/* $OpenBSD: fd.c,v 1.42 2001/03/06 13:55:02 ho Exp $ */ /* $NetBSD: fd.c,v 1.90 1996/05/12 23:12:03 mycroft Exp $ */ /*- * Copyright (c) 1993, 1994, 1995, 1996 Charles Hannum. * Copyright (c) 1990 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * Don Ahn. * * Portions Copyright (c) 1993, 1994 by * jc@irbs.UUCP (John Capo) * vak@zebub.msk.su (Serge Vakulenko) * ache@astral.msk.su (Andrew A. Chernov) * joerg_wunsch@uriah.sax.de (Joerg Wunsch) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)fd.c 7.4 (Berkeley) 5/25/91 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(i386) #include #endif #include /* XXX misuse a flag to identify format operation */ #define B_FORMAT B_XXX #define b_cylin b_resid /* fd_type struct now in ioctl_fd.h */ /* The order of entries in the following table is important -- BEWARE! */ struct fd_type fd_types[] = { { 18,2,36,2,0xff,0xcf,0x1b,0x6c,80,2880,1,FDC_500KBPS,"1.44MB" }, /* 1.44MB diskette */ { 15,2,30,2,0xff,0xdf,0x1b,0x54,80,2400,1,FDC_500KBPS, "1.2MB" }, /* 1.2 MB AT-diskettes */ { 9,2,18,2,0xff,0xdf,0x23,0x50,40, 720,2,FDC_300KBPS, "360KB/AT" }, /* 360kB in 1.2MB drive */ { 9,2,18,2,0xff,0xdf,0x2a,0x50,40, 720,1,FDC_250KBPS, "360KB/PC" }, /* 360kB PC diskettes */ { 9,2,18,2,0xff,0xdf,0x2a,0x50,80,1440,1,FDC_250KBPS, "720KB" }, /* 3.5" 720kB diskette */ { 9,2,18,2,0xff,0xdf,0x23,0x50,80,1440,1,FDC_300KBPS, "720KB/x" }, /* 720kB in 1.2MB drive */ { 9,2,18,2,0xff,0xdf,0x2a,0x50,40, 720,2,FDC_250KBPS, "360KB/x" }, /* 360kB in 720kB drive */ { 36,2,72,2,0xff,0xaf,0x1b,0x54,80,5760,1,FDC_500KBPS,"2.88MB" }, /* 2.88MB diskette */ { 8,2,16,3,0xff,0xdf,0x35,0x74,77,1232,1,FDC_500KBPS,"1.2MB/[1024bytes/sector]" } /* 1.2 MB japanese format */ }; /* software state, per disk (with up to 4 disks per ctlr) */ struct fd_softc { struct device sc_dev; struct disk sc_dk; struct fd_type *sc_deftype; /* default type descriptor */ struct fd_type *sc_type; /* current type descriptor */ daddr_t sc_blkno; /* starting block number */ int sc_bcount; /* byte count left */ int sc_opts; /* user-set options */ int sc_skip; /* bytes already transferred */ int sc_nblks; /* number of blocks currently tranferring */ int sc_nbytes; /* number of bytes currently tranferring */ int sc_drive; /* physical unit number */ int sc_flags; #define FD_OPEN 0x01 /* it's open */ #define FD_MOTOR 0x02 /* motor should be on */ #define FD_MOTOR_WAIT 0x04 /* motor coming up */ int sc_cylin; /* where we think the head is */ void *sc_sdhook; /* saved shutdown hook for drive. */ TAILQ_ENTRY(fd_softc) sc_drivechain; int sc_ops; /* I/O ops since last switch */ struct buf sc_q; /* head of buf chain */ struct timeout fd_motor_on_to; struct timeout fd_motor_off_to; struct timeout fdtimeout_to; }; /* floppy driver configuration */ int fdprobe __P((struct device *, void *, void *)); void fdattach __P((struct device *, struct device *, void *)); struct cfattach fd_ca = { sizeof(struct fd_softc), fdprobe, fdattach }; struct cfdriver fd_cd = { NULL, "fd", DV_DISK }; void fdgetdisklabel __P((struct fd_softc *)); int fd_get_parms __P((struct fd_softc *)); void fdstrategy __P((struct buf *)); void fdstart __P((struct fd_softc *)); int fdintr __P((struct fdc_softc *)); struct dkdriver fddkdriver = { fdstrategy }; void fd_set_motor __P((struct fdc_softc *fdc, int reset)); void fd_motor_off __P((void *arg)); void fd_motor_on __P((void *arg)); void fdfinish __P((struct fd_softc *fd, struct buf *bp)); int fdformat __P((dev_t, struct fd_formb *, struct proc *)); __inline struct fd_type *fd_dev_to_type __P((struct fd_softc *, dev_t)); void fdretry __P((struct fd_softc *)); void fdtimeout __P((void *)); int fdprobe(parent, match, aux) struct device *parent; void *match, *aux; { struct fdc_softc *fdc = (void *)parent; struct cfdata *cf = match; struct fdc_attach_args *fa = aux; int drive = fa->fa_drive; bus_space_tag_t iot = fdc->sc_iot; bus_space_handle_t ioh = fdc->sc_ioh; int n; if (cf->cf_loc[0] != -1 && cf->cf_loc[0] != drive) return 0; /* * XXX * This is to work around some odd interactions between this driver * and SMC Ethernet cards. */ if (cf->cf_loc[0] == -1 && drive >= 2) return 0; /* * We want to keep the flags config gave us. */ fa->fa_flags = cf->cf_flags; /* select drive and turn on motor */ bus_space_write_1(iot, ioh, fdout, drive | FDO_FRST | FDO_MOEN(drive)); /* wait for motor to spin up */ delay(250000); out_fdc(iot, ioh, NE7CMD_RECAL); out_fdc(iot, ioh, drive); /* wait for recalibrate */ delay(2000000); out_fdc(iot, ioh, NE7CMD_SENSEI); n = fdcresult(fdc); #ifdef FD_DEBUG { int i; printf("fdprobe: status"); for (i = 0; i < n; i++) printf(" %x", fdc->sc_status[i]); printf("\n"); } #endif /* turn off motor */ delay(250000); bus_space_write_1(iot, ioh, fdout, FDO_FRST); /* flags & 0x20 forces the drive to be found even if it won't probe */ if (!(fa->fa_flags & 0x20) && (n != 2 || (fdc->sc_status[0] & 0xf8) != 0x20)) return 0; return 1; } /* * Controller is working, and drive responded. Attach it. */ void fdattach(parent, self, aux) struct device *parent, *self; void *aux; { struct fdc_softc *fdc = (void *)parent; struct fd_softc *fd = (void *)self; struct fdc_attach_args *fa = aux; struct fd_type *type = fa->fa_deftype; int drive = fa->fa_drive; if (!type || (fa->fa_flags & 0x10)) { /* The config has overridden this. */ switch (fa->fa_flags & 0x07) { case 1: /* 2.88MB */ type = &fd_types[7]; break; case 2: /* 1.44MB */ type = &fd_types[0]; break; case 3: /* 1.2MB */ type = &fd_types[1]; break; case 4: /* 720K */ type = &fd_types[4]; break; case 5: /* 360K */ type = &fd_types[3]; break; case 6: /* 1.2 MB japanese format */ type = &fd_types[8]; break; } } if (type) printf(": %s %d cyl, %d head, %d sec\n", type->name, type->tracks, type->heads, type->sectrac); else printf(": density unknown\n"); fd->sc_cylin = -1; fd->sc_drive = drive; fd->sc_deftype = type; fdc->sc_type[drive] = FDC_TYPE_DISK; fdc->sc_link.fdlink.sc_fd[drive] = fd; /* * Initialize and attach the disk