/* $OpenBSD: ess.c,v 1.14 2008/10/25 22:30:43 jakemsr Exp $ */ /* $NetBSD: ess.c,v 1.44.4.1 1999/06/21 01:18:00 thorpej Exp $ */ /* * Copyright 1997 * Digital Equipment Corporation. All rights reserved. * * This software is furnished under license and may be used and * copied only in accordance with the following terms and conditions. * Subject to these conditions, you may download, copy, install, * use, modify and distribute this software in source and/or binary * form. No title or ownership is transferred hereby. * * 1) Any source code used, modified or distributed must reproduce * and retain this copyright notice and list of conditions as * they appear in the source file. * * 2) No right is granted to use any trade name, trademark, or logo of * Digital Equipment Corporation. Neither the "Digital Equipment * Corporation" name nor any trademark or logo of Digital Equipment * Corporation may be used to endorse or promote products derived * from this software without the prior written permission of * Digital Equipment Corporation. * * 3) This software is provided "AS-IS" and any express or implied * warranties, including but not limited to, any implied warranties * of merchantability, fitness for a particular purpose, or * non-infringement are disclaimed. In no event shall DIGITAL be * liable for any damages whatsoever, and in particular, DIGITAL * shall not be liable for special, indirect, consequential, or * incidental damages or damages for lost profits, loss of * revenue or loss of use, whether such damages arise in contract, * negligence, tort, under statute, in equity, at law or otherwise, * even if advised of the possibility of such damage. */ /* **++ ** ** ess.c ** ** FACILITY: ** ** DIGITAL Network Appliance Reference Design (DNARD) ** ** MODULE DESCRIPTION: ** ** This module contains the device driver for the ESS ** Technologies 1888/1887/888 sound chip. The code in sbdsp.c was ** used as a reference point when implementing this driver. ** ** AUTHORS: ** ** Blair Fidler Software Engineering Australia ** Gold Coast, Australia. ** ** CREATION DATE: ** ** March 10, 1997. ** ** MODIFICATION HISTORY: ** ** Heavily modified by Lennart Augustsson and Charles M. Hannum for ** bus_dma, changes to audio interface, and many bug fixes. ** ESS1788 support by Nathan J. Williams and Charles M. Hannum. **-- */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef AUDIO_DEBUG #define DPRINTF(x) if (essdebug) printf x #define DPRINTFN(n,x) if (essdebug>(n)) printf x int essdebug = 0; #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif #if 0 unsigned uuu; #define EREAD1(t, h, a) (uuu=bus_space_read_1(t, h, a),printf("EREAD %02x=%02x\n", ((int)h&0xfff)+a, uuu),uuu) #define EWRITE1(t, h, a, d) (printf("EWRITE %02x=%02x\n", ((int)h & 0xfff)+a, d), bus_space_write_1(t, h, a, d)) #else #define EREAD1(t, h, a) bus_space_read_1(t, h, a) #define EWRITE1(t, h, a, d) bus_space_write_1(t, h, a, d) #endif struct cfdriver ess_cd = { NULL, "ess", DV_DULL }; int ess_setup_sc(struct ess_softc *, int); int ess_open(void *, int); void ess_1788_close(void *); void ess_1888_close(void *); int ess_getdev(void *, struct audio_device *); int ess_drain(void *); int ess_query_encoding(void *, struct audio_encoding *); int ess_set_params(void *, int, int, struct audio_params *, struct audio_params *); int ess_round_blocksize(void *, int); int ess_audio1_trigger_output(void *, void *, void *, int, void (*)(void *), void *, struct audio_params *); int ess_audio2_trigger_output(void *, void *, void *, int, void (*)(void *), void *, struct audio_params *); int ess_audio1_trigger_input(void *, void *, void *, int, void (*)(void *), void *, struct audio_params *); int ess_audio1_halt(void *); int ess_audio2_halt(void *); int ess_audio1_intr(void *); int ess_audio2_intr(void *); void ess_audio1_poll(void *); void ess_audio2_poll(void *); int ess_speaker_ctl(void *, int); int ess_getdev(void *, struct audio_device *); int ess_set_port(void *, mixer_ctrl_t *); int ess_get_port(void *, mixer_ctrl_t *); void *ess_malloc(void *, int, size_t, int, int); void ess_free(void *, void *, int); size_t ess_round_buffersize(void *, int, size_t); paddr_t ess_mappage(void *, void *, off_t, int); int ess_query_devinfo(void *, mixer_devinfo_t *); int ess_1788_get_props(void *); int ess_1888_get_props(void *); void ess_speaker_on(struct ess_softc *); void ess_speaker_off(struct ess_softc *); int ess_config_addr(struct ess_softc *); void ess_config_irq(struct ess_softc *); void ess_config_drq(struct ess_softc *); void ess_setup(struct ess_softc *); int ess_identify(struct ess_softc *); int ess_reset(struct ess_softc *); void ess_set_gain(struct ess_softc *, int, int); int ess_set_in_port(struct ess_softc *, int); int ess_set_in_ports(struct ess_softc *, int); u_int ess_srtotc(u_int); u_int ess_srtofc(u_int); u_char ess_get_dsp_status(struct ess_softc *); u_char ess_dsp_read_ready(struct ess_softc *); u_char ess_dsp_write_ready(struct ess_softc *); int ess_rdsp(struct ess_softc *); int ess_wdsp(struct ess_softc *, u_char); u_char ess_read_x_reg(struct ess_softc *, u_char); int ess_write_x_reg(struct ess_softc *, u_char, u_char); void ess_clear_xreg_bits(struct ess_softc *, u_char, u_char); void ess_set_xreg_bits(struct ess_softc *, u_char, u_char); u_char ess_read_mix_reg(struct ess_softc *, u_char); void ess_write_mix_reg(struct ess_softc *, u_char, u_char); void ess_clear_mreg_bits(struct ess_softc *, u_char, u_char); void ess_set_mreg_bits(struct ess_softc *, u_char, u_char); void ess_read_multi_mix_reg(struct ess_softc *, u_char, u_int8_t *, bus_size_t); static char *essmodel[] = { "unsupported", "1888", "1887", "888", "1788", "1869", "1879", "1868", "1878", }; struct audio_device ess_device = { "ESS Technology", "x", "ess" }; /* * Define our interface to the higher level audio driver. */ struct audio_hw_if ess_1788_hw_if = { ess_open, ess_1788_close, ess_drain, ess_query_encoding, ess_set_params, ess_round_blocksize, NULL, NULL, NULL, NULL, NULL, ess_audio1_halt, ess_audio1_halt, ess_speaker_ctl, ess_getdev, NULL, ess_set_port, ess_get_port, ess_query_devinfo, ess_malloc, ess_free, ess_round_buffersize, ess_mappage, ess_1788_get_props, ess_audio1_trigger_output, ess_audio1_trigger_input, NULL }; struct audio_hw_if ess_1888_hw_if = { ess_open, ess_1888_close, ess_drain, ess_query_encoding, ess_set_params, ess_round_blocksize, NULL, NULL, NULL, NULL, NULL, ess_audio2_halt, ess_audio1_halt, ess_speaker_ctl, ess_getdev, NULL, ess_set_port, ess_get_port, ess_query_devinfo, ess_malloc, ess_free, ess_round_buffersize, ess_mappage, ess_1888_get_props, ess_audio2_trigger_output, ess_audio1_trigger_input, NULL }; #ifdef AUDIO_DEBUG void ess_printsc(struct ess_softc *); void ess_dump_mixer(struct ess_softc *); void ess_printsc(sc) struct ess_softc *sc; { int i; printf("open %d iobase 0x%x outport %u inport %u speaker %s\n", (int)sc->sc_open, sc->sc_iobase, sc->out_port, sc->in_port, sc->spkr_state ? "on" : "off"); printf("audio1: dmachan %d irq %d nintr %lu intr %p arg %p\n", sc->sc_audio1.drq, sc->sc_audio1.irq, sc->sc_audio1.nintr, sc->sc_audio1.intr, sc->sc_audio1.arg); if (!ESS_USE_AUDIO1(sc->sc_model)) { printf("audio2: dmachan %d irq %d nintr %lu intr %p arg %p\n", sc->sc_audio2.drq, sc->sc_audio2.irq, sc->sc_audio2.nintr, sc->sc_audio2.intr, sc->sc_audio2.arg); } printf("gain:"); for (i = 0; i < sc->ndevs; i++) printf(" %u,%u", sc->gain[i][ESS_LEFT], sc->gain[i][ESS_RIGHT]); printf("\n"); } void ess_dump_mixer(sc) struct ess_softc *sc; { printf("ESS_DAC_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 0x7C, ess_read_mix_reg(sc, 0x7C)); printf("ESS_MIC_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 0x1A, ess_read_mix_reg(sc, 0x1A)); printf("ESS_LINE_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 