/* $OpenBSD: xl.c,v 1.39 2002/06/15 19:35:29 aaron Exp $ */ /* * Copyright (c) 1997, 1998, 1999 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: if_xl.c,v 1.77 2000/08/28 20:40:03 wpaul Exp $ */ /* * 3Com 3c90x Etherlink XL PCI NIC driver * * Supports the 3Com "boomerang", "cyclone", and "hurricane" PCI * bus-master chips (3c90x cards and embedded controllers) including * the following: * * 3Com 3c900-TPO 10Mbps/RJ-45 * 3Com 3c900-COMBO 10Mbps/RJ-45,AUI,BNC * 3Com 3c905-TX 10/100Mbps/RJ-45 * 3Com 3c905-T4 10/100Mbps/RJ-45 * 3Com 3c900B-TPO 10Mbps/RJ-45 * 3Com 3c900B-COMBO 10Mbps/RJ-45,AUI,BNC * 3Com 3c900B-TPC 10Mbps/RJ-45,BNC * 3Com 3c900B-FL 10Mbps/Fiber-optic * 3Com 3c905B-COMBO 10/100Mbps/RJ-45,AUI,BNC * 3Com 3c905B-TX 10/100Mbps/RJ-45 * 3Com 3c900-FL/FX 10/100Mbps/Fiber-optic * 3Com 3c905C-TX 10/100Mbps/RJ-45 (Tornado ASIC) * 3Com 3c450-TX 10/100Mbps/RJ-45 (Tornado ASIC) * 3Com 3c555 10/100Mbps/RJ-45 (MiniPCI, Hurricane ASIC) * 3Com 3c556 10/100Mbps/RJ-45 (MiniPCI, Hurricane ASIC) * 3Com 3c556B 10/100Mbps/RJ-45 (MiniPCI, Hurricane ASIC) * 3Com 3c980-TX 10/100Mbps server adapter (Hurricane ASIC) * 3Com 3c980C-TX 10/100Mbps server adapter (Tornado ASIC) * 3Com 3C575TX 10/100Mbps LAN CardBus PC Card * 3Com 3CCFE575BT 10/100Mbps LAN CardBus PC Card * 3Com 3CCFE575CT 10/100Mbps LAN CardBus PC Card * 3Com 3C3FE575CT 10/100Mbps LAN CardBus Type III PC Card * 3Com 3CCFEM656 10/100Mbps LAN+56k Modem CardBus PC Card * 3Com 3CCFEM656B 10/100Mbps LAN+56k Modem CardBus PC Card * 3Com 3CCFEM656C 10/100Mbps LAN+56k Global Modem CardBus PC Card * 3Com 3C3FEM656C 10/100Mbps LAN+56k Global Modem CardBus Type III PC Card * 3Com 3cSOHO100-TX 10/100Mbps/RJ-45 (Hurricane ASIC) * Dell Optiplex GX1 on-board 3c918 10/100Mbps/RJ-45 * Dell on-board 3c920 10/100Mbps/RJ-45 * Dell Precision on-board 3c905B 10/100Mbps/RJ-45 * Dell Latitude laptop docking station embedded 3c905-TX * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The 3c90x series chips use a bus-master DMA interface for transfering * packets to and from the controller chip. Some of the "vortex" cards * (3c59x) also supported a bus master mode, however for those chips * you could only DMA packets to/from a contiguous memory buffer. For * transmission this would mean copying the contents of the queued mbuf * chain into a an mbuf cluster and then DMAing the cluster. This extra * copy would sort of defeat the purpose of the bus master support for * any packet that doesn't fit into a single mbuf. * * By contrast, the 3c90x cards support a fragment-based bus master * mode where mbuf chains can be encapsulated using TX descriptors. * This is similar to other PCI chips such as the Texas Instruments * ThunderLAN and the Intel 82557/82558. * * The "vortex" driver (if_vx.c) happens to work for the "boomerang" * bus master chips because they maintain the old PIO interface for * backwards compatibility, but starting with the 3c905B and the * "cyclone" chips, the compatibility interface has been dropped. * Since using bus master DMA is a big win, we use this driver to * support the PCI "boomerang" chips even though they work with the * "vortex" driver in order to obtain better performance. * * This driver is in the /sys/pci directory because it only supports * PCI-based NICs. */ #include "bpfilter.h" #include "vlan.h" #include #include #include #include #include #include #include #include #include #include /* only for declaration of wakeup() used by vm.h */ #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #include #include #include #if NBPFILTER > 0 #include #endif #include int xl_newbuf(struct xl_softc *, struct xl_chain_onefrag *); void xl_stats_update(void *); int xl_encap(struct xl_softc *, struct xl_chain *, struct mbuf * ); int xl_encap_90xB(struct xl_softc *, struct xl_chain *, struct mbuf * ); void xl_rxeof(struct xl_softc *); int xl_rx_resync(struct xl_softc *); void xl_txeof(struct xl_softc *); void xl_txeof_90xB(struct xl_softc *); void xl_txeoc(struct xl_softc *); int xl_intr(void *); void xl_start(struct ifnet *); void xl_start_90xB(struct ifnet *); int xl_ioctl(struct ifnet *, u_long, caddr_t); void xl_init(void *); void xl_stop(struct xl_softc *); void xl_freetxrx(struct xl_softc *); void xl_watchdog(struct ifnet *); void xl_shutdown(void *); int xl_ifmedia_upd(struct ifnet *); void xl_ifmedia_sts(struct ifnet *, struct ifmediareq *); int xl_eeprom_wait(struct xl_softc *); int xl_read_eeprom(struct xl_softc *, caddr_t, int, int, int); void xl_mii_sync(struct xl_softc *); void xl_mii_send(struct xl_softc *, u_int32_t, int); int xl_mii_readreg(struct xl_softc *, struct xl_mii_frame *); int xl_mii_writereg(struct xl_softc *, struct xl_mii_frame *); void xl_setcfg(struct xl_softc *); void xl_setmode(struct xl_softc *, int); u_int8_t xl_calchash(caddr_t); void xl_setmulti(struct xl_softc *); void xl_setmulti_hash(struct xl_softc *); void xl_reset(struct xl_softc *, int); int xl_list_rx_init(struct xl_softc *); int xl_list_tx_init(struct xl_softc *); int xl_list_tx_init_90xB(struct xl_softc *); void xl_wait(struct xl_softc *); void xl_mediacheck(struct xl_softc *); void xl_choose_xcvr(struct xl_softc *, int); #ifdef notdef void xl_testpacket(struct xl_softc *); #endif int xl_miibus_readreg(struct device *, int, int); void xl_miibus_writereg(struct device *, int, int, int); void xl_miibus_statchg(struct device *); void xl_power(int, void *); void xl_power(why, arg) int why; void *arg; { struct xl_softc *sc = arg; struct ifnet *ifp; int s; s = splimp(); if (why != PWR_RESUME) xl_stop(sc); else { ifp = &sc->sc_arpcom.ac_if; if (ifp->if_flags & IFF_UP) { xl_reset(sc, 1); xl_init(sc); } } splx(s); } /* * Murphy's law says that it's possible the chip can wedge and * the 'command in progress' bit may never clear. Hence, we wait * only a finite amount of time to avoid getting caught in an * infinite loop. Normally this delay routine would be a macro, * but it isn't called during normal operation so we can afford * to make it a function. */ void xl_wait(sc) struct xl_softc *sc; { register int i; for (i = 0; i < XL_TIMEOUT; i++) { if (!(CSR_READ_2(sc, XL_STATUS) & XL_STAT_CMDBUSY)) break; } #ifdef DIAGNOSTIC if (i == XL_TIMEOUT) printf("xl%d: command never completed!\n", sc->xl_unit); #endif return; } /* * MII access routines are provided for adapters with external * PHYs (3c905-TX, 3c905-T4, 3c905B-T4) and those with built-in * autoneg logic that's faked up to look like a PHY (3c905B-TX). * Note: if you don't perform the MDIO operations just right, * it's possible to end up with code that works correctly with * some chips/CPUs/processor speeds/bus speeds/etc but not * with others. */ #define MII_SET(x) \ CSR_WRITE_2(sc, XL_W4_PHY_MGMT, \ CSR_READ_2(sc, XL_W4_PHY_MGMT) | x) #define MII_CLR(x) \ CSR_WRITE_2(sc, XL_W4_PHY_MGMT, \ CSR_READ_2(sc, XL_W4_PHY_MGMT) & ~x) /* * Sync the PHYs by setting data bit and strobing the clock 32 times. */ void xl_mii_sync(sc) struct xl_softc *sc; { register int i; XL_SEL_WIN(4); MII_SET(XL_MII_DIR|XL_MII_DATA); for (i = 0; i < 32; i++) { MII_SET(XL_MII_CLK); DELAY(1); MII_CLR(XL_MII_CLK); DELAY(1); } return; } /* * Clock a series of bits through the MII. */ void xl_mii_send(sc, bits, cnt) struct xl_softc *sc; u_int32_t bits; int cnt; { int i; XL_SEL_WIN(4); MII_CLR(XL_MII_CLK); for (i = (0x1 << (cnt - 1)); i; i >>= 1) { if (bits & i) { MII_SET(XL_MII_DATA); } else { MII_CLR(XL_MII_DATA); } DELAY(1); MII_CLR(XL_MII_CLK); DELAY(1); MII_SET(XL_MII_CLK); } } /* * Read an PHY register through the MII. */ int xl_mii_readreg(sc, frame) struct xl_softc *sc; struct xl_mii_frame *frame; { int i, ack, s; s = splimp(); /* * Set up frame for RX. */ frame->mii_stdelim = XL_MII_STARTDELIM; frame->mii_opcode = XL_MII_READOP; frame->mii_turnaround = 0; frame->mii_data = 0; /* * Select register window 4. */ XL_SEL_WIN(4); CSR_WRITE_2(sc, XL_W4_PHY_MGMT, 0); /* * Turn on data xmit. */ MII_SET(XL_MII_DIR); xl_mii_sync(sc); /* * Send command/address info. */ xl_mii_send(sc, frame->mii_stdelim, 2); xl_mii_send(sc, frame->mii_opcode, 2); xl_mii_send(sc, frame->mii_phyaddr, 