structure. */ fd->sc_dk.dk_name = fd->sc_dev.dv_xname; fd->sc_dk.dk_driver = &fddkdriver; disk_attach(&fd->sc_dk); dk_establish(&fd->sc_dk, &fd->sc_dev); /* Needed to power off if the motor is on when we halt. */ fd->sc_sdhook = shutdownhook_establish(fd_motor_off, fd); /* Setup timeout structures */ timeout_set(&fd->fd_motor_on_to, fd_motor_on, fd); timeout_set(&fd->fd_motor_off_to, fd_motor_off, fd); timeout_set(&fd->fdtimeout_to, fdtimeout, fd); } /* * Translate nvram type into internal data structure. Return NULL for * none/unknown/unusable. */ struct fd_type * fd_nvtotype(fdc, nvraminfo, drive) char *fdc; int nvraminfo, drive; { int type; type = (drive == 0 ? nvraminfo : nvraminfo << 4) & 0xf0; switch (type) { case NVRAM_DISKETTE_NONE: return NULL; case NVRAM_DISKETTE_12M: return &fd_types[1]; case NVRAM_DISKETTE_TYPE5: case NVRAM_DISKETTE_TYPE6: return &fd_types[7]; case NVRAM_DISKETTE_144M: return &fd_types[0]; case NVRAM_DISKETTE_360K: return &fd_types[3]; case NVRAM_DISKETTE_720K: return &fd_types[4]; default: printf("%s: drive %d: unknown device type 0x%x\n", fdc, drive, type); return NULL; } } __inline struct fd_type * fd_dev_to_type(fd, dev) struct fd_softc *fd; dev_t dev; { int type = FDTYPE(dev); if (type > (sizeof(fd_types) / sizeof(fd_types[0]))) return NULL; return type ? &fd_types[type - 1] : fd->sc_deftype; } void fdstrategy(bp) register struct buf *bp; /* IO operation to perform */ { struct fd_softc *fd = fd_cd.cd_devs[FDUNIT(bp->b_dev)]; int sz; int s; int fd_bsize = 128 << fd->sc_type->secsize; int bf = fd_bsize / DEV_BSIZE; /* Valid unit, controller, and request? */ if (bp->b_blkno < 0 || (((bp->b_blkno % bf) != 0 || (bp->b_bcount % fd_bsize) != 0) && (bp->b_flags & B_FORMAT) == 0)) { bp->b_error = EINVAL; goto bad; } /* If it's a null transfer, return immediately. */ if (bp->b_bcount == 0) goto done; sz = howmany(bp->b_bcount, DEV_BSIZE); if (bp->b_blkno + sz > fd->sc_type->size * bf) { sz = fd->sc_type->size * bf - bp->b_blkno; if (sz == 0) /* If exactly at end of disk, return EOF. */ goto done; if (sz < 0) { /* If past end of disk, return EINVAL. */ bp->b_error = EINVAL; goto bad; } /* Otherwise, truncate request. */ bp->b_bcount = sz << DEV_BSHIFT; } bp->b_cylin = bp->b_blkno / (fd_bsize / DEV_BSIZE) / fd->sc_type->seccyl; #ifdef FD_DEBUG printf("fdstrategy: b_blkno %d b_bcount %d blkno %d cylin %d sz %d\n", bp->b_blkno, bp->b_bcount, fd->sc_blkno, bp->b_cylin, sz); #endif /* Queue transfer on drive, activate drive and controller if idle. */ s = splbio(); disksort(&fd->sc_q, bp); timeout_del(&fd->fd_motor_off_to); /* a good idea */ if (!fd->sc_q.b_active) fdstart(fd); #ifdef DIAGNOSTIC else { struct fdc_softc *fdc = (void *)fd->sc_dev.dv_parent; if (fdc->sc_state == DEVIDLE) { printf("fdstrategy: controller inactive\n"); fdcstart(fdc); } } #endif splx(s); return; bad: bp->b_flags |= B_ERROR; done: /* Toss transfer; we're done early. */ bp->b_resid = bp->b_bcount; biodone(bp); } void fdstart(fd) struct fd_softc *fd; { struct fdc_softc *fdc = (void *)fd->sc_dev.dv_parent; int active = (fdc->sc_link.fdlink.sc_drives.tqh_first != NULL); /* Link into controller queue. */ fd->sc_q.b_active = 1; TAILQ_INSERT_TAIL(&fdc->sc_link.fdlink.sc_drives, fd, sc_drivechain); /* If controller not already active, start it. */ if (!active) fdcstart(fdc); } void fdfinish(fd, bp) struct fd_softc *fd; struct buf *bp; { struct fdc_softc *fdc = (void *)fd->sc_dev.dv_parent; /* * Move this drive to the end of the queue to give others a `fair' * chance. We only force a switch if N operations are completed while * another drive is waiting to be serviced, since there is a long motor * startup delay whenever we switch. */ if (fd->sc_drivechain.tqe_next && ++fd->sc_ops >= 8) { fd->sc_ops = 0; TAILQ_REMOVE(&fdc->sc_link.fdlink.sc_drives, fd, sc_drivechain); if (bp->b_actf) { TAILQ_INSERT_TAIL(&fdc->sc_link.fdlink.sc_drives, fd, sc_drivechain); } else fd->sc_q.b_active = 0; } bp->b_resid = fd->sc_bcount; fd->sc_skip = 0; fd->sc_q.b_actf = bp->b_actf; biodone(bp); /* turn off motor 5s from now */ timeout_add(&fd->fd_motor_off_to, 5 * hz); fdc->sc_state = DEVIDLE; } int fdread(dev, uio, flags) dev_t dev; struct uio *uio; int flags; { return (physio(fdstrategy, NULL, dev, B_READ, minphys, uio)); } int fdwrite(dev, uio, flags) dev_t dev; struct uio *uio; int flags; { return (physio(fdstrategy, NULL, dev, B_WRITE, minphys, uio)); } void fd_set_motor(fdc, reset) struct fdc_softc *fdc; int reset; { struct fd_softc *fd; u_char status; int n; if ((fd = fdc->sc_link.fdlink.sc_drives.tqh_first) != NULL) status = fd->sc_drive; else status = 0; if (!reset) status |= FDO_FRST | FDO_FDMAEN; for (n = 0; n < 4; n++) if ((fd = fdc->sc_link.fdlink.sc_fd[n]) && (fd->sc_flags & FD_MOTOR)) status |= FDO_MOEN(n); bus_space_write_1(fdc->sc_iot, fdc->sc_ioh, fdout, status); } void fd_motor_off(arg) void *arg; { struct fd_softc *fd = arg; int s; s = splbio(); fd->sc_flags &= ~(FD_MOTOR | FD_MOTOR_WAIT); fd_set_motor((struct fdc_softc *)fd->sc_dev.dv_parent, 0); splx(s); } void fd_motor_on(arg) void *arg; { struct fd_softc *fd = arg; struct fdc_softc *fdc = (void *)fd->sc_dev.dv_parent; int s; s = splbio(); fd->sc_flags &= ~FD_MOTOR_WAIT; if ((fdc->sc_link.fdlink.sc_drives.tqh_first == fd) && (fdc->sc_state == MOTORWAIT)) (void) fdintr(fdc); splx(s); } int fdopen(dev, flags, mode, p) dev_t dev; int flags; int mode; struct proc *p; { int unit; struct fd_softc *fd; struct fd_type *type; unit = FDUNIT(dev); if (unit >= fd_cd.cd_ndevs) return ENXIO; fd = fd_cd.cd_devs[unit]; if (fd == 0) return ENXIO; type = fd_dev_to_type(fd, dev); if (type == NULL) return ENXIO; if ((fd->sc_flags & FD_OPEN) != 0 && fd->sc_type != type) return EBUSY; fd->sc_type = type; fd->sc_cylin = -1; fd->sc_flags |= FD_OPEN; return 0; } int fdclose(dev, flags, mode, p) dev_t dev; int flags; int mode; struct proc *p; { struct fd_softc *fd = fd_cd.cd_devs[FDUNIT(dev)]; fd->sc_flags &= ~FD_OPEN; fd->sc_opts &= ~FDOPT_NORETRY; return 