0x3E, ess_read_mix_reg(sc, 0x3E)); printf("ESS_SYNTH_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 0x36, ess_read_mix_reg(sc, 0x36)); printf("ESS_CD_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 0x38, ess_read_mix_reg(sc, 0x38)); printf("ESS_AUXB_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 0x3A, ess_read_mix_reg(sc, 0x3A)); printf("ESS_MASTER_VOL: mix reg 0x%02x=0x%02x\n", 0x32, ess_read_mix_reg(sc, 0x32)); printf("ESS_PCSPEAKER_VOL: mix reg 0x%02x=0x%02x\n", 0x3C, ess_read_mix_reg(sc, 0x3C)); printf("ESS_DAC_REC_VOL: mix reg 0x%02x=0x%02x\n", 0x69, ess_read_mix_reg(sc, 0x69)); printf("ESS_MIC_REC_VOL: mix reg 0x%02x=0x%02x\n", 0x68, ess_read_mix_reg(sc, 0x68)); printf("ESS_LINE_REC_VOL: mix reg 0x%02x=0x%02x\n", 0x6E, ess_read_mix_reg(sc, 0x6E)); printf("ESS_SYNTH_REC_VOL: mix reg 0x%02x=0x%02x\n", 0x6B, ess_read_mix_reg(sc, 0x6B)); printf("ESS_CD_REC_VOL: mix reg 0x%02x=0x%02x\n", 0x6A, ess_read_mix_reg(sc, 0x6A)); printf("ESS_AUXB_REC_VOL: mix reg 0x%02x=0x%02x\n", 0x6C, ess_read_mix_reg(sc, 0x6C)); printf("ESS_RECORD_VOL: x reg 0x%02x=0x%02x\n", 0xB4, ess_read_x_reg(sc, 0xB4)); printf("Audio 1 play vol (unused): mix reg 0x%02x=0x%02x\n", 0x14, ess_read_mix_reg(sc, 0x14)); printf("ESS_MIC_PREAMP: x reg 0x%02x=0x%02x\n", ESS_XCMD_PREAMP_CTRL, ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL)); printf("ESS_RECORD_MONITOR: x reg 0x%02x=0x%02x\n", ESS_XCMD_AUDIO_CTRL, ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL)); printf("Record source: mix reg 0x%02x=0x%02x, 0x%02x=0x%02x\n", ESS_MREG_ADC_SOURCE, ess_read_mix_reg(sc, ESS_MREG_ADC_SOURCE), ESS_MREG_AUDIO2_CTRL2, ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2)); } #endif /* * Configure the ESS chip for the desired audio base address. */ int ess_config_addr(sc) struct ess_softc *sc; { int iobase = sc->sc_iobase; bus_space_tag_t iot = sc->sc_iot; /* * Configure using the System Control Register method. This * method is used when the AMODE line is tied high, which is * the case for the Shark, but not for the evaluation board. */ bus_space_handle_t scr_access_ioh; bus_space_handle_t scr_ioh; u_short scr_value; /* * Set the SCR bit to enable audio. */ scr_value = ESS_SCR_AUDIO_ENABLE; /* * Set the SCR bits necessary to select the specified audio * base address. */ switch(iobase) { case 0x220: scr_value |= ESS_SCR_AUDIO_220; break; case 0x230: scr_value |= ESS_SCR_AUDIO_230; break; case 0x240: scr_value |= ESS_SCR_AUDIO_240; break; case 0x250: scr_value |= ESS_SCR_AUDIO_250; break; default: printf("ess: configured iobase 0x%x invalid\n", iobase); return (1); break; } /* * Get a mapping for the System Control Register (SCR) access * registers and the SCR data registers. */ if (bus_space_map(iot, ESS_SCR_ACCESS_BASE, ESS_SCR_ACCESS_PORTS, 0, &scr_access_ioh)) { printf("ess: can't map SCR access registers\n"); return (1); } if (bus_space_map(iot, ESS_SCR_BASE, ESS_SCR_PORTS, 0, &scr_ioh)) { printf("ess: can't map SCR registers\n"); bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS); return (1); } /* Unlock the SCR. */ EWRITE1(iot, scr_access_ioh, ESS_SCR_UNLOCK, 0); /* Write the base address information into SCR[0]. */ EWRITE1(iot, scr_ioh, ESS_SCR_INDEX, 0); EWRITE1(iot, scr_ioh, ESS_SCR_DATA, scr_value); /* Lock the SCR. */ EWRITE1(iot, scr_access_ioh, ESS_SCR_LOCK, 0); /* Unmap the SCR access ports and the SCR data ports. */ bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS); bus_space_unmap(iot, scr_ioh, ESS_SCR_PORTS); return 0; } /* * Configure the ESS chip for the desired IRQ and DMA channels. * ESS ISA * -------- * IRQA irq9 * IRQB irq5 * IRQC irq7 * IRQD irq10 * IRQE irq15 * * DRQA drq0 * DRQB drq1 * DRQC drq3 * DRQD drq5 */ void ess_config_irq(sc) struct ess_softc *sc; { int v; DPRINTFN(2,("ess_config_irq\n")); if (sc->sc_model == ESS_1887 && sc->sc_audio1.irq == sc->sc_audio2.irq && sc->sc_audio1.irq != -1) { /* Use new method, both interrupts are the same. */ v = ESS_IS_SELECT_IRQ; /* enable intrs */ switch (sc->sc_audio1.irq) { case 5: v |= ESS_IS_INTRB; break; case 7: v |= ESS_IS_INTRC; break; case 9: v |= ESS_IS_INTRA; break; case 10: v |= ESS_IS_INTRD; break; case 15: v |= ESS_IS_INTRE; break; #ifdef DIAGNOSTIC default: printf("ess_config_irq: configured irq %d not supported for Audio 1\n", sc->sc_audio1.irq); return; #endif } /* Set the IRQ */ ess_write_mix_reg(sc, ESS_MREG_INTR_ST, v); return; } if (sc->sc_model == ESS_1887) { /* Tell the 1887 to use the old interrupt method. */ ess_write_mix_reg(sc, ESS_MREG_INTR_ST, ESS_IS_ES1888); } if (sc->sc_audio1.polled) { /* Turn off Audio1 interrupts. */ v = 0; } else { /* Configure Audio 1 for the appropriate IRQ line. */ v = ESS_IRQ_CTRL_MASK | ESS_IRQ_CTRL_EXT; /* All intrs on */ switch (sc->sc_audio1.irq) { case 5: v |= ESS_IRQ_CTRL_INTRB; break; case 7: v |= ESS_IRQ_CTRL_INTRC; break; case 9: v |= ESS_IRQ_CTRL_INTRA; break; case 10: v |= ESS_IRQ_CTRL_INTRD; break; #ifdef DIAGNOSTIC default: printf("ess: configured irq %d not supported for Audio 1\n", sc->sc_audio1.irq); return; #endif } } ess_write_x_reg(sc, ESS_XCMD_IRQ_CTRL, v); if (ESS_USE_AUDIO1(sc->sc_model)) return; if (sc->sc_audio2.polled) { /* Turn off Audio2 interrupts. */ ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, ESS_AUDIO2_CTRL2_IRQ2_ENABLE); } else { /* Audio2 is hardwired to INTRE in this mode. */ ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, ESS_AUDIO2_CTRL2_IRQ2_ENABLE); } } void ess_config_drq(sc) struct ess_softc *sc; { int v; DPRINTFN(2,("ess_config_drq\n")); /* Configure Audio 1 (record) for DMA on the appropriate channel. */ v = ESS_DRQ_CTRL_PU | ESS_DRQ_CTRL_EXT; switch (sc->sc_audio1.drq) { case 0: v |= ESS_DRQ_CTRL_DRQA; break; case 1: v |= ESS_DRQ_CTRL_DRQB; break; case 3: v |= ESS_DRQ_CTRL_DRQC; break; #ifdef DIAGNOSTIC default: printf("ess_config_drq: configured dma chan %d not supported for Audio 1\n", sc->sc_audio1.drq); return; #endif } /* Set DRQ1 */ ess_write_x_reg(sc, ESS_XCMD_DRQ_CTRL, v); if (ESS_USE_AUDIO1(sc->sc_model)) return; /* Configure DRQ2 */ v = ESS_AUDIO2_CTRL3_DRQ_PD; switch (sc->sc_audio2.drq) { case 0: v |= ESS_AUDIO2_CTRL3_DRQA; break; case 1: v |= ESS_AUDIO2_CTRL3_DRQB; break; case 3: v |= ESS_AUDIO2_CTRL3_DRQC; break; case 5: v |= ESS_AUDIO2_CTRL3_DRQD; break; #ifdef DIAGNOSTIC default: printf("ess_config_drq: configured dma chan %d not supported for Audio 2\n", sc->sc_audio2.drq); return; #endif } ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL3, v); /* Enable DMA 2 */ ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, ESS_AUDIO2_CTRL2_DMA_ENABLE); } /* * Set up registers after a reset. */ void ess_setup(sc) struct ess_softc *sc; { ess_config_irq(sc); ess_config_drq(sc); DPRINTFN(2,("ess_setup: done\n")); } /* * Determine the model of ESS chip we are talking to. Currently we * only support ES1888, ES1887 and ES888. The method of determining * the chip is based on the information on page 27 of the ES1887 data * sheet. * * This routine sets the values of sc->sc_model and sc->sc_version. */ int ess_identify(sc) struct ess_softc *sc; { u_char reg1; u_char reg2; u_char reg3; u_int8_t ident[4]; sc->sc_model = ESS_UNSUPPORTED; sc->sc_version = 0; memset(ident, 0, sizeof(ident)); /* * 1. Check legacy ID bytes. These should be 0x68 0x8n, where * n >= 8 for an ES1887 or an ES888. Other values indicate * earlier (unsupported) chips. */ ess_wdsp(sc, ESS_ACMD_LEGACY_ID); if ((reg1 = ess_rdsp(sc)) != 0x68) { printf("ess: First ID byte wrong (0x%02x)\n", reg1); return 1; } reg2 = ess_rdsp(sc); if (((reg2 & 0xf0) != 0x80) || ((reg2 & 0x0f) < 8)) { printf("ess: Second ID byte wrong (0x%02x)\n", reg2); return 1; } /* * Store the ID bytes as the version. */ sc->sc_version = (reg1 << 8) + reg2; /* * 2. Verify we can change bit 2 in mixer register 