5); xl_mii_send(sc, frame->mii_regaddr, 5); /* Idle bit */ MII_CLR((XL_MII_CLK|XL_MII_DATA)); DELAY(1); MII_SET(XL_MII_CLK); DELAY(1); /* Turn off xmit. */ MII_CLR(XL_MII_DIR); /* Check for ack */ MII_CLR(XL_MII_CLK); DELAY(1); MII_SET(XL_MII_CLK); DELAY(1); ack = CSR_READ_2(sc, XL_W4_PHY_MGMT) & XL_MII_DATA; /* * Now try reading data bits. If the ack failed, we still * need to clock through 16 cycles to keep the PHY(s) in sync. */ if (ack) { for(i = 0; i < 16; i++) { MII_CLR(XL_MII_CLK); DELAY(1); MII_SET(XL_MII_CLK); DELAY(1); } goto fail; } for (i = 0x8000; i; i >>= 1) { MII_CLR(XL_MII_CLK); DELAY(1); if (!ack) { if (CSR_READ_2(sc, XL_W4_PHY_MGMT) & XL_MII_DATA) frame->mii_data |= i; DELAY(1); } MII_SET(XL_MII_CLK); DELAY(1); } fail: MII_CLR(XL_MII_CLK); DELAY(1); MII_SET(XL_MII_CLK); DELAY(1); splx(s); if (ack) return(1); return(0); } /* * Write to a PHY register through the MII. */ int xl_mii_writereg(sc, frame) struct xl_softc *sc; struct xl_mii_frame *frame; { int s; s = splimp(); /* * Set up frame for TX. */ frame->mii_stdelim = XL_MII_STARTDELIM; frame->mii_opcode = XL_MII_WRITEOP; frame->mii_turnaround = XL_MII_TURNAROUND; /* * Select the window 4. */ XL_SEL_WIN(4); /* * Turn on data output. */ MII_SET(XL_MII_DIR); xl_mii_sync(sc); xl_mii_send(sc, frame->mii_stdelim, 2); xl_mii_send(sc, frame->mii_opcode, 2); xl_mii_send(sc, frame->mii_phyaddr, 5); xl_mii_send(sc, frame->mii_regaddr, 5); xl_mii_send(sc, frame->mii_turnaround, 2); xl_mii_send(sc, frame->mii_data, 16); /* Idle bit. */ MII_SET(XL_MII_CLK); DELAY(1); MII_CLR(XL_MII_CLK); DELAY(1); /* * Turn off xmit. */ MII_CLR(XL_MII_DIR); splx(s); return(0); } int xl_miibus_readreg(self, phy, reg) struct device *self; int phy, reg; { struct xl_softc *sc = (struct xl_softc *)self; struct xl_mii_frame frame; if (!(sc->xl_flags & XL_FLAG_PHYOK) && phy != 24) return (0); bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; xl_mii_readreg(sc, &frame); return(frame.mii_data); } void xl_miibus_writereg(self, phy, reg, data) struct device *self; int phy, reg, data; { struct xl_softc *sc = (struct xl_softc *)self; struct xl_mii_frame frame; if (!(sc->xl_flags & XL_FLAG_PHYOK) && phy != 24) return; bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; frame.mii_data = data; xl_mii_writereg(sc, &frame); } void xl_miibus_statchg(self) struct device *self; { struct xl_softc *sc = (struct xl_softc *)self; xl_setcfg(sc); XL_SEL_WIN(3); if ((sc->sc_mii.mii_media_active & IFM_GMASK) == IFM_FDX) CSR_WRITE_1(sc, XL_W3_MAC_CTRL, XL_MACCTRL_DUPLEX); else CSR_WRITE_1(sc, XL_W3_MAC_CTRL, (CSR_READ_1(sc, XL_W3_MAC_CTRL) & ~XL_MACCTRL_DUPLEX)); } /* * The EEPROM is slow: give it time to come ready after issuing * it a command. */ int xl_eeprom_wait(sc) struct xl_softc *sc; { int i; for (i = 0; i < 100; i++) { if (CSR_READ_2(sc, XL_W0_EE_CMD) & XL_EE_BUSY) DELAY(162); else break; } if (i == 100) { printf("xl%d: eeprom failed to come ready\n", sc->xl_unit); return(1); } return(0); } /* * Read a sequence of words from the EEPROM. Note that ethernet address * data is stored in the EEPROM in network byte order. */ int xl_read_eeprom(sc, dest, off, cnt, swap) struct xl_softc *sc; caddr_t dest; int off; int cnt; int swap; { int err = 0, i; u_int16_t word = 0, *ptr; #define EEPROM_5BIT_OFFSET(A) ((((A) << 2) & 0x7F00) | ((A) & 0x003F)) /* WARNING! DANGER! * It's easy to accidentally overwrite the rom content! * Note: the 3c575 uses 8bit EEPROM offsets. */ XL_SEL_WIN(0); if (xl_eeprom_wait(sc)) return(1); if (sc->xl_flags & XL_FLAG_EEPROM_OFFSET_30) off += 0x30; for (i = 0; i < cnt; i++) { if (sc->xl_flags & XL_FLAG_8BITROM) CSR_WRITE_2(sc, XL_W0_EE_CMD, (2<<8) | (off + i )); else CSR_WRITE_2(sc, XL_W0_EE_CMD, XL_EE_READ | EEPROM_5BIT_OFFSET(off + i)); err = xl_eeprom_wait(sc); if (err) break; word = CSR_READ_2(sc, XL_W0_EE_DATA); ptr = (u_int16_t *)(dest + (i * 2)); if (swap) *ptr = ntohs(word); else *ptr = word; } return(err ? 1 : 0); } /* * This routine is taken from the 3Com Etherlink XL manual, * page 10-7. It calculates a CRC of the supplied multicast * group address and returns the lower 8 bits, which are used * as the multicast filter position. * Note: the 3c905B currently only supports a 64-bit hash table, * which means we really only need 6 bits, but the manual indicates * that future chip revisions will have a 256-bit hash table, * hence the routine is set up to calculate 8 bits of position * info in case we need it some day. * Note II, The Sequel: _CURRENT_ versions of the 3c905B have a * 256 bit hash table. This means we have to use all 8 bits regardless. * On older cards, the upper 2 bits will be ignored. Grrrr.... */ u_int8_t xl_calchash(addr) caddr_t addr; { u_int32_t crc, carry; int i, j; u_int8_t c; /* Compute CRC for the address value. */ crc = 0xFFFFFFFF; /* initial value */ for (i = 0; i < 6; i++) { c = *(addr + i); for (j = 0; j < 8; j++) { carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01); crc <<= 1; c >>= 1; if (carry) crc = (crc ^ 0x04c11db6) | carry; } } /* return the filter bit position */ return(crc & 0x000000FF); } /* * NICs older than the 3c905B have only one multicast option, which * is to enable reception of all multicast frames. */ void xl_setmulti(sc) struct xl_softc *sc; { struct ifnet *ifp; struct arpcom *ac = &sc->sc_arpcom; struct ether_multi *enm; struct ether_multistep step; u_int8_t rxfilt; int mcnt = 0; ifp = &sc->sc_arpcom.ac_if; XL_SEL_WIN(5); rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER); if (ifp->if_flags & IFF_ALLMULTI) { rxfilt |= XL_RXFILTER_ALLMULTI; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt); return; } ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { mcnt++; ETHER_NEXT_MULTI(step, enm); } if (mcnt) rxfilt |= XL_RXFILTER_ALLMULTI; else rxfilt &= ~XL_RXFILTER_ALLMULTI; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt); return; } /* * 3c905B adapters have a hash filter that we can program. */ void xl_setmulti_hash(sc) struct xl_softc *sc; { struct ifnet *ifp; int h = 0, i; struct arpcom *ac = &sc->sc_arpcom; struct ether_multi *enm; struct ether_multistep step; u_int8_t rxfilt; int mcnt = 0; ifp = &sc->sc_arpcom.ac_if; XL_SEL_WIN(5); rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER); if (ifp->if_flags & IFF_ALLMULTI) { allmulti: rxfilt |= XL_RXFILTER_ALLMULTI; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt); return; } else rxfilt &= ~XL_RXFILTER_ALLMULTI; /* first, zot all the existing hash bits */ for (i = 0; i < XL_HASHFILT_SIZE; i++) CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_HASH|i); /* now program new ones */ ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { ifp->if_flags |= IFF_ALLMULTI; goto allmulti; } h = xl_calchash(enm->enm_addrlo); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_HASH|XL_HASH_SET|h); mcnt++; ETHER_NEXT_MULTI(step, enm); } if (mcnt) rxfilt |= XL_RXFILTER_MULTIHASH; else rxfilt &= ~XL_RXFILTER_MULTIHASH; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt); return; } #ifdef notdef void xl_testpacket(sc) struct xl_softc *sc; { struct mbuf *m; struct ifnet *ifp; int error; ifp = &sc->sc_arpcom.ac_if; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return; bcopy(&sc->sc_arpcom.ac_enaddr, mtod(m, struct ether_header *)->ether_dhost, ETHER_ADDR_LEN); bcopy(&sc->sc_arpcom.ac_enaddr, mtod(m, struct ether_header *)->ether_shost, ETHER_ADDR_LEN); mtod(m, struct ether_header *)->ether_type = htons(3); mtod(m, unsigned char *)[14] = 0; mtod(m, unsigned char *)[15] = 0; mtod(m, unsigned char *)[16] = 0xE3; m->m_len = m->m_pkthdr.len = sizeof(struct ether_header) + 3; IFQ_ENQUEUE(&ifp->if_snd, m, NULL, error); xl_start(ifp); return; } #endif void xl_setcfg(sc) struct xl_softc *sc; { u_int32_t icfg; XL_SEL_WIN(3); icfg = CSR_READ_4(sc, XL_W3_INTERNAL_CFG); icfg &= ~XL_ICFG_CONNECTOR_MASK; if (sc->xl_media & XL_MEDIAOPT_MII || sc->xl_media & XL_MEDIAOPT_BT4) icfg |= (XL_XCVR_MII << XL_ICFG_CONNECTOR_BITS); if (sc->xl_media & XL_MEDIAOPT_BTX) icfg |= (XL_XCVR_AUTO << XL_ICFG_CONNECTOR_BITS); CSR_WRITE_4(sc, XL_W3_INTERNAL_CFG, icfg); CSR_WRITE_4(sc, XL_COMMAND, XL_CMD_COAX_STOP); } void