0; } int fdsize(dev) dev_t dev; { /* Swapping to floppies would not make sense. */ return -1; } int fddump(dev, blkno, va, size) dev_t dev; daddr_t blkno; caddr_t va; size_t size; { /* Not implemented. */ return ENXIO; } /* * Called from the controller. */ int fdintr(fdc) struct fdc_softc *fdc; { #define st0 fdc->sc_status[0] #define cyl fdc->sc_status[1] struct fd_softc *fd; struct buf *bp; bus_space_tag_t iot = fdc->sc_iot; bus_space_handle_t ioh = fdc->sc_ioh; bus_space_handle_t ioh_ctl = fdc->sc_ioh_ctl; int read, head, sec, i, nblks; struct fd_type *type; struct fd_formb *finfo = NULL; int fd_bsize, bf; loop: /* Is there a transfer to this drive? If not, deactivate drive. */ fd = fdc->sc_link.fdlink.sc_drives.tqh_first; if (fd == NULL) { fdc->sc_state = DEVIDLE; return 1; } fd_bsize = 128 << fd->sc_type->secsize; bf = fd_bsize / FDC_BSIZE; bp = fd->sc_q.b_actf; if (bp == NULL) { fd->sc_ops = 0; TAILQ_REMOVE(&fdc->sc_link.fdlink.sc_drives, fd, sc_drivechain); fd->sc_q.b_active = 0; goto loop; } if (bp->b_flags & B_FORMAT) finfo = (struct fd_formb *)bp->b_data; switch (fdc->sc_state) { case DEVIDLE: fdc->sc_errors = 0; fd->sc_skip = 0; fd->sc_bcount = bp->b_bcount; fd->sc_blkno = bp->b_blkno / (fd_bsize / DEV_BSIZE); timeout_del(&fd->fd_motor_off_to); if ((fd->sc_flags & FD_MOTOR_WAIT) != 0) { fdc->sc_state = MOTORWAIT; return 1; } if ((fd->sc_flags & FD_MOTOR) == 0) { /* Turn on the motor, being careful about pairing. */ struct fd_softc *ofd = fdc->sc_link.fdlink.sc_fd[fd->sc_drive ^ 1]; if (ofd && ofd->sc_flags & FD_MOTOR) { timeout_del(&ofd->fd_motor_off_to); ofd->sc_flags &= ~(FD_MOTOR | FD_MOTOR_WAIT); } fd->sc_flags |= FD_MOTOR | FD_MOTOR_WAIT; fd_set_motor(fdc, 0); fdc->sc_state = MOTORWAIT; /* Allow .25s for motor to stabilize. */ timeout_add(&fd->fd_motor_on_to, hz / 4); return 1; } /* Make sure the right drive is selected. */ fd_set_motor(fdc, 0); /* fall through */ case DOSEEK: doseek: if (fd->sc_cylin == bp->b_cylin) goto doio; out_fdc(iot, ioh, NE7CMD_SPECIFY);/* specify command */ out_fdc(iot, ioh, fd->sc_type->steprate); out_fdc(iot, ioh, 6); /* XXX head load time == 6ms */ out_fdc(iot, ioh, NE7CMD_SEEK); /* seek function */ out_fdc(iot, ioh, fd->sc_drive); /* drive number */ out_fdc(iot, ioh, bp->b_cylin * fd->sc_type->step); fd->sc_cylin = -1; fdc->sc_state = SEEKWAIT; fd->sc_dk.dk_seek++; disk_busy(&fd->sc_dk); timeout_add(&fd->fdtimeout_to, 4 * hz); return 1; case DOIO: doio: type = fd->sc_type; if (finfo) fd->sc_skip = (char *)&(finfo->fd_formb_cylno(0)) - (char *)finfo; sec = fd->sc_blkno % type->seccyl; nblks = type->seccyl - sec; nblks = min(nblks, fd->sc_bcount / fd_bsize); nblks = min(nblks, FDC_MAXIOSIZE / fd_bsize); fd->sc_nblks = nblks; fd->sc_nbytes = finfo ? bp->b_bcount : nblks * fd_bsize; head = sec / type->sectrac; sec -= head * type->sectrac; #ifdef DIAGNOSTIC {int block; block = (fd->sc_cylin * type->heads + head) * type->sectrac + sec; if (block != fd->sc_blkno) { printf("fdintr: block %d != blkno %d\n", block, fd->sc_blkno); #ifdef DDB Debugger(); #endif }} #endif read = bp->b_flags & B_READ ? DMAMODE_READ : DMAMODE_WRITE; isadma_start(bp->b_data + fd->sc_skip, fd->sc_nbytes, fdc->sc_drq, read); bus_space_write_1(iot, ioh_ctl, fdctl, type->rate); #ifdef FD_DEBUG printf("fdintr: %s drive %d track %d head %d sec %d nblks %d\n", read ? "read" : "write", fd->sc_drive, fd->sc_cylin, head, sec, nblks); #endif if (finfo) { /* formatting */ if (out_fdc(iot, ioh, NE7CMD_FORMAT) < 0) { fdc->sc_errors = 4; fdretry(fd); goto loop; } out_fdc(iot, ioh, (head << 2) | fd->sc_drive); out_fdc(iot, ioh, finfo->fd_formb_secshift); out_fdc(iot, ioh, finfo->fd_formb_nsecs); out_fdc(iot, ioh, finfo->fd_formb_gaplen); out_fdc(iot, ioh, finfo->fd_formb_fillbyte); } else { if (read) out_fdc(iot, ioh, NE7CMD_READ); /* READ */ else out_fdc(iot, ioh, NE7CMD_WRITE);/* WRITE */ out_fdc(iot, ioh, (head << 2) | fd->sc_drive); out_fdc(iot, ioh, fd->sc_cylin); /* track */ out_fdc(iot, ioh, head); out_fdc(iot, ioh, sec + 1); /* sec +1 */ out_fdc(iot, ioh, type->secsize); /* sec size */ out_fdc(iot, ioh, type->sectrac); /* secs/track */ out_fdc(iot, ioh, type->gap1); /* gap1 size */ out_fdc(iot, ioh, type->datalen); /* data len */ } fdc->sc_state = IOCOMPLETE; disk_busy(&fd->sc_dk); /* allow 2 seconds for operation */ timeout_add(&fd->fdtimeout_to, 2 * hz); return 1; /* will return later */ case SEEKWAIT: timeout_del(&fd->fdtimeout_to); fdc->sc_state = SEEKCOMPLETE; /* allow 1/50 second for heads to settle */ timeout_add(&fdc->fdcpseudointr_to, hz / 50); return 1; case SEEKCOMPLETE: disk_unbusy(&fd->sc_dk, 0); /* no data on seek */ /* Make sure seek really happened. */ out_fdc(iot, ioh, NE7CMD_SENSEI); if (fdcresult(fdc) != 2 || (st0 & 0xf8) != 0x20 || cyl != bp->b_cylin * fd->sc_type->step) { #ifdef FD_DEBUG fdcstatus(&fd->sc_dev, 2, "seek failed"); #endif fdretry(fd); goto loop; } fd->sc_cylin = bp->b_cylin; goto doio; case IOTIMEDOUT: isadma_abort(fdc->sc_drq); case SEEKTIMEDOUT: case RECALTIMEDOUT: case RESETTIMEDOUT: fdretry(fd); goto loop; case IOCOMPLETE: /* IO DONE, post-analyze */ timeout_del(&fd->fdtimeout_to); disk_unbusy(&fd->sc_dk, (bp->b_bcount - bp->b_resid)); if (fdcresult(fdc) != 7 || (st0 & 0xf8) != 0) { isadma_abort(fdc->sc_drq); #ifdef FD_DEBUG fdcstatus(&fd->sc_dev, 7, bp->b_flags & B_READ ? "read failed" : "write failed"); printf("blkno %d nblks %d\n", fd->sc_blkno, fd->sc_nblks); #endif fdretry(fd); goto loop; } read = bp->b_flags & B_READ ? DMAMODE_READ : DMAMODE_WRITE; isadma_done(fdc->sc_drq); if (fdc->sc_errors) { diskerr(bp, "fd", "soft error", LOG_PRINTF, fd->sc_skip / fd_bsize, (struct disklabel *)NULL); printf("\n"); fdc->sc_errors = 0; } fd->sc_blkno += fd->sc_nblks; fd->sc_skip += fd->sc_nbytes; fd->sc_bcount -= fd->sc_nbytes; if (!finfo && fd->sc_bcount > 0) { bp->b_cylin = fd->sc_blkno / fd->sc_type->seccyl; goto doseek; } fdfinish(fd, bp); goto loop; case DORESET: /* try a reset, keep motor on */ fd_set_motor(fdc, 