/* $OpenBSD: mii_physubr.c,v 1.34 2008/05/13 01:40:39 brad Exp $ */ /* $NetBSD: mii_physubr.c,v 1.20 2001/04/13 23:30:09 thorpej Exp $ */ /*- * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Subroutines common to all PHYs. */ #include #include #include #include #include #include #include #include #include #include #include /* * Media to register setting conversion table. Order matters. * XXX 802.3 doesn't specify ANAR or ANLPAR bits for 1000base. */ const struct mii_media mii_media_table[] = { /* None */ { BMCR_ISO, ANAR_CSMA, 0 }, /* 10baseT */ { BMCR_S10, ANAR_CSMA|ANAR_10, 0 }, /* 10baseT-FDX */ { BMCR_S10|BMCR_FDX, ANAR_CSMA|ANAR_10_FD, 0 }, /* 100baseT4 */ { BMCR_S100, ANAR_CSMA|ANAR_T4, 0 }, /* 100baseTX */ { BMCR_S100, ANAR_CSMA|ANAR_TX, 0 }, /* 100baseTX-FDX */ { BMCR_S100|BMCR_FDX, ANAR_CSMA|ANAR_TX_FD, 0 }, /* 1000baseX */ { BMCR_S1000, ANAR_CSMA, 0 }, /* 1000baseX-FDX */ { BMCR_S1000|BMCR_FDX, ANAR_CSMA, 0 }, /* 1000baseT */ { BMCR_S1000, ANAR_CSMA, GTCR_ADV_1000THDX }, /* 1000baseT-FDX */ { BMCR_S1000|BMCR_FDX, ANAR_CSMA, GTCR_ADV_1000TFDX }, }; void mii_phy_setmedia(struct mii_softc *sc) { struct mii_data *mii = sc->mii_pdata; struct ifmedia_entry *ife = mii->mii_media.ifm_cur; int bmcr, anar, gtcr; if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) { if ((PHY_READ(sc, MII_BMCR) & BMCR_AUTOEN) == 0 || (sc->mii_flags & MIIF_FORCEANEG)) (void) mii_phy_auto(sc, 1); return; } /* * Table index is stored in the media entry. */ #ifdef DIAGNOSTIC if (ife->ifm_data < 0 || ife->ifm_data >= MII_NMEDIA) panic("mii_phy_setmedia"); #endif anar = mii_media_table[ife->ifm_data].mm_anar; bmcr = mii_media_table[ife->ifm_data].mm_bmcr; gtcr = mii_media_table[ife->ifm_data].mm_gtcr; if (mii->mii_media.ifm_media & IFM_ETH_MASTER) { switch (IFM_SUBTYPE(ife->ifm_media)) { case IFM_1000_T: gtcr |= GTCR_MAN_MS|GTCR_ADV_MS; break; default: panic("mii_phy_setmedia: MASTER on wrong media"); } } if (ife->ifm_media & IFM_LOOP) bmcr |= BMCR_LOOP; PHY_WRITE(sc, MII_ANAR, anar); PHY_WRITE(sc, MII_BMCR, bmcr); if (sc->mii_flags & MIIF_HAVE_GTCR) PHY_WRITE(sc, MII_100T2CR, gtcr); } int mii_phy_auto(struct mii_softc *sc, int waitfor) { int bmsr, i; if ((sc->mii_flags & MIIF_DOINGAUTO) == 0) { /* * Check for 1000BASE-X. Autonegotiation is a bit * different on such devices. */ if (sc->mii_flags & MIIF_IS_1000X) { uint16_t anar = 0; if (sc->mii_extcapabilities & EXTSR_1000XFDX) anar |= ANAR_X_FD; if (sc->mii_extcapabilities & EXTSR_1000XHDX) anar |= ANAR_X_HD; if (sc->mii_flags & MIIF_DOPAUSE && sc->mii_extcapabilities & EXTSR_1000XFDX) anar |= ANAR_X_PAUSE_TOWARDS; PHY_WRITE(sc, MII_ANAR, anar); } else { uint16_t anar; anar = BMSR_MEDIA_TO_ANAR(sc->mii_capabilities) | ANAR_CSMA; /* * Most 100baseTX PHY's only support symmetric * PAUSE, so we don't advertise asymmetric * PAUSE unless we also have 1000baseT capability. */ if (sc->mii_flags & MIIF_DOPAUSE) { if (sc->mii_capabilities & BMSR_100TXFDX) anar |= ANAR_FC; if (sc->mii_extcapabilities & EXTSR_1000TFDX) anar |= ANAR_PAUSE_TOWARDS; } PHY_WRITE(sc, MII_ANAR, anar); if (sc->mii_flags & MIIF_HAVE_GTCR) { uint16_t gtcr = 0; if (sc->mii_extcapabilities & EXTSR_1000TFDX) gtcr |= GTCR_ADV_1000TFDX; if (sc->mii_extcapabilities & EXTSR_1000THDX) gtcr |= GTCR_ADV_1000THDX; PHY_WRITE(sc, MII_100T2CR, gtcr); } } PHY_WRITE(sc, MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG); } if (waitfor) { /* Wait 500ms for it to complete. */ for (i = 0; i < 500; i++) { if ((bmsr = PHY_READ(sc, MII_BMSR)) & BMSR_ACOMP) return (0); delay(1000); } /* * Don't need to worry about clearing MIIF_DOINGAUTO. * If that's set, a timeout is pending, and it will * clear the flag. */ return (EIO); } /* * Just let it finish asynchronously. This is for the benefit of * the tick handler driving autonegotiation. Don't want 500ms * delays all the time while the system is running! */ if (sc->mii_flags & MIIF_AUTOTSLEEP) { sc->mii_flags |= MIIF_DOINGAUTO; tsleep(&sc->mii_flags, PZERO, "miiaut", hz >> 1); mii_phy_auto_timeout(sc); } else if ((sc->mii_flags & MIIF_DOINGAUTO) == 0) { sc->mii_flags |= MIIF_DOINGAUTO; timeout_set(&sc->mii_phy_timo, mii_phy_auto_timeout, sc); timeout_add(&sc->mii_phy_timo, hz / 2); } return (EJUSTRETURN); } void mii_phy_auto_timeout(void *arg) { struct mii_softc *sc = arg; int s, bmsr; if ((sc->mii_dev.dv_flags & DVF_ACTIVE) == 0) return; s = splnet(); sc->mii_flags &= ~MIIF_DOINGAUTO; bmsr = PHY_READ(sc, MII_BMSR); /* Update the media status. */ (void) PHY_SERVICE(sc, sc->mii_pdata, MII_POLLSTAT); splx(s); } int mii_phy_tick(struct mii_softc *sc) { struct mii_data *mii = sc->mii_pdata; struct ifmedia_entry *ife = mii->mii_media.ifm_cur; int reg; /* Just bail now if the interface is down. */ if ((mii->mii_ifp->if_flags & IFF_UP) == 0) return (EJUSTRETURN); /* * If we're not doing autonegotiation, we don't need to do * any extra work here. However, we need to check the link * status so we can generate an announcement if the status * changes. */ if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) return (0); /* Read the status register twice; BMSR_LINK is latch-low. */ reg = PHY_READ(sc, MII_BMSR) | PHY_READ(sc, MII_BMSR); if (reg & BMSR_LINK) { /* * See above. */ return (0); } /* * Only retry autonegotiation every mii_anegticks seconds. */ if (!sc->mii_anegticks) sc->mii_anegticks = MII_ANEGTICKS; if (++sc->mii_ticks <= sc->mii_anegticks) return (EJUSTRETURN); sc->mii_ticks = 0; PHY_RESET(sc); if (mii_phy_auto(sc, 0) == EJUSTRETURN) return (EJUSTRETURN); /* * Might need to generate a status message if autonegotiation * failed. */ return (0); } void mii_phy_reset(struct mii_softc *sc) { int reg, i; if (sc->mii_flags & MIIF_NOISOLATE) reg = BMCR_RESET; else reg = BMCR_RESET | BMCR_ISO; PHY_WRITE(sc, MII_BMCR, reg); /* * It is best to allow a little time for the reset to settle * in before we start polling the BMCR again. Notably, the * DP83840A manual states that there should be a 500us delay * between asserting software reset and attempting MII serial * operations. Also, a DP83815 can get into a bad state on * cable removal and reinsertion if we do not delay here. */ delay(500); /* Wait another 100ms for it to complete. */ for (i = 0; i < 100; i++) { reg = PHY_READ(sc, MII_BMCR); if ((reg & BMCR_RESET) == 0) break; delay(1000); } if (sc->mii_inst != 0 && ((sc->mii_flags & MIIF_NOISOLATE) == 0)) PHY_WRITE(sc, MII_BMCR, reg | BMCR_ISO); } void mii_phy_down(struct mii_softc *sc) { if (sc->mii_flags & MIIF_DOINGAUTO) { sc->mii_flags &= ~MIIF_DOINGAUTO; timeout_del(&sc->mii_phy_timo); } } void mii_phy_status(struct mii_softc *sc) { PHY_STATUS(sc); } void mii_phy_update(struct mii_softc *sc, int cmd) { struct mii_data *mii = sc->mii_pdata; struct ifnet *ifp = mii->mii_ifp; int announce, s; if (sc->mii_media_active != mii->mii_media_active || sc->mii_media_status != mii->mii_media_status || cmd == MII_MEDIACHG) { announce = mii_phy_statusmsg(sc); (*mii->mii_statchg)(sc->mii_dev.dv_parent); sc->mii_media_active = mii->mii_media_active; sc->mii_media_status = mii->mii_media_status; if (announce) { s = splnet(); if_link_state_change(ifp); splx(s); } } } int mii_phy_statusmsg(struct mii_softc *sc) { struct mii_data *mii = sc->mii_pdata; struct ifnet *ifp = mii->mii_ifp; u_int64_t baudrate; int link_state, announce = 0; if (mii->mii_media_status & IFM_AVALID) { if (mii->mii_media_status & IFM_ACTIVE) { if (mii->mii_media_active & IFM_FDX) link_state = LINK_STATE_FULL_DUPLEX; else link_state = LINK_STATE_HALF_DUPLEX; } else link_state = LINK_STATE_DOWN; } else link_state = LINK_STATE_UNKNOWN; baudrate = ifmedia_baudrate(mii->mii_media_active); if (link_state != ifp->if_link_state) { ifp->if_link_state = link_state; /* * XXX Right here we'd like to notify protocols * XXX that the link status has changed, so that * XXX e.g. Duplicate Address Detection can restart. */ announce = 1; } if (baudrate != ifp->if_baudrate) { ifp->if_baudrate = baudrate; announce = 1; } return (announce); } /* * Initialize generic PHY media based on BMSR, called when a PHY is * attached. We expect to be set up to print a comma-separated list * of media names. Does not print a newline. */ void mii_phy_add_media(struct mii_softc *sc) { struct mii_data *mii = sc->mii_pdata; #define ADD(m, c) ifmedia_add(&mii->mii_media, (m), (c), NULL) if ((sc->mii_flags & MIIF_NOISOLATE) == 0) ADD(IFM_MAKEWORD(IFM_ETHER, IFM_NONE, 0, sc->mii_inst), MII_MEDIA_NONE); if (sc->mii_capabilities & BMSR_10THDX) { ADD(IFM_MAKEWORD(IFM_ETHER, IFM_10_T, 0, sc->mii_inst), MII_MEDIA_10_T); } if (sc->mii_capabilities & BMSR_10TFDX) { ADD(IFM_MAKEWORD(IFM_ETHER, IFM_10_T, IFM_FDX, sc->mii_inst), MII_MEDIA_10_T_FDX); } if (sc->mii_capabilities & BMSR_100TXHDX) { ADD(IFM_MAKEWORD(IFM_ETHER, IFM_100_TX, 0, sc->mii_inst), MII_MEDIA_100_TX); } if (sc->mii_capabilities & BMSR_100TXFDX) { ADD(IFM_MAKEWORD(IFM_ETHER, IFM_100_TX, IFM_FDX, sc->mii_inst), MII_MEDIA_100_TX_FDX); } if (sc->mii_capabilities & BMSR_100T4) { ADD(IFM_MAKEWORD(IFM_ETHER, IFM_100_T4, 0, sc->mii_inst), MII_MEDIA_100_T4); } if (sc->mii_extcapabilities & EXTSR_MEDIAMASK) { /* * XXX Right now only handle 1000SX and 1000TX. Need * XXX to handle 1000LX and 1000CX some how. */ if (sc->mii_extcapabilities & EXTSR_1000XHDX) { sc->mii_anegticks = MII_ANEGTICKS_GIGE; sc->mii_flags |= MIIF_IS_1000X; ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, 0, sc->mii_inst), MII_MEDIA_1000_X); } if (sc->mii_extcapabilities & EXTSR_1000XFDX) { sc->mii_anegticks = MII_ANEGTICKS_GIGE; sc->mii_flags |= MIIF_IS_1000X; ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, sc->mii_inst), MII_MEDIA_1000_X_FDX); } /* * 1000baseT media needs to be able to manipulate * master/slave