xl_setmode(sc, media) struct xl_softc *sc; int media; { u_int32_t icfg; u_int16_t mediastat; printf("xl%d: selecting ", sc->xl_unit); XL_SEL_WIN(4); mediastat = CSR_READ_2(sc, XL_W4_MEDIA_STATUS); XL_SEL_WIN(3); icfg = CSR_READ_4(sc, XL_W3_INTERNAL_CFG); if (sc->xl_media & XL_MEDIAOPT_BT) { if (IFM_SUBTYPE(media) == IFM_10_T) { printf("10baseT transceiver, "); sc->xl_xcvr = XL_XCVR_10BT; icfg &= ~XL_ICFG_CONNECTOR_MASK; icfg |= (XL_XCVR_10BT << XL_ICFG_CONNECTOR_BITS); mediastat |= XL_MEDIASTAT_LINKBEAT| XL_MEDIASTAT_JABGUARD; mediastat &= ~XL_MEDIASTAT_SQEENB; } } if (sc->xl_media & XL_MEDIAOPT_BFX) { if (IFM_SUBTYPE(media) == IFM_100_FX) { printf("100baseFX port, "); sc->xl_xcvr = XL_XCVR_100BFX; icfg &= ~XL_ICFG_CONNECTOR_MASK; icfg |= (XL_XCVR_100BFX << XL_ICFG_CONNECTOR_BITS); mediastat |= XL_MEDIASTAT_LINKBEAT; mediastat &= ~XL_MEDIASTAT_SQEENB; } } if (sc->xl_media & (XL_MEDIAOPT_AUI|XL_MEDIAOPT_10FL)) { if (IFM_SUBTYPE(media) == IFM_10_5) { printf("AUI port, "); sc->xl_xcvr = XL_XCVR_AUI; icfg &= ~XL_ICFG_CONNECTOR_MASK; icfg |= (XL_XCVR_AUI << XL_ICFG_CONNECTOR_BITS); mediastat &= ~(XL_MEDIASTAT_LINKBEAT| XL_MEDIASTAT_JABGUARD); mediastat |= ~XL_MEDIASTAT_SQEENB; } if (IFM_SUBTYPE(media) == IFM_10_FL) { printf("10baseFL transceiver, "); sc->xl_xcvr = XL_XCVR_AUI; icfg &= ~XL_ICFG_CONNECTOR_MASK; icfg |= (XL_XCVR_AUI << XL_ICFG_CONNECTOR_BITS); mediastat &= ~(XL_MEDIASTAT_LINKBEAT| XL_MEDIASTAT_JABGUARD); mediastat |= ~XL_MEDIASTAT_SQEENB; } } if (sc->xl_media & XL_MEDIAOPT_BNC) { if (IFM_SUBTYPE(media) == IFM_10_2) { printf("BNC port, "); sc->xl_xcvr = XL_XCVR_COAX; icfg &= ~XL_ICFG_CONNECTOR_MASK; icfg |= (XL_XCVR_COAX << XL_ICFG_CONNECTOR_BITS); mediastat &= ~(XL_MEDIASTAT_LINKBEAT| XL_MEDIASTAT_JABGUARD| XL_MEDIASTAT_SQEENB); } } if ((media & IFM_GMASK) == IFM_FDX || IFM_SUBTYPE(media) == IFM_100_FX) { printf("full duplex\n"); XL_SEL_WIN(3); CSR_WRITE_1(sc, XL_W3_MAC_CTRL, XL_MACCTRL_DUPLEX); } else { printf("half duplex\n"); XL_SEL_WIN(3); CSR_WRITE_1(sc, XL_W3_MAC_CTRL, (CSR_READ_1(sc, XL_W3_MAC_CTRL) & ~XL_MACCTRL_DUPLEX)); } if (IFM_SUBTYPE(media) == IFM_10_2) CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_START); else CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP); CSR_WRITE_4(sc, XL_W3_INTERNAL_CFG, icfg); XL_SEL_WIN(4); CSR_WRITE_2(sc, XL_W4_MEDIA_STATUS, mediastat); DELAY(800); XL_SEL_WIN(7); } void xl_reset(sc, hard) struct xl_softc *sc; int hard; { register int i; XL_SEL_WIN(0); if (hard || (sc->xl_flags & XL_FLAG_WEIRDRESET)) { CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RESET | ((sc->xl_flags & XL_FLAG_WEIRDRESET)?0xFF:0)); } else CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RESET | 0x0010); xl_wait(sc); for (i = 0; i < XL_TIMEOUT; i++) { DELAY(10); if (!(CSR_READ_2(sc, XL_STATUS) & XL_STAT_CMDBUSY)) break; } DELAY(100000); /* Reset TX and RX. */ CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_RESET); xl_wait(sc); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET); xl_wait(sc); if (sc->xl_flags & XL_FLAG_WEIRDRESET) { XL_SEL_WIN(2); CSR_WRITE_2(sc, XL_W2_RESET_OPTIONS, CSR_READ_2(sc, XL_W2_RESET_OPTIONS) | 0x4010); } /* Wait a little while for the chip to get its brains in order. */ DELAY(100000); return; } /* * This routine is a kludge to work around possible hardware faults * or manufacturing defects that can cause the media options register * (or reset options register, as it's called for the first generation * 3c90x adapters) to return an incorrect result. I have encountered * one Dell Latitude laptop docking station with an integrated 3c905-TX * which doesn't have any of the 'mediaopt' bits set. This screws up * the attach routine pretty badly because it doesn't know what media * to look for. If we find ourselves in this predicament, this routine * will try to guess the media options values and warn the user of a * possible manufacturing defect with his adapter/system/whatever. */ void xl_mediacheck(sc) struct xl_softc *sc; { /* * If some of the media options bits are set, assume they are * correct. If not, try to figure it out down below. * XXX I should check for 10baseFL, but I don't have an adapter * to test with. */ if (sc->xl_media & (XL_MEDIAOPT_MASK & ~XL_MEDIAOPT_VCO)) { /* * Check the XCVR value. If it's not in the normal range * of values, we need to fake it up here. */ if (sc->xl_xcvr <= XL_XCVR_AUTO) return; else { printf("xl%d: bogus xcvr value " "in EEPROM (%x)\n", sc->xl_unit, sc->xl_xcvr); printf("xl%d: choosing new default based " "on card type\n", sc->xl_unit); } } else { if (sc->xl_type == XL_TYPE_905B && sc->xl_media & XL_MEDIAOPT_10FL) return; printf("xl%d: WARNING: no media options bits set in " "the media options register!!\n", sc->xl_unit); printf("xl%d: this could be a manufacturing defect in " "your adapter or system\n", sc->xl_unit); printf("xl%d: attempting to guess media type; you " "should probably consult your vendor\n", sc->xl_unit); } xl_choose_xcvr(sc, 1); } void xl_choose_xcvr(sc, verbose) struct xl_softc *sc; int verbose; { u_int16_t devid; /* * Read the device ID from the EEPROM. * This is what's loaded into the PCI device ID register, so it has * to be correct otherwise we wouldn't have gotten this far. */ xl_read_eeprom(sc, (caddr_t)&devid, XL_EE_PRODID, 1, 0); switch(devid) { case TC_DEVICEID_BOOMERANG_10BT: /* 3c900-TPO */ case TC_DEVICEID_KRAKATOA_10BT: /* 3c900B-TPO */ sc->xl_media = XL_MEDIAOPT_BT; sc->xl_xcvr = XL_XCVR_10BT; if (verbose) printf("xl%d: guessing 10BaseT transceiver\n", sc->xl_unit); break; case TC_DEVICEID_BOOMERANG_10BT_COMBO: /* 3c900-COMBO */ case TC_DEVICEID_KRAKATOA_10BT_COMBO: /* 3c900B-COMBO */ sc->xl_media = XL_MEDIAOPT_BT|XL_MEDIAOPT_BNC|XL_MEDIAOPT_AUI; sc->xl_xcvr = XL_XCVR_10BT; if (verbose) printf("xl%d: guessing COMBO (AUI/BNC/TP)\n", sc->xl_unit); break; case TC_DEVICEID_KRAKATOA_10BT_TPC: /* 3c900B-TPC */ sc->xl_media = XL_MEDIAOPT_BT|XL_MEDIAOPT_BNC; sc->xl_xcvr = XL_XCVR_10BT; if (verbose) printf("xl%d: guessing TPC (BNC/TP)\n", sc->xl_unit); break; case TC_DEVICEID_CYCLONE_10FL: /* 3c900B-FL */ sc->xl_media = XL_MEDIAOPT_10FL; sc->xl_xcvr = XL_XCVR_AUI; if (verbose) printf("xl%d: guessing 10baseFL\n", sc->xl_unit); break; case TC_DEVICEID_BOOMERANG_10_100BT: /* 3c905-TX */ case TC_DEVICEID_HURRICANE_555: /* 3c555 */ case TC_DEVICEID_HURRICANE_556: /* 3c556 */ case TC_DEVICEID_HURRICANE_556B: /* 3c556B */ sc->xl_media = XL_MEDIAOPT_MII; sc->xl_xcvr = XL_XCVR_MII; if (verbose) printf("xl%d: guessing MII\n", sc->xl_unit); break; case TC_DEVICEID_BOOMERANG_100BT4: /* 3c905-T4 */ case TC_DEVICEID_CYCLONE_10_100BT4: /* 3c905B-T4 */ sc->xl_media = XL_MEDIAOPT_BT4; sc->xl_xcvr = XL_XCVR_MII; if (verbose) printf("xl%d: guessing 100BaseT4/MII\n", sc->xl_unit); break; case TC_DEVICEID_HURRICANE_10_100BT: /* 3c905B-TX */ case TC_DEVICEID_HURRICANE_10_100BT_SERV:/* 3c980-TX */ case TC_DEVICEID_TORNADO_10_100BT_SERV: /* 3c980C-TX */ case TC_DEVICEID_HURRICANE_SOHO100TX: /* 3cSOHO100-TX */ case TC_DEVICEID_TORNADO_10_100BT: /* 3c905C-TX */ case TC_DEVICEID_TORNADO_HOMECONNECT: /* 3c450-TX */ sc->xl_media = XL_MEDIAOPT_BTX; sc->xl_xcvr = XL_XCVR_AUTO; if (verbose) printf("xl%d: guessing 10/100 internal\n", sc->xl_unit); break; case TC_DEVICEID_CYCLONE_10_100_COMBO: /* 3c905B-COMBO */ sc->xl_media = XL_MEDIAOPT_BTX|XL_MEDIAOPT_BNC|XL_MEDIAOPT_AUI; sc->xl_xcvr = XL_XCVR_AUTO; if (verbose) printf("xl%d: guessing 10/100 plus BNC/AUI\n", sc->xl_unit); break; case TC_DEVICEID_3C575_CARDBUS: case TC_DEVICEID_3CCFE575BT_CARDBUS: case TC_DEVICEID_3CCFE575CT_CARDBUS: case TC_DEVICEID_3CCFEM656_CARDBUS: case TC_DEVICEID_3CCFEM656B_CARDBUS: case TC_DEVICEID_3CCFEM656C_CARDBUS: sc->xl_media = XL_MEDIAOPT_MII; sc->xl_xcvr = XL_XCVR_MII; break; default: printf("xl%d: unknown device ID: %x -- " "defaulting to 10baseT\n", sc->xl_unit, devid); sc->xl_media = XL_MEDIAOPT_BT; break; } return; } /* * Initialize the transmit descriptors. */ int xl_list_tx_init(sc) struct xl_softc *sc; { struct xl_chain_data *cd; struct xl_list_data *ld; int i; cd = &sc->xl_cdata; ld = sc->xl_ldata; for (i = 0; i < XL_TX_LIST_CNT; i++) { cd->xl_tx_chain[i].xl_ptr = &ld->xl_tx_list[i]; if (i == (XL_TX_LIST_CNT - 1)) cd->xl_tx_chain[i].xl_next = NULL; else cd->xl_tx_chain[i].xl_next = &cd->xl_tx_chain[i + 1]; } cd->xl_tx_free = &cd->xl_tx_chain[0]; cd->xl_tx_tail = cd->xl_tx_head = NULL; return(0); } /* * Initialize the transmit desriptors. */ int xl_list_tx_init_90xB(sc) struct xl_softc *sc; { struct xl_chain_data *cd; struct xl_list_data *ld; int i; cd = &sc->xl_cdata; ld = sc->xl_ldata; for (i = 0; i < XL_TX_LIST_CNT; i++) { cd->xl_tx_chain[i].xl_ptr = &ld->xl_tx_list[i]; cd->xl_tx_chain[i].xl_phys = sc->sc_listmap->dm_segs[0].ds_addr + offsetof(struct xl_list_data, xl_tx_list[i]); if (i == (XL_TX_LIST_CNT - 1)) cd->xl_tx_chain[i].xl_next = &cd->xl_tx_chain[0]; else cd->xl_tx_chain[i].xl_next = &cd->xl_tx_chain[i + 1]; if (i == 0) cd->xl_tx_chain[i].xl_prev = &cd->xl_tx_chain[XL_TX_LIST_CNT - 1]; else cd->xl_tx_chain[i].xl_prev = &cd->xl_tx_chain[i - 1]; } bzero((char *)ld->xl_tx_list, sizeof(struct xl_list) * XL_TX_LIST_CNT); ld->xl_tx_list[0].xl_status = XL_TXSTAT_EMPTY; cd->xl_tx_prod = 1; cd->xl_tx_cons = 1; cd->xl_tx_cnt = 0; return (0); } /* * Initialize the RX descriptors and allocate mbufs for them. Note that * we arrange the descriptors in a closed ring, so that the last descriptor * points back to the first. */ int xl_list_rx_init(sc) struct xl_softc *sc; { struct xl_chain_data *cd; struct xl_list_data *ld; int i; bus_addr_t next; cd = &sc->xl_cdata; ld = sc->xl_ldata; for (i = 0; i < XL_RX_LIST_CNT; i++) { cd->xl_rx_chain[i].xl_ptr = (struct xl_list_onefrag *)&ld->xl_rx_list[i]; if (xl_newbuf(sc, &cd->xl_rx_chain[i]) == ENOBUFS) return(ENOBUFS); next = sc->sc_listmap->dm_segs[0].ds_addr; if (i == (XL_RX_LIST_CNT - 1)) { cd->xl_rx_chain[i].xl_next = &cd->xl_rx_chain[0]; next += offsetof(struct xl_list_data, xl_rx_list[0]); } else { cd->xl_rx_chain[i].xl_next = &cd->xl_rx_chain[i + 1]; next += offsetof(struct xl_list_data, xl_rx_list[i + 1]); } ld->xl_rx_list[i].xl_next = next; } cd->xl_rx_head = &cd->xl_rx_chain[0]; return(0); } /* * Initialize an RX descriptor and attach an MBUF cluster. */ int xl_newbuf(sc, c) struct xl_softc *sc; struct xl_chain_onefrag *c; { struct mbuf *m_new = NULL; bus_dmamap_t map; MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) return(ENOBUFS); MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { m_freem(m_new); return(ENOBUFS); } m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; if (bus_dmamap_load(sc->sc_dmat, sc->sc_rx_sparemap, mtod(m_new, caddr_t), MCLBYTES, NULL, BUS_DMA_NOWAIT) != 0) { printf("%s: rx load failed\n", sc->sc_dev.dv_xname); m_freem(m_new); return (ENOBUFS); } map = c->map; c->map = sc->sc_rx_sparemap; sc->sc_rx_sparemap = map; /* Force longword alignment for packet payload. */ m_adj(m_new, ETHER_ALIGN); bus_dmamap_sync(sc->sc_dmat, c->map, 0, c->map->dm_mapsize, BUS_DMASYNC_PREREAD); c->xl_mbuf = m_new; c->xl_ptr->xl_frag.xl_addr = c->map->dm_segs[0].ds_addr + ETHER_ALIGN; c->xl_ptr->xl_frag.xl_len = c->map->dm_segs[0].ds_len | XL_LAST_FRAG; c->xl_ptr->xl_status = 0; bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap, ((caddr_t)c->xl_ptr - sc->sc_listkva), sizeof(struct xl_list), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return(0); } int xl_rx_resync(sc) struct xl_softc *sc; { struct xl_chain_onefrag *pos; int i; pos = sc->xl_cdata.xl_rx_head; for (i = 0; i < XL_RX_LIST_CNT; i++) { bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap, ((caddr_t)pos->xl_ptr - sc->sc_listkva), sizeof(struct xl_list), BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); if (pos->xl_ptr->xl_status) break; pos = pos->xl_next; } if (i == XL_RX_LIST_CNT) return (0); sc->xl_cdata.xl_rx_head = pos; return (EAGAIN); } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ void xl_rxeof(sc) struct xl_softc *sc; { struct mbuf *m; struct ifnet *ifp; struct xl_chain_onefrag *cur_rx; int total_len = 0, sumflags = 0; u_int32_t rxstat; ifp = &sc->sc_arpcom.ac_if; again: while((rxstat = sc->xl_cdata.xl_rx_head->xl_ptr->xl_status)) { cur_rx = sc->xl_cdata.xl_rx_head; sc->xl_cdata.xl_rx_head = cur_rx->xl_next; bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap, ((caddr_t)cur_rx->xl_ptr - sc->sc_listkva), sizeof(struct xl_list), BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); /* * If an error occurs, update stats, clear the * status word and leave the mbuf cluster in place: * it should simply get re-used next time this descriptor * comes up in the ring. */ if (rxstat & XL_RXSTAT_UP_ERROR) { ifp->if_ierrors++; cur_rx->xl_ptr->xl_status = 0; continue; } /* * If there error bit was not set, the upload complete * bit should be set which means we have a valid packet. * If not, something truly strange has happened. */ if (!(rxstat & XL_RXSTAT_UP_CMPLT)) { printf("xl%d: bad receive status -- " "packet dropped", sc->xl_unit); ifp->if_ierrors++; cur_rx->xl_ptr->xl_status = 0; continue; } /* No errors; receive the packet. */ m = cur_rx->xl_mbuf; total_len = cur_rx->xl_ptr->xl_status & XL_RXSTAT_LENMASK; bus_dmamap_sync(sc->sc_dmat, cur_rx->map, 0, cur_rx->map->dm_mapsize, BUS_DMASYNC_POSTREAD); /* * Try to conjure up a new mbuf cluster. If that * fails, it means we have an out of memory condition and * should leave the buffer in place and continue. This will * result in a lost packet, but there's little else we * can do in this situation. */ if (xl_newbuf(sc, cur_rx) == ENOBUFS) { ifp->if_ierrors++; cur_rx->xl_ptr->xl_status = 0; continue; } ifp->if_ipackets++; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = total_len; #if NBPFILTER > 0 /* * Handle BPF listeners. Let the BPF user see the packet. */ if (ifp->if_bpf) { bpf_mtap(ifp->if_bpf, m); } #endif if (sc->xl_type == XL_TYPE_905B) { if (rxstat & XL_RXSTAT_IPCKERR) sumflags |= M_IPV4_CSUM_IN_BAD; else if (rxstat & XL_RXSTAT_IPCKOK) sumflags |= M_IPV4_CSUM_IN_OK; if (rxstat & XL_RXSTAT_TCPCKERR) sumflags |= M_TCP_CSUM_IN_BAD; else if (rxstat & XL_RXSTAT_TCPCKOK) sumflags |= M_TCP_CSUM_IN_OK; if (rxstat & XL_RXSTAT_UDPCKERR) sumflags |= M_UDP_CSUM_IN_BAD; else if (rxstat & XL_RXSTAT_UDPCKOK) sumflags |= M_UDP_CSUM_IN_OK; m->m_pkthdr.csum = sumflags; } ether_input_mbuf(ifp, m); } /* * Handle the 'end of channel' condition. When the upload * engine hits the end of the RX ring, it will stall. This * is our cue to flush the RX ring, reload the uplist pointer * register and unstall the engine. * XXX This is actually a little goofy. With the ThunderLAN * chip, you get an interrupt when the receiver hits the end * of the receive ring, which tells you exactly when you * you need to reload the ring pointer. Here we have to * fake it. I'm mad at myself for not being clever enough * to avoid the use of a goto here. */ if (CSR_READ_4(sc, XL_UPLIST_PTR) == 0 || CSR_READ_4(sc, XL_UPLIST_STATUS) & XL_PKTSTAT_UP_STALLED) { CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_STALL); xl_wait(sc); CSR_WRITE_4(sc, XL_UPLIST_PTR, sc->sc_listmap->dm_segs[0].ds_addr + offsetof(struct xl_list_data, xl_rx_list[0])); sc->xl_cdata.xl_rx_head = &sc->xl_cdata.xl_rx_chain[0]; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_UNSTALL); goto again; } return; } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ void xl_txeof(sc) struct xl_softc *sc; { struct xl_chain *cur_tx; struct ifnet *ifp; ifp = &sc->sc_arpcom.ac_if; /* Clear the timeout timer. */ ifp->if_timer = 0; /* * Go through our tx list and free mbufs for those * frames that have been uploaded. Note: the 3c905B * sets a special bit in the status word to let us * know that a frame has been downloaded, but the * original 3c900/3c905 adapters don't do that. * Consequently, we have to use a different test if * xl_type != XL_TYPE_905B. */ while(sc->xl_cdata.xl_tx_head != NULL) { cur_tx = sc->xl_cdata.xl_tx_head; bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap, ((caddr_t)cur_tx->xl_ptr - sc->sc_listkva), sizeof(struct xl_list), BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); if (CSR_READ_4(sc, XL_DOWNLIST_PTR)) break; sc->xl_cdata.xl_tx_head = cur_tx->xl_next; ifp->if_opackets++; if (cur_tx->map->dm_nsegs != 0) { bus_dmamap_t map = cur_tx->map; bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, map); } if (cur_tx->xl_mbuf != NULL) { m_freem(cur_tx->xl_mbuf); cur_tx->xl_mbuf = NULL; } cur_tx->xl_next = sc->xl_cdata.xl_tx_free; sc->xl_cdata.xl_tx_free = cur_tx; } if (sc->xl_cdata.xl_tx_head == NULL) { ifp->if_flags &= ~IFF_OACTIVE; sc->xl_cdata.xl_tx_tail = NULL; } else { if (CSR_READ_4(sc, XL_DMACTL) & XL_DMACTL_DOWN_STALLED || !CSR_READ_4(sc, XL_DOWNLIST_PTR)) { CSR_WRITE_4(sc, XL_DOWNLIST_PTR, sc->sc_listmap->dm_segs[0].ds_addr + ((caddr_t)sc->xl_cdata.xl_tx_head->xl_ptr - sc->sc_listkva)); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL); } } return; } void xl_txeof_90xB(sc) struct xl_softc *sc; { struct xl_chain *cur_tx = NULL; struct ifnet *ifp; int idx; ifp = &sc->sc_arpcom.ac_if; idx = sc->xl_cdata.xl_tx_cons; while(idx != sc->xl_cdata.xl_tx_prod) { cur_tx = &sc->xl_cdata.xl_tx_chain[idx]; if (!