0x64. This * should be possible on all supported chips. */ reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL); reg2 = reg1 ^ 0x04; /* toggle bit 2 */ ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2); if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) != reg2) { printf("ess: Hardware error (unable to toggle bit 2 of mixer register 0x64)\n"); return 1; } /* * Restore the original value of mixer register 0x64. */ ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1); /* * 3. Verify we can change the value of mixer register * ESS_MREG_SAMPLE_RATE. * This is possible on the 1888/1887/888, but not on the 1788. * It is not necessary to restore the value of this mixer register. */ reg1 = ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE); reg2 = reg1 ^ 0xff; /* toggle all bits */ ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, reg2); if (ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE) != reg2) { /* If we got this far before failing, it's a 1788. */ sc->sc_model = ESS_1788; /* * Identify ESS model for ES18[67]8. */ ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident)); if(ident[0] == 0x18) { switch(ident[1]) { case 0x68: sc->sc_model = ESS_1868; break; case 0x78: sc->sc_model = ESS_1878; break; } } } else { /* * 4. Determine if we can change bit 5 in mixer register 0x64. * This determines whether we have an ES1887: * * - can change indicates ES1887 * - can't change indicates ES1888 or ES888 */ reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL); reg2 = reg1 ^ 0x20; /* toggle bit 5 */ ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2); if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) == reg2) { sc->sc_model = ESS_1887; /* * Restore the original value of mixer register 0x64. */ ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1); /* * Identify ESS model for ES18[67]9. */ ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident)); if(ident[0] == 0x18) { switch(ident[1]) { case 0x69: sc->sc_model = ESS_1869; break; case 0x79: sc->sc_model = ESS_1879; break; } } } else { /* * 5. Determine if we can change the value of mixer * register 0x69 independently of mixer register * 0x68. This determines which chip we have: * * - can modify idependently indicates ES888 * - register 0x69 is an alias of 0x68 indicates ES1888 */ reg1 = ess_read_mix_reg(sc, 0x68); reg2 = ess_read_mix_reg(sc, 0x69); reg3 = reg2 ^ 0xff; /* toggle all bits */ /* * Write different values to each register. */ ess_write_mix_reg(sc, 0x68, reg2); ess_write_mix_reg(sc, 0x69, reg3); if (ess_read_mix_reg(sc, 0x68) == reg2 && ess_read_mix_reg(sc, 0x69) == reg3) sc->sc_model = ESS_888; else sc->sc_model = ESS_1888; /* * Restore the original value of the registers. */ ess_write_mix_reg(sc, 0x68, reg1); ess_write_mix_reg(sc, 0x69, reg2); } } return 0; } int ess_setup_sc(sc, doinit) struct ess_softc *sc; int doinit; { /* Reset the chip. */ if (ess_reset(sc) != 0) { DPRINTF(("ess_setup_sc: couldn't reset chip\n")); return (1); } /* Identify the ESS chip, and check that it is supported. */ if (ess_identify(sc)) { DPRINTF(("ess_setup_sc: couldn't identify\n")); return (1); } return (0); } /* * Probe for the ESS hardware. */ int essmatch(sc) struct ess_softc *sc; { if (!ESS_BASE_VALID(sc->sc_iobase)) { printf("ess: configured iobase 0x%x invalid\n", sc->sc_iobase); return (0); } /* Configure the ESS chip for the desired audio base address. */ if (ess_config_addr(sc)) return (0); if (ess_setup_sc(sc, 1)) return (0); if (sc->sc_model == ESS_UNSUPPORTED) { DPRINTF(("ess: Unsupported model\n")); return (0); } /* Check that requested DMA channels are valid and different. */ if (!ESS_DRQ1_VALID(sc->sc_audio1.drq)) { printf("ess: record drq %d invalid\n", sc->sc_audio1.drq); return (0); } if (!isa_drq_isfree(sc->sc_isa, sc->sc_audio1.drq)) return (0); if (!ESS_USE_AUDIO1(sc->sc_model)) { if (!ESS_DRQ2_VALID(sc->sc_audio2.drq)) { printf("ess: play drq %d invalid\n", sc->sc_audio2.drq); return (0); } if (sc->sc_audio1.drq == sc->sc_audio2.drq) { printf("ess: play and record drq both %d\n", sc->sc_audio1.drq); return (0); } if (!isa_drq_isfree(sc->sc_isa, sc->sc_audio2.drq)) return (0); } /* * The 1887 has an additional IRQ mode where both channels are mapped * to the same IRQ. */ if (sc->sc_model == ESS_1887 && sc->sc_audio1.irq == sc->sc_audio2.irq && sc->sc_audio1.irq != -1 && ESS_IRQ12_VALID(sc->sc_audio1.irq)) goto irq_not1888; /* Check that requested IRQ lines are valid and different. */ if (sc->sc_audio1.irq != -1 && !ESS_IRQ1_VALID(sc->sc_audio1.irq)) { printf("ess: record irq %d invalid\n", sc->sc_audio1.irq); return (0); } if (!ESS_USE_AUDIO1(sc->sc_model)) { if (sc->sc_audio2.irq != -1 && !ESS_IRQ2_VALID(sc->sc_audio2.irq)) { printf("ess: play irq %d invalid\n", sc->sc_audio2.irq); return (0); } if (sc->sc_audio1.irq == sc->sc_audio2.irq && sc->sc_audio1.irq != -1) { printf("ess: play and record irq both %d\n", sc->sc_audio1.irq); return (0); } } irq_not1888: /* XXX should we check IRQs as well? */ return (1); } /* * Attach hardware to driver, attach hardware driver to audio * pseudo-device driver. */ void essattach(sc) struct ess_softc *sc; { struct audio_attach_args arg; struct audio_params pparams, rparams; int i; u_int v; if (ess_setup_sc(sc, 0)) { printf(": setup failed\n"); return; } printf(": ESS Technology ES%s [version 0x%04x]\n", essmodel[sc->sc_model], sc->sc_version); sc->sc_audio1.polled = sc->sc_audio1.irq == -1; if (!sc->sc_audio1.polled) { sc->sc_audio1.ih = isa_intr_establish(sc->sc_ic, sc->sc_audio1.irq, sc->sc_audio1.ist, IPL_AUDIO, ess_audio1_intr, sc, sc->sc_dev.dv_xname); printf("%s: audio1 interrupting at irq %d\n", sc->sc_dev.dv_xname, sc->sc_audio1.irq); } else printf("%s: audio1 polled\n", sc->sc_dev.dv_xname); if (isa_dmamap_create(sc->sc_isa, sc->sc_audio1.drq, MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) { printf("%s: can't create map for drq %d\n", sc->sc_dev.dv_xname, sc->sc_audio1.drq); return; } if (!ESS_USE_AUDIO1(sc->sc_model)) { sc->sc_audio2.polled = sc->sc_audio2.irq == -1; if (!sc->sc_audio2.polled) { sc->sc_audio2.ih = isa_intr_establish(sc->sc_ic, sc->sc_audio2.irq, sc->sc_audio2.ist, IPL_AUDIO, ess_audio2_intr, sc, sc->sc_dev.dv_xname); printf("%s: audio2 interrupting at irq %d\n", sc->sc_dev.dv_xname, sc->sc_audio2.irq); } else printf("%s: audio2 polled\n", sc->sc_dev.dv_xname); if (isa_dmamap_create(sc->sc_isa, sc->sc_audio2.drq, MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) { printf("%s: can't create map for drq %d\n", sc->sc_dev.dv_xname, sc->sc_audio2.drq); return; } } timeout_set(&sc->sc_tmo1, ess_audio1_poll, sc); timeout_set(&sc->sc_tmo2, ess_audio2_poll, sc); /* * Set record and play parameters to default values defined in * generic audio driver. */ pparams = audio_default; rparams = audio_default; ess_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams); /* Do a hardware reset on the mixer. */ ess_write_mix_reg(sc, ESS_MIX_RESET, ESS_MIX_RESET); /* * Set volume of Audio 1 to zero and disable Audio 1 DAC input * to playback mixer, since playback is always through Audio 2. */ if (!ESS_USE_AUDIO1(sc->sc_model)) ess_write_mix_reg(sc, ESS_MREG_VOLUME_VOICE, 0); ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR); if (ESS_USE_AUDIO1(sc->sc_model)) { ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIC); sc->in_port = ESS_SOURCE_MIC; sc->ndevs = ESS_1788_NDEVS; } else { /* * Set hardware record source to use output of the record * mixer. We do the selection of record source in software by * setting the gain of the unused sources to zero. (See * ess_set_in_ports.) */ ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIXER); sc->in_mask = 1 << ESS_MIC_REC_VOL; sc->ndevs = ESS_1888_NDEVS; ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x10); ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x08); } /* * Set gain on each mixer device to a sensible value. * Devices not normally used are turned off, and other devices * are set to 50% volume. */ for (i = 0; i < sc->ndevs; i++) { switch (i) { case ESS_MIC_PLAY_VOL: case ESS_LINE_PLAY_VOL: case ESS_CD_PLAY_VOL: case ESS_AUXB_PLAY_VOL: case ESS_DAC_REC_VOL: case ESS_LINE_REC_VOL: case ESS_SYNTH_REC_VOL: case ESS_CD_REC_VOL: case ESS_AUXB_REC_VOL: v = 0; break; default: v = ESS_4BIT_GAIN(AUDIO_MAX_GAIN / 2); break; } sc->gain[i][ESS_LEFT] = sc->gain[i][ESS_RIGHT] = v; ess_set_gain(sc, i, 1); } ess_setup(sc); /* Disable the speaker until the device is opened. */ ess_speaker_off(sc); sc->spkr_state = SPKR_OFF; snprintf(ess_device.name, sizeof ess_device.name, "ES%s", essmodel[sc->sc_model]); snprintf(ess_device.version, sizeof ess_device.version, "0x%04x", sc->sc_version); if (ESS_USE_AUDIO1(sc->sc_model)) audio_attach_mi(&ess_1788_hw_if, sc, &sc->sc_dev); else audio_attach_mi(&ess_1888_hw_if, sc, &sc->sc_dev); arg.type = AUDIODEV_TYPE_OPL; arg.hwif = 0; arg.hdl = 0; (void)config_found(&sc->sc_dev, &arg, audioprint); #ifdef AUDIO_DEBUG if (essdebug > 0) ess_printsc(sc); #endif } /* * Various routines to interface to higher level audio driver */ int ess_open(addr, flags) void *addr; int flags; { struct ess_softc *sc = addr; DPRINTF(("ess_open: sc=%p\n", sc)); if (sc->sc_open != 0 || ess_reset(sc) != 0) return ENXIO; ess_setup(sc); /* because we did a reset */ sc->sc_open = 1; DPRINTF(("ess_open: opened\n")); return (0); } void ess_1788_close(addr) void *addr; { struct ess_softc *sc = addr; DPRINTF(("ess_1788_close: sc=%p\n", sc)); ess_speaker_off(sc); sc->spkr_state = SPKR_OFF; ess_audio1_halt(sc); sc->sc_open = 0; DPRINTF(("ess_1788_close: closed\n")); } void ess_1888_close(addr) void *addr; { struct ess_softc *sc = addr; DPRINTF(("ess_1888_close: sc=%p\n", sc)); ess_speaker_off(sc); sc->spkr_state = SPKR_OFF; ess_audio1_halt(sc); ess_audio2_halt(sc); sc->sc_open = 0; DPRINTF(("ess_1888_close: closed\n")); } /* * Wait for FIFO to drain, and analog section to settle. * XXX should check FIFO empty bit. */ int ess_drain(addr) void *addr; { tsleep(addr, PWAIT | PCATCH, "essdr", hz/20); /* XXX */ return (0); } /* XXX should use reference count */ int ess_speaker_ctl(addr, newstate) void *addr; int newstate; { struct ess_softc *sc = addr; if ((newstate == SPKR_ON) && (sc->spkr_state == SPKR_OFF)) { ess_speaker_on(sc); sc->spkr_state = SPKR_ON; } if ((newstate == SPKR_OFF) && (sc->spkr_state == SPKR_ON)) { ess_speaker_off(sc); sc->spkr_state = SPKR_OFF; } return (0); } int ess_getdev(addr, retp) void *addr; struct audio_device *retp; { *retp = ess_device; return (0); } int ess_query_encoding(addr, fp) void *addr; struct audio_encoding *fp; { /*struct ess_softc *sc = addr;*/ switch (fp->index) { case 0: strlcpy(fp->name, AudioEulinear, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ULINEAR; fp->precision = 8; fp->flags = 0; return (0); case 1: strlcpy(fp->name, AudioEmulaw, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ULAW; fp->precision = 8; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return (0); case 2: strlcpy(fp->name, AudioEalaw, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ALAW; fp->precision = 8; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return (0); case 3: strlcpy(fp->name, AudioEslinear, sizeof fp->name); fp->encoding = AUDIO_ENCODING_SLINEAR; fp->precision = 8; fp->flags = 0; return (0); case 4: strlcpy(fp->name, AudioEslinear_le, sizeof fp->name); fp->encoding = AUDIO_ENCODING_SLINEAR_LE; fp->precision = 16; fp->flags = 0; return (0); case 5: strlcpy(fp->name, AudioEulinear_le, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ULINEAR_LE; fp->precision = 16; fp->flags = 0; return (0); case 6: strlcpy(fp->name, AudioEslinear_be, sizeof fp->name); fp->encoding = AUDIO_ENCODING_SLINEAR_BE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return (0); case 7: strlcpy(fp->name, AudioEulinear_be, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ULINEAR_BE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return (0); default: return EINVAL; } return (0); } int ess_set_params(addr, setmode, usemode, play, rec) void *addr; int setmode, usemode; struct audio_params *play, *rec; { struct ess_softc *sc = addr; struct audio_params *p; int mode; int rate; DPRINTF(("ess_set_params: set=%d use=%d\n", setmode, usemode)); /* * The ES1887 manual (page 39, `Full-Duplex DMA Mode') claims that in * full-duplex operation the sample rates must be the same for both * channels. This appears to be false; the only bit in common is the * clock source selection. However, we'll be conservative here. * - mycroft */ if (play->sample_rate != rec->sample_rate && usemode == (AUMODE_PLAY | AUMODE_RECORD)) { if (setmode == AUMODE_PLAY) { rec->sample_rate = play->sample_rate; setmode |= AUMODE_RECORD; } else if (setmode == AUMODE_RECORD) { play->sample_rate = rec->sample_rate; setmode |= AUMODE_PLAY; } else return (EINVAL); } for (mode = AUMODE_RECORD; mode != -1; mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { if ((setmode & mode) == 0) continue; p = mode == AUMODE_PLAY ? play : rec; if (p->sample_rate < ESS_MINRATE) p->sample_rate = ESS_MINRATE; if (p->sample_rate > ESS_MAXRATE) p->sample_rate = ESS_MAXRATE; if (p->precision > 16) p->precision = 16; if (p->channels > 2) p->channels = 2; p->factor = 1; p->sw_code = 0; switch (p->encoding) { case AUDIO_ENCODING_SLINEAR_BE: case AUDIO_ENCODING_ULINEAR_BE: if (p->precision == 16) p->sw_code = swap_bytes; break; case AUDIO_ENCODING_SLINEAR_LE: case AUDIO_ENCODING_ULINEAR_LE: break; case AUDIO_ENCODING_ULAW: if (mode == AUMODE_PLAY) { p->factor = 2; p->sw_code = mulaw_to_ulinear16_le; } else p->sw_code = ulinear8_to_mulaw; break; case AUDIO_ENCODING_ALAW: if (mode == AUMODE_PLAY) { p->factor = 2; p->sw_code = alaw_to_ulinear16_le; } else p->sw_code = ulinear8_to_alaw; break; default: return (EINVAL); } } if (usemode == AUMODE_RECORD) rate = rec->sample_rate; else rate = play->sample_rate; ess_write_x_reg(sc, ESS_XCMD_SAMPLE_RATE, ess_srtotc(rate)); ess_write_x_reg(sc, ESS_XCMD_FILTER_CLOCK, ess_srtofc(rate)); if (!ESS_USE_AUDIO1(sc->sc_model)) { ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, ess_srtotc(rate)); ess_write_mix_reg(sc, ESS_MREG_FILTER_CLOCK, ess_srtofc(rate)); } return (0); } int ess_audio1_trigger_output(addr, start, end, blksize, intr, arg, param) void *addr; void *start, *end; int blksize; void (*intr)(void *); void *arg; struct audio_params *param; { struct ess_softc *sc = addr; u_int8_t reg; DPRINTFN(1, ("ess_audio1_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg)); if (sc->sc_audio1.active) panic("ess_audio1_trigger_output: already running"); sc->sc_audio1.active = 1; sc->sc_audio1.intr = intr; sc->sc_audio1.arg = arg; if (sc->sc_audio1.polled) { sc->sc_audio1.dmapos = 0; sc->sc_audio1.buffersize = (char *)end - (char *)start; sc->sc_audio1.dmacount = 0; sc->sc_audio1.blksize = blksize; timeout_add(&sc->sc_tmo1, hz/30); } reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL); if (param->channels == 2) { reg &= ~ESS_AUDIO_CTRL_MONO; reg |= ESS_AUDIO_CTRL_STEREO; } else { reg |= ESS_AUDIO_CTRL_MONO; reg &= ~ESS_AUDIO_CTRL_STEREO; } ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg); reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1); if (param->precision * param->factor == 16) reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE; else reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE; if (param->channels == 2) reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO; else reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO; if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || param->encoding == AUDIO_ENCODING_SLINEAR_LE) reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED; else reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED; reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT; ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg); isa_dmastart(sc->sc_isa, sc->sc_audio1.drq, start, (char *)end - (char *)start, NULL, DMAMODE_WRITE | DMAMODE_LOOP, BUS_DMA_NOWAIT); /* Program transfer count registers with 2's complement of count. */ blksize = -blksize; ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize); ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8); /* Use 4 bytes per output DMA. */ ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4); /* Start auto-init DMA */ ess_wdsp(sc, ESS_ACMD_ENABLE_SPKR); reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2); reg &= ~(ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE); reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT; ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg); return (0); } int ess_audio2_trigger_output(addr, start, end, blksize, intr, arg, param) void *addr; void *start, *end; int blksize; void (*intr)(void *); void *arg; struct audio_params *param; { struct ess_softc *sc = addr; u_int8_t reg; DPRINTFN(1, ("ess_audio2_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg)); if (sc->sc_audio2.active) panic("ess_audio2_trigger_output: already running"); sc->sc_audio2.active = 1; sc->sc_audio2.intr = intr; sc->sc_audio2.arg = arg; if (sc->sc_audio2.polled) { sc->sc_audio2.dmapos = 0; sc->sc_audio2.buffersize = (char *)end - (char *)start; sc->sc_audio2.dmacount = 0; sc->sc_audio2.blksize = blksize; timeout_add(&sc->sc_tmo2, hz/30); } reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2); if (param->precision * param->factor == 16) reg |= ESS_AUDIO2_CTRL2_FIFO_SIZE; else reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIZE; if (param->channels == 2) reg |= ESS_AUDIO2_CTRL2_CHANNELS; else reg &= ~ESS_AUDIO2_CTRL2_CHANNELS; if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || param->encoding == AUDIO_ENCODING_SLINEAR_LE) reg |= ESS_AUDIO2_CTRL2_FIFO_SIGNED; else reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIGNED; ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg); isa_dmastart(sc->sc_isa, sc->sc_audio2.drq, start, (char *)end - (char *)start, NULL, DMAMODE_WRITE | DMAMODE_LOOP, BUS_DMA_NOWAIT); if (IS16BITDRQ(sc->sc_audio2.drq)) blksize >>= 1; /* use word count for 16 bit DMA */ /* Program transfer count registers with 2's complement of count. */ blksize = -blksize; ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTLO, blksize); ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTHI, blksize >> 8); reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1); if (IS16BITDRQ(sc->sc_audio2.drq)) reg |= ESS_AUDIO2_CTRL1_XFER_SIZE; else reg &= ~ESS_AUDIO2_CTRL1_XFER_SIZE; reg |= ESS_AUDIO2_CTRL1_DEMAND_8; reg |= ESS_AUDIO2_CTRL1_DAC_ENABLE | ESS_AUDIO2_CTRL1_FIFO_ENABLE | ESS_AUDIO2_CTRL1_AUTO_INIT; ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1, reg); return (0); } int ess_audio1_trigger_input(addr, start, end, blksize, intr, arg, param) void *addr; void *start, *end; int blksize; void (*intr)(void *); void *arg; struct audio_params *param; { struct ess_softc *sc = addr; u_int8_t reg; DPRINTFN(1, ("ess_audio1_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg)); if (sc->sc_audio1.active) panic("ess_audio1_trigger_input: already running"); sc->sc_audio1.active = 1; sc->sc_audio1.intr = intr; sc->sc_audio1.arg = arg; if (sc->sc_audio1.polled) { sc->sc_audio1.dmapos = 0; sc->sc_audio1.buffersize = (char *)end - (char *)start; sc->sc_audio1.dmacount = 0; sc->sc_audio1.blksize = blksize; timeout_add(&sc->sc_tmo1, hz/30); } reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL); if (param->channels == 2) { reg &= ~ESS_AUDIO_CTRL_MONO; reg |= ESS_AUDIO_CTRL_STEREO; } else { reg |= ESS_AUDIO_CTRL_MONO; reg &= ~ESS_AUDIO_CTRL_STEREO; } ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg); reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1); if (param->precision * param->factor == 16) reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE; else reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE; if (param->channels == 2) reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO; else reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO; if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || param->encoding == AUDIO_ENCODING_SLINEAR_LE) reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED; else reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED; reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT; ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg); isa_dmastart(sc->sc_isa, sc->sc_audio1.drq, start, (char *)end - (char *)start, NULL, DMAMODE_READ | DMAMODE_LOOP, BUS_DMA_NOWAIT); /* Program transfer count registers with 2's complement of count. */ blksize = -blksize; ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize); ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8); /* Use 4 bytes per input DMA. */ ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4); /* Start auto-init DMA */ ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR); reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2); reg |= ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE; reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT; ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg); return (0); } int ess_audio1_halt(addr) void *addr; { struct ess_softc *sc = addr; DPRINTF(("ess_audio1_halt: sc=%p\n", sc)); if (sc->sc_audio1.active) { ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2, ESS_AUDIO1_CTRL2_FIFO_ENABLE); isa_dmaabort(sc->sc_isa, sc->sc_audio1.drq); if (sc->sc_audio1.polled) timeout_del(&sc->sc_tmo1); sc->sc_audio1.active = 0; } return (0); } int ess_audio2_halt(addr) void *addr; { struct ess_softc *sc = addr; DPRINTF(("ess_audio2_halt: sc=%p\n", sc)); if (sc->sc_audio2.active) { ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1, ESS_AUDIO2_CTRL1_DAC_ENABLE | ESS_AUDIO2_CTRL1_FIFO_ENABLE); isa_dmaabort(sc->sc_isa, sc->sc_audio2.drq); if (sc->sc_audio2.polled) timeout_del(&sc->sc_tmo2); sc->sc_audio2.active = 0; } return (0); } int ess_audio1_intr(arg) void *arg; { struct ess_softc *sc = arg; u_int8_t reg; DPRINTFN(1,("ess_audio1_intr: intr=%p\n", sc->sc_audio1.intr)); /* Check and clear interrupt on Audio1. */ reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS); if ((reg & ESS_DSP_READ_OFLOW) == 0) return (0); reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_CLEAR_INTR); sc->sc_audio1.nintr++; if (sc->sc_audio1.active) { (*sc->sc_audio1.intr)(sc->sc_audio1.arg); return (1); } else return (0); } int ess_audio2_intr(arg) void *arg; { struct ess_softc *sc = arg; u_int8_t reg; DPRINTFN(1,("ess_audio2_intr: intr=%p\n", sc->sc_audio2.intr)); /* Check and clear interrupt on Audio2. */ reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2); if ((reg & ESS_AUDIO2_CTRL2_IRQ_LATCH) == 0) return (0); reg &= ~ESS_AUDIO2_CTRL2_IRQ_LATCH; ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg); sc->sc_audio2.nintr++; if (sc->sc_audio2.active) { (*sc->sc_audio2.intr)(sc->sc_audio2.arg); return (1); } else return (0); } void ess_audio1_poll(addr) void *addr; { struct ess_softc *sc = addr; int dmapos, dmacount; if (!sc->sc_audio1.active) return; sc->sc_audio1.nintr++; dmapos = isa_dmacount(sc->sc_isa, sc->sc_audio1.drq); dmacount = sc->sc_audio1.dmapos - dmapos; if (dmacount < 0) dmacount += sc->sc_audio1.buffersize; sc->sc_audio1.dmapos = dmapos; #if 1 dmacount += sc->sc_audio1.dmacount; while (dmacount > sc->sc_audio1.blksize) { dmacount -= sc->sc_audio1.blksize; (*sc->sc_audio1.intr)(sc->sc_audio1.arg); } sc->sc_audio1.dmacount = dmacount; #else (*sc->sc_audio1.intr)(sc->sc_audio1.arg, dmacount); #endif timeout_add(&sc->sc_tmo1, hz/30); } void ess_audio2_poll(addr) void *addr; { struct ess_softc *sc = addr; int dmapos, dmacount; if (!sc->sc_audio2.active) return; sc->sc_audio2.nintr++; dmapos = isa_dmacount(sc->sc_isa, sc->sc_audio2.drq); dmacount = sc->sc_audio2.dmapos - dmapos; if (dmacount < 0) dmacount += sc->sc_audio2.buffersize; sc->sc_audio2.dmapos = dmapos; #if 1 dmacount += sc->sc_audio2.dmacount; while (dmacount > sc->sc_audio2.blksize) { dmacount -= sc->sc_audio2.blksize; (*sc->sc_audio2.intr)(sc->sc_audio2.arg); } sc->sc_audio2.dmacount = dmacount; #else (*sc->sc_audio2.intr)(sc->sc_audio2.arg, dmacount); #endif timeout_add(&sc->sc_tmo2, hz/30); } int ess_round_blocksize(addr, blk) void *addr; int blk; { return ((blk + 7) & -8); /* round for max DMA size */ } int ess_set_port(addr, cp) void *addr; mixer_ctrl_t *cp; { struct ess_softc *sc = addr; int lgain, rgain; DPRINTFN(5,("ess_set_port: port=%d num_channels=%d\n", cp->dev, cp->un.value.num_channels)); switch (cp->dev) { /* * The following mixer ports are all stereo. If we get a * single-channel gain value passed in, then we duplicate it * to both left and right channels. */ case ESS_MASTER_VOL: case ESS_DAC_PLAY_VOL: case ESS_MIC_PLAY_VOL: case ESS_LINE_PLAY_VOL: case ESS_SYNTH_PLAY_VOL: case ESS_CD_PLAY_VOL: case ESS_AUXB_PLAY_VOL: case ESS_RECORD_VOL: if (cp->type != AUDIO_MIXER_VALUE) return EINVAL; switch (cp->un.value.num_channels) { case 1: lgain = rgain = ESS_4BIT_GAIN( cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); break; case 2: lgain = ESS_4BIT_GAIN( cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); rgain = ESS_4BIT_GAIN( cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); break; default: return EINVAL; } sc->gain[cp->dev][ESS_LEFT] = lgain; sc->gain[cp->dev][ESS_RIGHT] = rgain; ess_set_gain(sc, cp->dev, 1); return (0); /* * The PC speaker port is mono. If we get a stereo gain value * passed in, then we return EINVAL. */ case ESS_PCSPEAKER_VOL: if (cp->un.value.num_channels != 1) return EINVAL; sc->gain[cp->dev][ESS_LEFT] = sc->gain[cp->dev][ESS_RIGHT] = ESS_3BIT_GAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); ess_set_gain(sc, cp->dev, 1); return (0); case ESS_RECORD_SOURCE: if (ESS_USE_AUDIO1(sc->sc_model)) { if (cp->type == AUDIO_MIXER_ENUM) return (ess_set_in_port(sc, cp->un.ord)); else return (EINVAL); } else { if (cp->type == AUDIO_MIXER_SET) return (ess_set_in_ports(sc, cp->un.mask)); else return (EINVAL); } return (0); case ESS_RECORD_MONITOR: if (cp->type != AUDIO_MIXER_ENUM) return EINVAL; if (cp->un.ord) /* Enable monitor */ ess_set_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL, ESS_AUDIO_CTRL_MONITOR); else /* Disable monitor */ ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL, ESS_AUDIO_CTRL_MONITOR); return (0); } if (ESS_USE_AUDIO1(sc->sc_model)) return (EINVAL); switch (cp->dev) { case ESS_DAC_REC_VOL: case ESS_MIC_REC_VOL: case ESS_LINE_REC_VOL: case ESS_SYNTH_REC_VOL: case ESS_CD_REC_VOL: case ESS_AUXB_REC_VOL: if (cp->type != AUDIO_MIXER_VALUE) return EINVAL; switch (cp->un.value.num_channels) { case 1: lgain = rgain = ESS_4BIT_GAIN( cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); break; case 2: lgain = ESS_4BIT_GAIN( cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); rgain = ESS_4BIT_GAIN( cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); break; default: return EINVAL; } sc->gain[cp->dev][ESS_LEFT] = lgain; sc->gain[cp->dev][ESS_RIGHT] = rgain; ess_set_gain(sc, cp->dev, 1); return (0); case ESS_MIC_PREAMP: if (cp->type != AUDIO_MIXER_ENUM) return EINVAL; if (cp->un.ord) /* Enable microphone preamp */ ess_set_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL, ESS_PREAMP_CTRL_ENABLE); else /* Disable microphone preamp */ ess_clear_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL, ESS_PREAMP_CTRL_ENABLE); return (0); } return (EINVAL); } int ess_get_port(addr, cp) void *addr; mixer_ctrl_t *cp; { struct ess_softc *sc = addr; DPRINTFN(5,("ess_get_port: port=%d\n", cp->dev)); switch (cp->dev) { case ESS_MASTER_VOL: case ESS_DAC_PLAY_VOL: case ESS_MIC_PLAY_VOL: case ESS_LINE_PLAY_VOL: case ESS_SYNTH_PLAY_VOL: case ESS_CD_PLAY_VOL: case ESS_AUXB_PLAY_VOL: case ESS_RECORD_VOL: switch (cp->un.value.num_channels) { case 1: cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->gain[cp->dev][ESS_LEFT]; break; case 2: cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->gain[cp->dev][ESS_LEFT]; cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->gain[cp->dev][ESS_RIGHT]; break; default: return EINVAL; } return (0); case ESS_PCSPEAKER_VOL: if (cp->un.value.num_channels != 1) return EINVAL; cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->gain[cp->dev][ESS_LEFT]; return (0); case ESS_RECORD_SOURCE: if (ESS_USE_AUDIO1(sc->sc_model)) cp->un.ord = sc->in_port; else cp->un.mask = sc->in_mask; return (0); case ESS_RECORD_MONITOR: cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) & ESS_AUDIO_CTRL_MONITOR) ? 1 : 0; return (0); } if (ESS_USE_AUDIO1(sc->sc_model)) return (EINVAL); switch (cp->dev) { case ESS_DAC_REC_VOL: case ESS_MIC_REC_VOL: case ESS_LINE_REC_VOL: case ESS_SYNTH_REC_VOL: case ESS_CD_REC_VOL: case ESS_AUXB_REC_VOL: switch (cp->un.value.num_channels) { case 1: cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->gain[cp->dev][ESS_LEFT]; break; case 2: cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->gain[cp->dev][ESS_LEFT]; cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->gain[cp->dev][ESS_RIGHT]; break; default: return EINVAL; } return (0); case ESS_MIC_PREAMP: cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL) & ESS_PREAMP_CTRL_ENABLE) ? 1 : 0; return (0); } return (EINVAL); } int ess_query_devinfo(addr, dip) void *addr; mixer_devinfo_t *dip; { struct ess_softc *sc = addr; DPRINTFN(5,("ess_query_devinfo: model=%d index=%d\n", sc->sc_model, dip->index)); /* * REVISIT: There are some slight differences between the * mixers on the different ESS chips, which can * be sorted out using the chip model rather than a * separate mixer model. * This is currently coded assuming an ES1887; we * need to work out which bits are not applicable to * the other models (1888 and 888). */ switch (dip->index) { case ESS_DAC_PLAY_VOL: dip->mixer_class = ESS_INPUT_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNdac, sizeof dip->label.name); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 2; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); return (0); case ESS_MIC_PLAY_VOL: dip->mixer_class = ESS_INPUT_CLASS; dip->prev = AUDIO_MIXER_LAST; if (ESS_USE_AUDIO1(sc->sc_model)) dip->next = AUDIO_MIXER_LAST; else dip->next = ESS_MIC_PREAMP; strlcpy(dip->label.name, AudioNmicrophone, sizeof dip->label.name); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 2; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); return (0); case ESS_LINE_PLAY_VOL: dip->mixer_class = ESS_INPUT_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNline, sizeof dip->label.name); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 2; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); return (0); case ESS_SYNTH_PLAY_VOL: dip->mixer_class = ESS_INPUT_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNfmsynth, sizeof dip->label.name); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 2; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); return (0); case ESS_CD_PLAY_VOL: dip->mixer_class = ESS_INPUT_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNcd, sizeof dip->label.name); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 2; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); return (0); case ESS_AUXB_PLAY_VOL: dip->mixer_class = ESS_INPUT_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strlcpy(dip->label.name, "auxb", sizeof