/* $OpenBSD: z8530sc.c,v 1.7 2013/04/21 14:44:16 sebastia Exp $ */ /* $NetBSD: z8530sc.c,v 1.30 2009/05/22 03:51:30 mrg Exp $ */ /* * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Lawrence Berkeley Laboratory. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)zs.c 8.1 (Berkeley) 7/19/93 */ /* * Copyright (c) 1994 Gordon W. Ross * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Lawrence Berkeley Laboratory. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)zs.c 8.1 (Berkeley) 7/19/93 */ /* * Zilog Z8530 Dual UART driver (common part) * * This file contains the machine-independent parts of the * driver common to tty and keyboard/mouse sub-drivers. */ #include #include #include #include #include #include #include #include #include #include #include #include #include void zs_break(struct zs_chanstate *cs, int set) { if (set) { cs->cs_preg[5] |= ZSWR5_BREAK; cs->cs_creg[5] |= ZSWR5_BREAK; } else { cs->cs_preg[5] &= ~ZSWR5_BREAK; cs->cs_creg[5] &= ~ZSWR5_BREAK; } zs_write_reg(cs, 5, cs->cs_creg[5]); } /* * drain on-chip fifo */ void zs_iflush(struct zs_chanstate *cs) { uint8_t c, rr0, rr1; int i; /* * Count how many times we loop. Some systems, such as some * Apple PowerBooks, claim to have SCC's which they really don't. */ for (i = 0; i < 32; i++) { /* Is there input available? */ rr0 = zs_read_csr(cs); if ((rr0 & ZSRR0_RX_READY) == 0) break; /* * First read the status, because reading the data * destroys the status of this char. */ rr1 = zs_read_reg(cs, 1); c = zs_read_data(cs); if (rr1 & (ZSRR1_FE | ZSRR1_DO | ZSRR1_PE)) { /* Clear the receive error. */ zs_write_csr(cs, ZSWR0_RESET_ERRORS); } } } /* * Write the given register set to the given zs channel in the proper order. * The channel must not be transmitting at the time. The receiver will * be disabled for the time it takes to write all the registers. * Call this with interrupts disabled. */ void zs_loadchannelregs(struct zs_chanstate *cs) { uint8_t *reg, v; zs_write_csr(cs, ZSM_RESET_ERR); /* XXX: reset error condition */ #if 1 /* * XXX: Is this really a good idea? * XXX: Should go elsewhere! -gwr */ zs_iflush(cs); /* XXX */ #endif if (cs->cs_ctl_chan != NULL) v = ((cs->cs_ctl_chan->cs_creg[5] & (ZSWR5_RTS | ZSWR5_DTR)) != (cs->cs_ctl_chan->cs_preg[5] & (ZSWR5_RTS | ZSWR5_DTR))); else v = 0; if (memcmp((void *)cs->cs_preg, (void *)cs->cs_creg, 16) == 0 && !v) return; /* only change if values are different */ /* Copy "pending" regs to "current" */ memcpy((void *)cs->cs_creg, (void *)cs->cs_preg, 16); reg = cs->cs_creg; /* current regs */ /* disable interrupts */ zs_write_reg(cs, 1, reg[1] & ~ZSWR1_IMASK); /* baud clock divisor, stop bits, parity */ zs_write_reg(cs, 4, reg[4]); /* misc. TX/RX control bits */ zs_write_reg(cs, 10, reg[10]); /* char size, enable (RX/TX) */ zs_write_reg(cs, 3, reg[3] & ~ZSWR3_RX_ENABLE); zs_write_reg(cs, 5, reg[5] & ~ZSWR5_TX_ENABLE); /* synchronous mode stuff */ zs_write_reg(cs, 6, reg[6]); if (reg[15] & ZSWR15_ENABLE_ENHANCED) zs_write_reg(cs, 15, 0); zs_write_reg(cs, 7, reg[7]); #if 0 /* * Registers 2 and 9 are special because they are * actually common to both channels, but must be * programmed through channel A. The "zsc" attach * function takes care of setting these registers * and they should not be touched thereafter. */ /* interrupt vector */ zs_write_reg(cs, 2, reg[2]); /* master interrupt control */ zs_write_reg(cs, 9, reg[9]); #endif /* Shut down the BRG */ zs_write_reg(cs, 14, reg[14] & ~ZSWR14_BAUD_ENA); #ifdef ZS_MD_SETCLK /* Let the MD code setup any external clock. */ ZS_MD_SETCLK(cs); #endif /* ZS_MD_SETCLK */ /* clock mode control */ zs_write_reg(cs, 11, reg[11]); /* baud rate (lo/hi) */ zs_write_reg(cs, 12, reg[12]); zs_write_reg(cs, 13, reg[13]); /* Misc. control bits */ zs_write_reg(cs, 