(cur_tx->xl_ptr->xl_status & XL_TXSTAT_DL_COMPLETE)) break; if (cur_tx->xl_mbuf != NULL) { m_freem(cur_tx->xl_mbuf); cur_tx->xl_mbuf = NULL; } ifp->if_opackets++; sc->xl_cdata.xl_tx_cnt--; XL_INC(idx, XL_TX_LIST_CNT); ifp->if_timer = 0; } sc->xl_cdata.xl_tx_cons = idx; if (cur_tx != NULL) ifp->if_flags &= ~IFF_OACTIVE; } /* * TX 'end of channel' interrupt handler. Actually, we should * only get a 'TX complete' interrupt if there's a transmit error, * so this is really TX error handler. */ void xl_txeoc(sc) struct xl_softc *sc; { u_int8_t txstat; while((txstat = CSR_READ_1(sc, XL_TX_STATUS))) { if (txstat & XL_TXSTATUS_UNDERRUN || txstat & XL_TXSTATUS_JABBER || txstat & XL_TXSTATUS_RECLAIM) { if (txstat != 0x90) { printf("xl%d: transmission error: %x\n", sc->xl_unit, txstat); } CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET); xl_wait(sc); if (sc->xl_type == XL_TYPE_905B) { int i; struct xl_chain *c; i = sc->xl_cdata.xl_tx_cons; c = &sc->xl_cdata.xl_tx_chain[i]; CSR_WRITE_4(sc, XL_DOWNLIST_PTR, c->xl_phys); CSR_WRITE_1(sc, XL_DOWN_POLL, 64); } else { if (sc->xl_cdata.xl_tx_head != NULL) CSR_WRITE_4(sc, XL_DOWNLIST_PTR, sc->sc_listmap->dm_segs[0].ds_addr + ((caddr_t)sc->xl_cdata.xl_tx_head->xl_ptr - sc->sc_listkva)); } /* * Remember to set this for the * first generation 3c90X chips. */ CSR_WRITE_1(sc, XL_TX_FREETHRESH, XL_PACKET_SIZE >> 8); if (txstat & XL_TXSTATUS_UNDERRUN && sc->xl_tx_thresh < XL_PACKET_SIZE) { sc->xl_tx_thresh += XL_MIN_FRAMELEN; #ifdef notdef printf("xl%d: tx underrun, increasing tx start" " threshold to %d\n", sc->xl_unit, sc->xl_tx_thresh); #endif } CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_SET_START|sc->xl_tx_thresh); if (sc->xl_type == XL_TYPE_905B) { CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_SET_TX_RECLAIM|(XL_PACKET_SIZE >> 4)); } CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_ENABLE); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL); } else { CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_ENABLE); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL); } /* * Write an arbitrary byte to the TX_STATUS register * to clear this interrupt/error and advance to the next. */ CSR_WRITE_1(sc, XL_TX_STATUS, 0x01); } return; } int xl_intr(arg) void *arg; { struct xl_softc *sc; struct ifnet *ifp; u_int16_t status; int claimed = 0; sc = arg; ifp = &sc->sc_arpcom.ac_if; while ((status = CSR_READ_2(sc, XL_STATUS)) & XL_INTRS) { claimed = 1; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ACK|(status & XL_INTRS)); if (sc->intr_ack) (*sc->intr_ack)(sc); if (status & XL_STAT_UP_COMPLETE) { int curpkts; curpkts = ifp->if_ipackets; xl_rxeof(sc); if (curpkts == ifp->if_ipackets) { while (xl_rx_resync(sc)) xl_rxeof(sc); } } if (status & XL_STAT_DOWN_COMPLETE) { if (sc->xl_type == XL_TYPE_905B) xl_txeof_90xB(sc); else xl_txeof(sc); } if (status & XL_STAT_TX_COMPLETE) { ifp->if_oerrors++; xl_txeoc(sc); } if (status & XL_STAT_ADFAIL) { xl_reset(sc, 0); xl_init(sc); } if (status & XL_STAT_STATSOFLOW) { sc->xl_stats_no_timeout = 1; xl_stats_update(sc); sc->xl_stats_no_timeout = 0; } } if (!IFQ_IS_EMPTY(&ifp->if_snd)) (*ifp->if_start)(ifp); return (claimed); } void xl_stats_update(xsc) void *xsc; { struct xl_softc *sc; struct ifnet *ifp; struct xl_stats xl_stats; u_int8_t *p; int i; struct mii_data *mii = NULL; bzero((char *)&xl_stats, sizeof(struct xl_stats)); sc = xsc; ifp = &sc->sc_arpcom.ac_if; if (sc->xl_hasmii) mii = &sc->sc_mii; p = (u_int8_t *)&xl_stats; /* Read all the stats registers. */ XL_SEL_WIN(6); for (i = 0; i < 16; i++) *p++ = CSR_READ_1(sc, XL_W6_CARRIER_LOST + i); ifp->if_ierrors += xl_stats.xl_rx_overrun; ifp->if_collisions += xl_stats.xl_tx_multi_collision + xl_stats.xl_tx_single_collision + xl_stats.xl_tx_late_collision; /* * Boomerang and cyclone chips have an extra stats counter * in window 4 (BadSSD). We have to read this too in order * to clear out all the stats registers and avoid a statsoflow * interrupt. */ XL_SEL_WIN(4); CSR_READ_1(sc, XL_W4_BADSSD); if (mii != NULL) mii_tick(mii); XL_SEL_WIN(7); if (!sc->xl_stats_no_timeout) timeout_add(&sc->xl_stsup_tmo, hz); return; } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. */ int xl_encap(sc, c, m_head) struct xl_softc *sc; struct xl_chain *c; struct mbuf *m_head; { int frag, total_len; bus_dmamap_t map; map = sc->sc_tx_sparemap; reload: if (bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head, BUS_DMA_NOWAIT) != 0) return (ENOBUFS); /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ for (frag = 0, total_len = 0; frag < map->dm_nsegs; frag++) { if ((XL_TX_LIST_CNT - (sc->xl_cdata.xl_tx_cnt + frag)) < 3) return (ENOBUFS); if (frag == XL_MAXFRAGS) break; total_len += map->dm_segs[frag].ds_len; c->xl_ptr->xl_frag[frag].xl_addr = map->dm_segs[frag].ds_addr; c->xl_ptr->xl_frag[frag].xl_len = map->dm_segs[frag].ds_len; } /* * Handle special case: we used up all 63 fragments, * but we have more mbufs left in the chain. Copy the * data into an mbuf cluster. Note that we don't * bother clearing the values in the other fragment * pointers/counters; it wouldn't gain us anything, * and would waste cycles. */ if (frag != map->dm_nsegs) { struct mbuf *m_new = NULL; MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) return(1); if (m_head->m_pkthdr.len > MHLEN) { MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { m_freem(m_new); return(1); } } m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t)); m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len; m_freem(m_head); m_head = m_new; goto reload; } bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, BUS_DMASYNC_PREWRITE); c->xl_mbuf = m_head; sc->sc_tx_sparemap = c->map; c->map = map; c->xl_ptr->xl_frag[frag - 1].xl_len |= XL_LAST_FRAG; c->xl_ptr->xl_status = total_len; c->xl_ptr->xl_next = 0; bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap, offsetof(struct xl_list_data, xl_tx_list[0]), sizeof(struct xl_list) * XL_TX_LIST_CNT, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return(0); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit lists. We also save a * copy of the pointers since the transmit list fragment pointers are * physical addresses. */ void xl_start(ifp) struct ifnet *ifp; { struct xl_softc *sc; struct mbuf *m_head = NULL; struct xl_chain *prev = NULL, *cur_tx = NULL, *start_tx; sc = ifp->if_softc; /* * Check for an available queue slot. If there are none, * punt. */ if (sc->xl_cdata.xl_tx_free == NULL) { xl_txeoc(sc); xl_txeof(sc); if (sc->xl_cdata.xl_tx_free == NULL) { ifp->if_flags |= IFF_OACTIVE; return; } } start_tx = sc->xl_cdata.xl_tx_free; while(sc->xl_cdata.xl_tx_free != NULL) { IFQ_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* Pick a descriptor off the free list. */ cur_tx = sc->xl_cdata.xl_tx_free; sc->xl_cdata.xl_tx_free = cur_tx->xl_next; cur_tx->xl_next = NULL; /* Pack the data into the descriptor. */ xl_encap(sc, cur_tx, m_head); /* Chain it together. */ if (prev != NULL) { prev->xl_next = cur_tx; prev->xl_ptr->xl_next = sc->sc_listmap->dm_segs[0].ds_addr + ((caddr_t)cur_tx->xl_ptr - sc->sc_listkva); } prev = cur_tx; #if NBPFILTER > 0 /* * If there's a BPF listener, bounce a copy of this frame * to him. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, cur_tx->xl_mbuf); #endif } /* * If there are no packets queued, bail. */ if (cur_tx == NULL) return; /* * Place the request for the upload interrupt * in the last descriptor in the chain. This way, if * we're chaining several packets at once, we'll only * get an interupt once for the whole chain rather than * once for each packet. */ cur_tx->xl_ptr->xl_status |= XL_TXSTAT_DL_INTR; /* * Queue the packets. If the TX channel is clear, update * the downlist pointer register. */ CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_STALL); xl_wait(sc); if (sc->xl_cdata.xl_tx_head != NULL) { sc->xl_cdata.xl_tx_tail->xl_next = start_tx; sc->xl_cdata.xl_tx_tail->xl_ptr->xl_next = sc->sc_listmap->dm_segs[0].ds_addr + ((caddr_t)start_tx->xl_ptr - sc->sc_listkva); sc->xl_cdata.xl_tx_tail->xl_ptr->xl_status &= ~XL_TXSTAT_DL_INTR; sc->xl_cdata.xl_tx_tail = cur_tx; } else { sc->xl_cdata.xl_tx_head = start_tx; sc->xl_cdata.xl_tx_tail = cur_tx; } if (!CSR_READ_4(sc, XL_DOWNLIST_PTR)) CSR_WRITE_4(sc, XL_DOWNLIST_PTR, sc->sc_listmap->dm_segs[0].ds_addr + ((caddr_t)start_tx->xl_ptr - sc->sc_listkva)); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL); XL_SEL_WIN(7); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; /* * XXX Under certain conditions, usually on slower machines * where interrupts may be dropped, it's possible for the * adapter to chew up all the buffers in the receive ring * and stall, without us being able to do anything about it. * To guard against this, we need to make a pass over the * RX queue to make sure there aren't any packets pending. * Doing it here means we can flush the receive ring at the * same time the chip is DMAing the transmit descriptors we * just gave it. * * 3Com goes to some lengths to emphasize the Parallel Tasking (tm) * nature of their chips in all their marketing literature; * we may as well take advantage of it. :) */ xl_rxeof(sc); return; } int xl_encap_90xB(sc, c, m_head) struct xl_softc *sc; struct xl_chain *c; struct mbuf *m_head; { struct xl_frag *f = NULL; struct xl_list *d; int frag; bus_dmamap_t map; /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ map = sc->sc_tx_sparemap; d = c->xl_ptr; d->xl_status = 0; d->xl_next = 0; if (bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head, BUS_DMA_NOWAIT) != 0) return (ENOBUFS); for (frag = 0; frag < map->dm_nsegs; frag++) { if (frag == XL_MAXFRAGS) break; f = &d->xl_frag[frag]; f->xl_addr = map->dm_segs[frag].ds_addr; f->xl_len = map->dm_segs[frag].ds_len; } bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, BUS_DMASYNC_PREWRITE); c->xl_mbuf = m_head; sc->sc_tx_sparemap = c->map; c->map = map; c->xl_ptr->xl_frag[frag - 1].xl_len |= XL_LAST_FRAG; c->xl_ptr->xl_status = XL_TXSTAT_RND_DEFEAT; if (m_head->m_pkthdr.csum & M_IPV4_CSUM_OUT) c->xl_ptr->xl_status |= XL_TXSTAT_IPCKSUM; if (m_head->m_pkthdr.csum & M_TCPV4_CSUM_OUT) c->xl_ptr->xl_status |= XL_TXSTAT_TCPCKSUM; if (m_head->m_pkthdr.csum & M_UDPV4_CSUM_OUT) c->xl_ptr->xl_status |= XL_TXSTAT_UDPCKSUM; bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap, offsetof(struct xl_list_data, xl_tx_list[0]), sizeof(struct xl_list) * XL_TX_LIST_CNT, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return(0); } void xl_start_90xB(ifp) struct ifnet *ifp; { struct xl_softc *sc; struct mbuf *m_head = NULL; struct xl_chain *prev = NULL, *cur_tx = NULL, *start_tx; int idx; sc = ifp->if_softc; if (ifp->if_flags & IFF_OACTIVE) return; idx = sc->xl_cdata.xl_tx_prod; start_tx = &sc->xl_cdata.xl_tx_chain[idx]; while (sc->xl_cdata.xl_tx_chain[idx].xl_mbuf == NULL) { if ((XL_TX_LIST_CNT - sc->xl_cdata.xl_tx_cnt) < 3) { ifp->if_flags |= IFF_OACTIVE; break; } IFQ_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; cur_tx = &sc->xl_cdata.xl_tx_chain[idx]; /* Pack the data into the descriptor. */ xl_encap_90xB(sc, cur_tx, m_head); /* Chain it together. */ if (prev != NULL) prev->xl_ptr->xl_next = cur_tx->xl_phys; prev = cur_tx; #if NBPFILTER > 0 /* * If there's a BPF listener, bounce a copy of this frame * to him. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, cur_tx->xl_mbuf); #endif XL_INC(idx, XL_TX_LIST_CNT); sc->xl_cdata.xl_tx_cnt++; } /* * If there are no packets queued, bail. */ if (cur_tx == NULL) return; /* * Place the request for the upload interrupt * in the last descriptor in the chain. This way, if * we're chaining several packets at once, we'll only * get an interupt once for the whole chain rather than * once for each packet. */ cur_tx->xl_ptr->xl_status |= XL_TXSTAT_DL_INTR; /* Start transmission */ sc->xl_cdata.xl_tx_prod = idx; start_tx->xl_prev->xl_ptr->xl_next = start_tx->xl_phys; /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } void xl_init(xsc) void *xsc; { struct xl_softc *sc = xsc; struct ifnet *ifp = &sc->sc_arpcom.ac_if; int s, i; u_int16_t rxfilt = 0; struct mii_data *mii = NULL; s = splimp(); /* * Cancel pending I/O and free all RX/TX buffers. */ xl_stop(sc); if (sc->xl_hasmii) mii = &sc->sc_mii; if (mii == NULL) { CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_RESET); xl_wait(sc); } CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET); xl_wait(sc); DELAY(10000); /* Init our MAC address */ XL_SEL_WIN(2); for (i = 0; i < ETHER_ADDR_LEN; i++) { CSR_WRITE_1(sc, XL_W2_STATION_ADDR_LO + i, sc->sc_arpcom.ac_enaddr[i]); } /* Clear the station mask. */ for (i = 0; i < 3; i++) CSR_WRITE_2(sc, XL_W2_STATION_MASK_LO + (i * 2), 0); #ifdef notdef /* Reset TX and RX. */ CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_RESET); xl_wait(sc); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET); xl_wait(sc); #endif /* Init circular RX list. */ if (xl_list_rx_init(sc) == ENOBUFS) { printf("xl%d: initialization failed: no " "memory for rx buffers\n", sc->xl_unit); xl_stop(sc); splx(s); return; } /* Init TX descriptors. */ if (sc->xl_type == XL_TYPE_905B) xl_list_tx_init_90xB(sc); else xl_list_tx_init(sc); /* * Set the TX freethresh value. * Note that this has no effect on 3c905B "cyclone" * cards but is required for 3c900/3c905 "boomerang" * cards in order to enable the download engine. */ CSR_WRITE_1(sc, XL_TX_FREETHRESH, XL_PACKET_SIZE >> 8); /* Set the TX start threshold for best performance. */ sc->xl_tx_thresh = XL_MIN_FRAMELEN; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_SET_START|sc->xl_tx_thresh); /* * If this is a 3c905B, also set the tx reclaim threshold. * This helps cut down on the number of tx reclaim errors * that could happen on a busy network. The chip multiplies * the register value by 16 to obtain the actual threshold * in bytes, so we divide by 16 when setting the value here. * The existing threshold value can be examined by reading * the register at offset 9 in window 5. */ if (sc->xl_type == XL_TYPE_905B) { CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_SET_TX_RECLAIM|(XL_PACKET_SIZE >> 4)); } /* Set RX filter bits. */ XL_SEL_WIN(5); rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER); /* Set the individual bit to receive frames for this host only. */ rxfilt |= XL_RXFILTER_INDIVIDUAL; /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) { rxfilt |= XL_RXFILTER_ALLFRAMES; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt); } else { rxfilt &= ~XL_RXFILTER_ALLFRAMES; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt); } /* * Set capture broadcast bit to capture broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) { rxfilt |= XL_RXFILTER_BROADCAST; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt); } else { rxfilt &= ~XL_RXFILTER_BROADCAST; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt); } /* * Program the multicast filter, if necessary. */ #if 0 if (sc->xl_type == XL_TYPE_905B) #else if (0) /* xl_setmulti_hash() does not work right */ #endif xl_setmulti_hash(sc); else xl_setmulti(sc); /* * Load the address of the RX list. We have to * stall the upload engine before we can manipulate * the uplist pointer register, then unstall it when * we're finished. We also have to wait for the * stall command to complete before