1); delay(100); fd_set_motor(fdc, 0); fdc->sc_state = RESETCOMPLETE; timeout_add(&fd->fdtimeout_to, hz / 2); return 1; /* will return later */ case RESETCOMPLETE: timeout_del(&fd->fdtimeout_to); /* clear the controller output buffer */ for (i = 0; i < 4; i++) { out_fdc(iot, ioh, NE7CMD_SENSEI); (void) fdcresult(fdc); } /* fall through */ case DORECAL: out_fdc(iot, ioh, NE7CMD_RECAL); /* recal function */ out_fdc(iot, ioh, fd->sc_drive); fdc->sc_state = RECALWAIT; timeout_add(&fd->fdtimeout_to, 5 * hz); return 1; /* will return later */ case RECALWAIT: timeout_del(&fd->fdtimeout_to); fdc->sc_state = RECALCOMPLETE; /* allow 1/30 second for heads to settle */ timeout_add(&fdc->fdcpseudointr_to, hz / 30); return 1; /* will return later */ case RECALCOMPLETE: out_fdc(iot, ioh, NE7CMD_SENSEI); if (fdcresult(fdc) != 2 || (st0 & 0xf8) != 0x20 || cyl != 0) { #ifdef FD_DEBUG fdcstatus(&fd->sc_dev, 2, "recalibrate failed"); #endif fdretry(fd); goto loop; } fd->sc_cylin = 0; goto doseek; case MOTORWAIT: if (fd->sc_flags & FD_MOTOR_WAIT) return 1; /* time's not up yet */ goto doseek; default: fdcstatus(&fd->sc_dev, 0, "stray interrupt"); return 1; } #ifdef DIAGNOSTIC panic("fdintr: impossible"); #endif #undef st0 #undef cyl } void fdtimeout(arg) void *arg; { struct fd_softc *fd = arg; struct fdc_softc *fdc = (void *)fd->sc_dev.dv_parent; int s; s = splbio(); #ifdef DEBUG log(LOG_ERR,"fdtimeout: state %d\n", fdc->sc_state); #endif fdcstatus(&fd->sc_dev, 0, "timeout"); if (fd->sc_q.b_actf) fdc->sc_state++; else fdc->sc_state = DEVIDLE; (void) fdintr(fdc); splx(s); } void fdretry(fd) struct fd_softc *fd; { struct fdc_softc *fdc = (void *)fd->sc_dev.dv_parent; struct buf *bp = fd->sc_q.b_actf; if (fd->sc_opts & FDOPT_NORETRY) goto fail; switch (fdc->sc_errors) { case 0: /* try again */ fdc->sc_state = DOSEEK; break; case 1: case 2: case 3: /* didn't work; try recalibrating */ fdc->sc_state = DORECAL; break; case 4: /* still no go; reset the bastard */ fdc->sc_state = DORESET; break; default: fail: diskerr(bp, "fd", "hard error", LOG_PRINTF, fd->sc_skip / (128 << fd->sc_type->secsize), (struct disklabel *)NULL); printf(" (st0 %b st1 %b st2 %b cyl %d head %d sec %d)\n", fdc->sc_status[0], NE7_ST0BITS, fdc->sc_status[1], NE7_ST1BITS, fdc->sc_status[2], NE7_ST2BITS, fdc->sc_status[3], fdc->sc_status[4], fdc->sc_status[5]); bp->b_flags |= B_ERROR; bp->b_error = EIO; fdfinish(fd, bp); } fdc->sc_errors++; } int fdioctl(dev, cmd, addr, flag, p) dev_t dev; u_long cmd; caddr_t addr; int flag; struct proc *p; { struct fd_softc *fd = fd_cd.cd_devs[FDUNIT(dev)]; struct disklabel dl, *lp = &dl; struct cpu_disklabel cdl; char *errstring; int error; switch (cmd) { case MTIOCTOP: if (((struct mtop *)addr)->mt_op != MTOFFL) return EIO; return (0); case DIOCGDINFO: bzero(lp, sizeof(*lp)); bzero(&cdl, sizeof(struct cpu_disklabel)); lp->d_secsize = 128 << fd->sc_type->secsize; lp->d_secpercyl = fd->sc_type->seccyl; lp->d_ntracks = fd->sc_type->heads; lp->d_nsectors = fd->sc_type->sectrac; lp->d_ncylinders = fd->sc_type->tracks; strncpy(lp->d_typename, "floppy disk", 16); lp->d_type = DTYPE_FLOPPY; strncpy(lp->d_packname, "fictitious", 16); lp->d_secperunit = fd->sc_type->size; lp->d_rpm = 300; lp->d_interleave = 1; lp->d_flags = D_REMOVABLE; lp->d_partitions[RAW_PART].p_offset = 0; lp->d_partitions[RAW_PART].p_size = lp->d_secperunit * (lp->d_secsize / DEV_BSIZE); lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED; lp->d_npartitions = RAW_PART + 1; lp->d_magic = DISKMAGIC; lp->d_magic2 = DISKMAGIC; lp->d_checksum = dkcksum(lp); errstring = readdisklabel(dev, fdstrategy, lp, &cdl, 0); if (errstring) { /*printf("%s: %s\n", fd->sc_dev.dv_xname, errstring); */ } *(struct disklabel *)addr = *lp; return 0; case DIOCWLABEL: if ((flag & FWRITE) == 0) return EBADF; /* XXX do something */ return 0; case DIOCWDINFO: if ((flag & FWRITE) == 0) return EBADF; error = setdisklabel(lp, (struct disklabel *)addr, 0, NULL); if (error) return error; error = writedisklabel(dev, fdstrategy, lp, NULL); return error; case FD_FORM: if((flag & FWRITE) == 0) return EBADF; /* must be opened for writing */ else if(((struct fd_formb *)addr)->format_version != FD_FORMAT_VERSION) return EINVAL; /* wrong version of formatting prog */ else return fdformat(dev, (struct fd_formb *)addr, p); break; case FD_GTYPE: /* get drive type */ *(struct fd_type *)addr = *fd->sc_type; return 0; case FD_GOPTS: /* get drive options */ *(int *)addr = fd->sc_opts; return 0; case FD_SOPTS: /* set drive options */ fd->sc_opts = *(int *)addr; return 0; default: return ENOTTY; } #ifdef DIAGNOSTIC panic("fdioctl: impossible"); #endif } int fdformat(dev, finfo, p) dev_t dev; struct fd_formb *finfo; struct proc *p; { int rv = 0, s; struct fd_softc *fd = fd_cd.cd_devs[FDUNIT(dev)]; struct fd_type *type = fd->sc_type; struct buf *bp; int fd_bsize = 128 << fd->sc_type->secsize; /* set up a buffer header for fdstrategy() */ bp = (struct buf *)malloc(sizeof(struct buf), M_TEMP, M_NOWAIT); if(bp == 0) return ENOBUFS; bzero((void *)bp, sizeof(struct buf)); bp->b_flags = B_BUSY | B_PHYS | B_FORMAT; bp->b_proc = p; bp->b_dev = dev; /* * calculate a fake blkno, so fdstrategy() would initiate a * seek to the requested cylinder */ bp->b_blkno = (finfo->cyl * (type->sectrac * type->heads) + finfo->head * type->sectrac) * fd_bsize / DEV_BSIZE; bp->b_bcount = sizeof(struct fd_idfield_data) * finfo->fd_formb_nsecs; bp->b_data = (caddr_t)finfo; #ifdef DEBUG printf("fdformat: blkno %x count %x\n", bp->b_blkno, bp->b_bcount); #endif /* now do the format */ fdstrategy(bp); /* ...and wait for it to complete */ s = splbio(); while(!(bp->b_flags & B_DONE)) { rv = tsleep((caddr_t)bp, PRIBIO, "fdform", 0); if(rv == EWOULDBLOCK) /*break*/; } splx(s); if(rv == EWOULDBLOCK) { /* timed out */ rv = EIO; /* XXX what to do to the buf? it will eventually fall out as finished, but ... ?*/ /*biodone(bp);*/ } if(bp->b_flags & B_ERROR) rv = bp->b_error; free(bp, M_TEMP); return rv; }