14, reg[14]); /* which lines cause status interrupts */ zs_write_reg(cs, 15, reg[15]); /* * Zilog docs recommend resetting external status twice at this * point. Mainly as the status bits are latched, and the first * interrupt clear might unlatch them to new values, generating * a second interrupt request. */ zs_write_csr(cs, ZSM_RESET_STINT); zs_write_csr(cs, ZSM_RESET_STINT); /* char size, enable (RX/TX)*/ zs_write_reg(cs, 3, reg[3]); zs_write_reg(cs, 5, reg[5]); /* Write the status bits on the alternate channel also. */ if (cs->cs_ctl_chan != NULL) { v = cs->cs_ctl_chan->cs_preg[5]; cs->cs_ctl_chan->cs_creg[5] = v; zs_write_reg(cs->cs_ctl_chan, 5, v); } /* Register 7' if applicable */ if (reg[15] & ZSWR15_ENABLE_ENHANCED) zs_write_reg(cs, 7, reg[16]); /* interrupt enables: RX, TX, STATUS */ zs_write_reg(cs, 1, reg[1]); } /* * ZS hardware interrupt. Scan all ZS channels. NB: we know here that * channels are kept in (A,B) pairs. * * Do just a little, then get out; set a software interrupt if more * work is needed. * * We deliberately ignore the vectoring Zilog gives us, and match up * only the number of `reset interrupt under service' operations, not * the order. */ int zsc_intr_hard(void *arg) { struct zsc_softc *zsc = arg; struct zs_chanstate *cs0, *cs1; int handled; uint8_t rr3; handled = 0; /* First look at channel A. */ cs0 = zsc->zsc_cs[0]; cs1 = zsc->zsc_cs[1]; /* * We have to clear interrupt first to avoid a race condition, * but it will be done in each MD handler. */ for (;;) { /* Note: only channel A has an RR3 */ rr3 = zs_read_reg(cs0, 3); if ((rr3 & (ZSRR3_IP_A_RX | ZSRR3_IP_A_TX | ZSRR3_IP_A_STAT | ZSRR3_IP_B_RX | ZSRR3_IP_B_TX | ZSRR3_IP_B_STAT)) == 0) { break; } handled = 1; /* First look at channel A. */ if (rr3 & (ZSRR3_IP_A_RX | ZSRR3_IP_A_TX | ZSRR3_IP_A_STAT)) zs_write_csr(cs0, ZSWR0_CLR_INTR); if (rr3 & ZSRR3_IP_A_RX) (*cs0->cs_ops->zsop_rxint)(cs0); if (rr3 & ZSRR3_IP_A_STAT) (*cs0->cs_ops->zsop_stint)(cs0, 0); if (rr3 & ZSRR3_IP_A_TX) (*cs0->cs_ops->zsop_txint)(cs0); /* Now look at channel B. */ if (rr3 & (ZSRR3_IP_B_RX | ZSRR3_IP_B_TX | ZSRR3_IP_B_STAT)) zs_write_csr(cs1, ZSWR0_CLR_INTR); if (rr3 & ZSRR3_IP_B_RX) (*cs1->cs_ops->zsop_rxint)(cs1); if (rr3 & ZSRR3_IP_B_STAT) (*cs1->cs_ops->zsop_stint)(cs1, 0); if (rr3 & ZSRR3_IP_B_TX) (*cs1->cs_ops->zsop_txint)(cs1); } /* Note: caller will check cs_x->cs_softreq and DTRT. */ return handled; } /* * ZS software interrupt. Scan all channels for deferred interrupts. */ int zsc_intr_soft(void *arg) { struct zsc_softc *zsc = arg; struct zs_chanstate *cs; int rval, chan; rval = 0; for (chan = 0; chan < 2; chan++) { cs = zsc->zsc_cs[chan]; /* * The softint flag can be safely cleared once * we have decided to call the softint routine. * (No need to do splzs() first.) */ if (cs->cs_softreq) { cs->cs_softreq = 0; (*cs->cs_ops->zsop_softint)(cs); rval++; } } return (rval); } /* * Provide a null zs "ops" vector. */ static void zsnull_rxint (struct zs_chanstate *); static void zsnull_stint (struct zs_chanstate *, int); static void zsnull_txint (struct zs_chanstate *); static void zsnull_softint(struct zs_chanstate *); static void zsnull_rxint(struct zs_chanstate *cs) { /* Ask for softint() call. */ cs->cs_softreq = 1; } static void zsnull_stint(struct zs_chanstate *cs, int force) { /* Ask for softint() call. */ cs->cs_softreq = 1; } static void zsnull_txint(struct zs_chanstate *cs) { /* Ask for softint() call. */ cs->cs_softreq = 1; } static void zsnull_softint(struct zs_chanstate *cs) { zs_write_reg(cs, 1, 0); zs_write_reg(cs, 15, 0); } struct zsops zsops_null = { zsnull_rxint, /* receive char available */ zsnull_stint, /* external/status */ zsnull_txint, /* xmit buffer empty */ zsnull_softint, /* process software interrupt */ };