proceeding. * Note that we have to do this after any RX resets * have completed since the uplist register is cleared * by a reset. */ CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_STALL); xl_wait(sc); CSR_WRITE_4(sc, XL_UPLIST_PTR, sc->sc_listmap->dm_segs[0].ds_addr + offsetof(struct xl_list_data, xl_rx_list[0])); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_UNSTALL); xl_wait(sc); if (sc->xl_type == XL_TYPE_905B) { /* Set polling interval */ CSR_WRITE_1(sc, XL_DOWN_POLL, 64); /* Load the address of the TX list */ CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_STALL); xl_wait(sc); CSR_WRITE_4(sc, XL_DOWNLIST_PTR, sc->sc_listmap->dm_segs[0].ds_addr + offsetof(struct xl_list_data, xl_tx_list[0])); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL); xl_wait(sc); } /* * If the coax transceiver is on, make sure to enable * the DC-DC converter. */ XL_SEL_WIN(3); if (sc->xl_xcvr == XL_XCVR_COAX) CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_START); else CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP); #if NVLAN > 0 /* Set max packet size to handle VLAN frames, only on 3c905B */ if (sc->xl_type == XL_TYPE_905B) CSR_WRITE_2(sc, XL_W3_MAX_PKT_SIZE, 1514 + 4); #endif /* Clear out the stats counters. */ CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STATS_DISABLE); sc->xl_stats_no_timeout = 1; xl_stats_update(sc); sc->xl_stats_no_timeout = 0; XL_SEL_WIN(4); CSR_WRITE_2(sc, XL_W4_NET_DIAG, XL_NETDIAG_UPPER_BYTES_ENABLE); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STATS_ENABLE); /* * Enable interrupts. */ CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ACK|0xFF); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STAT_ENB|XL_INTRS); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB|XL_INTRS); if (sc->intr_ack) (*sc->intr_ack)(sc); /* Set the RX early threshold */ CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_THRESH|(XL_PACKET_SIZE >>2)); CSR_WRITE_2(sc, XL_DMACTL, XL_DMACTL_UP_RX_EARLY); /* Enable receiver and transmitter. */ CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_ENABLE); xl_wait(sc); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_ENABLE); xl_wait(sc); /* Restore state of BMCR */ if (mii != NULL) mii_mediachg(mii); /* Select window 7 for normal operations. */ XL_SEL_WIN(7); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; splx(s); timeout_add(&sc->xl_stsup_tmo, hz); return; } /* * Set media options. */ int xl_ifmedia_upd(ifp) struct ifnet *ifp; { struct xl_softc *sc; struct ifmedia *ifm = NULL; struct mii_data *mii = NULL; sc = ifp->if_softc; if (sc->xl_hasmii) mii = &sc->sc_mii; if (mii == NULL) ifm = &sc->ifmedia; else ifm = &mii->mii_media; switch(IFM_SUBTYPE(ifm->ifm_media)) { case IFM_100_FX: case IFM_10_FL: case IFM_10_2: case IFM_10_5: xl_setmode(sc, ifm->ifm_media); return (0); break; default: break; } if (sc->xl_media & XL_MEDIAOPT_MII || sc->xl_media & XL_MEDIAOPT_BTX || sc->xl_media & XL_MEDIAOPT_BT4) { xl_init(sc); } else { xl_setmode(sc, ifm->ifm_media); } return(0); } /* * Report current media status. */ void xl_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct xl_softc *sc; u_int32_t icfg; struct mii_data *mii = NULL; sc = ifp->if_softc; if (sc->xl_hasmii != 0) mii = &sc->sc_mii; XL_SEL_WIN(3); icfg = CSR_READ_4(sc, XL_W3_INTERNAL_CFG) & XL_ICFG_CONNECTOR_MASK; icfg >>= XL_ICFG_CONNECTOR_BITS; ifmr->ifm_active = IFM_ETHER; switch(icfg) { case XL_XCVR_10BT: ifmr->ifm_active = IFM_ETHER|IFM_10_T; if (CSR_READ_1(sc, XL_W3_MAC_CTRL) & XL_MACCTRL_DUPLEX) ifmr->ifm_active |= IFM_FDX; else ifmr->ifm_active |= IFM_HDX; break; case XL_XCVR_AUI: if (sc->xl_type == XL_TYPE_905B && sc->xl_media == XL_MEDIAOPT_10FL) { ifmr->ifm_active = IFM_ETHER|IFM_10_FL; if (CSR_READ_1(sc, XL_W3_MAC_CTRL) & XL_MACCTRL_DUPLEX) ifmr->ifm_active |= IFM_FDX; else ifmr->ifm_active |= IFM_FDX; } else ifmr->ifm_active = IFM_ETHER|IFM_10_5; break; case XL_XCVR_COAX: ifmr->ifm_active = IFM_ETHER|IFM_10_2; break; /* * XXX MII and BTX/AUTO should be separate cases. */ case XL_XCVR_100BTX: case XL_XCVR_AUTO: case XL_XCVR_MII: if (mii != NULL) { mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; } break; case XL_XCVR_100BFX: ifmr->ifm_active = IFM_ETHER|IFM_100_FX; break; default: printf("xl%d: unknown XCVR type: %d\n", sc->xl_unit, icfg); break; } return; } int xl_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct xl_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; struct ifaddr *ifa = (struct ifaddr *)data; int s, error = 0; struct mii_data *mii = NULL; u_int8_t rxfilt; s = splimp(); if ((error = ether_ioctl(ifp, &sc->sc_arpcom, command, data)) > 0) { splx(s); return error; } switch(command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: xl_init(sc); arp_ifinit(&sc->sc_arpcom, ifa); break; #endif /* INET */ default: xl_init(sc); break; } break; case SIOCSIFMTU: if(ifr->ifr_mtu > ETHERMTU || ifr->ifr_mtu < ETHERMIN) { error = EINVAL; } else if (ifp->if_mtu != ifr->ifr_mtu) { ifp->if_mtu = ifr->ifr_mtu; } break; case SIOCSIFFLAGS: XL_SEL_WIN(5); rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER); if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->xl_if_flags & IFF_PROMISC)) { rxfilt |= XL_RXFILTER_ALLFRAMES; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt); XL_SEL_WIN(7); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->xl_if_flags & IFF_PROMISC) { rxfilt &= ~XL_RXFILTER_ALLFRAMES; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt); XL_SEL_WIN(7); } else xl_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) xl_stop(sc); } sc->xl_if_flags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: error = (command == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->sc_arpcom) : ether_delmulti(ifr, &sc->sc_arpcom); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware * filter accordingly. */ #if 0 if (sc->xl_type == XL_TYPE_905B) #else if (0) /* xl_setmulti_hash() does not work right */ #endif xl_setmulti_hash(sc); else xl_setmulti(sc); error = 0; } break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: if (sc->xl_hasmii != 0) mii = &sc->sc_mii; if (mii == NULL) error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); else error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; default: error = EINVAL; break; } splx(s); return(error); } void xl_watchdog(ifp) struct ifnet *ifp; { struct xl_softc *sc; u_int16_t status = 0; sc = ifp->if_softc; ifp->if_oerrors++; XL_SEL_WIN(4); status = CSR_READ_2(sc, XL_W4_MEDIA_STATUS); printf("xl%d: watchdog timeout\n", sc->xl_unit); if (status & XL_MEDIASTAT_CARRIER) printf("xl%d: no carrier - transceiver cable problem?\n", sc->xl_unit); xl_txeoc(sc); xl_txeof(sc); xl_rxeof(sc); xl_reset(sc, 0); xl_init(sc); if (!IFQ_IS_EMPTY(&ifp->if_snd)) (*ifp->if_start)(ifp); return; } void xl_freetxrx(sc) struct xl_softc *sc; { int i; /* * Free data in the RX lists. */ for (i = 0; i < XL_RX_LIST_CNT; i++) { if (sc->xl_cdata.xl_rx_chain[i].map->dm_nsegs != 0) { bus_dmamap_t map = sc->xl_cdata.xl_rx_chain[i].map; bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, map); } if (sc->xl_cdata.xl_rx_chain[i].xl_mbuf != NULL) { m_freem(sc->xl_cdata.xl_rx_chain[i].xl_mbuf); sc->xl_cdata.xl_rx_chain[i].xl_mbuf = NULL; } } bzero((char *)&sc->xl_ldata->xl_rx_list, sizeof(sc->xl_ldata->xl_rx_list)); /* * Free the TX list buffers. */ for (i = 0; i < XL_TX_LIST_CNT; i++) { if (sc->xl_cdata.xl_tx_chain[i].map->dm_nsegs != 0) { bus_dmamap_t map = sc->xl_cdata.xl_tx_chain[i].map; bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, map); } if (sc->xl_cdata.xl_tx_chain[i].xl_mbuf != NULL) { m_freem(sc->xl_cdata.xl_tx_chain[i].xl_mbuf); sc->xl_cdata.xl_tx_chain[i].xl_mbuf = NULL; } } bzero((char *)&sc->xl_ldata->xl_tx_list, sizeof(sc->xl_ldata->xl_tx_list)); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ void xl_stop(sc) struct xl_softc *sc; { struct ifnet *ifp; ifp = &sc->sc_arpcom.ac_if; ifp->if_timer = 0; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_DISABLE); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STATS_DISABLE); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_DISCARD); xl_wait(sc); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_DISABLE); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP); DELAY(800); #ifdef