/* $OpenBSD: ipmi.c,v 1.26 2006/01/04 23:51:16 marco Exp $ */ /* * Copyright (c) 2005 Jordan Hargrave * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct ipmi_sensor { u_int8_t *i_sdr; int i_num; int stype; int etype; struct sensor i_sensor; SLIST_ENTRY(ipmi_sensor) list; }; int ipmi_nintr; int ipmi_dbg = 0; int ipmi_poll = 1; #define SENSOR_REFRESH_RATE (10 * hz) #define SMBIOS_TYPE_IPMI 0x26 #define DEVNAME(s) ((s)->sc_dev.dv_xname) /* * Format of SMBIOS IPMI Flags * * bit0: interrupt trigger mode (1=level, 0=edge) * bit1: interrupt polarity (1=active high, 0=active low) * bit2: reserved * bit3: address LSB (1=odd,0=even) * bit4: interrupt (1=specified, 0=not specified) * bit5: reserved * bit6/7: register spacing (1,4,2,err) */ #define SMIPMI_FLAG_IRQLVL (1L << 0) #define SMIPMI_FLAG_IRQEN (1L << 3) #define SMIPMI_FLAG_ODDOFFSET (1L << 4) #define SMIPMI_FLAG_IFSPACING(x) (((x)>>6)&0x3) #define IPMI_IOSPACING_BYTE 0 #define IPMI_IOSPACING_WORD 2 #define IPMI_IOSPACING_DWORD 1 #define IPMI_BTMSG_LEN 0 #define IPMI_BTMSG_NFLN 1 #define IPMI_BTMSG_SEQ 2 #define IPMI_BTMSG_CMD 3 #define IPMI_BTMSG_CCODE 4 #define IPMI_BTMSG_DATASND 4 #define IPMI_BTMSG_DATARCV 5 #define IPMI_MSG_NFLN 0 #define IPMI_MSG_CMD 1 #define IPMI_MSG_CCODE 2 #define IPMI_MSG_DATASND 2 #define IPMI_MSG_DATARCV 3 #define IPMI_SENSOR_TYPE_TEMP 0x0101 #define IPMI_SENSOR_TYPE_VOLT 0x0102 #define IPMI_SENSOR_TYPE_FAN 0x0104 #define IPMI_SENSOR_TYPE_INTRUSION 0x6F05 #define IPMI_SENSOR_TYPE_PWRSUPPLY 0x6F08 #define IPMI_NAME_UNICODE 0x00 #define IPMI_NAME_BCDPLUS 0x01 #define IPMI_NAME_ASCII6BIT 0x02 #define IPMI_NAME_ASCII8BIT 0x03 #define IPMI_ENTITY_PWRSUPPLY 0x0A #define IPMI_INVALID_SENSOR (1L << 5) #define IPMI_SDR_TYPEFULL 1 #define IPMI_SDR_TYPECOMPACT 2 #define byteof(x) ((x) >> 3) #define bitof(x) (1L << ((x) & 0x7)) #define TB(b,m) (data[2+byteof(b)] & bitof(b)) #define dbg_printf(lvl, fmt...) \ if (ipmi_dbg >= lvl) \ printf(fmt); #define dbg_dump(lvl, msg, len, buf) \ if (len && ipmi_dbg >= lvl) \ dumpb(msg, len, (const u_int8_t *)(buf)); long signextend(unsigned long, int); SLIST_HEAD(ipmi_sensors_head, ipmi_sensor); struct ipmi_sensors_head ipmi_sensor_list = SLIST_HEAD_INITIALIZER(&ipmi_sensor_list); struct timeout ipmi_timeout; void smbios_ipmi_probe(void *, void *); void dumpb(const char *, int, const u_int8_t *); int read_sensor(struct ipmi_softc *, struct ipmi_sensor *); int add_sdr_sensor(struct ipmi_softc *, u_int8_t *); int get_sdr_partial(struct ipmi_softc *, u_int16_t, u_int16_t, u_int8_t, u_int8_t, void *, u_int16_t *); int get_sdr(struct ipmi_softc *, u_int16_t, u_int16_t *); int ipmi_sendcmd(struct ipmi_softc *, int, int, int, int, int, const void*); int ipmi_recvcmd(struct ipmi_softc *, int, int *, void *); int ipmi_watchdog(void *, int); int ipmi_intr(void *); int ipmi_match(struct device *, void *, void *); void ipmi_attach(struct device *, struct device *, void *); long ipow(long, int); long ipmi_convert(u_int8_t, sdrtype1 *, long); void ipmi_sensor_name(char *, int, u_int8_t, u_int8_t *); /* BMC Helper Functions */ u_int8_t bmc_read(struct ipmi_softc *, int); void bmc_write(struct ipmi_softc *, int, u_int8_t); int bmc_io_wait(struct ipmi_softc *, int, u_int8_t, u_int8_t, const char *); int bmc_io_wait_cold(struct ipmi_softc *, int, u_int8_t, u_int8_t, const char *); void _bmc_io_wait(void *); void *bt_buildmsg(struct ipmi_softc *, int, int, int, const void *, int *); void *cmn_buildmsg(struct ipmi_softc *, int, int, int, const void *, int *); int getbits(u_int8_t *, int, int); int ipmi_sensor_type(int, int, int); void ipmi_refresh_sensors(struct ipmi_softc *sc); int ipmi_map_regs(struct ipmi_softc *sc, struct ipmi_attach_args *ia); void ipmi_unmap_regs(struct ipmi_softc *sc, struct ipmi_attach_args *ia); struct smbios_mem_map { vaddr_t baseva; u_int8_t *va; size_t vsize; paddr_t pa; }; void *smbios_map(paddr_t, size_t, struct smbios_mem_map *); void smbios_unmap(struct smbios_mem_map *); void *scan_sig(long, long, int, int, const void *); int scan_smbios(u_int8_t, void (*)(void *, void *), void *); int ipmi_test_threshold(u_int8_t, u_int8_t, u_int8_t, u_int8_t); int ipmi_sensor_status(struct ipmi_softc *, struct ipmi_sensor *, u_int8_t *); int add_child_sensors(struct ipmi_softc *, u_int8_t *, int, int, int, int, int, int, const char *); struct ipmi_if kcs_if = { "KCS", IPMI_IF_KCS_NREGS, cmn_buildmsg, kcs_sendmsg, kcs_recvmsg, kcs_reset, kcs_probe, }; struct ipmi_if smic_if = { "SMIC", IPMI_IF_SMIC_NREGS, cmn_buildmsg, smic_sendmsg, smic_recvmsg, smic_reset, smic_probe, }; struct ipmi_if bt_if = { "BT", IPMI_IF_BT_NREGS, bt_buildmsg, bt_sendmsg, bt_recvmsg, bt_reset, bt_probe, }; struct ipmi_if *ipmi_get_if(int); struct ipmi_if * ipmi_get_if(int iftype) { switch (iftype) { case IPMI_IF_KCS: return (&kcs_if); case IPMI_IF_SMIC: return (&smic_if); case IPMI_IF_BT: return (&bt_if); } return (NULL); } /* * BMC Helper Functions */ u_int8_t bmc_read(struct ipmi_softc *sc, int offset) { return (bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset * sc->sc_if_iospacing)); } void bmc_write(struct ipmi_softc *sc, int offset, u_int8_t val) { bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset * sc->sc_if_iospacing, val); } void _bmc_io_wait(void *arg) { struct ipmi_softc *sc = arg; struct ipmi_bmc_args *a = sc->sc_iowait_args; *a->v = bmc_read(sc, a->offset); if ((*a->v & a->mask) == a->value) { sc->sc_wakeup = 0; wakeup(sc); return; } if (++sc->sc_retries > sc->sc_max_retries) { sc->sc_wakeup = 0; wakeup(sc); return; } timeout_add(&sc->sc_timeout, 50); } int bmc_io_wait(struct ipmi_softc *sc, int offset, u_int8_t mask, u_int8_t value, const char *lbl) { volatile u_int8_t v; struct ipmi_bmc_args args; if (cold) return (bmc_io_wait_cold(sc, offset, mask, value, lbl)); sc->sc_retries = 0; sc->sc_wakeup = 1; args.offset = offset; args.mask = mask; args.value = value; args.v = &v; sc->sc_iowait_args = &args; _bmc_io_wait(sc); while (sc->sc_wakeup) tsleep(sc, PWAIT, lbl, 0); if (sc->sc_retries > sc->sc_max_retries) { printf("bmc_io_wait fails : v=%.2x m=%.2x b=%.2x %s\n", v, mask, value, lbl); return (-1); } return (v); } int bmc_io_wait_cold(struct ipmi_softc *sc, int offset, u_int8_t mask, u_int8_t value, const char *lbl) { volatile u_int8_t v; int count = 100000; while (count--) { v = bmc_read(sc, offset); if ((v & mask) == value) return v; delay(50); } printf("bmc_io_wait_cold fails : *v=%.2x m=%.2x b=%.2x %s\n", v, mask, value, lbl); return (-1); } #define NETFN_LUN(nf,ln) (((nf) << 2) | ((ln) & 0x3)) /* * BT interface */ #define _BT_CTRL_REG 0 #define BT_CLR_WR_PTR (1L << 0) #define BT_CLR_RD_PTR (1L << 1) #define BT_HOST2BMC_ATN (1L << 2) #define BT_BMC2HOST_ATN (1L << 3) #define BT_EVT_ATN (1L << 4) #define BT_HOST_BUSY (1L << 6) #define BT_BMC_BUSY (1L << 7) #define BT_READY (BT_HOST_BUSY|BT_HOST2BMC_ATN|BT_BMC2HOST_ATN) #define _BT_DATAIN_REG 1 #define _BT_DATAOUT_REG 1 #define _BT_INTMASK_REG 2 #define BT_IM_HIRQ_PEND (1L << 1) #define BT_IM_SCI_EN (1L << 2) #define BT_IM_SMI_EN (1L << 3) #define BT_IM_NMI2SMI (1L << 4) int bt_sendmsg(struct ipmi_softc *sc, int len, const u_int8_t *data) { int i; if (bmc_io_wait(sc, _BT_CTRL_REG, BT_READY, 0, "btsend") < 0) return -1; bmc_write(sc, _BT_CTRL_REG, BT_CLR_WR_PTR); for (i = 0; i < len; i++) bmc_write(sc, _BT_DATAOUT_REG, data[i]); bmc_write(sc, _BT_CTRL_REG, BT_HOST2BMC_ATN); if (bmc_io_wait(sc, _BT_CTRL_REG, BT_BMC2HOST_ATN, BT_BMC2HOST_ATN, "btswait") < 0) return (-1); return (0); } int bt_recvmsg(struct ipmi_softc *sc, int maxlen, int *rxlen, u_int8_t *data) { u_int8_t len, v, i; /* BT Result data: 0: len 1:nfln 2:seq 3:cmd 4:ccode * 5:data... */ bmc_write(sc, _BT_CTRL_REG, BT_HOST_BUSY|BT_CLR_RD_PTR); len = bmc_read(sc, _BT_DATAIN_REG); for (i = IPMI_BTMSG_NFLN; i <= len; i++) { /* Ignore sequence number */ v = bmc_read(sc, _BT_DATAIN_REG); if (i != IPMI_BTMSG_SEQ) *(data++) = v; } bmc_write(sc, _BT_CTRL_REG, BT_BMC2HOST_ATN | BT_HOST_BUSY); *rxlen = len - 1; return (0); } int bt_reset(struct ipmi_softc *sc) { return (-1); } int bt_probe(struct ipmi_softc *sc) { u_int8_t rv; rv = bmc_read(sc, _BT_CTRL_REG); rv &= BT_HOST_BUSY; rv |= BT_CLR_WR_PTR|BT_CLR_RD_PTR|BT_BMC2HOST_ATN|BT_HOST2BMC_ATN; bmc_write(sc, _BT_CTRL_REG, rv); rv = bmc_read(sc, _BT_INTMASK_REG); rv &= BT_IM_SCI_EN|BT_IM_SMI_EN|BT_IM_NMI2SMI; rv |= BT_IM_HIRQ_PEND; bmc_write(sc, _BT_INTMASK_REG, rv); #if 0 printf("bt_probe: %2x\n", v); printf(" WR : %2x\n", v & BT_CLR_WR_PTR); printf(" RD : %2x\n", v & BT_CLR_RD_PTR); printf(" H2B : %2x\n", v & BT_HOST2BMC_ATN); printf(" B2H : %2x\n", v & BT_BMC2HOST_ATN); printf(" EVT : %2x\n", v & BT_EVT_ATN); printf(" HBSY : %2x\n", v & BT_HOST_BUSY); printf(" BBSY : %2x\n", v & BT_BMC_BUSY); #endif return (0); } /* * SMIC interface */ #define _SMIC_DATAIN_REG 0 #define _SMIC_DATAOUT_REG 0 #define _SMIC_CTRL_REG 1 #define SMS_CC_GET_STATUS 0x40 #define SMS_CC_START_TRANSFER 0x41 #define SMS_CC_NEXT_TRANSFER 0x42 #define SMS_CC_END_TRANSFER 0x43 #define SMS_CC_START_RECEIVE 0x44 #define SMS_CC_NEXT_RECEIVE 0x45 #define SMS_CC_END_RECEIVE 0x46 #define SMS_CC_TRANSFER_ABORT 0x47 #define SMS_SC_READY 0xc0 #define SMS_SC_WRITE_START 0xc1 #define SMS_SC_WRITE_NEXT 0xc2 #define SMS_SC_WRITE_END 0xc3 #define SMS_SC_READ_START 0xc4 #define SMS_SC_READ_NEXT 0xc5 #define SMS_SC_READ_END 0xc6 #define _SMIC_FLAG_REG 2 #define SMIC_BUSY (1L << 0) #define SMIC_SMS_ATN (1L << 2) #define SMIC_EVT_ATN (1L << 3) #define SMIC_SMI (1L << 4) #define SMIC_TX_DATA_RDY (1L << 6) #define SMIC_RX_DATA_RDY (1L << 7) int smic_wait(struct ipmi_softc *, u_int8_t, u_int8_t, const char *); int smic_write_cmd_data(struct ipmi_softc *, u_int8_t, const u_int8_t *); int smic_read_data(struct ipmi_softc *, u_int8_t *); int smic_wait(struct ipmi_softc *sc, u_int8_t mask, u_int8_t val, const char *lbl) { int v; /* Wait for expected flag bits */ v = bmc_io_wait(sc, _SMIC_FLAG_REG, mask, val, "smicwait"); if (v < 0) return (-1); /* Return current status */ v = bmc_read(sc, _SMIC_CTRL_REG); dbg_printf(99, "smic_wait = %.2x\n", v); return (v); } int smic_write_cmd_data(struct ipmi_softc *sc, u_int8_t cmd, const u_int8_t *data) { int sts, v; dbg_printf(50, "smic_wcd: %.2x %.2x\n", cmd, data ? *data : -1); sts = smic_wait(sc, SMIC_TX_DATA_RDY | SMIC_BUSY, SMIC_TX_DATA_RDY, "smic_write_cmd_data ready"); if (sts < 0) return (sts); bmc_write(sc, _SMIC_CTRL_REG, cmd); if (data) bmc_write(sc, _SMIC_DATAOUT_REG, *data); /* Toggle BUSY bit, then wait for busy bit to clear */ v = bmc_read(sc, _SMIC_FLAG_REG); bmc_write(sc, _SMIC_FLAG_REG, v | SMIC_BUSY); return (smic_wait(sc, SMIC_BUSY, 0, "smic_write_cmd_data busy")); } int smic_read_data(struct ipmi_softc *sc, u_int8_t *data) { int sts; sts = smic_wait(sc, SMIC_RX_DATA_RDY | SMIC_BUSY, SMIC_RX_DATA_RDY, "smic_read_data"); if (sts >= 0) { *data = bmc_read(sc, _SMIC_DATAIN_REG); dbg_printf(50, "smic_readdata: %.2x\n", *data); } return (sts); } #define ErrStat(a,b) if (a) printf(b); int smic_sendmsg(struct ipmi_softc *sc, int len, const u_int8_t *data) { int sts, idx; sts = smic_write_cmd_data(sc, SMS_CC_START_TRANSFER, &data[0]); ErrStat(sts != SMS_SC_WRITE_START, "wstart"); for (idx = 1; idx < len - 1; idx++) { sts = smic_write_cmd_data(sc, SMS_CC_NEXT_TRANSFER, &data[idx]); ErrStat(sts != SMS_SC_WRITE_NEXT, "write"); } sts = smic_write_cmd_data(sc, SMS_CC_END_TRANSFER, &data[idx]); if (sts != SMS_SC_WRITE_END) { dbg_printf(50, "smic_sendmsg %d/%d = %.2x\n", idx, len, sts); return (-1); } return (0); } int smic_recvmsg(struct ipmi_softc *sc, int maxlen, int *len, u_int8_t *data) { int sts, idx; *len = 0; sts = smic_wait(sc, SMIC_RX_DATA_RDY, SMIC_RX_DATA_RDY, "smic_recvmsg"); if (sts < 0) return (-1); sts = smic_write_cmd_data(sc, SMS_CC_START_RECEIVE, NULL); ErrStat(sts != SMS_SC_READ_START, "rstart"); for (idx = 0;; ) { sts = smic_read_data(sc, &data[idx++]); if (sts != SMS_SC_READ_START && sts != SMS_SC_READ_NEXT) break; smic_write_cmd_data(sc, SMS_CC_NEXT_RECEIVE, NULL); } ErrStat(sts != SMS_SC_READ_END, "rend"); *len = idx; sts = smic_write_cmd_data(sc, SMS_CC_END_RECEIVE, NULL); if (sts != SMS_SC_READY) { dbg_printf(50, "smic_recvmsg %d/%d = %.2x\n", idx, maxlen, sts); return (-1); } return (0); } int smic_reset(struct ipmi_softc *sc) { return (-1); } int smic_probe(struct ipmi_softc *sc) { /* Flag register should not be 0xFF on a good system */ if (bmc_read(sc, _SMIC_FLAG_REG) == 0xFF) return (-1); return (0); } /* * KCS interface */ #define _KCS_DATAIN_REGISTER 0 #define _KCS_DATAOUT_REGISTER 0 #define KCS_READ_NEXT 0x68 #define _KCS_COMMAND_REGISTER 1 #define KCS_GET_STATUS 0x60 #define KCS_WRITE_START 0x61 #define KCS_WRITE_END 0x62 #define _KCS_STATUS_REGISTER 1 #define KCS_OBF (1L << 0) #define KCS_IBF (1L << 1) #define KCS_SMS_ATN (1L << 2) #define KCS_CD (1L << 3) #define KCS_OEM1 (1L << 4) #define KCS_OEM2 (1L << 5) #define KCS_STATE_MASK 0xc0 #define KCS_IDLE_STATE 0x00 #define KCS_READ_STATE 0x40 #define KCS_WRITE_STATE 0x80 #define KCS_ERROR_STATE 0xC0 int kcs_wait(struct ipmi_softc *, u_int8_t, u_int8_t, const char *); int kcs_write_cmd(struct ipmi_softc *, u_int8_t); int kcs_write_data(struct ipmi_softc *, u_int8_t); int kcs_read_data(struct ipmi_softc *, u_int8_t *); int kcs_wait(struct ipmi_softc *sc, u_int8_t mask, u_int8_t value, const char *lbl) { int v; v = bmc_io_wait(sc, _KCS_STATUS_REGISTER, mask, value, lbl); if (v < 0) return (v); /* Check if output buffer full, read dummy byte */ if ((v & (KCS_OBF | KCS_STATE_MASK)) == (KCS_OBF | KCS_WRITE_STATE)) bmc_read(sc, _KCS_DATAIN_REGISTER); /* Check for error state */ if ((v & KCS_STATE_MASK) == KCS_ERROR_STATE) { bmc_write(sc, _KCS_COMMAND_REGISTER, KCS_GET_STATUS); while (bmc_read(sc, _KCS_STATUS_REGISTER) & KCS_IBF); printf(" error code: %x\n", bmc_read(sc, _KCS_DATAIN_REGISTER)); } return (v & KCS_STATE_MASK); } int kcs_write_cmd(struct ipmi_softc *sc, u_int8_t cmd) { /* ASSERT: IBF and OBF are clear */ dbg_printf(99, "kcswritecmd: %.2x\n", cmd); bmc_write(sc, _KCS_COMMAND_REGISTER, cmd); return (kcs_wait(sc, KCS_IBF, 0, "write_cmd")); } int kcs_write_data(struct ipmi_softc *sc, u_int8_t data) { /* ASSERT: IBF and OBF are clear */ dbg_printf(99, "kcswritedata: %.2x\n", data); bmc_write(sc, _KCS_DATAOUT_REGISTER, data); return (kcs_wait(sc, KCS_IBF, 0, "write_data")); } int kcs_read_data(struct ipmi_softc *sc, u_int8_t * data) { int sts; sts = kcs_wait(sc, KCS_IBF | KCS_OBF, KCS_OBF, "read_data"); if (sts != KCS_READ_STATE) return (sts); /* ASSERT: OBF is set read data, request next byte */ *data = bmc_read(sc, _KCS_DATAIN_REGISTER); bmc_write(sc, _KCS_DATAOUT_REGISTER, KCS_READ_NEXT); dbg_printf(99, "kcsreaddata: %.2x\n", *data); return (sts); } /* Exported KCS functions */ int kcs_sendmsg(struct ipmi_softc *sc, int len, const u_int8_t * data) { int idx, sts; /* ASSERT: IBF is clear */ dbg_dump(50, "kcs sendmsg", len, data); sts = kcs_write_cmd(sc, KCS_WRITE_START); for (idx = 0; idx < len; idx++) { if (idx == len - 1) sts = kcs_write_cmd(sc, KCS_WRITE_END); if (sts != KCS_WRITE_STATE) break; sts = kcs_write_data(sc, data[idx]); } if (sts != KCS_READ_STATE) { dbg_printf(1, "kcs sendmsg = %d/%d <%.2x>\n", idx, len, sts); dumpb("kcs_sendmsg", len, data); return (-1); } return (0); } int kcs_recvmsg(struct ipmi_softc *sc, int maxlen, int *rxlen, u_int8_t * data) { int idx, sts; for (idx = 0; idx < maxlen; idx++) { sts = kcs_read_data(sc, &data[idx]); if (sts != KCS_READ_STATE) break; } sts = kcs_wait(sc, KCS_IBF, 0, "recv"); *rxlen = idx; if (sts != KCS_IDLE_STATE) { dbg_printf(1, "kcs read = %d/%d <%.2x>\n", idx, maxlen, sts); return (-1); } dbg_dump(50, "kcs recvmsg", idx, data); return (0); } int kcs_reset(struct ipmi_softc *sc) { return (-1); } int kcs_probe(struct ipmi_softc *sc) { u_int8_t v; v = bmc_read(sc, _KCS_STATUS_REGISTER); #if 0 printf("kcs_probe: %2x\n", v); printf(" STS: %2x\n", v & KCS_STATE_MASK); printf(" ATN: %2x\n", v & KCS_SMS_ATN); printf(" C/D: %2x\n", v & KCS_CD); printf(" IBF: %2x\n", v & KCS_IBF); printf(" OBF: %2x\n", v & KCS_OBF); #endif return (0); } /* * IPMI code */ #define READ_SMS_BUFFER 0x37 #define WRITE_I2C 0x50 #define GET_MESSAGE_CMD 0x33 #define SEND_MESSAGE_CMD 0x34 #define IPMB_CHANNEL_NUMBER 0 #define PUBLIC_BUS 0 #define MIN_I2C_PACKET_SIZE 3 #define MIN_IMB_PACKET_SIZE 7 /* one byte for cksum */ #define MIN_BTBMC_REQ_SIZE 4 #define MIN_BTBMC_RSP_SIZE 5 #define MIN_BMC_REQ_SIZE 2 #define MIN_BMC_RSP_SIZE 3 #define BMC_SA 0x20 /* BMC/ESM3 */ #define FPC_SA 0x22 /* front panel */ #define BP_SA 0xC0 /* Primary Backplane */ #define BP2_SA 0xC2 /* Secondary Backplane */ #define PBP_SA 0xC4 /* Peripheral Backplane */ #define DRAC_SA 0x28 /* DRAC-III */ #define DRAC3_SA 0x30 /* DRAC-III */ #define BMC_LUN 0 #define SMS_LUN 2 typedef struct { u_int8_t rsSa; u_int8_t rsLun; u_int8_t netFn; u_int8_t cmd; u_int8_t data_len; u_int8_t *data; } ipmi_request_; typedef struct { u_int8_t cCode; u_int8_t data_len; u_int8_t *data; } ipmi_response_t; typedef struct { u_int8_t bmc_nfLn; u_int8_t bmc_cmd; u_int8_t bmc_data_len; u_int8_t bmc_data[1]; } ipmi_bmc_request_t; typedef struct { u_int8_t bmc_nfLn; u_int8_t bmc_cmd; u_int8_t bmc_cCode; u_int8_t bmc_data_len; u_int8_t bmc_data[1]; } ipmi_bmc_response_t; struct cfattach ipmi_ca = { sizeof(struct ipmi_softc), ipmi_match, ipmi_attach }; struct cfdriver ipmi_cd = { NULL, "ipmi", DV_DULL }; /* Scan memory for signature */ void * scan_sig(long start, long end, int skip, int len, const void *data) { void *va; while (start < end) { va = ISA_HOLE_VADDR(start); if (memcmp(va, data, len) == 0) return (va); start += skip; } return (NULL); } void * smbios_map(paddr_t pa, size_t len, struct smbios_mem_map *handle) { paddr_t pgstart = trunc_page(pa); paddr_t pgend = round_page(pa + len); vaddr_t va = uvm_km_valloc(kernel_map, pgend-pgstart); if (va == 0) return NULL; handle->pa = pa; handle->baseva = va; handle->va = (u_int8_t *)(va + (pa & PGOFSET)); handle->vsize = pgend - pgstart; do { pmap_kenter_pa(va, pgstart, VM_PROT_READ); va += NBPG; pgstart += NBPG; } while (pgstart < pgend); return handle->va; } void smbios_unmap(struct smbios_mem_map *handle) { pmap_kremove(handle->baseva, handle->vsize); uvm_km_free(kernel_map, handle->baseva, handle->vsize); } /* Scan SMBIOS for table type */ int scan_smbios(u_int8_t mtype, void (*smcb) (void *base, void *arg), void *arg) { smbiosanchor_t *romhdr; smhdr_t *smhdr; u_int8_t *offset; int nmatch, num; struct smbios_mem_map smm; /* Scan for SMBIOS Table Signature */ romhdr = (smbiosanchor_t *) scan_sig(0xF0000, 0xFFFFF, 16, 4, "_SM_"); if (romhdr == NULL) return (-1); dbg_printf(99, "SMBIOS Version %d.%d at 0x%lx, %d entries\n", romhdr->smr_smbios_majver, romhdr->smr_smbios_minver, romhdr->smr_table_address, romhdr->smr_count); /* Map SMBIOS Table start address */ nmatch = 0; offset = smbios_map(romhdr->smr_table_address, romhdr->smr_count * romhdr->smr_maxsize, &smm); if (offset == NULL) return (-1); for (num = 0; num < romhdr->smr_count; num++) { smhdr = (smhdr_t *) offset; if (smhdr->smh_type == SMBIOS_TYPE_END || smhdr->smh_length == 0) break; /* found a match here */ if (smhdr->smh_type == mtype) { smcb(&smhdr[1], arg); nmatch++; } /* Search for end of string table, marked by '\0\0' */ offset += smhdr->smh_length; while (offset[0] || offset[1]) offset++; offset += 2; } smbios_unmap(&smm); return (nmatch); } void dumpb(const