dip->label.name); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 2; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); return (0); case ESS_INPUT_CLASS: dip->mixer_class = ESS_INPUT_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioCinputs, sizeof dip->label.name); dip->type = AUDIO_MIXER_CLASS; return (0); case ESS_MASTER_VOL: dip->mixer_class = ESS_OUTPUT_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNmaster, sizeof dip->label.name); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 2; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); return (0); case ESS_PCSPEAKER_VOL: dip->mixer_class = ESS_OUTPUT_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strlcpy(dip->label.name, "pc_speaker", sizeof dip->label.name); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 1; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); return (0); case ESS_OUTPUT_CLASS: dip->mixer_class = ESS_OUTPUT_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioCoutputs, sizeof dip->label.name); dip->type = AUDIO_MIXER_CLASS; return (0); case ESS_RECORD_VOL: dip->mixer_class = ESS_RECORD_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNrecord, sizeof dip->label.name); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 2; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); return (0); case ESS_RECORD_SOURCE: dip->mixer_class = ESS_RECORD_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNsource, sizeof dip->label.name); if (ESS_USE_AUDIO1(sc->sc_model)) { /* * The 1788 doesn't use the input mixer control that * the 1888 uses, because it's a pain when you only * have one mixer. * Perhaps it could be emulated by keeping both sets of * gain values, and doing a `context switch' of the * mixer registers when shifting from playing to * recording. */ dip->type = AUDIO_MIXER_ENUM; dip->un.e.num_mem = 4; strlcpy(dip->un.e.member[0].label.name, AudioNmicrophone, sizeof dip->un.e.member[0].label.name); dip->un.e.member[0].ord = ESS_SOURCE_MIC; strlcpy(dip->un.e.member[1].label.name, AudioNline, sizeof dip->un.e.member[1].label.name); dip->un.e.member[1].ord = ESS_SOURCE_LINE; strlcpy(dip->un.e.member[2].label.name, AudioNcd, sizeof dip->un.e.member[2].label.name); dip->un.e.member[2].ord = ESS_SOURCE_CD; strlcpy(dip->un.e.member[3].label.name, AudioNmixerout, sizeof dip->un.e.member[3].label.name); dip->un.e.member[3].ord = ESS_SOURCE_MIXER; } else { dip->type = AUDIO_MIXER_SET; dip->un.s.num_mem = 6; strlcpy(dip->un.s.member[0].label.name, AudioNdac, sizeof dip->un.e.member[0].label.name); dip->un.s.member[0].mask = 1 << ESS_DAC_REC_VOL; strlcpy(dip->un.s.member[1].label.name, AudioNmicrophone, sizeof dip->un.e.member[1].label.name); dip->un.s.member[1].mask = 1 << ESS_MIC_REC_VOL; strlcpy(dip->un.s.member[2].label.name, AudioNline, sizeof dip->un.e.member[2].label.name); dip->un.s.member[2].mask = 1 << ESS_LINE_REC_VOL; strlcpy(dip->un.s.member[3].label.name, AudioNfmsynth, sizeof dip->un.e.member[3].label.name); dip->un.s.member[3].mask = 1 << ESS_SYNTH_REC_VOL; strlcpy(dip->un.s.member[4].label.name, AudioNcd, sizeof dip->un.e.member[4].label.name); dip->un.s.member[4].mask = 1 << ESS_CD_REC_VOL; strlcpy(dip->un.s.member[5].label.name, "auxb", sizeof dip->un.e.member[5].label.name); dip->un.s.member[5].mask = 1 << ESS_AUXB_REC_VOL; } return (0); case ESS_RECORD_CLASS: dip->mixer_class = ESS_RECORD_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioCrecord, sizeof dip->label.name); dip->type = AUDIO_MIXER_CLASS; return (0); case ESS_RECORD_MONITOR: dip->prev = dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNmute, sizeof dip->label.name); dip->type = AUDIO_MIXER_ENUM; dip->mixer_class = ESS_MONITOR_CLASS; dip->un.e.num_mem = 2; strlcpy(dip->un.e.member[0].label.name, AudioNoff, sizeof dip->un.e.member[0].label.name); dip->un.e.member[0].ord = 0; strlcpy(dip->un.e.member[1].label.name, AudioNon, sizeof dip->un.e.member[1].label.name); dip->un.e.member[1].ord = 1; return (0); case ESS_MONITOR_CLASS: dip->mixer_class = ESS_MONITOR_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioCmonitor, sizeof dip->label.name); dip->type = AUDIO_MIXER_CLASS; return (0); } if (ESS_USE_AUDIO1(sc->sc_model)) return (ENXIO); switch (dip->index) { case ESS_DAC_REC_VOL: dip->mixer_class = ESS_RECORD_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNdac, sizeof dip->label.name); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 2; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); return (0); case ESS_MIC_REC_VOL: dip->mixer_class = ESS_RECORD_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNmicrophone, sizeof dip->label.name); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 2; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); return (0); case ESS_LINE_REC_VOL: dip->mixer_class = ESS_RECORD_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNline, sizeof dip->label.name); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 2; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); return (0); case ESS_SYNTH_REC_VOL: dip->mixer_class = ESS_RECORD_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNfmsynth, sizeof dip->label.name); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 2; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); return (0); case ESS_CD_REC_VOL: dip->mixer_class = ESS_RECORD_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNcd, sizeof dip->label.name); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 2; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); return (0); case ESS_AUXB_REC_VOL: dip->mixer_class = ESS_RECORD_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strlcpy(dip->label.name, "auxb", sizeof dip->label.name); dip->type = AUDIO_MIXER_VALUE; dip->un.v.num_channels = 2; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); return (0); case ESS_MIC_PREAMP: dip->mixer_class = ESS_INPUT_CLASS; dip->prev = ESS_MIC_PLAY_VOL; dip->next = AUDIO_MIXER_LAST; strlcpy(dip->label.name, AudioNpreamp, sizeof dip->label.name); dip->type = AUDIO_MIXER_ENUM; dip->un.e.num_mem = 2; strlcpy(dip->un.e.member[0].label.name, AudioNoff, sizeof dip->un.e.member[0].label.name); dip->un.e.member[0].ord = 0; strlcpy(dip->un.e.member[1].label.name, AudioNon, sizeof dip->un.e.member[1].label.name); dip->un.e.member[1].ord = 1; return (0); } return (ENXIO); } void * ess_malloc(addr, direction, size, pool, flags) void *addr; int direction; size_t size; int pool, flags; { struct ess_softc *sc = addr; int drq; if (!ESS_USE_AUDIO1(sc->sc_model)) drq = sc->sc_audio2.drq; else drq = sc->sc_audio1.drq; return (isa_malloc(sc->sc_isa, drq, size, pool, flags)); } void ess_free(addr, ptr, pool) void *addr; void *ptr; int pool; { isa_free(ptr, pool); } size_t ess_round_buffersize(addr, direction, size) void *addr; int direction; size_t size; { if (size > MAX_ISADMA) size = MAX_ISADMA; return (size); } paddr_t ess_mappage(addr, mem, off, prot) void *addr; void *mem; off_t off; int prot; { return (isa_mappage(mem, off, prot)); } int ess_1788_get_props(addr) void *addr; { return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT); } int ess_1888_get_props(addr) void *addr; { return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX); } /* ============================================ * Generic functions for ess, not used by audio h/w i/f * ============================================= */ /* * Reset the chip. * Return non-zero if the chip isn't detected. */ int ess_reset(sc) struct ess_softc *sc; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; sc->sc_audio1.active = 0; sc->sc_audio2.active = 0; EWRITE1(iot, ioh, ESS_DSP_RESET, ESS_RESET_EXT); delay(10000); EWRITE1(iot, ioh, ESS_DSP_RESET, 0); if (ess_rdsp(sc) != ESS_MAGIC) return (1); /* Enable access to the