); WRITE4(sc, RTSX_HCBAR, sc->regs4[0]); WRITE4(sc, RTSX_HCBCTLR, sc->regs4[1]); WRITE4(sc, RTSX_HDBAR, sc->regs4[2]); WRITE4(sc, RTSX_HDBCTLR, sc->regs4[3]); WRITE4(sc, RTSX_HAIMR, sc->regs4[4]); WRITE4(sc, RTSX_BIER, sc->regs4[5]); /* Not writing RTSX_BIPR since doing so would clear it. */ i = 0; for (reg = 0xFDA0; reg < 0xFDAE; reg++) (void)rtsx_write(sc, reg, 0xff, sc->regs[i++]); for (reg = 0xFD52; reg < 0xFD69; reg++) (void)rtsx_write(sc, reg, 0xff, sc->regs[i++]); for (reg = 0xFE20; reg < 0xFE34; reg++) (void)rtsx_write(sc, reg, 0xff, sc->regs[i++]); splx(s); } u_int8_t rtsx_response_type(u_int16_t sdmmc_rsp) { int i; struct rsp_type { u_int16_t sdmmc_rsp; u_int8_t rtsx_rsp; } rsp_types[] = { { SCF_RSP_R0, RTSX_SD_RSP_TYPE_R0 }, { SCF_RSP_R1, RTSX_SD_RSP_TYPE_R1 }, { SCF_RSP_R1B, RTSX_SD_RSP_TYPE_R1B }, { SCF_RSP_R2, RTSX_SD_RSP_TYPE_R2 }, { SCF_RSP_R3, RTSX_SD_RSP_TYPE_R3 }, { SCF_RSP_R4, RTSX_SD_RSP_TYPE_R4 }, { SCF_RSP_R5, RTSX_SD_RSP_TYPE_R5 }, { SCF_RSP_R6, RTSX_SD_RSP_TYPE_R6 }, { SCF_RSP_R7, RTSX_SD_RSP_TYPE_R7 } }; for (i = 0; i < nitems(rsp_types); i++) { if (sdmmc_rsp == rsp_types[i].sdmmc_rsp) return rsp_types[i].rtsx_rsp; } return 0; } int rtsx_hostcmd_send(struct rtsx_softc *sc, int ncmd) { int s; s = splsdmmc(); /* Tell the chip where the command buffer is and run the commands. */ WRITE4(sc, RTSX_HCBAR, sc->dmap_cmd->dm_segs[0].ds_addr); WRITE4(sc, RTSX_HCBCTLR, ((ncmd * 4) & 0x00ffffff) | RTSX_START_CMD | RTSX_HW_AUTO_RSP); splx(s); return 0; } int rtsx_xfer_exec(struct rtsx_softc *sc, bus_dmamap_t dmap, int dmaflags) { int s = splsdmmc(); /* Tell the chip where the data buffer is and run the transfer. */ WRITE4(sc, RTSX_HDBAR, dmap->dm_segs[0].ds_addr); WRITE4(sc, RTSX_HDBCTLR, dmaflags); splx(s); /* Wait for completion. */ return rtsx_wait_intr(sc, RTSX_TRANS_OK_INT, 10*hz); } int rtsx_xfer(struct rtsx_softc *sc, struct sdmmc_command *cmd, u_int32_t *cmdbuf) { int ncmd, dma_dir, error, tmode; int read = ISSET(cmd->c_flags, SCF_CMD_READ); u_int8_t cfg2; DPRINTF(3,("%s: %s xfer: %d bytes with block size %d\n", DEVNAME(sc), read ? "read" : "write", cmd->c_datalen, cmd->c_blklen)); if (cmd->c_datalen > RTSX_DMA_DATA_BUFSIZE) { DPRINTF(3, ("%s: cmd->c_datalen too large: %d > %d\n", DEVNAME(sc), cmd->c_datalen, RTSX_DMA_DATA_BUFSIZE)); return ENOMEM; } /* Configure DMA transfer mode parameters. */ cfg2 = RTSX_SD_NO_CHECK_WAIT_CRC_TO | RTSX_SD_CHECK_CRC16 | RTSX_SD_NO_WAIT_BUSY_END | RTSX_SD_RSP_LEN_0; if (read) { dma_dir = RTSX_DMA_DIR_FROM_CARD; /* Use transfer mode AUTO_READ3, which assumes we've already * sent the read command and gotten the response, and will * send CMD 12 manually after reading multiple blocks. */ tmode = RTSX_TM_AUTO_READ3; cfg2 |= RTSX_SD_CALCULATE_CRC7 | RTSX_SD_CHECK_CRC7; } else { dma_dir = RTSX_DMA_DIR_TO_CARD; /* Use transfer mode AUTO_WRITE3, which assumes we've already * sent the write