mode. We set IFM_ETH_MASTER in * the "don't care mask" and filter it out when * the media is set. * * All 1000baseT PHYs have a 1000baseT control register. */ if (sc->mii_extcapabilities & EXTSR_1000THDX) { sc->mii_anegticks = MII_ANEGTICKS_GIGE; sc->mii_flags |= MIIF_HAVE_GTCR; mii->mii_media.ifm_mask |= IFM_ETH_MASTER; ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_T, 0, sc->mii_inst), MII_MEDIA_1000_T); } if (sc->mii_extcapabilities & EXTSR_1000TFDX) { sc->mii_anegticks = MII_ANEGTICKS_GIGE; sc->mii_flags |= MIIF_HAVE_GTCR; mii->mii_media.ifm_mask |= IFM_ETH_MASTER; ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_T, IFM_FDX, sc->mii_inst), MII_MEDIA_1000_T_FDX); } } if (sc->mii_capabilities & BMSR_ANEG) { ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, sc->mii_inst), MII_NMEDIA); /* intentionally invalid index */ } #undef ADD } void mii_phy_delete_media(struct mii_softc *sc) { struct mii_data *mii = sc->mii_pdata; ifmedia_delete_instance(&mii->mii_media, sc->mii_inst); } int mii_phy_activate(struct device *self, enum devact act) { int rv = 0; switch (act) { case DVACT_ACTIVATE: rv = EOPNOTSUPP; break; case DVACT_DEACTIVATE: /* Nothing special to do. */ break; } return (rv); } int mii_phy_detach(struct device *self, int flags) { struct mii_softc *sc = (void *) self; if (sc->mii_flags & MIIF_DOINGAUTO) timeout_del(&sc->mii_phy_timo); mii_phy_delete_media(sc); return (0); } const struct mii_phydesc * mii_phy_match(const struct mii_attach_args *ma, const struct mii_phydesc *mpd) { for (; mpd->mpd_name != NULL; mpd++) { if (MII_OUI(ma->mii_id1, ma->mii_id2) == mpd->mpd_oui && MII_MODEL(ma->mii_id2) == mpd->mpd_model) return (mpd); } return (NULL); } /* * Return the flow control status flag from MII_ANAR & MII_ANLPAR. */ int mii_phy_flowstatus(struct mii_softc *sc) { int anar, anlpar; if ((sc->mii_flags & MIIF_DOPAUSE) == 0) return (0); anar = PHY_READ(sc, MII_ANAR); anlpar = PHY_READ(sc, MII_ANLPAR); /* For 1000baseX, the bits are in a different location. */ if (sc->mii_flags & MIIF_IS_1000X) { anar <<= 3; anlpar <<= 3; } if ((anar & ANAR_PAUSE_SYM) & (anlpar & ANLPAR_PAUSE_SYM)) return (IFM_FLOW|IFM_ETH_TXPAUSE|IFM_ETH_RXPAUSE); if ((anar & ANAR_PAUSE_SYM) == 0) { if ((anar & ANAR_PAUSE_ASYM) && ((anlpar & ANLPAR_PAUSE_TOWARDS) == ANLPAR_PAUSE_TOWARDS)) return (IFM_FLOW|IFM_ETH_TXPAUSE); else return (0); } if ((anar & ANAR_PAUSE_ASYM) == 0) { if (anlpar & ANLPAR_PAUSE_SYM) return (IFM_FLOW|IFM_ETH_TXPAUSE|IFM_ETH_RXPAUSE); else return (0); } switch ((anlpar & ANLPAR_PAUSE_TOWARDS)) { case ANLPAR_PAUSE_NONE: return (0); case ANLPAR_PAUSE_ASYM: return (IFM_FLOW|IFM_ETH_RXPAUSE); default: return (IFM_FLOW|IFM_ETH_RXPAUSE|IFM_ETH_TXPAUSE); } /* NOTREACHED */ } /* * Given an ifmedia word, return the corresponding ANAR value. */ int mii_anar(int media) { int rv; switch (media & (IFM_TMASK|IFM_NMASK|IFM_FDX)) { case IFM_ETHER|IFM_10_T: rv = ANAR_10|ANAR_CSMA; break; case IFM_ETHER|IFM_10_T|IFM_FDX: rv = ANAR_10_FD|ANAR_CSMA; break; case IFM_ETHER|IFM_100_TX: rv = ANAR_TX|ANAR_CSMA; break; case IFM_ETHER|IFM_100_TX|IFM_FDX: rv = ANAR_TX_FD|ANAR_CSMA; break; case IFM_ETHER|IFM_100_T4: rv = ANAR_T4|ANAR_CSMA; break; default: rv = 0; break; } return (rv); }