ESS extension commands. */ ess_wdsp(sc, ESS_ACMD_ENABLE_EXT); return (0); } void ess_set_gain(sc, port, on) struct ess_softc *sc; int port; int on; { int gain, left, right; int mix; int src; int stereo; /* * Most gain controls are found in the mixer registers and * are stereo. Any that are not, must set mix and stereo as * required. */ mix = 1; stereo = 1; switch (port) { case ESS_MASTER_VOL: src = ESS_MREG_VOLUME_MASTER; break; case ESS_DAC_PLAY_VOL: if (ESS_USE_AUDIO1(sc->sc_model)) src = ESS_MREG_VOLUME_VOICE; else src = 0x7C; break; case ESS_MIC_PLAY_VOL: src = ESS_MREG_VOLUME_MIC; break; case ESS_LINE_PLAY_VOL: src = ESS_MREG_VOLUME_LINE; break; case ESS_SYNTH_PLAY_VOL: src = ESS_MREG_VOLUME_SYNTH; break; case ESS_CD_PLAY_VOL: src = ESS_MREG_VOLUME_CD; break; case ESS_AUXB_PLAY_VOL: src = ESS_MREG_VOLUME_AUXB; break; case ESS_PCSPEAKER_VOL: src = ESS_MREG_VOLUME_PCSPKR; stereo = 0; break; case ESS_DAC_REC_VOL: src = 0x69; break; case ESS_MIC_REC_VOL: src = 0x68; break; case ESS_LINE_REC_VOL: src = 0x6E; break; case ESS_SYNTH_REC_VOL: src = 0x6B; break; case ESS_CD_REC_VOL: src = 0x6A; break; case ESS_AUXB_REC_VOL: src = 0x6C; break; case ESS_RECORD_VOL: src = ESS_XCMD_VOLIN_CTRL; mix = 0; break; default: return; } /* 1788 doesn't have a separate recording mixer */ if (ESS_USE_AUDIO1(sc->sc_model) && mix && src > 0x62) return; if (on) { left = sc->gain[port][ESS_LEFT]; right = sc->gain[port][ESS_RIGHT]; } else { left = right = 0; } if (stereo) gain = ESS_STEREO_GAIN(left, right); else gain = ESS_MONO_GAIN(left); if (mix) ess_write_mix_reg(sc, src, gain); else ess_write_x_reg(sc, src, gain); } /* Set the input device on devices without an input mixer. */ int ess_set_in_port(sc, ord) struct ess_softc *sc; int ord; { mixer_devinfo_t di; int i; DPRINTF(("ess_set_in_port: ord=0x%x\n", ord)); /* * Get the device info for the record source control, * including the list of available sources. */ di.index = ESS_RECORD_SOURCE; if (ess_query_devinfo(sc, &di)) return EINVAL; /* See if the given ord value was anywhere in the list. */ for (i = 0; i < di.un.e.num_mem; i++) { if (ord == di.un.e.member[i].ord) break; } if (i == di.un.e.num_mem) return EINVAL; ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ord); sc->in_port = ord; return (0); } /* Set the input device levels on input-mixer-enabled devices. */ int ess_set_in_ports(sc, mask) struct ess_softc *sc; int mask; { mixer_devinfo_t di; int i, port; DPRINTF(("ess_set_in_ports: mask=0x%x\n", mask)); /* * Get the device info for the record source control, * including the list of available sources. */ di.index = ESS_RECORD_SOURCE; if (ess_query_devinfo(sc, &di)) return EINVAL; /* * Set or disable the record volume control for each of the * possible sources. */ for (i = 0; i < di.un.s.num_mem; i++) { /* * Calculate the source port number from its mask. */ port = ffs(di.un.s.member[i].mask); /* * Set the source gain: * to the current value if source is enabled * to zero if source is disabled */ ess_set_gain(sc, port, mask & di.un.s.member[i].mask); } sc->in_mask = mask; return (0); } void ess_speaker_on(sc) struct ess_softc *sc; { /* Unmute the DAC. */ ess_set_gain(sc, ESS_DAC_PLAY_VOL, 1); } void ess_speaker_off(sc) struct ess_softc *sc; { /* Mute the DAC. */ ess_set_gain(sc, ESS_DAC_PLAY_VOL, 0); } /* * Calculate the time constant for the requested sampling rate. */ u_int ess_srtotc(rate) u_int rate; { u_int tc; /* The following formulae are from the ESS data sheet. */ if (rate <= 22050) tc = 128 - 397700L / rate; else tc = 256 - 795500L / rate; return (tc); } /* * Calculate the filter constant for the reuqested sampling rate. */ u_int ess_srtofc(rate) u_int rate; { /* * The following formula is derived from the information in * the ES1887 data sheet, based on a roll-off frequency of * 87%. */ return (256 - 200279L / rate); } /* * Return the status of the DSP. */ u_char ess_get_dsp_status(sc) struct ess_softc *sc; { return (EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS)); } /* * Return the read status of the DSP: 1 -> DSP ready for reading * 0 -> DSP not ready for reading */ u_char ess_dsp_read_ready(sc) struct ess_softc *sc; { return ((ess_get_dsp_status(sc) & ESS_DSP_READ_READY) ? 1 : 0); } /* * Return the write status of the DSP: 1 -> DSP ready for writing * 0 -> DSP not ready for writing */ u_char ess_dsp_write_ready(sc) struct ess_softc *sc; { return ((ess_get_dsp_status(sc) & ESS_DSP_WRITE_BUSY) ? 0 : 1); } /* * Read a byte from the DSP. */ int ess_rdsp(sc) struct ess_softc *sc; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; int i; for (i = ESS_READ_TIMEOUT; i > 0; --i) { if (ess_dsp_read_ready(sc)) { i = EREAD1(iot, ioh, ESS_DSP_READ); DPRINTFN(8,("ess_rdsp() = 0x%02x\n", i)); return i; } else delay(10); } DPRINTF(("ess_rdsp: timed out\n")); return (-1); } /* * Write a byte to the DSP. */ int ess_wdsp(sc, v) struct ess_softc *sc; u_char v; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; int i; DPRINTFN(8,("ess_wdsp(0x%02x)\n", v)); for (i = ESS_WRITE_TIMEOUT; i > 0; --i) { if (ess_dsp_write_ready(sc)) { EWRITE1(iot, ioh, ESS_DSP_WRITE, v); return (0); } else delay(10); } DPRINTF(("ess_wdsp(0x%02x): timed out\n", v)); return (-1); } /* * Write a value to one of the ESS extended registers. */ int ess_write_x_reg(sc, reg, val) struct ess_softc *sc; u_char reg; u_char val; { int error; DPRINTFN(2,("ess_write_x_reg: %02x=%02x\n", reg, val)); if ((error = ess_wdsp(sc, reg)) == 0) error = ess_wdsp(sc, val); return error; } /* * Read the value of one of the ESS extended registers. */ u_char ess_read_x_reg(sc, reg) struct ess_softc *sc; u_char reg; { int error; int val; if ((error = ess_wdsp(sc, 0xC0)) == 0) error = ess_wdsp(sc, reg); if (error) DPRINTF(("Error reading extended register 0x%02x\n", reg)); /* REVISIT: what if an error is returned above? */ val = ess_rdsp(sc); DPRINTFN(2,("ess_read_x_reg: %02x=%02x\n", reg, val)); return val; } void ess_clear_xreg_bits(sc, reg, mask) struct ess_softc *sc; u_char reg; u_char mask; { if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) & ~mask) == -1) DPRINTF(("Error clearing bits in extended register 0x%02x\n", reg)); } void ess_set_xreg_bits(sc, reg, mask) struct ess_softc *sc; u_char reg; u_char mask; { if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) | mask) == -1) DPRINTF(("Error setting bits in extended register 0x%02x\n", reg)); } /* * Write a value to one of the ESS mixer registers. */ void ess_write_mix_reg(sc, reg, val) struct ess_softc *sc; u_char reg; u_char val; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; int s; DPRINTFN(2,("ess_write_mix_reg: %x=%x\n", reg, val)); s = splaudio(); EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg); EWRITE1(iot, ioh, ESS_MIX_REG_DATA, val); splx(s); } /* * Read the value of one of the ESS mixer registers. */ u_char ess_read_mix_reg(sc, reg) struct ess_softc *sc; u_char reg; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; int s; u_char val; s = splaudio(); EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg); val = EREAD1(iot, ioh, ESS_MIX_REG_DATA); splx(s); DPRINTFN(2,("ess_read_mix_reg: %x=%x\n", reg, val)); return val; } void ess_clear_mreg_bits(sc, reg, mask) struct ess_softc *sc; u_char reg; u_char mask; { ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) & ~mask); } void ess_set_mreg_bits(sc, reg, mask) struct ess_softc *sc; u_char reg; u_char mask; { ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) | mask); } void ess_read_multi_mix_reg(sc, reg, datap, count) struct ess_softc *sc; u_char reg; u_int8_t *datap; bus_size_t count; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; int s; s = splaudio(); EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg); bus_space_read_multi_1(iot, ioh, ESS_MIX_REG_DATA, datap, count); splx(s); }