command and gotten the response, and will * send CMD 12 manually after writing multiple blocks. */ tmode = RTSX_TM_AUTO_WRITE3; cfg2 |= RTSX_SD_NO_CALCULATE_CRC7 | RTSX_SD_NO_CHECK_CRC7; } ncmd = 0; rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CFG2, 0xff, cfg2); /* Queue commands to configure data transfer size. */ rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_BYTE_CNT_L, 0xff, (cmd->c_blklen & 0xff)); rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_BYTE_CNT_H, 0xff, (cmd->c_blklen >> 8)); rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_BLOCK_CNT_L, 0xff, ((cmd->c_datalen / cmd->c_blklen) & 0xff)); rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_BLOCK_CNT_H, 0xff, ((cmd->c_datalen / cmd->c_blklen) >> 8)); /* Use the DMA ring buffer for commands which transfer data. */ rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_CARD_DATA_SOURCE, 0x01, RTSX_RING_BUFFER); /* Configure DMA controller. */ rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_IRQSTAT0, RTSX_DMA_DONE_INT, RTSX_DMA_DONE_INT); rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_DMATC3, 0xff, cmd->c_datalen >> 24); rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_DMATC2, 0xff, cmd->c_datalen >> 16); rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_DMATC1, 0xff, cmd->c_datalen >> 8); rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_DMATC0, 0xff, cmd->c_datalen); rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_DMACTL, 0x03 | RTSX_DMA_PACK_SIZE_MASK, dma_dir | RTSX_DMA_EN | RTSX_DMA_512); /* Queue commands to perform SD transfer. */ rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_TRANSFER, 0xff, tmode | RTSX_SD_TRANSFER_START); rtsx_hostcmd(cmdbuf, &ncmd, RTSX_CHECK_REG_CMD, RTSX_SD_TRANSFER, RTSX_SD_TRANSFER_END, RTSX_SD_TRANSFER_END); error = rtsx_hostcmd_send(sc, ncmd); if (error) goto ret; if (cmd->c_dmamap) error = rtsx_xfer_adma(sc, cmd); else error = rtsx_xfer_bounce(sc, cmd); ret: DPRINTF(3,("%s: xfer done, error=%d\n", DEVNAME(sc), error)); return error; } int rtsx_xfer_bounce(struct rtsx_softc *sc, struct sdmmc_command *cmd) { caddr_t datakvap; bus_dma_segment_t segs; int rsegs, error; int read = ISSET(cmd->c_flags, SCF_CMD_READ); /* Allocate and map DMA bounce buffer for data transfer. */ error = bus_dmamem_alloc(sc->dmat, cmd->c_datalen, 0, 0, &segs, 1, &rsegs, BUS_DMA_WAITOK|BUS_DMA_ZERO); if (error) { DPRINTF(3, ("%s: could not allocate %d bytes\n", DEVNAME(sc), cmd->c_datalen)); return error; } error = bus_dmamem_map(sc->dmat, &segs, rsegs, cmd->c_datalen, &datakvap, BUS_DMA_WAITOK|BUS_DMA_COHERENT); if (error) { DPRINTF(3, ("%s: could not map data buffer\n", DEVNAME(sc))); goto free_databuf; } /* If this is a write, copy data from sdmmc-provided buffer. */ if (!read) memcpy(datakvap, cmd->c_data, cmd->c_datalen); /* Load the data buffer and sync it. */ error = bus_dmamap_load(sc->dmat, sc->dmap_data, datakvap, cmd->c_datalen, NULL, BUS_DMA_WAITOK); if (error) { DPRINTF(3, ("%s: could not load DMA map\n", DEVNAME(sc))); goto unmap_databuf; } bus_dmamap_sync(sc->dmat, sc->dmap_data, 0, cmd->c_datalen, BUS_DMASYNC_PREREAD); bus_dmamap_sync(sc->dmat, sc->dmap_data, 0, cmd->c_datalen, BUS_DMASYNC_PREWRITE); error = rtsx_xfer_exec(sc, sc->dmap_data, RTSX_TRIG_DMA | (read ? RTSX_DMA_READ : 0) | (cmd->c_datalen & 0x00ffffff)); if (error) goto unload_databuf; /* Sync and unload data DMA buffer. */ bus_dmamap_sync(sc->dmat, sc->dmap_data, 0, cmd->c_datalen, BUS_DMASYNC_POSTREAD); bus_dmamap_sync(sc->dmat, sc->dmap_data, 0, cmd->c_datalen, BUS_DMASYNC_POSTWRITE); unload_databuf: bus_dmamap_unload(sc->dmat, sc->dmap_data); /* If this is a read, copy data into sdmmc-provided buffer. */ if (error == 0 && read) memcpy(cmd->c_data, datakvap, cmd->c_datalen); /* Free DMA data buffer. */ unmap_databuf: bus_dmamem_unmap(sc->dmat, datakvap, cmd->c_datalen); free_databuf: bus_dmamem_free(sc->dmat, &segs, rsegs); return error; } int rtsx_xfer_adma(struct rtsx_softc *sc, struct sdmmc_command *cmd) { int i, error; uint64_t *descp; int read = ISSET(cmd->c_flags, SCF_CMD_READ); /* Initialize scatter-gather transfer descriptors. */ descp = (uint64_t *)sc->admabuf; for (i = 0; i < cmd->c_dmamap->dm_nsegs; i++) { uint64_t paddr = cmd->c_dmamap->dm_segs[i].ds_addr; uint64_t len = cmd->c_dmamap->dm_segs[i].ds_len; uint8_t sgflags = RTSX_SG_VALID | RTSX_SG_TRANS_DATA; uint64_t desc; if (i == cmd->c_dmamap->dm_nsegs - 1) sgflags |= RTSX_SG_END; len &= 0x00ffffff; desc = htole64((paddr << 32) | (len << 12) | sgflags); memcpy(descp, &desc, sizeof(*descp)); descp++; } error = bus_dmamap_load(sc->dmat, sc->dmap_adma, sc->admabuf, RTSX_ADMA_DESC_SIZE, NULL, BUS_DMA_WAITOK); if (error) { DPRINTF(3, ("%s: could not load DMA map\n", DEVNAME(sc))); return error; } bus_dmamap_sync(sc->dmat, sc->dmap_adma, 0, RTSX_ADMA_DESC_SIZE, BUS_DMASYNC_PREWRITE); error = rtsx_xfer_exec(sc, sc->dmap_adma, RTSX_ADMA_MODE | RTSX_TRIG_DMA | (read ? RTSX_DMA_READ : 0)); bus_dmamap_sync(sc->dmat, sc->dmap_adma, 0, RTSX_ADMA_DESC_SIZE, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->dmat, sc->dmap_adma); return error; } void rtsx_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd) { struct rtsx_softc *sc = sch; bus_dma_segment_t segs; int rsegs; caddr_t cmdkvap; u_int32_t *cmdbuf; u_int8_t rsp_type; u_int16_t r; int ncmd; int error = 0; DPRINTF(3,("%s: executing cmd %hu\n", DEVNAME(sc), cmd->c_opcode)); /* Refuse SDIO probe if the chip doesn't support SDIO. */ if (cmd->c_opcode == SD_IO_SEND_OP_COND && !ISSET(sc->flags, RTSX_F_SDIO_SUPPORT)) { error = ENOTSUP; goto ret; } rsp_type = rtsx_response_type(cmd->c_flags & 0xff00); if (rsp_type == 0) { printf("%s: unknown response type 0x%x\n", DEVNAME(sc), (cmd->c_flags & 0xff00)); error = EINVAL; goto ret; } /* Allocate