char *lbl, int len, const u_int8_t *data) { int idx; printf("%s: ", lbl); for (idx = 0; idx < len; idx++) printf("%.2x ", data[idx]); printf("\n"); } void smbios_ipmi_probe(void *ptr, void *arg) { struct ipmi_attach_args *ia = arg; smbios_ipmi_t *pipmi = (smbios_ipmi_t *)ptr; ia->iaa_if_type = pipmi->smipmi_if_type; ia->iaa_if_rev = pipmi->smipmi_if_rev; ia->iaa_if_irq = (pipmi->smipmi_base_flags & SMIPMI_FLAG_IRQEN) ? pipmi->smipmi_irq : -1; ia->iaa_if_irqlvl = (pipmi->smipmi_base_flags & SMIPMI_FLAG_IRQLVL) ? IST_LEVEL : IST_EDGE; switch (SMIPMI_FLAG_IFSPACING(pipmi->smipmi_base_flags)) { case IPMI_IOSPACING_BYTE: ia->iaa_if_iospacing = 1; break; case IPMI_IOSPACING_DWORD: ia->iaa_if_iospacing = 4; break; case IPMI_IOSPACING_WORD: ia->iaa_if_iospacing = 2; break; default: ia->iaa_if_iospacing = 1; printf("ipmi: unknown register spacing\n"); } /* Calculate base address (PCI BAR format) */ if (pipmi->smipmi_base_address & 0x1) { ia->iaa_if_iotype = 'i'; ia->iaa_if_iobase = pipmi->smipmi_base_address & ~0x1; } else { ia->iaa_if_iotype = 'm'; ia->iaa_if_iobase = pipmi->smipmi_base_address & ~0xF; } if (pipmi->smipmi_base_flags & SMIPMI_FLAG_ODDOFFSET) ia->iaa_if_iobase++; } /* * bt_buildmsg builds an IPMI message from a nfLun, cmd, and data * This is used by BT protocol * * Returns a buffer to an allocated message, txlen contains length * of allocated message */ void * bt_buildmsg(struct ipmi_softc *sc, int nfLun, int cmd, int len, const void *data, int *txlen) { u_int8_t *buf; /* Block transfer needs 4 extra bytes: length/netfn/seq/cmd + data */ *txlen = len + 4; buf = malloc(*txlen, M_DEVBUF, M_WAITOK); if (buf == NULL) return (NULL); buf[IPMI_BTMSG_LEN] = len + 3; buf[IPMI_BTMSG_NFLN] = nfLun; buf[IPMI_BTMSG_SEQ] = sc->sc_btseq++; buf[IPMI_BTMSG_CMD] = cmd; if (len && data) memcpy(buf + IPMI_BTMSG_DATASND, data, len); return (buf); } /* * cmn_buildmsg builds an IPMI message from a nfLun, cmd, and data * This is used by both SMIC and KCS protocols * * Returns a buffer to an allocated message, txlen contains length * of allocated message */ void * cmn_buildmsg(struct ipmi_softc *sc, int nfLun, int cmd, int len, const void *data, int *txlen) { u_int8_t *buf; /* Common needs two extra bytes: nfLun/cmd + data */ *txlen = len + 2; buf = malloc(*txlen, M_DEVBUF, M_WAITOK); if (buf == NULL) return (NULL); buf[IPMI_MSG_NFLN] = nfLun; buf[IPMI_MSG_CMD] = cmd; if (len && data) memcpy(buf + IPMI_MSG_DATASND, data, len); return (buf); } /* Send an IPMI command */ int ipmi_sendcmd(struct ipmi_softc *sc, int rssa, int rslun, int netfn, int cmd, int txlen, const void *data) { u_int8_t *buf; int rc; dbg_printf(10, "ipmi_sendcmd: rssa=%.2x nfln=%.2x cmd=%.2x len=%.2x\n", rssa, NETFN_LUN(netfn, rslun), cmd, txlen); dbg_dump(10, " send", txlen, data); if (rssa != BMC_SA) { #if 0 buf = sc->sc_if->buildmsg(sc, NETFN_LUN(APP_NETFN, BMC_LUN), APP_SEND_MESSAGE, 7 + txlen, NULL, &txlen); pI2C->bus = (sc->if_ver == 0x09) ? PUBLIC_BUS : IPMB_CHANNEL_NUMBER; imbreq->rsSa = rssa; imbreq->nfLn = NETFN_LUN(netfn, rslun); imbreq->cSum1 = -(imbreq->rsSa + imbreq->nfLn); imbreq->rqSa = BMC_SA; imbreq->seqLn = NETFN_LUN(sc->imb_seq++, SMS_LUN); imbreq->cmd = cmd; if (txlen) memcpy(imbreq->data, data, txlen); /* Set message checksum */ imbreq->data[txlen] = cksum8(&imbreq->rqSa, txlen + 3); #endif return (-1); } else buf = sc->sc_if->buildmsg(sc, NETFN_LUN(netfn, rslun), cmd, txlen, data, &txlen); if (buf == NULL) { printf("sendcmd malloc fails\n"); return (-1); } rc = sc->sc_if->sendmsg(sc, txlen, buf); free(buf, M_DEVBUF); return (rc); } int ipmi_recvcmd(struct ipmi_softc *sc, int maxlen, int *rxlen, void *data) { u_int8_t *buf, rc = 0; int rawlen; /* Need three extra bytes: netfn/cmd/ccode + data */ buf = malloc(maxlen + 3, M_DEVBUF, M_WAITOK); if (buf == NULL) { printf("ipmi_recvcmd: malloc fails\n"); return -1; } /* Receive message from interface, copy out result data */ if (sc->sc_if->recvmsg(sc, maxlen + 3, &rawlen, buf)) return (-1); *rxlen = rawlen - IPMI_MSG_DATARCV; if (*rxlen > 0 && data) memcpy(data, buf + IPMI_MSG_DATARCV, *rxlen); if ((rc = buf[IPMI_MSG_CCODE]) != 0) dbg_printf(1, "ipmi_recvmsg: nfln=%.2x cmd=%.2x err=%.2x\n", buf[IPMI_MSG_NFLN], buf[IPMI_MSG_CMD], buf[IPMI_MSG_CCODE]); dbg_printf(10, "ipmi_recvcmd: nfln=%.2x cmd=%.2x err=%.2x len=%.2x\n", buf[IPMI_MSG_NFLN], buf[IPMI_MSG_CMD], buf[IPMI_MSG_CCODE], *rxlen); dbg_dump(10, " recv", *rxlen, data); free(buf, M_DEVBUF); return (rc); } /* Read a partial SDR entry */ int get_sdr_partial(struct ipmi_softc *sc, u_int16_t recordId, u_int16_t reserveId, u_int8_t offset, u_int8_t length, void *buffer, u_int16_t *nxtRecordId) { u_int8_t cmd[8 + length]; int len; ((u_int16_t *) cmd)[0] = reserveId; ((u_int16_t *) cmd)[1] = recordId; cmd[4] = offset; cmd[5] = length; if (ipmi_sendcmd(sc, BMC_SA, 0, STORAGE_NETFN, STORAGE_GET_SDR, 