foo CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_RESET); xl_wait(sc); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET); xl_wait(sc); #endif CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ACK|XL_STAT_INTLATCH); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STAT_ENB|0); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB|0); if (sc->intr_ack) (*sc->intr_ack)(sc); /* Stop the stats updater. */ timeout_del(&sc->xl_stsup_tmo); xl_freetxrx(sc); ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); return; } void xl_attach(sc) struct xl_softc *sc; { u_int8_t enaddr[ETHER_ADDR_LEN]; struct ifnet *ifp = &sc->sc_arpcom.ac_if; int i, media = IFM_ETHER|IFM_100_TX|IFM_FDX; struct ifmedia *ifm; sc->xl_unit = sc->sc_dev.dv_unit; xl_reset(sc, 1); /* * Get station address from the EEPROM. */ if (xl_read_eeprom(sc, (caddr_t)&enaddr, XL_EE_OEM_ADR0, 3, 1)) { printf("\n%s: failed to read station address\n", sc->sc_dev.dv_xname); return; } bcopy(enaddr, (char *)&sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN); if (bus_dmamem_alloc(sc->sc_dmat, sizeof(struct xl_list_data), PAGE_SIZE, 0, sc->sc_listseg, 1, &sc->sc_listnseg, BUS_DMA_NOWAIT) != 0) { printf(": can't alloc list mem\n"); return; } if (bus_dmamem_map(sc->sc_dmat, sc->sc_listseg, sc->sc_listnseg, sizeof(struct xl_list_data), &sc->sc_listkva, BUS_DMA_NOWAIT) != 0) { printf(": can't map list mem\n"); return; } if (bus_dmamap_create(sc->sc_dmat, sizeof(struct xl_list_data), 1, sizeof(struct xl_list_data), 0, BUS_DMA_NOWAIT, &sc->sc_listmap) != 0) { printf(": can't alloc list map\n"); return; } if (bus_dmamap_load(sc->sc_dmat, sc->sc_listmap, sc->sc_listkva, sizeof(struct xl_list_data), NULL, BUS_DMA_NOWAIT) != 0) { printf(": can't load list map\n"); return; } sc->xl_ldata = (struct xl_list_data *)sc->sc_listkva; bzero(sc->xl_ldata, sizeof(struct xl_list_data)); for (i = 0; i < XL_RX_LIST_CNT; i++) { if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->xl_cdata.xl_rx_chain[i].map) != 0) { printf(": can't create rx map\n"); return; } } if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->sc_rx_sparemap) != 0) { printf(": can't create rx spare map\n"); return; } for (i = 0; i < XL_TX_LIST_CNT; i++) { if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, XL_TX_LIST_CNT - 3, MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->xl_cdata.xl_tx_chain[i].map) != 0) { printf(": can't create tx map\n"); return; } } if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, XL_TX_LIST_CNT - 3, MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->sc_tx_sparemap) != 0) { printf(": can't create tx spare map\n"); return; } printf(" address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr)); if (sc->xl_flags & (XL_FLAG_INVERT_LED_PWR|XL_FLAG_INVERT_MII_PWR)) { u_int16_t n; XL_SEL_WIN(2); n = CSR_READ_2(sc, 12); if (sc->xl_flags & XL_FLAG_INVERT_LED_PWR) n |= 0x0010; if (sc->xl_flags & XL_FLAG_INVERT_MII_PWR) n |= 0x4000; CSR_WRITE_2(sc, 12, n); } /* * Figure out the card type. 3c905B adapters have the * 'supportsNoTxLength' bit set in the capabilities * word in the EEPROM. */ xl_read_eeprom(sc, (caddr_t)&sc->xl_caps, XL_EE_CAPS, 1, 0); if (sc->xl_caps & XL_CAPS_NO_TXLENGTH) sc->xl_type = XL_TYPE_905B; else sc->xl_type = XL_TYPE_90X; timeout_set(&sc->xl_stsup_tmo, xl_stats_update, sc); ifp->if_softc = sc; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = xl_ioctl; ifp->if_output = ether_output; if (sc->xl_type == XL_TYPE_905B) { ifp->if_start = xl_start_90xB; ifp->if_capabilities = IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4| IFCAP_CSUM_UDPv4; } else ifp->if_start = xl_start; ifp->if_watchdog = xl_watchdog; ifp->if_baudrate = 10000000; IFQ_SET_MAXLEN(&ifp->if_snd, XL_TX_LIST_CNT - 1); IFQ_SET_READY(&ifp->if_snd); bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); #if NVLAN > 0 if (sc->xl_type == XL_TYPE_905B) ifp->if_capabilities |= IFCAP_VLAN_MTU; /* * XXX * Do other cards filter large packets or simply pass them through? * Apparently only the 905B has the capability to set a larger size. */ #endif XL_SEL_WIN(3); sc->xl_media = CSR_READ_2(sc, XL_W3_MEDIA_OPT); xl_read_eeprom(sc, (char *)&sc->xl_xcvr, XL_EE_ICFG_0, 2, 0); sc->xl_xcvr &= XL_ICFG_CONNECTOR_MASK; sc->xl_xcvr >>= XL_ICFG_CONNECTOR_BITS; DELAY(100000); xl_mediacheck(sc); if (sc->xl_flags & XL_FLAG_INVERT_MII_PWR) { XL_SEL_WIN(2); CSR_WRITE_2(sc, 12, 0x4000 | CSR_READ_2(sc, 12)); } DELAY(100000); if (sc->xl_media & XL_MEDIAOPT_MII || sc->xl_media & XL_MEDIAOPT_BTX || sc->xl_media & XL_MEDIAOPT_BT4) { ifmedia_init(&sc->sc_mii.mii_media, 0, xl_ifmedia_upd, xl_ifmedia_sts); sc->xl_hasmii = 1; sc->sc_mii.mii_ifp = ifp; sc->sc_mii.mii_readreg = xl_miibus_readreg; sc->sc_mii.mii_writereg = xl_miibus_writereg; sc->sc_mii.mii_statchg = xl_miibus_statchg; xl_setcfg(sc); mii_attach((struct device *)sc, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); } else { ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); } ifm = &sc->sc_mii.mii_media; } else { ifmedia_init(&sc->ifmedia, 0, xl_ifmedia_upd, xl_ifmedia_sts); sc->xl_hasmii = 0; ifm = &sc->ifmedia; } /* * Sanity check. If the user has selected "auto" and this isn't * a 10/100 card of some kind, we need to force the transceiver * type to something sane. */ if (sc->xl_xcvr == XL_XCVR_AUTO) { xl_choose_xcvr(sc, 0); xl_reset(sc, 0); } if (sc->xl_media & XL_MEDIAOPT_BT) { ifmedia_add(ifm, IFM_ETHER|IFM_10_T, 0, NULL); ifmedia_add(ifm, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL); if (sc->xl_caps & XL_CAPS_FULL_DUPLEX) ifmedia_add(ifm, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL); } if (sc->xl_media & (XL_MEDIAOPT_AUI|XL_MEDIAOPT_10FL)) { /* * Check for a 10baseFL board in disguise. */ if (sc->xl_type == XL_TYPE_905B && sc->xl_media == XL_MEDIAOPT_10FL) { ifmedia_add(ifm, IFM_ETHER|IFM_10_FL, 0, NULL); ifmedia_add(ifm, IFM_ETHER|IFM_10_FL|IFM_HDX, 0, NULL); if (sc->xl_caps & XL_CAPS_FULL_DUPLEX) ifmedia_add(ifm, IFM_ETHER|IFM_10_FL|IFM_FDX, 0, NULL); } else { ifmedia_add(ifm, IFM_ETHER|IFM_10_5, 0, NULL); } } if (sc->xl_media & XL_MEDIAOPT_BNC) { ifmedia_add(ifm, IFM_ETHER|IFM_10_2, 0, NULL); } if (sc->xl_media & XL_MEDIAOPT_BFX) { ifp->if_baudrate = 100000000; ifmedia_add(ifm, IFM_ETHER|IFM_100_FX, 0, NULL); } /* Choose a default media. */ switch(sc->xl_xcvr) { case XL_XCVR_10BT: media = IFM_ETHER|IFM_10_T; xl_setmode(sc, media); break; case XL_XCVR_AUI: if (sc->xl_type == XL_TYPE_905B && sc->xl_media == XL_MEDIAOPT_10FL) { media = IFM_ETHER|IFM_10_FL; xl_setmode(sc, media); } else { media = IFM_ETHER|IFM_10_5; xl_setmode(sc, media); } break; case XL_XCVR_COAX: media = IFM_ETHER|IFM_10_2; xl_setmode(sc, media); break; case XL_XCVR_AUTO: case XL_XCVR_100BTX: case XL_XCVR_MII: /* Chosen by miibus */ break; case XL_XCVR_100BFX: media = IFM_ETHER|IFM_100_FX; xl_setmode(sc, media); break; default: printf("xl%d: unknown XCVR type: %d\n", sc->xl_unit, sc->xl_xcvr); /* * This will probably be wrong, but it prevents * the ifmedia code from panicking. */ media = IFM_ETHER | IFM_10_T; break; } if (sc->xl_hasmii == 0) ifmedia_set(&sc->ifmedia, media); /* * Call MI attach routines. */ if_attach(ifp); ether_ifattach(ifp); sc->sc_sdhook = shutdownhook_establish(xl_shutdown, sc); sc->sc_pwrhook = powerhook_establish(xl_power, sc); } int xl_detach(sc) struct xl_softc *sc; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; /* Unhook our tick handler. */ timeout_del(&sc->xl_stsup_tmo); xl_freetxrx(sc); /* Detach all PHYs */ if (sc->xl_hasmii) mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY); /* Delete all remaining media. */ ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY); ether_ifdetach(ifp); if_detach(ifp); shutdownhook_disestablish(sc->sc_sdhook); powerhook_disestablish(sc->sc_pwrhook); return (0); } void xl_shutdown(v) void *v; { struct xl_softc *sc = (struct xl_softc *)v; xl_reset(sc, 1); xl_stop(sc); } struct cfdriver xl_cd = { 0, "xl", DV_IFNET };