and map the host command buffer. */ error = bus_dmamem_alloc(sc->dmat, RTSX_HOSTCMD_BUFSIZE, 0, 0, &segs, 1, &rsegs, BUS_DMA_WAITOK|BUS_DMA_ZERO); if (error) goto ret; error = bus_dmamem_map(sc->dmat, &segs, rsegs, RTSX_HOSTCMD_BUFSIZE, &cmdkvap, BUS_DMA_WAITOK|BUS_DMA_COHERENT); if (error) goto free_cmdbuf; /* The command buffer queues commands the host controller will * run asynchronously. */ cmdbuf = (u_int32_t *)cmdkvap; ncmd = 0; /* Queue commands to set SD command index and argument. */ rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CMD0, 0xff, 0x40 | cmd->c_opcode); rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CMD1, 0xff, cmd->c_arg >> 24); rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CMD2, 0xff, cmd->c_arg >> 16); rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CMD3, 0xff, cmd->c_arg >> 8); rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CMD4, 0xff, cmd->c_arg); /* Queue command to set response type. */ rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_CFG2, 0xff, rsp_type); /* Use the ping-pong buffer for commands which do not transfer data. */ rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_CARD_DATA_SOURCE, 0x01, RTSX_PINGPONG_BUFFER); /* Queue commands to perform SD transfer. */ rtsx_hostcmd(cmdbuf, &ncmd, RTSX_WRITE_REG_CMD, RTSX_SD_TRANSFER, 0xff, RTSX_TM_CMD_RSP | RTSX_SD_TRANSFER_START); rtsx_hostcmd(cmdbuf, &ncmd, RTSX_CHECK_REG_CMD, RTSX_SD_TRANSFER, RTSX_SD_TRANSFER_END|RTSX_SD_STAT_IDLE, RTSX_SD_TRANSFER_END|RTSX_SD_STAT_IDLE); /* Queue commands to read back card status response.*/ if (rsp_type == RTSX_SD_RSP_TYPE_R2) { for (r = RTSX_PPBUF_BASE2 + 15; r > RTSX_PPBUF_BASE2; r--) rtsx_hostcmd(cmdbuf, &ncmd, RTSX_READ_REG_CMD, r, 0, 0); rtsx_hostcmd(cmdbuf, &ncmd, RTSX_READ_REG_CMD, RTSX_SD_CMD5, 0, 0); } else if (rsp_type != RTSX_SD_RSP_TYPE_R0) { for (r = RTSX_SD_CMD0; r <= RTSX_SD_CMD4; r++) rtsx_hostcmd(cmdbuf, &ncmd, RTSX_READ_REG_CMD, r, 0, 0); } /* Load and sync command DMA buffer. */ error = bus_dmamap_load(sc->dmat, sc->dmap_cmd, cmdkvap, RTSX_HOSTCMD_BUFSIZE, NULL, BUS_DMA_WAITOK); if (error) goto unmap_cmdbuf; bus_dmamap_sync(sc->dmat, sc->dmap_cmd, 0, RTSX_HOSTCMD_BUFSIZE, BUS_DMASYNC_PREREAD); bus_dmamap_sync(sc->dmat, sc->dmap_cmd, 0, RTSX_HOSTCMD_BUFSIZE, BUS_DMASYNC_PREWRITE); /* Run the command queue and wait for completion. */ error = rtsx_hostcmd_send(sc, ncmd); if (error == 0) error = rtsx_wait_intr(sc, RTSX_TRANS_OK_INT, hz); if (error) goto unload_cmdbuf; bus_dmamap_sync(sc->dmat, sc->dmap_cmd, 0, RTSX_HOSTCMD_BUFSIZE, BUS_DMASYNC_POSTREAD); bus_dmamap_sync(sc->dmat, sc->dmap_cmd, 0, RTSX_HOSTCMD_BUFSIZE, BUS_DMASYNC_POSTWRITE); /* Copy card response into sdmmc response buffer. */ if (ISSET(cmd->c_flags, SCF_RSP_PRESENT)) { /* Copy bytes like sdhc(4), which on little-endian uses * different byte order for short and long responses... */ if (ISSET(cmd->c_flags, SCF_RSP_136)) { memcpy(cmd->c_resp, cmdkvap + 1, sizeof(cmd->c_resp)); } else { /* First byte is CHECK_REG_CMD return value, second * one is the command op code -- we skip those. */ cmd->c_resp[0] = ((betoh32(cmdbuf[0]) & 0x0000ffff) << 16) | ((betoh32(cmdbuf[1]) & 0xffff0000) >> 16); } } if (cmd->c_data) { error = rtsx_xfer(sc, cmd, cmdbuf); if (error) { u_int8_t stat1; if (rtsx_read(sc, RTSX_SD_STAT1, &stat1) == 0 && (stat1 & RTSX_SD_CRC_ERR)) printf("%s: CRC error\n", DEVNAME(sc)); } } unload_cmdbuf: bus_dmamap_unload(sc->dmat, sc->dmap_cmd); unmap_cmdbuf: bus_dmamem_unmap(sc->dmat, cmdkvap, RTSX_HOSTCMD_BUFSIZE); free_cmdbuf: bus_dmamem_free(sc->dmat, &segs, rsegs); ret: SET(cmd->c_flags, SCF_ITSDONE); cmd->c_error = error; } /* Prepare for another command. */ void rtsx_soft_reset(struct rtsx_softc *sc) { DPRINTF(1,("%s: soft reset\n", DEVNAME(sc))); /* Stop command transfer. */ WRITE4(sc, RTSX_HCBCTLR, RTSX_STOP_CMD); (void)rtsx_write(sc, RTSX_CARD_STOP, RTSX_SD_STOP|RTSX_SD_CLR_ERR, RTSX_SD_STOP|RTSX_SD_CLR_ERR); /* Stop DMA transfer. */ WRITE4(sc, RTSX_HDBCTLR, RTSX_STOP_DMA); (void)rtsx_write(sc, RTSX_DMACTL, RTSX_DMA_RST, RTSX_DMA_RST); (void)rtsx_write(sc, RTSX_RBCTL, RTSX_RB_FLUSH, RTSX_RB_FLUSH); } int rtsx_wait_intr(struct rtsx_softc *sc, int mask, int timo) { int status; int error = 0; int s; mask |= RTSX_TRANS_FAIL_INT; s = splsdmmc(); status = sc->intr_status & mask; while (status == 0) { if (tsleep(&sc->intr_status, PRIBIO, "rtsxintr", timo) == EWOULDBLOCK) { rtsx_soft_reset(sc); error = ETIMEDOUT; break; } status = sc->intr_status & mask; } sc->intr_status &= ~status; /* Has the card disappeared? */ if (!ISSET(sc->flags, RTSX_F_CARD_PRESENT)) error = ENODEV; splx(s); if (error == 0 && (status & RTSX_TRANS_FAIL_INT)) error = EIO; return error; } void rtsx_card_insert(struct rtsx_softc *sc) { DPRINTF(1, ("%s: card inserted\n", DEVNAME(sc))); sc->flags |= RTSX_F_CARD_PRESENT; (void)rtsx_led_enable(sc); /* Schedule card discovery task. */ sdmmc_needs_discover(sc->sdmmc); } void rtsx_card_eject(struct rtsx_softc *sc) { DPRINTF(1, ("%s: card ejected\n", DEVNAME(sc))); sc->flags &= ~RTSX_F_CARD_PRESENT; (void)rtsx_led_disable(sc); /* Schedule card discovery task. */ sdmmc_needs_discover(sc->sdmmc); } /* * Established by attachment driver at interrupt priority IPL_SDMMC. */ int rtsx_intr(void *arg) { struct rtsx_softc *sc = arg; u_int32_t enabled, status; enabled = READ4(sc, RTSX_BIER); status = READ4(sc, RTSX_BIPR); /* Ack interrupts. */ WRITE4(sc, RTSX_BIPR, status); if (((enabled & status) == 0) || status == 0xffffffff) return 0; if (status & RTSX_SD_INT) { if (status & RTSX_SD_EXIST) { if (!ISSET(sc->flags, RTSX_F_CARD_PRESENT)) rtsx_card_insert(sc); } else { rtsx_card_eject(sc); } } if (status & (RTSX_TRANS_OK_INT | RTSX_TRANS_FAIL_INT)) { sc->intr_status |= status; wakeup(&sc->intr_status); } return 1; }