6, cmd)) { printf("sendcmd fails\n"); return (-1); } if (ipmi_recvcmd(sc, 8 + length, &len, cmd)) { printf("getSdrPartial: recvcmd fails\n"); return (-1); } if (nxtRecordId) *nxtRecordId = *(uint16_t *) cmd; memcpy(buffer, cmd + 2, len - 2); return (0); } int maxsdrlen = 0x10; /* Read an entire SDR; pass to add sensor */ int get_sdr(struct ipmi_softc *sc, u_int16_t recid, u_int16_t *nxtrec) { u_int16_t resid; int len, sdrlen, offset; u_int8_t *psdr; sdrhdr_t shdr; /* Reserve SDR */ if (ipmi_sendcmd(sc, BMC_SA, 0, STORAGE_NETFN, STORAGE_RESERVE_SDR, 0, NULL)) { printf("reserve send fails\n"); return (-1); } if (ipmi_recvcmd(sc, sizeof(resid), &len, &resid)) { printf("reserve recv fails\n"); return (-1); } /* Get SDR Header */ if (get_sdr_partial(sc, recid, resid, 0, sizeof(sdrhdr_t), &shdr, nxtrec)) { printf("get header fails\n"); return (-1); } /* Allocate space for entire SDR Length of SDR in header does not * include header length */ sdrlen = sizeof(shdr) + shdr.record_length; psdr = malloc(sdrlen, M_DEVBUF, M_WAITOK); if (psdr == NULL) return -1; memcpy(psdr, &shdr, sizeof(shdr)); /* Read SDR Data maxsdrlen bytes at a time */ for (offset = sizeof(shdr); offset < sdrlen; offset += maxsdrlen) { len = sdrlen - offset; if (len > maxsdrlen) len = maxsdrlen; if (get_sdr_partial(sc, recid, resid, offset, len, psdr + offset, NULL)) { printf("get chunk : %d,%d fails\n", offset, len); return (-1); } } /* Add SDR to sensor list, if not wanted, free buffer */ if (add_sdr_sensor(sc, psdr) == 0) free(psdr, M_DEVBUF); return (0); } int getbits(u_int8_t *bytes, int bitpos, int bitlen) { int v; int mask; bitpos += bitlen - 1; for (v = 0; bitlen--;) { v <<= 1; mask = 1L << (bitpos & 7); if (bytes[bitpos >> 3] & mask) v |= 1; bitpos--; } return (v); } /* Decode IPMI sensor name */ void ipmi_sensor_name(char *name, int len, u_int8_t typelen, u_int8_t *bits) { int i, slen; char bcdplus[] = "0123456789 -.:,_"; slen = typelen & 0x1F; switch (typelen >> 6) { case IPMI_NAME_UNICODE: //unicode break; case IPMI_NAME_BCDPLUS: /* Characters are encoded in 4-bit BCDPLUS */ if (len < slen * 2 + 1) slen = (len >> 1) - 1; for (i = 0; i < slen; i++) { *(name++) = bcdplus[bits[i] >> 4]; *(name++) = bcdplus[bits[i] & 0xF]; } break; case IPMI_NAME_ASCII6BIT: /* Characters are encoded in 6-bit ASCII * 0x00 - 0x3F maps to 0x20 - 0x5F */ /* XXX: need to calculate max len: slen = 3/4 * len */ if (len < slen + 1) slen = len - 1; for (i = 0; i < slen * 8; i += 6) *(name++) = getbits(bits, i, 6) + ' '; break; case IPMI_NAME_ASCII8BIT: /* Characters are 8-bit ascii */ if (len < slen + 1) slen = len - 1; while (slen--) *(name++) = *(bits++); break; } *name = 0; } /* Calculate val * 10^exp */ long ipow(long val, int exp) { while (exp > 0) { val *= 10; exp--; } while (exp < 0) { val /= 10; exp++; } return (val); } /* Sign extend a n-bit value */ long signextend(unsigned long val, int bits) { long msk = (1L << (bits-1))-1; return (-(val & ~msk) | val); } /* Convert IPMI reading from sensor factors */ long ipmi_convert(u_int8_t v, sdrtype1 *s1, long adj) { short M, B; char K1, K2; long val; /* Calculate linear reading variables */ M = signextend((((short)(s1->m_tolerance & 0xC0)) << 2) + s1->m, 10); B = signextend((((short)(s1->b_accuracy & 0xC0)) << 2) + s1->b, 10); K1 = signextend(s1->rbexp & 0xF, 4); K2 = signextend(s1->rbexp >> 4, 4); /* Calculate sensor reading: * y = L((M * v + (B * 10^K1)) * 10^(K2+adj) * * This commutes out to: * y = L(M*v * 10^(K2+adj) + B * 10^(K1+K2+adj)); */ val = ipow(M * v, K2 + adj) + ipow(B, K1 + K2 + adj); /* Linearization function: y = f(x) 0 : y = x 1 : y = ln(x) 2 : y = * log10(x) 3 : y = log2(x) 4 : y = e^x 5 : y = 10^x 6 : y = 2^x 7 : y * = 1/x 8 : y = x^2 9 : y = x^3 10 : y = square root(x) 11 : y = cube * root(x) */ return (val); } int ipmi_test_threshold(u_int8_t v, u_int8_t valid, u_int8_t hi, u_int8_t lo) { dbg_printf(10, "thresh: %.2x %.2x %.2x %d\n", v, lo, hi,valid); return ((valid & 1 && lo != 0x00 && v <= lo) || (valid & 8 && hi != 0xFF && v >= hi)); } int ipmi_sensor_status(struct ipmi_softc *sc, struct ipmi_sensor *psensor, u_int8_t *reading) { u_int8_t data[32]; sdrtype1 *s1 = (sdrtype1 *)psensor->i_sdr; int rxlen, etype; psensor->i_sensor.status = SENSOR_S_OK; /* Get reading of sensor */ switch (psensor->i_sensor.type) { case SENSOR_TEMP: psensor->i_sensor.value = ipmi_convert(reading[0], s1, 6); psensor->i_sensor.value += 273150000; break; case SENSOR_VOLTS_DC: psensor->i_sensor.value = ipmi_convert(reading[0], s1, 6); break; case SENSOR_FANRPM: psensor->i_sensor.value = ipmi_convert(reading[0], s1, 0); break; default: break; } /* Return Sensor Status */ etype = (psensor->etype << 8) + psensor->stype; switch (etype) { case IPMI_SENSOR_TYPE_TEMP: case IPMI_SENSOR_TYPE_VOLT: case IPMI_SENSOR_TYPE_FAN: data[0] = psensor->i_num; ipmi_sendcmd(sc, s1->owner_id, s1->owner_lun, SE_NETFN, SE_GET_SENSOR_THRESHOLD, 1, data); ipmi_recvcmd(sc, sizeof(data), &rxlen, data); dbg_printf(10, "recvdata: %.2x %.2x %.2x %.2x %.2x %.2x %.2x\n", data[0], data[1], data[2], data[3], data[4], data[5], data[6]); if (ipmi_test_threshold(*reading, data[0] >> 2 , data[6], data[3])) return (SENSOR_S_CRIT); if (ipmi_test_threshold(*reading, data[0] >> 1, data[5], data[2])) return (SENSOR_S_CRIT); if (ipmi_test_threshold(*reading, data[0] , data[4], data[1])) return (SENSOR_S_WARN); break; case IPMI_SENSOR_TYPE_INTRUSION: psensor->i_sensor.value = (reading[2] & 1) ? 1 : 0; if (reading[2] & 0x1) return (SENSOR_S_CRIT); break; case IPMI_SENSOR_TYPE_PWRSUPPLY: /* Reading: 1 = present+powered, 0 = otherwise */ psensor->i_sensor.value = (reading[2] & 1) ? 1 : 0; if (reading[2] & 0x10) { /* XXX: Need sysctl type for Power Supply types * ok: power supply installed && powered * warn: power supply installed && !powered * crit: power supply !installed */ return (SENSOR_S_CRIT); } if (reading[2] & 0x08) { /* Power supply AC lost */ return (SENSOR_S_WARN); } break; } return (SENSOR_S_OK); } int read_sensor(struct ipmi_softc *sc, struct ipmi_sensor *psensor) { sdrtype1 *s1 = (sdrtype1 *) psensor->i_sdr; u_int8_t data[8]; int rxlen; memset(data, 0, sizeof(data)); data[0] = psensor->i_num; if (ipmi_sendcmd(sc, s1->owner_id, s1->owner_lun, SE_NETFN, SE_GET_SENSOR_READING, 1, data)) return (-1); if (ipmi_recvcmd(sc, sizeof(data), &rxlen, data)) return (-1); dbg_printf(1, "values=%.2x %.2x %.2x %.2x %s\n", data[0],data[1],data[2],data[3], psensor->i_sensor.desc); psensor->i_sensor.flags &= ~SENSOR_FINVALID; if (data[1] & IPMI_INVALID_SENSOR) { /* Check if sensor is valid */ psensor->i_sensor.flags |= SENSOR_FINVALID; } psensor->i_sensor.status = ipmi_sensor_status(sc, psensor, data); return (0); } int ipmi_sensor_type(int type, int ext_type, int entity) { switch (ext_type << 8L | type) { case IPMI_SENSOR_TYPE_TEMP: return (SENSOR_TEMP); case IPMI_SENSOR_TYPE_VOLT: return (SENSOR_VOLTS_DC); case IPMI_SENSOR_TYPE_FAN: return (SENSOR_FANRPM); case IPMI_SENSOR_TYPE_PWRSUPPLY: if (entity == IPMI_ENTITY_PWRSUPPLY) return (SENSOR_INDICATOR); break; case IPMI_SENSOR_TYPE_INTRUSION: return (SENSOR_INDICATOR); } return (-1); } /* Add Sensor to BSD Sysctl interface */ int add_sdr_sensor(struct ipmi_softc *sc, u_int8_t *psdr) { int rc; sdrtype1 *s1 = (sdrtype1 *) psdr; sdrtype2 *s2 = (sdrtype2 *) psdr; char name[64]; switch (s1->sdrhdr.record_type) { case IPMI_SDR_TYPEFULL: ipmi_sensor_name(name, sizeof(name), s1->typelen, s1->name); rc = add_child_sensors(sc, psdr, 1, s1->sensor_num, s1->sensor_type, s1->event_code, 0, s1->entity_id, name); break; case IPMI_SDR_TYPECOMPACT: ipmi_sensor_name(name, sizeof(name), s2->typelen, s2->name); rc = add_child_sensors(sc, psdr, s2->share1 & 0xF, s2->sensor_num, s2->sensor_type, s2->event_code, s2->share2 & 0x7F, s2->entity_id, name); break; default: return (0); } return rc; } int add_child_sensors(struct ipmi_softc *sc, u_int8_t *psdr, int count, int sensor_num, int sensor_type, int ext_type, int sensor_base, int entity, const char *name) { int typ, idx; struct ipmi_sensor *psensor; sdrtype1 *s1 = (sdrtype1 *) psdr; typ = ipmi_sensor_type(sensor_type, ext_type, entity); if (typ == -1) { dbg_printf(1, "Unknown sensor type:%.2x et:%.2x sn:%.2x " "name:%s\n", sensor_type, ext_type, sensor_num, name); return 0; } for (idx = 0; idx < count; idx++) { psensor = malloc(sizeof(struct ipmi_sensor), M_DEVBUF, M_WAITOK); /* XXX get rid of this */ if (psensor == NULL) break; memset(psensor, 0, sizeof(struct ipmi_sensor)); /* Initialize BSD Sensor info */ psensor->i_sdr = psdr; psensor->i_num = sensor_num + idx; psensor->stype = sensor_type; psensor->etype = ext_type; psensor->i_sensor.status = SENSOR_S_OK; psensor->i_sensor.type = typ; strlcpy(psensor->i_sensor.device, DEVNAME(sc), sizeof(psensor->i_sensor.device)); if (count > 1) snprintf(psensor->i_sensor.desc, sizeof(psensor->i_sensor.desc), "%s - %d", name, sensor_base + idx); else strlcpy(psensor->i_sensor.desc, name, sizeof(psensor->i_sensor.desc)); dbg_printf(1, "add sensor:%.4x %.2x:%d ent:%.2x:%.2x %s\n", s1->sdrhdr.record_id, s1->sensor_type, typ, s1->entity_id, s1->entity_instance, psensor->i_sensor.desc); if (read_sensor(sc, psensor) == 0) { SLIST_INSERT_HEAD(&ipmi_sensor_list, psensor, list); SENSOR_ADD(&psensor->i_sensor); dbg_printf(1, " reading: %lld [%s]\n", psensor->i_sensor.value, psensor->i_sensor.desc); } } return (1); } /* Interrupt handler */ int ipmi_intr(void *arg) { struct ipmi_softc *sc = (struct ipmi_softc *)arg; int v; v = bmc_read(sc, _KCS_STATUS_REGISTER); if (v & KCS_OBF) ++ipmi_nintr; return (0); } /* Handle IPMI Timer - reread sensor values */ void ipmi_refresh_sensors(struct ipmi_softc *sc) { struct ipmi_sensor *psensor = NULL; if (!ipmi_poll) return; SLIST_FOREACH(psensor, &ipmi_sensor_list, list) if (read_sensor(sc, psensor)) printf("error reading: %s\n", psensor->i_sensor.desc); } int ipmi_map_regs(struct ipmi_softc *sc, struct ipmi_attach_args *ia) { sc->sc_if = ipmi_get_if(ia->iaa_if_type); if (sc->sc_if == NULL) return (-1); if (ia->iaa_if_iotype == 'i') sc->sc_iot = ia->iaa_iot; else sc->sc_iot = ia->iaa_memt; sc->sc_if_rev = ia->iaa_if_rev; sc->sc_if_iospacing = ia->iaa_if_iospacing; if (bus_space_map(sc->sc_iot, ia->iaa_if_iobase, sc->sc_if->nregs * sc->sc_if_iospacing, 0, &sc->sc_ioh)) { printf("ipmi: bus_space_map(%x %x %x 0 %x) failed\n", sc->sc_iot, ia->iaa_if_iobase, sc->sc_if->nregs * sc->sc_if_iospacing, &sc->sc_ioh); return (-1); } #if 0 if (iaa->if_if_irq != -1) sc->ih = isa_intr_establish(-1, iaa->if_if_irq, iaa->if_irqlvl, IPL_BIO, ipmi_intr, sc, DEVNAME(sc)); #endif return (0); } void ipmi_unmap_regs(struct ipmi_softc *sc, struct ipmi_attach_args *ia) { bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_if->nregs * sc->sc_if_iospacing); } void ipmi_poll_thread(void *arg) { struct ipmi_thread *thread = arg; struct ipmi_softc *sc = thread->sc; while (thread->running) { ipmi_refresh_sensors(sc); tsleep(thread, PWAIT, "timeout", SENSOR_REFRESH_RATE); } free(thread, M_DEVBUF); kthread_exit(0); } void ipmi_create_thread(void *arg) { struct ipmi_softc *sc = arg; if (kthread_create(ipmi_poll_thread, sc->sc_thread, NULL, DEVNAME(sc)) != 0) { printf("%s: unable to create polling thread, ipmi disabled\n", DEVNAME(sc)); return; } } int ipmi_probe(void *aux) { struct ipmi_attach_args *ia = aux; if (scan_smbios(SMBIOS_TYPE_IPMI, smbios_ipmi_probe, ia) == 0) { dmd_ipmi_t *pipmi; /* XXX hack to find Dell PowerEdge 8450 */ pipmi = (dmd_ipmi_t *)scan_sig(0xC0000L, 0xFFFFFL, 16, 4, "IPMI"); if (pipmi == NULL) { /* no IPMI found */ return (0); } /* we have an IPMI signature, fill in attach arg structure */ ia->iaa_if_type = pipmi->dmd_if_type; ia->iaa_if_rev = pipmi->dmd_if_rev; return (1); } return (1); } int ipmi_match(struct device *parent, void *match, void *aux) { struct ipmi_softc sc; struct ipmi_attach_args *ia = aux; struct cfdata *cf = match; if (strcmp(ia->iaa_name, cf->cf_driver->cd_name)) return (0); /* Map registers */ if (ipmi_map_regs(&sc, ia) == 0) { sc.sc_if->probe(&sc); ipmi_unmap_regs(&sc, ia); return (1); } return (0); } void ipmi_attach(struct device *parent, struct device *self, void *aux) { struct ipmi_softc *sc = (void *) self; struct ipmi_attach_args *ia = aux; u_int8_t cmd[32]; int len; u_int16_t rec; sc->sc_thread = malloc(sizeof(struct ipmi_thread), M_DEVBUF, M_NOWAIT); if (sc->sc_thread == NULL) { printf(": unable to allocate thread\n"); return; } sc->sc_thread->sc = sc; sc->sc_thread->running = 1; /* Map registers */ ipmi_map_regs(sc, ia); /* Identify BMC device */ if (ipmi_sendcmd(sc, BMC_SA, 0, APP_NETFN, APP_GET_DEVICE_ID, 0, NULL)){ printf(": unable to send get device id command\n"); ipmi_unmap_regs(sc, ia); return; } if (ipmi_recvcmd(sc, sizeof(cmd), &len, cmd)) { printf(": unable to retrieve device id\n"); ipmi_unmap_regs(sc, ia); return; } dbg_dump(1, "bmc data", len, cmd); /* Scan SDRs, add sensors */ for (rec = 0; rec != 0xFFFF;) if (get_sdr(sc, rec, &rec)) break; /* Setup threads */ kthread_create_deferred(ipmi_create_thread, sc); printf(": version %d.%d interface %s %sbase 0x%x/%x spacing %d", ia->iaa_if_rev >> 4, ia->iaa_if_rev & 0xF, sc->sc_if->name, ia->iaa_if_iotype == 'i' ? "io" : "mem", ia->iaa_if_iobase, ia->iaa_if_iospacing * sc->sc_if->nregs, ia->iaa_if_iospacing); if (ia->iaa_if_irq != -1) printf(" irq %d", ia->iaa_if_irq); printf("\n"); /* Setup Watchdog timer */ sc->sc_wdog_period = 0; wdog_register(sc, ipmi_watchdog); /* setup ticker */ sc->sc_retries = 0; sc->sc_wakeup = 0; sc->sc_max_retries = 100000; /* XXX 5s the right value? */ timeout_set(&sc->sc_timeout, _bmc_io_wait, sc); } int ipmi_watchdog(void *arg, int period) { struct ipmi_softc *sc = arg; struct ipmi_watchdog wdog; int s, rc, len; if (sc->sc_wdog_period == period) { if (period != 0) { s = splsoftclock(); /* tickle the watchdog */ rc = ipmi_sendcmd(sc, BMC_SA, BMC_LUN, APP_NETFN, APP_RESET_WATCHDOG, 0, NULL); rc = ipmi_recvcmd(sc, 0, &len, NULL); splx(s); } return (period); } if (period < 10 && period > 0) period = 10; s = splsoftclock(); rc = ipmi_sendcmd(sc, BMC_SA, BMC_LUN, APP_NETFN, APP_GET_WATCHDOG_TIMER, 0, NULL); rc = ipmi_recvcmd(sc, sizeof(wdog), &len, &wdog); /* Period is 10ths/sec */ wdog.wdog_timeout = htole32(period * 10); wdog.wdog_action &= ~IPMI_WDOG_MASK; wdog.wdog_action |= (period == 0) ? IPMI_WDOG_DISABLED : IPMI_WDOG_REBOOT; rc = ipmi_sendcmd(sc, BMC_SA, BMC_LUN, APP_NETFN, APP_SET_WATCHDOG_TIMER, sizeof(wdog), &wdog); rc = ipmi_recvcmd(sc, 0, &len, NULL); splx(s); sc->sc_wdog_period = period; return (period); }